June 2006 i
© 2006 Actel Corporation See the Actel website for the latest version of the datasheet.
SX Family FPGAs
Leading Edge Performance
320 MHz Internal Performance
3.7 ns Clock-to-Out (Pin-to-Pin)
0.1 ns Input Setup
0.25 ns Clock Skew
Specifications
12,000 to 48,000 System Gates
Up to 249 User-Programmable I/O Pins
Up to 1,080 Flip-Flops
0.35 µ CMOS
Features
66 MHz PCI
CPLD and FPGA Integration
Single-Chip Solution
100% Resource Utilization with 100% Pin Locking
3.3 V and 5.0 V Operation with 5.0 V Input Tolerance
Very Low Power Consumption
Deterministic, User-Controllable Timing
Unique In-System Diagnostic and Debug Capability
with Silicon Explorer II
Boundary Scan Testing in Compliance with IEEE
Standard 1149.1 (JTAG)
Secure Programming Technology Prevents Reverse
Engineering and Design Theft
e
u
SX Product Profile
Device A54SX08 A54SX16 A54SX16P A54SX32
Capacity
Typical Gates
System Gates
8,000
12,000
16,000
24,000
16,000
24,000
32,000
48,000
Logic Modules
Combinatorial Cells
768
512
1,452
924
1,452
924
2,880
1,800
Register Cells (Dedicated Flip-Flops) 256 528 528 1,080
Maximum User I/Os 130 175 175 249
Clocks 3333
JTAG Yes Yes Yes Yes
PCI ––Yes
Clock-to-Out 3.7 ns 3.9 ns 4.4 ns 4.6 ns
Input Setup (external) 0.8 ns 0.5 ns 0.5 ns 0.1 ns
Speed Grades Std, –1, –2, –3 Std, –1, –2, –3 Std, –1, –2, –3 Std, –1, –2, –3
Temperature Grades C, I, M C, I, M C, I, M C, I, M
Packages (by pin count)
PLCC
PQFP
VQFP
TQFP
PBGA
FBGA
84
208
100
144, 176
144
208
100
176
208
100
144, 176
208
144, 176
313, 329
v3.2
SX Family FPGAs
ii v3.2
Ordering Information
Plastic Device Resources
Part Number
A54SX08 = 12,000 System Gates
A54SX16 = 24,000 System Gates
A54SX16P = 24,000 System Gates
A54SX32 = 48,000 System Gates
Speed Grade
Blank = Standard Speed
–1 = Approximately 15% Faster than Standard
–2 = Approximately 25% Faster than Standard
–3 = Approximately 35% Faster than Standard
Package Type
BG = Ball Grid Array
PL = Plastic Leaded Chip Carrier
PQ = Plastic Quad Flat Pack
TQ = Thin (1.4 mm) Quad Flat Pack
VQ = Very Thin (1.0 mm) Quad Flat Pack
FG = Fine Pitch Ball Grid Array (1.0 mm)
Package Lead Count
Application (Temperature Range)
Blank = Commercial (0 to +70˚C)
I = Industrial (–40 to +85˚C)
M = Military (–55 to +125˚C)
PP = Pre-production
A54SX16 P2PQ 208
Blank = Not PCI Compliant
P = PCI Compliant
G
Lead-Free Packaging
Blank = Standard Packaging
G = RoHS Compliant Packaging
Device
User I/Os (including clock buffers)
PLCC
84-Pin
VQFP
100-Pin
PQFP
208-Pin
TQFP
144-Pin
TQFP
176-Pin
PBGA
313-Pin
PBGA
329-Pin
FBGA
144-Pin
A54SX08 69 81 130 113 128 111
A54SX16 81 175 147
A54SX16P 81 175 113 147
A54SX32 174 113 147 249 249
Note: Package Definitions (Consult your local Actel sales representative for product availability):
PLCC = Plastic Leaded Chip Carrier
PQFP = Plastic Quad Flat Pack
TQFP = Thin Quad Flat Pack
VQFP = Very Thin Quad Flat Pack
PBGA = Plastic Ball Grid Array
FBGA = Fine Pitch (1.0 mm) Ball Grid Array
v3.2 iii
Table of Contents
SX Family FPGAs
SX Family FPGAs
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
SX Family Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
3.3 V / 5 V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
PCI Compliance for the SX Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9
A54SX16P AC Specifications for (PCI Operation) . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
A54SX16P DC Specifications (3.3 V PCI Operation) . . . . . . . . . . . . . . . . . . . . . . . . 1-12
A54SX16P AC Specifications (3.3 V PCI Operation) . . . . . . . . . . . . . . . . . . . . . . . . 1-13
Power-Up Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Power-Down Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Evaluating Power in SX Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
SX Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23
Package Pin Assignments
84-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
208-Pin PQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
144-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
176-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
100-Pin VQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
313-Pin PBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
329-Pin PBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
144-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
International Traffic in Arms Regulations (ITAR) and Export Administration
Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
SX Family FPGAs
v3.2 1-1
SX Family FPGAs
General Description
The Actel SX family of FPGAs features a sea-of-modules
architecture that delivers device performance and
integration levels not currently achieved by any other
FPGA architecture. SX devices greatly simplify design
time, enable dramatic reductions in design costs and
power consumption, and further decrease time to
market for performance-intensive applications.
