DGQ2788A www.vishay.com Vishay Siliconix Automotive 125 C Analog Switch Dual DPDT / Quad SPDT, 0.37 , 338 MHz Bandwidth DESCRIPTION FEATURES The DGQ2788A, is a four-channel single-pole double-throw (SPDT) analog switch with two control inputs. It is also known as a two-channel double-pole double-throw (DPDT) configuration. The part is designed to operate from 1.8 V to 5.5 V single power rail. All switches conduct equally well in both directions, offering rail to rail signal switching and can be used both as multiplexers as well as de-multiplexers. * * * * The DGQ2788A offers low parasitic capacitance and highly matched low and flat switch resistance over the full signal range. It features break-before-make switching and low control logic threshold. The part supports rail to rail fast edge pulsing signals and have 0.1 ns/typ. propagation delay. It is ideal for both analog and digital signal switching in space constrain applications requiring high performance and efficient use of board space. The DGQ2788A comes in a small miniQFN-16 lead package of 2.6 mm x 1.8 mm x 0.55 mm. This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications. * * * * * * * * 1.8 V to 5.5 V single supply operation Low resistance: 0.37 /typ. at 2.7 V Highly flat and matched RON Low parasitic capacitance, CON = 26 pF, COFF = 14.5 pF High bandwidth: 338 MHz 0.1 ns/typ. propagation delay for rail to rail fast edge pulsing signal Guaranteed logic high 1.2 V, logic low 0.3 V Break before make switching Signal swing over V+ capable Power down protection Latch up current: 300 mA (JESD78) Material categorization: for definitions of compliance please see www.vishay.com/doc?99912 BENEFITS * * * * Low and flat resistance High bandwidth Low parasitic capacitance Fault protection APPLICATIONS * * * * * Automotive infotainment Audio, video, and bus routing Industrial automation Medical imaging Network and telecommunication FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION 3xx Pin 1 Device marking: 3xx TRUTH TABLE LOGIC NC1, 2, 3 and 4 NO1, 2, 3 and 4 0 On Off 1 Off On xx = date / lot traceability code Note: pin 1 has long lead ORDERING INFORMATION TEMPERATURE RANGE PACKAGE PART NUMBER MIN. ORDER / PACK. QUANTITY -40 C to +125 C lead (Pb)-free miniQFN-16 DGQ2788AEN-T1-GE4 Tape and reel, 3000 units S19-0381-Rev. C, 29-Apr-2019 Document Number: 75683 1 For technical questions, contact: analogswitchtechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DGQ2788A www.vishay.com Vishay Siliconix ABSOLUTE MAXIMUM RATINGS (TA = 25 C, unless otherwise noted) PARAMETER Reference to GND SYMBOL LIMIT V+ -0.3 to +6 IN, COM, NC, NO a -0.3 to (V+ + 0.3) Current (any terminal except NO, NC, or COM) 300 Peak current (pulsed at 1 ms, 10 % duty cycle) 500 Storage temperature (D suffix) Power dissipation (packages) b V 30 Continuous current (NO, NC, or COM) Package solder reflow conditions d UNIT -65 to +150 miniQFN-16 250 miniQFN-16 c mA C 525 mW Latch-up, per AEC Q100-004 300 mA ESD human body model, per AEC Q100-002 2000 ESD charged device model, per AEC Q100-011 1500 V Notes a. Signals on NC, NO, or COM, or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings b. All leads welded or soldered to PC board c. Derate 6.6 mW/C above 70 C d. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection S19-0381-Rev. C, 29-Apr-2019 Document Number: 75683 2 For technical questions, contact: analogswitchtechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DGQ2788A www.vishay.com Vishay Siliconix SPECIFICATIONS (V+ = 3 V) PARAMETER SYMBOL TEST CONDITIONS unless otherwise specified V+ = 3 V, 10 %, VIN = 0.5 or 1.4 V e LIMITS -40 C to +125 C TEMP. a UNIT MIN. b TYP. c MAX. b 0 - V+ Room - 0.37 0.5 Full - - 0.65 Room - 0.01 0.05 Room - 0.05 - Room -0.1 - 0.1 Analog Switch Analog signal range d VNO, VNC, VCOM On-resistance RON RON flatness d RON flatness RON match d Switch off leakage current RON INO(off), INC(off) ICOM(off) Channel-on leakage current ICOM(on) Full V+ = 2.7 V, VCOM = 0 to 2.7 V, INO, INC = 100 mA V+ = 2.7 V, VCOM = 0 to V+, INO, INC = 100 mA V+ = 5.5 V, VNO, VNC = 0.5 V / 4 V, VCOM = 4 V / 0.5 V V+ = 5.5 V, VNO, VNC = VCOM = 0.5 V / 4 V Full -0.5 - 0.5 Room -1.2 - 1.2 Full -2 - 2 Room -1.2 - 1.2 Full -2 - 2 V A Digital Control Input high voltage VINH Full 1.2 - - Input low voltage VINL Full - - 0.3 Full - 5 - pF Full -1 - 1 A Room - 30 50 Full - - 150 Room - 0.35 1 Full - - 3 - Input capacitance Input current CIN IINL or IINH VIN = 0 or V+ V Dynamic Characteristics Turn-on time tON Turn-off time tOFF VNO or VNC = 1.5 V, RL = 50 , CL = 35 pF Break-before-make time td s Full 1 - Charge injection d QINJ CL = 1 nF, VGEN = 1.5 V, RGEN = 0 Room - -245 - pC -3 dB bandwidth BW RL = 50 , CL = 5 pF Room - 338 - MHz RL = 50 , CL = 5 pF, f = 100 kHz - -82 - RL = 50 , CL = 5 pF, f = 1 MHz - -56 - - -87 - - -61 - - -104.1 - Off-isolation d Crosstalk d, f Total harmonic distortion and noise NO, NC off capacitance d Channel-on capacitance d OIRR XTALK THD+N RL = 50 , CL = 5 pF, f = 100 kHz Room RL = 50 , CL = 5 pF, f = 1 MHz RL = 50 , 1 Vp-p, f = 1 kHz Room dB dB CNO(off) Room - 14.5 - CNC(off) Room - 14.5 - Room - 26 - Room - 26 - 1.8 - 5.5 V - 24 60 A CNO(on) f = 1 MHz CNC(on) pF Power Supply Power supply range V+ Power supply current I+ VIN = 0 or V+ Full Notes a. Room = 25 C, full = as determined by the operating suffix b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet c. Typical values are for design aid only, not guaranteed nor subject to production testing d. Guarantee by design, not subjected to production test e. VIN = input voltage to perform proper function f. Crosstalk measured between channels Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. S19-0381-Rev. C, 29-Apr-2019 Document Number: 75683 3 For technical questions, contact: analogswitchtechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DGQ2788A www.vishay.com Vishay Siliconix TYPICAL CHARACTERISTICS (TA = 25 C, unless otherwise noted) TA = 25 C IS = 100 mA V+ = +1.8 V V+ = +2.3 V RON - On-Resistance () RON - On-Resistance () 0.50 0.48 0.46 0.44 0.42 0.40 0.38 0.36 0.34 0.32 0.30 0.28 0.26 0.24 0.22 0.20 0.0 V+ = +3.0 V V+ = +3.6 V V+ = +5.0 V 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.50 0.48 V+ = +3.0 V IS = 100 mA 0.46 0.44 0.42 0.40 0.38 0.36 0.34 0.32 0.30 0.28 0.26 0.24 0.22 0.20 0.0 0.5 1.0 VCOM - Analog Voltage (V) +25 C -40 C 1.5 2.0 2.5 3.0 VCOM - Analog Voltage (V) RON vs. Analog Voltage and Temperature RON vs. VCOM and Supply Voltage 1000 40 oC V+ = +3 V IN = 0 V 35 I+ - Supply Current (nA) T = 25 I+ - Supply Current (uA) +85 C V+ = 5 V 100 V+ = 3 V 30 25 20 15 10 5 V+ = 1.8 V 10 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 -50 -25 0 VIN - Input Voltage (V) Supply Current vs. Input Voltage 50 75 100 125 Supply Current vs. Temperature 60 1000 TA = 25 C VIN = 0 V 55 50 100 -ICOM(ON) 10 -ICOM(OFF) 45 Leakage (nA) I+ - Supply Current (uA) 25 Temperature (C) 40 35 30 1 V+ = 3.3 V VCOM = 0.3 V VNO/NC = 3 V 0.1 0.01 25 INO/NC(OFF) 0.001 20 0.0001 15 10 0.00001 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 V+ - Supply Voltage (V) Supply Current vs. Supply Voltage S19-0381-Rev. C, 29-Apr-2019 5.5 -50 -25 0 25 50 75 100 125 Temperature (oC) Leakage Current vs. Temperature Document Number: 75683 4 For technical questions, contact: analogswitchtechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DGQ2788A www.vishay.com Vishay Siliconix TYPICAL CHARACTERISTICS (TA = 25 C, unless otherwise noted) 1000 0.90 -ICOM(ON) 0.85 VTH - Switching Threshold (V) 100 Leakage Current (nA) V+ = 3.3 V 10 1 -ICOM(OFF) 0.1 INO/NC(OFF) 0.01 0.80 VIH 0.75 VIL 0.70 0.65 0.60 0.55 0.001 0 0.5 1 1.5 2 2.5 3 0.50 1.5 3.5 2 2.5 3 3.5 4 4.5 5 5.5 V+ - Supply Voltage (V) VCOM - Drain Voltage (V), VNO/NC = -VCOM Switching Threshold vs. Supply Voltage Leakage Current vs. Drain Voltage 10 RL = 50 Loss -10 -97 -20 -99 V+ = +3 V OIRR -30 THD+N (dB) Loss, OIRR, XTALK (dB) Signal Amplitude = 1 Vp-p -95 0 XTALK -40 -50 -60 V+ = 5 V -101 -103 V+ = 1.8 V -105 -70 -107 V+ = 3 V -80 -109 -90 -111 -100 100K 1M 10M 100M 10 1G 1000 10 000 100 000 Frequency (Hz) Frequency (Hz) Insertion Loss, Off-Isolation Crosstalk vs. Frequency Total Harmonic Distortion and Noise vs. Frequency 100 0 V+ = 3 V tON, V+ = 1.8 V -50.0 QINJ - Charge Injection (pC) Switching Speed (us) 100 tON, V+ = 3 V 10 tON, V+ = 5.5 V tOFF, V+ = 1.8 V 1 tOFF, V+ = 3 V -100.0 -150.0 -200.0 -250.0 -300.0 -350.0 tOFF, V+ = 5.5 V 0.1 -400.0 -50 -25 0 25 50 75 100 Temperature (oC) Switching Time vs. Temperature S19-0381-Rev. C, 29-Apr-2019 125 0 0.5 1 1.5 2 2.5 3 VNO/NC - Analog Voltage (V) Charge Injection vs. Analog Voltage Document Number: 75683 5 For technical questions, contact: analogswitchtechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DGQ2788A www.vishay.com Vishay Siliconix TYPICAL CHARACTERISTICS (TA = 25 C, unless otherwise noted) 40 80 V+ = 3 V CCOM(ON) 30 60 Capacitance (pF) Switching Speed (us) 35 T = 25 oC Vanalog = 1/2 V+ 70 50 tON 40 30 25 20 15 10 20 CNO/NC(OFF) tOFF 5 10 0 0 1.5 2 2.5 3 3.5 4 4.5 V+ - Supply Voltage (V) 5 0.0 5.5 0.5 1.0 1.5 2.0 2.5 3.0 Analog Voltage (V) Switching Time vs. Supply Voltage Capacitance vs. Analog Voltage TEST CIRCUITS V+ Logic Input V+ NO or NC Switch Input COM VINH tr < 5 ns tf < 5 ns 50 % VINL Switch Output VOUT 0.9 x V OUT Logic Input IN RL 50 GND CL 35 pF Switch Output 0V tOFF tON 0V Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense. CL (includes fixture and stray capacitance) VOUT = VCOM (R L RL + R ON ) Fig. 1 - Switching Time V+ Logic Input V+ VNO VNC COM NO VO VINH tr < 5 ns tf < 5 ns VINL NC RL 50 IN CL 35 pF GND VNC = V NO VO 90 % Switch 0V Output tD tD CL (includes fixture and stray capacitance) Fig. 2 - Break-Before-Make Interval S19-0381-Rev. C, 29-Apr-2019 Document Number: 75683 6 For technical questions, contact: analogswitchtechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DGQ2788A www.vishay.com Vishay Siliconix V+ VOUT V+ Rgen NC or NO COM VOUT VOUT + IN IN Vgen CL = 1 nF VIN = 0 - V+ On On Off GND Q = VOUT x CL IN depends on switch configuration: input polarity determined by sense of switch. Fig. 3 - Charge Injection V+ V+ 10 nF 10 nF V+ V+ NC or NO IN COM COM 0 V, 2.4 V Meter COM IN 0 V, 2.4 V RL NC or NO GND HP4192A Impedance Analyzer or Equivalent GND Analyzer f = 1 MHz VCOM Off Isolation = 20 log V NO / NC Fig. 4 - Off-Isolation Fig. 5 - Channel Off / On Capacitance Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?75683. S19-0381-Rev. C, 29-Apr-2019 Document Number: 75683 7 For technical questions, contact: analogswitchtechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information www.vishay.com Vishay Siliconix Thin miniQFN16 Case Outline B 12 0.10 C Terminal tip (4) 16 x b D A 11 9 9 10 10 11 0.10 M C A B 0.05 M C 12 13 8 8 13 14 7 7 14 6 6 15 5 5 E 15 16 1 2 3 4 16 4 Pin #1 identifier (5) 15 x L 0.10 C Top view 3 2 L1 1 e Bottom view 0.10 C C A Seating plane 0.10 C A3 Side view DIMENSIONS MILLIMETERS (1) INCHES MIN. NOM. MAX. MIN. NOM. MAX. A 0.50 0.55 0.60 0.020 0.022 0.024 A1 0 - 0.05 0 - 0.002 A3 0.15 ref. b 0.15 D 2.50 e 0.006 ref. 0.20 0.25 0.006 2.60 2.70 0.098 0.40 BSC E 1.70 1.80 0.008 0.010 0.102 0.106 0.016 BSC 1.90 0.067 0.071 0.075 L 0.35 0.40 0.45 0.014 0.016 0.018 L1 0.45 0.50 0.55 0.018 0.020 0.022 N (3) 16 16 Nd (3) 4 4 (3) 4 4 Ne Notes (1) Use millimeters as the primary measurement. (2) Dimensioning and tolerances conform to ASME Y14.5M. - 1994. (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively. (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip. (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body. (6) Package warpage max. 0.05 mm. ECN: T16-0226-Rev. B, 09-May-16 DWG: 6023 Revision: 09-May-16 Document Number: 64694 1 For technical questions, contact: analogswitchtechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 PAD Pattern Vishay Siliconix RECOMMENDED MINIMUM PADS FOR MINI QFN 16L 0.562 (0.0221) 0.400 (0.0157) 0.225 (0.0089) 1 2.900 (0.1142) 0.463 (0.0182) 1.200 (0.0472) 2.100 (0.0827) Mounting Footprint Dimensions in mm (inch) Document Number: 66557 Revision: 05-Mar-10 www.vishay.com 1 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. (c) 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED Revision: 01-Jan-2021 1 Document Number: 91000