4
DC979Af
DEMO MANUAL DC979A
parts List
ITEM QTY REFERENCE PART DESCRIPTION MANUFACTURER/PART NUMBER
DC979A Required Circuit Components
1 7 C1, C4, C11-C15 CAP., X7R, 0.1µF, 16V, 20%, 0402 TDK, C1005X7R1C104M
2 8 C2, C5, C7, C8, C9, C16, C17, C21 CAP., X5R, 4.7µF, 10V, 20%, 0603 TDK, C1608X5R0J475M
3 3 C3, C6, C10 CAP., X7R, 0.01µF, 25V, 10%, 0402 AVX, 04023C103KAT1A
4 3 C18, C19, C20 CAP., X5R, 2.2µF, 10V, 20%, 0805 TDK, C2012X5R1A225M
5 3 D1, D2, D3 DIODE, SCHOTTKY, SOT23 DIODE INC., BAT54S
6 16 E1-E16 TESTPOINT, TURRET, 0.064" MILL-MAX, 2308-2
7 7 JP1-JP7 JMP, 3-PIN, 1 ROW, 0.079" SAMTEC, TMM-103-02-L-S
8 7 FOR JP1-JP7, PIN 1 AND PIN 2 SHUNT, 0.079" CENTER SAMTEC, 2SN-BK-G
9 0 JP8 JMP, 2-PIN, 1 ROW, 0.100" COMM CON., 3801S-02G2
10 1 J1 HEADER, 2×7 PIN, 0.079" MOLEX, 87831-1420
11 0 J2 CONN, 5-PIN, GOLD, STRAIGHT CONNEX, 132134
12 0 R1 RES., 0402 OPT
13 3 R2, R3, R4 RES., CHIP, 4.99k, 1/16W, 1%, 0402 AAC, CR05-4991FM
14 1 R5 RES., CHIP, 100, 1/16W, 5%, 0402 VISHAY, CRCW0402101J
15 2 R6, R13 RES., CHIP, 10k, 1/16W, 5%, 0402 AAC, CR05-103JM
16 1 R7 RES., CHIP, 51, 1/16W, 5%, 0402 AAC, CR05-510JM
17 4 R8, R9, R10, R12 RES., CHIP, 0, 1/16W, 5%, 0805 AAC, CJ10-000M
18 0 R11 RES., CHIP, 0, 1/16W, 5%, 0805 OPT
19 1 U1 I.C., LTC2442CG, SSOP36G LINEAR TECHNOLOGY, LTC2442CG
20 1 U2 I.C., LT1236ACS8-5, SO8 LINEAR TECHNOLOGY, LT1236ACS8-5
21 1 U3 I.C., 24LC025, TSSOP8 MICROCHIP, 24LC025-I/ST
22 1 U4 IC, NON-INVERTING MULTIPLEXER, SC70 FAIRCHILD, NC7SZ157P6X
23 1 U5 IC, SINGLE D, FLIP-FLOP, US8 ON SEMI., NL17SZ74US
24 1 U6 I.C., LTC1983ES6-5, SOT23-6 LINEAR TECHNOLOGY, LTC1983ES6-5
INPUT NORMAL MODE REJECTION
The LTC2442’s SINC4 digital filter is trimmed to strongly
reject both 50Hz and 60Hz line noise when operated with
the internal conversion clock and oversample ratio 32768
(6.8 samples per second.) To measure input normal
mode rejection, connect COM to a 2.5V source such as
an LT1790-2.5 reference or a power supply. Connect any
other input (CH0-CH3) to the same supply through a 10k
resistor. Apply a 10Hz, 2V peak-to-peak sine wave to the
input through a 1µF capacitor.
Select OSR32768 (6.8 samples per second) and 2X mode
in the demo software and start taking data. The input noise
will be quite large, and the graph of output vs time should
show large variations.
Next, slowly increase the frequency to 55Hz. The noise
should be almost undetectable in the graph.
Change the OSR to 16384 (13.75 samples per second) the
noise will increase substantially, as the first notch at this
OSR is at 110Hz. Increase the signal generator frequency
to 110Hz, the noise will drop again.
experiments