The Actel SX architecture features two types of logic
modules, the combinatorial cell (C-cell) and the register
cell (R-cell), each optimized for fast and efficient
mapping of synthesized logic functions. The routing and
interconnect resources are in the metal layers above the
logic modules, providing optimal use of silicon. This
enables the entire floor of the device to be spanned with
an uninterrupted grid of fine-grained, synthesis-friendly
logic modules (or “sea-of-modules”), which reduces the
distance signals have to travel between logic modules. To
minimize signal propagation delay, SX devices employ
both local and general routing resources. The high-speed
local routing resources (DirectConnect and FastConnect)
enable very fast local signal propagation that is optimal
for fast counters, state machines, and datapath logic.
The general system of segmented routing tracks allows
any logic module in the array to be connected to any
other logic or I/O module. Within this system,
propagation delay is minimized by limiting the number
of antifuse interconnect elements to five (90 percent of
connections typically use only three antifuses). The
unique local and general routing structure featured in
SX devices gives fast and predictable performance,
allows 100 percent pin-locking with full logic utilization,
enables concurrent PCB development, reduces design
time, and allows designers to achieve performance goals
with minimum effort.
Further complementing SX’s flexible routing structure is
a hardwired, constantly loaded clock network that has
been tuned to provide fast clock propagation with
minimal clock skew. Additionally, the high performance
of the internal logic has eliminated the need to embed
latches or flip-flops in the I/O cells to achieve fast clock-
to-out or fast input setup times. SX devices have easy to
use I/O cells that do not require HDL instantiation,
facilitating design reuse and reducing design and
verification time.
SX Family Architecture
The SX family architecture was designed to satisfy next-
generation performance and integration requirements
for production-volume designs in a broad range of
applications.
Programmable Interconnect Element
The SX family provides efficient use of silicon by locating
the routing interconnect resources between the Metal 2
(M2) and Metal 3 (M3) layers (Figure 1-1 on page 1-2).
This completely eliminates the channels of routing and
interconnect resources between logic modules (as
implemented on SRAM FPGAs and previous generations
of antifuse FPGAs), and enables the entire floor of the
device to be spanned with an uninterrupted grid of logic
modules.
Interconnection between these logic modules is achieved
using The Actel patented metal-to-metal programmable
antifuse interconnect elements, which are embedded
between the M2 and M3 layers. The antifuses are
normally open circuit and, when programmed, form a
permanent low-impedance connection.
The extremely small size of these interconnect elements
gives the SX family abundant routing resources and
provides excellent protection against design pirating.
Reverse engineering is virtually impossible because it is
extremely difficult to distinguish between programmed
and unprogrammed antifuses, and there is no
configuration bitstream to intercept.
Additionally, the interconnect elements (i.e., the
antifuses and metal tracks) have lower capacitance and
lower resistance than any other device of similar
capacity, leading to the fastest signal propagation in the
industry.
Logic Module Design
The SX family architecture is described as a “sea-of-
modules” architecture because the entire floor of the
device is covered with a grid of logic modules with
virtually no chip area lost to interconnect elements or
routing. The Actel SX family provides two types of logic
modules, the register cell (R-cell) and the combinatorial
cell (C-cell).
SX Family FPGAs
1-2 v3.2
The R-cell contains a flip-flop featuring asynchronous
clear, asynchronous preset, and clock enable (using the
S0 and S1 lines) control signals (Figure 1-2). The R-cell
registers feature programmable clock polarity selectable
on a register-by-register basis. This provides additional
flexibility while allowing mapping of synthesized
functions into the SX FPGA. The clock source for the
R-cell can be chosen from either the hardwired clock or
the routed clock.
The C-cell implements a range of combinatorial functions
up to 5-inputs (Figure 1-3 on page 1-3). Inclusion of the
DB input and its associated inverter function dramatically
increases the number of combinatorial functions that can
be implemented in a single module from 800 options in
previous architectures to more than 4,000 in the SX
architecture. An example of the improved flexibility
enabled by the inversion capability is the ability to
integrate a 3-input exclusive-OR function into a single
C-cell. This facilitates construction of 9-bit parity-tree
functions with 2 ns propagation delays. At the same
time, the C-cell structure is extremely synthesis friendly,
simplifying the overall design and reducing synthesis
time.
Figure 1-1 SX Family Interconnect Elements
Figure 1-2 R-Cell
Silicon Substrate
Tungsten Plug
Contact
Metal 1
Metal 2
Metal 3
Routing Tracks
Amorphous Silicon/
Dielectric Antifuse
Tungsten Plug Via
Tungsten Plug Via
Direct
Connect
Input
CLKA, CLKB,
Internal Logic
HCLK
CKS CKP
CLRB
PSETB
YDQ
Routed Data Input
S0 S1
SX Family FPGAs
v3.2 1-3
Chip Architecture
The SX family chip architecture provides a unique
approach to module organization and chip routing that
delivers the best register/logic mix for a wide variety of
new and emerging applications.
Module Organization
Actel has arranged all C-cell and R-cell logic modules into
horizontal banks called clusters. There are two types of
clusters: Type 1 contains two C-cells and one R-cell, while
Type 2 contains one C-cell and two R-cells.
To increase design efficiency and device performance,
Actel has further organized these modules into
SuperClusters (Figure 1-4). SuperCluster 1 is a two-wide
grouping of Type 1 clusters. SuperCluster 2 is a two-wide
group containing one Type 1 cluster and one Type 2
cluster. SX devices feature more SuperCluster 1 modules
than SuperCluster 2 modules because designers typically
require significantly more combinatorial logic than flip-
flops.
Figure 1-3 C-Cell
Figure 1-4 Cluster Organization
D0
D1
D2
D3
DB
A0 B0 A1 B1
Sa Sb
Y
Type 1 SuperCluster Type 2 SuperCluster
Cluster 1 Cluster 2 Cluster 2 Cluster 1
R-Cell C-Cell
D0
D1
D2
D3
DB
A0 B0 A1 B1
Sa Sb
Y
Direct
Connect
Input
CLKA, CLKB,
Internal Logic
HCLK
CKS CKP
CLRB
PSETB
YDQ
Routed Data Input
S0 S1
SX Family FPGAs
1-4 v3.2
Routing Resources
Clusters and SuperClusters can be connected through the use of two innovative local routing resources called
FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of modules within
clusters and SuperClusters (Figure 1-5 and Figure 1-6). This routing architecture also dramatically reduces the number
of antifuses required to complete a circuit, ensuring the highest possible performance.
Figure 1-5 DirectConnect and FastConnect for Type 1 SuperClusters
Figure 1-6 DirectConnect and FastConnect for Type 2 SuperClusters
Routing Segments
• Typically 2 antifuses
• Max. 5 antifuses
FastConnect
• One antifuse
• 0.4 ns routing delay
DirectConnect
• No antifuses
• 0.1 ns routing delay
Routing Segments
• Typically 2 antifuses
• Max. 5 antifuses
FastConnect
• One antifuse
• 0.4 ns routing delay
DirectConnect
• No antifuses
• 0.1 ns routing delay
SX Family FPGAs
v3.2 1-5
DirectConnect is a horizontal routing resource that
provides connections from a C-cell to its neighboring R-
cell in a given SuperCluster. DirectConnect uses a
hardwired signal path requiring no programmable
interconnection to achieve its fast signal propagation
time of less than 0.1 ns.
FastConnect enables horizontal routing between any
two logic modules within a given SuperCluster and
vertical routing with the SuperCluster immediately
below it. Only one programmable connection is used in a
FastConnect path, delivering maximum pin-to-pin
propagation of 0.4 ns.
In addition to DirectConnect and FastConnect, the
architecture makes use of two globally oriented routing
resources known as segmented routing and high-drive
routing. The Actel segmented routing structure provides
a variety of track lengths for extremely fast routing
between SuperClusters. The exact combination of track
lengths and antifuses within each path is chosen by the
100 percent automatic place-and-route software to
minimize signal propagation delays.
The Actel high-drive routing structure provides three
clock networks. The first clock, called HCLK, is hardwired
from the HCLK buffer to the clock select multiplexer
(MUX) in each R-cell. This provides a fast propagation
path for the clock signal, enabling the 3.7 ns clock-to-out
(pin-to-pin) performance of the SX devices. The
hardwired clock is tuned to provide clock skew as low as
0.25 ns. The remaining two clocks (CLKA, CLKB) are
global clocks that can be sourced from external pins or
from internal logic signals within the SX device.
Other Architectural Features
Technology
The Actel SX family is implemented on a high-voltage
twin-well CMOS process using 0.35 µ design rules. The
metal-to-metal antifuse is made up of a combination of
amorphous silicon and dielectric material with barrier
metals and has a programmed ("on" state) resistance of
25 Ω with a capacitance of 1.0 fF for low signal impedance.
Performance
The combination of architectural features described
above enables SX devices to operate with internal clock
frequencies exceeding 300 MHz, enabling very fast
execution of even complex logic functions. Thus, the SX
family is an optimal platform upon which to integrate
the functionality previously contained in multiple CPLDs.
In addition, designs that previously would have required
a gate array to meet performance goals can now be
integrated into an SX device with dramatic
improvements in cost and time to market. Using timing-
driven place-and-route tools, designers can achieve
highly deterministic device performance. With SX
devices, designers do not need to use complicated
performance-enhancing design techniques such as the
use of redundant logic to reduce fanout on critical nets
or the instantiation of macros in HDL code to achieve
high performance.
I/O Modules
Each I/O on an SX device can be configured as an input,
an output, a tristate output, or a bidirectional pin.
Even without the inclusion of dedicated I/O registers,
these I/Os, in combination with array registers, can
achieve clock-to-out (pad-to-pad) timing as fast as 3.7 ns.
I/O cells that have embedded latches and flip-flops
require instantiation in HDL code; this is a design
complication not encountered in SX FPGAs. Fast pin-to-
pin timing ensures that the device will have little trouble
interfacing with any other device in the system, which in
turn enables parallel design of system components and
reduces overall design time.
Power Requirements
The SX family supports 3.3 V operation and is designed
to tolerate 5.0 V inputs. (Table 1-1). Power consumption
is extremely low due to the very short distances signals
are required to travel to complete a circuit. Power
requirements are further reduced because of the small
number of low-resistance antifuses in the path. The
antifuse architecture does not require active circuitry to
hold a charge (as do SRAM or EPROM), making it the
lowest power architecture on the market.
Table 1-1 Supply Voltages
Device VCCA VCCI VCCR Maximum Input Tolerance Maximum Output Drive
A54SX08
A54SX16
A54SX32
3.3 V 3.3 V 5.0 V 5.0 V 3.3 V
A54SX16-P* 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V
3.3 V 3.3 V 5.0 V 5.0 V 3.3 V
3.3 V 5.0 V 5.0 V 5.0 V 5.0 V
Note: *A54SX16-P has three different entries because it is capable of both a 3.3 V and a 5.0 V drive.
SX Family FPGAs
1-6 v3.2
Boundary Scan Testing (BST)
All SX devices are IEEE 1149.1 compliant. SX devices offer
superior diagnostic and testing capabilities by providing
Boundary Scan Testing (BST) and probing capabilities.
These functions are controlled through the special test
pins in conjunction with the program fuse. The
functionality of each pin is described in Table 1-2. In the
dedicated test mode, TCK, TDI, and TDO are dedicated
pins and cannot be used as regular I/Os. In flexible mode,
TMS should be set HIGH through a pull-up resistor of
10 kΩ. TMS can be pulled LOW to initiate the test
sequence.
The program fuse determines whether the device is in
dedicated or flexible mode. The default (fuse not blown)
is flexible mode.
Dedicated Test Mode
In Dedicated mode, all JTAG pins are reserved for BST;
designers cannot use them as regular I/Os. An internal
pull-up resistor is automatically enabled on both TMS
and TDI pins, and the TMS pin will function as defined in
the IEEE 1149.1 (JTAG) specification.
To select Dedicated mode, users need to reserve the JTAG
pins in Actel's Designer software by checking the
"Reserve JTAG" box in "Device Selection Wizard"
(Figure 1-7). JTAG pins comply with LVTTL/TTL I/O
specification regardless of whether they are used as a
user I/O or a JTAG I/O. Refer to the Table 1-5 on page 1-8
for detailed specifications.
Development Tool Support
The SX family of FPGAs is fully supported by both the
Actel Libero® Integrated Design Environment (IDE) and
Designer FPGA Development software. Actel Libero IDE
is a design management environment, seamlessly
integrating design tools while guiding the user through
the design flow, managing all design and log files, and
passing necessary design data among tools. Libero IDE
allows users to integrate both schematic and HDL
synthesis into a single flow and verify the entire design
in a single environment. Libero IDE includes Synplify® for
Actel from Synplicity®, ViewDraw® for Actel from
Mentor Graphics®, ModelSim® HDL Simulator from
Mentor Graphics, WaveFormer Lite™ from
SynaptiCAD™, and Designer software from Actel. Refer
to the Libero IDE flow diagram (located on the Actel
website) for more information.
Actel Designer software is a place-and-route tool and
provides a comprehensive suite of backend support tools
for FPGA development. The Designer software includes
timing-driven place-and-route, and a world-class
integrated static timing analyzer and constraints editor.
With the Designer software, a user can select and lock
package pins while only minimally impacting the results
of place-and-route. Additionally, the back-annotation
flow is compatible with all the major simulators, and the
simulation results can be cross-probed with Silicon
Explorer II, Actel integrated verification and logic
analysis tool. Another tool included in the Designer
software is the SmartGen core generator, which easily
creates popular and commonly used logic functions for
implementation into your schematic or HDL design. Actel
Designer software is compatible with the most popular
FPGA design entry and verification tools from companies
such as Mentor Graphics, Synplicity, Synopsys®, and
Cadence® Design Systems. The Designer software is
available for both the Windows® and UNIX® operating
systems.
Probe Circuit Control Pins
The Silicon Explorer II tool uses the boundary scan ports
(TDI, TCK, TMS, and TDO) to select the desired nets for
verification. The selected internal nets are assigned to
the PRA/PRB pins for observation. Figure 1-8 on page 1-7
illustrates the interconnection between Silicon Explorer II
and the FPGA to perform in-circuit verification.
Design Considerations
The TDI, TCK, TDO, PRA, and PRB pins should not be used
as input or bidirectional ports. Because these pins are
active during probing, critical signals input through
these pins are not available while probing. In addition,
the Security Fuse should not be programmed because
doing so disables the Probe Circuitry.
Table 1-2 Boundary Scan Pin Functionality
Program Fuse Blown
(Dedicated Test Mode)
Program Fuse Not Blown
(Flexible Mode)
TCK, TDI, TDO are dedicated
BST pins.
TCK, TDI, TDO are flexible and
may be used as I/Os.
No need for pull-up resistor for
TMS
Use a pull-up resistor of 10 kΩ
on TMS.
Figure 1-7 Device Selection Wizard
SX Family FPGAs
v3.2 1-7
Programming
Device programming is supported through Silicon
Sculptor series of programmers. In particular, Silicon
Sculptor II are compact, robust, single-site and multi-site
device programmer for the PC.
With standalone software, Silicon Sculptor II allows
concurrent programming of multiple units from the
same PC, ensuring the fastest programming times
possible. Each fuse is subsequently verified by Silicon
Sculptor II to insure correct programming. In addition,
integrity tests ensure that no extra fuses are
programmed. Silicon Sculptor II also provides extensive
hardware self-testing capability.
The procedure for programming an SX device using
Silicon Sculptor II are as follows:
1. Load the .AFM file
2. Select the device to be programmed
3. Begin programming
When the design is ready to go to production, Actel
offers device volume-programming services either
through distribution partners or via in-house
programming from the factory.
For more details on programming SX devices, refer to the
Programming Antifuse Devices application note and the
Silicon Sculptor II User's Guide.
3.3 V / 5 V Operating Conditions
Figure 1-8 Probe Setup
SX FPGA
TDI
TCK
TDO
TMS
PRA
PRB
Serial Connection
16 Channels
Silicon
Explorer II
Table 1-3 Absolute Maximum Ratings1
Symbol Parameter Limits Units
VCCR2DC Supply Voltage3–0.3 to + 6.0 V
VCCA2DC Supply Voltage –0.3 to + 4.0 V
VCCI2DC Supply Voltage (A54SX08, A54SX16, A54SX32) –0.3 to + 4.0 V
VCCI2DC Supply Voltage (A54SX16P) –0.3 to + 6.0 V
VIInput Voltage –0.5 to + 5.5 V
VOOutput Voltage –0.5 to + 3.6 V
IIO I/O Source Sink Current3–30 to + 5.0 mA
TSTG Storage Temperature –65 to +150 °C
Notes:
1. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute
maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the
Recommended Operating Conditions.
2. VCCR in the A54SX16P must be greater than or equal to VCCI during power-up and power-down sequences and during normal
operation.
3. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC +
0.5 V or less than GND – 0.5 V, the internal protection diodes will forward-bias and can draw excessive current.
SX Family FPGAs
1-8 v3.2
Table 1-4 Recommended Operating Conditions
Parameter Commercial Industrial Military Units
Temperature Range* 0 to + 70 –40 to + 85 –55 to +125 °C
3.3 V Power Supply Tolerance ±10 ±10 ±10 %VCC
5.0 V Power Supply Tolerance ±5±10 ±10 %VCC
Note: *Ambient temperature (TA) is used for commercial and industrial; case temperature (TC) is used for military.
Table 1-5 Electrical Specifications
Commercial Industrial
UnitsSymbol Parameter Min. Max. Min. Max.
VOH (IOH = –20 µA) (CMOS)
(IOH = –8 mA) (TTL)
(IOH = –6 mA) (TTL)
(VCCI – 0.1)
2.4
VCCI
VCCI
(VCCI – 0.1)
2.4
VCCI
VCCI
V
VOL (IOL= 20 µA) (CMOS)
(IOL = 12 mA) (TTL)
(IOL = 8 mA) (TTL)
0.10
0.50
0.50
V
VIL 0.8 0.8 V
VIH 2.0 2.0 V
tR, tFInput Transition Time tR, tF50 50 ns
CIO CIO I/O Capacitance 10 10 pF
ICC Standby Current, ICC 4.0 4.0 mA
ICC(D) ICC(D) IDynamic VCC Supply Current See "Evaluating Power in SX Devices" on page 1-16.
SX Family FPGAs
v3.2 1-9
PCI Compliance for the SX Family
The SX family supports 3.3 V and 5.0 V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.
Table 1-6 A54SX16P DC Specifications (5.0 V PCI Operation)
Symbol Parameter Condition Min. Max. Units
VCCA Supply Voltage for Array 3.0 3.6 V
VCCR Supply Voltage required for Internal Biasing 4.75 5.25 V
VCCI Supply Voltage for I/Os 4.75 5.25 V
VIH Input High Voltage12.0 VCC + 0.5 V
VIL Input Low Voltage1–0.5 0.8 V
IIH Input High Leakage Current VIN = 2.7 70 µA
IIL Input Low Leakage Current VIN = 0.5 –70 µA
VOH Output High Voltage IOUT = –2 mA 2.4 V
VOL Output Low Voltage2IOUT = 3 mA, 6 mA 0.55 V
CIN Input Pin Capacitance310 pF
CCLK CLK Pin Capacitance 5 12 pF
CIDSEL IDSEL Pin Capacitance48pF
Notes:
1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull-up must have 6 mA; the latter include,
FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used, AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and
ACK64#.
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].
SX Family FPGAs
1-10 v3.2
A54SX16P AC Specifications for (PCI Operation)
Table 1-7 A54SX16P AC Specifications for (PCI Operation)
Symbol Parameter Condition Min. Max. Units
IOH(AC) Switching Current High 0 < VOUT 1.41–44 mA
1.4 VOUT < 2.41, 2 –44 + (VOUT – 1.4)/0.024 mA
3.1 < VOUT < VCC1, 3 EQ 1-1 on page 1-11
(Test Point) VOUT = 3.13–142 mA
IOL(AC) Switching Current High VOUT 2.2195 mA
2.2 > VOUT > 0.551VOUT/0.023
0.71 > VOUT > 01, 3 EQ 1-2 on page 1-11 mA
(Test Point) VOUT = 0.713206 mA
ICL Low Clamp Current –5 < VIN –1 –25 + (VIN + 1) /0.015 mA
slewROutput Rise Slew Rate 0.4 V to 2.4 V load415V/ns
slewFOutput Fall Slew Rate 2.4 V to 0.4 V load415V/ns
Notes:
1. Refer to the V/I curves in Figure 1-9 on page 1-11. Switching current characteristics for REQ# and GNT# are permitted to be one half
of that specified here; i.e., half-size output drivers may be used on these signals. This specification does not apply to CLK and RST#,
which are system outputs. “Switching Current High” specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#,
which are open drain outputs.
2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than
toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.
3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A
and B) are provided with the respective diagrams in Figure 1-9 on page 1-11. The equation defined maxima should be met by
design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any
point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter
with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum
parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not
required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates;
therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur, and should
ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.
1/2 in. max.
Pin
Output
Buffer VCC
10 pF
1 kΩ1 kΩ
SX Family FPGAs
v3.2 1-11
Figure 1-9 shows the 5.0 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P
device.
IOH = 11.9 × (VOUT – 5.25) × (VOUT + 2.45)
for VCC > VOUT > 3.1 V
EQ 1-1
IOL = 78.5 × VOUT × (4.4 – VOUT)
for 0 V < VOUT < 0.71 V
EQ 1-2
Figure 1-9 5.0 V PCI Curve for A54SX16P Device
123456
–0.20
–0.15
–0.10
–0.05
0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
Voltage Out
Current (A)
SX PCI IOL
SX PCI IOH
PCI IOL Maximum
PCI IOH Maximum
PCI IOH Mininum
PCI IOL Mininum
SX Family FPGAs
1-12 v3.2
A54SX16P DC Specifications (3.3 V PCI Operation)
Table 1-8 A54SX16P DC Specifications (3.3 V PCI Operation)
Symbol Parameter Condition Min. Max. Units
VCCA Supply Voltage for Array 3.0 3.6 V
VCCR Supply Voltage required for Internal Biasing 3.0 3.6 V
VCCI Supply Voltage for I/Os 3.0 3.6 V
VIH Input High Voltage 0.5VCC VCC + 0.5 V
VIL Input Low Voltage –0.5 0.3VCC V
IIPU Input Pull-up Voltage10.7VCC V
IIL Input Leakage Current20 < VIN < VCC ±10 µA
VOH Output High Voltage IOUT = –500 µA 0.9VCC V
VOL Output Low Voltage IOUT = 1500 µA 0.1VCC V
CIN Input Pin Capacitance310 pF
CCLK CLK Pin Capacitance 5 12 pF
CIDSEL IDSEL Pin Capacitance48pF
Notes:
1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a
floated network. Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current
at this input voltage.
2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].
SX Family FPGAs
v3.2 1-13
A54SX16P AC Specifications (3.3 V PCI Operation)
Table 1-9 A54SX16P AC Specifications (3.3 V PCI Operation)
Symbol Parameter Condition Min. Max. Units
IOH(AC)
Switching Current High 0 < VOUT 0.3VCC1 mA
0.3VCC VOUT < 0.9VCC1–12VCC mA
0.7VCC < VOUT < VCC1, 2 –17.1 + (VCC – VOUT)EQ 1-3 on page 1-14
(Test Point) VOUT = 0.7VCC2–32VCC mA
IOL(AC)
Switching Current High VCC > VOUT 0.6VCC1mA
0.6VCC > VOUT > 0.1VCC116VCC mA
0.18VCC > VOUT > 01, 2 26.7VOUT EQ 1-4 on page 1-14 mA
(Test Point) VOUT = 0.18VCC238VCC
ICL Low Clamp Current –3 < VIN –1 –25 + (VIN + 1)/0.015 mA
ICH High Clamp Current –3 < VIN –1 25 + (VIN – VOUT 1)/0.015 mA
slewROutput Rise Slew Rate30.2VCC to 0.6VCC load 1 4 V/ns
slewFOutput Fall Slew Rate30.6VCC to 0.2VCC load 1 4 V/ns
Notes:
1. Refer to the V/I curves in Figure 1-10 on page 1-14. Switching current characteristics for REQ# and GNT# are permitted to be
one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to
CLK and RST# which are system outputs. “Switching Current High” specification are not relevant to SERR#, INTA#, INTB#,
INTC#, and INTD# which are open drain outputs.
2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums
(C and D) are provided with the respective diagrams in Figure 1-10 on page 1-14. The equation defined maxima should be
met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output
driver.
3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate
at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet
this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both
maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply
to open drain outputs.
1/2 in. max.
Pin
Output
Buffer VCC
10 pF
1 kΩ1 kΩ
SX Family FPGAs
1-14 v3.2
Figure 1-10 shows the 3.3 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P
device.
IOH = (98.0/VCC) × (VOUT – VCC) × (VOUT + 0.4VCC)
for VCC > VOUT > 0.7 VCC
EQ 1-3
IOL = (256/VCC) × VOUT × (VCC – VOUT)
for 0 V < VOUT < 0.18 VCC
EQ 1-4
Figure 1-10 3.3 V PCI Curve for A54SX16P Device
PCI IOL Minimum
123456
Voltage Out
–0.20
–0.15
–0.10
–0.05
0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
Current (A)
SX PCI IOL
SX PCI IOH
PCI IOL Maximum
PCI IOH Maximum
PCI IOH Minimum
SX Family FPGAs
v3.2 1-15
Power-Up Sequencing
Power-Down Sequencing
Table 1-10 Power-Up Sequencing
VCCA VCCR VCCI Power-Up Sequence Comments
A54SX08, A54SX16, A54SX32
3.3 V 5.0 V 3.3 V 5.0 V First
3.3 V Second
No possible damage to device
3.3 V First
5.0 V Second
Possible damage to device
A54SX16P
3.3 V 3.3 V 3.3 V 3.3 V Only No possible damage to device
3.3 V 5.0 V 3.3 V 5.0 V First
3.3 V Second
No possible damage to device
3.3 V First
5.0 V Second
Possible damage to device
3.3 V 5.0 V 5.0 V 5.0 V First
3.3 V Second
No possible damage to device
3.3 V First
5.0 V Second
No possible damage to device
Note: No inputs should be driven (high or low) before completion of power-up.
Table 1-11 Power-Down Sequencing
VCCA VCCR VCCI Power-Down Sequence Comments
A54SX08, A54SX16, A54SX32
3.3 V 5.0 V 3.3 V 5.0 V First
3.3 V Second
Possible damage to device
3.3 V First
5.0 V Second
No possible damage to device
A54SX16P
3.3 V 3.3 V 3.3 V 3.3 V Only No possible damage to device
3.3 V 5.0 V 3.3 V 5.0 V First
3.3 V Second
Possible damage to device
3.3 V First
5.0 V Second
No possible damage to device
3.3 V 5.0 V 5.0 V 5.0 V First
3.3 V Second
No possible damage to device
3.3 V First
5.0 V Second
No possible damage to device
Note: No inputs should be driven (high or low) after the beginning of the power-down sequence.
SX Family FPGAs
1-16 v3.2
Evaluating Power in SX Devices
A critical element of system reliability is the ability of
electronic devices to safely dissipate the heat generated
during operation. The thermal characteristics of a circuit
depend on the device and package used, the operating
temperature, the operating current, and the system's
ability to dissipate heat.
You should complete a power evaluation early in the
design process to help identify potential heat-related
problems in the system and to prevent the system from
exceeding the device’s maximum allowed junction
temperature.
The actual power dissipated by most applications is
significantly lower than the power the package can
dissipate. However, a thermal analysis should be
performed for all projects. To perform a power
evaluation, follow these steps:
1. Estimate the power consumption of the
application.
2. Calculate the maximum power allowed for the
device and package.
3. Compare the estimated power and maximum
power values.
Estimating Power Consumption
The total power dissipation for the SX family is the sum
of the DC power dissipation and the AC power
dissipation. Use EQ 1-5 to calculate the estimated power
consumption of your application.
PTot a l = PDC + PAC
EQ 1-5
DC Power Dissipation
The power due to standby current is typically a small
component of the overall power. The Standby power is
shown in Table 1-12 for commercial, worst-case
conditions (70°C).
The DC power dissipation is defined in EQ 1-6.
PDC = (Istandby) × VCCA + (Istandby) × VCCR +
(Istandby) × VCCI + xVOL × IOL + y(VCCI – VOH) × VOH
EQ 1-6
AC Power Dissipation
The power dissipation of the SX Family is usually
dominated by the dynamic power dissipation. Dynamic
power dissipation is a function of frequency, equivalent
capacitance, and power supply voltage. The AC power
dissipation is defined in EQ 1-7 and EQ 1-8.
PAC = PModule + PRCLKA Net + PRCLKB Net + PHCLK Net +
POutput Buffer + PInput Buffer
EQ 1-7
PAC = VCCA2 × [(m × CEQM × fm)Module +
(n × CEQI × fn)Input Buffer+ (p × (CEQO + CL) × fp)Output Buffer +
(0.5 × (q1 × CEQCR × fq1) + (r1 × fq1))RCLKA +
(0.5 × (q2 × CEQCR × fq2)+ (r2 × fq2))RCLKB +
(0.5 × (s1 × CEQHV × fs1) + (CEQHF × fs1))HCLK]
EQ 1-8
Definition of Terms Used in Formula
m = Number of logic modules switching at fm
n = Number of input buffers switching at fn
p = Number of output buffers switching at fp
q1= Number of clock loads on the first routed array
clock
q2= Number of clock loads on the second routed array
clock
x = Number of I/Os at logic low
y = Number of I/Os at logic high
r1= Fixed capacitance due to first routed array clock
r2= Fixed capacitance due to second routed array
clock
s1= Number of clock loads on the dedicated array
clock
CEQM = Equivalent capacitance of logic modules in pF
CEQI = Equivalent capacitance of input buffers in pF
CEQO = Equivalent capacitance of output buffers in pF
CEQCR = Equivalent capacitance of routed array clock in pF
CEQHV = Variable capacitance of dedicated array clock
CEQHF = Fixed capacitance of dedicated array clock
CL= Output lead capacitance in pF
fm= Average logic module switching rate in MHz
fn= Average input buffer switching rate in MHz
fp= Average output buffer switching rate in MHz
fq1 = Average first routed array clock rate in MHz
fq2 = Average second routed array clock rate in MHz
fs1 = Average dedicated array clock rate in MHz
Table 1-12 Standby Power
ICC VCC Power
4 mA 3.6 V 14.4 mW
SX Family FPGAs
v3.2 1-17
Table 1-13 shows capacitance values for various
devices. Guidelines for Calculating Power
Consumption
The power consumption guidelines are meant to
represent worst-case scenarios so that they can be
generally used to predict the upper limits of power
dissipation. These guidelines are shown in Table 1-14.
Sample Power Calculation
One of the designs used to characterize the SX family
was a 528 bit serial-in, serial-out shift register. The design
utilized 100 percent of the dedicated flip-flops of an
A54SX16P device. A pattern of 0101… was clocked into
the device at frequencies ranging from 1 MHz to
200 MHz. Shifting in a series of 0101… caused 50 percent
of the flip-flops to toggle from low to high at every clock
cycle.
Follow the steps below to estimate power consumption.
The values provided for the sample calculation below are
for the shift register design above. This method for
estimating power consumption is conservative and the
actual power consumption of your design may be less
than the estimated power consumption.
The total power dissipation for the SX family is the sum
of the AC power dissipation and the DC power
dissipation.
PTot a l = PAC (dynamic power) + PDC (static power)
EQ 1-9
AC Power Dissipation
PAC = PModule + PRCLKA Net + PRCLKB Net + PHCLK Net +
POutput Buffer + PInput Buffer
EQ 1-10
PAC = VCCA2 × [(m × CEQM × fm)Module +
(n × CEQI × fn)Input Buffer+ (p × (CEQO + CL) × fp)Output Buffer +
(0.5 (q1 × CEQCR × fq1) + (r1 × fq1))RCLKA +
(0.5 (q2 × CEQCR × fq2)+ (r2 × fq2))RCLKB +
(0.5 (s1 × CEQHV × fs1) + (CEQHF × fs1))HCLK]
EQ 1-11
Table 1-13 Capacitance Values for Devices
A54SX08 A54SX16 A54SX16P A54SX32
CEQM (pF) 4.0 4.0 4.0 4.0
CEQI (pF) 3.4 3.4 3.4 3.4
CEQO (pF) 4.7 4.7 4.7 4.7
CEQCR (pF) 1.6 1.6 1.6 1.6
CEQHV 0.615 0.615 0.615 0.615
CEQHF 60 96 96 140
r1 (pF) 87 138 138 171
r2 (pF) 87 138 138 171
Table 1-14 Power Consumption Guidelines
Description Power Consumption Guideline
Logic Modules (m) 20% of modules
Inputs Switching (n) # inputs/4
Outputs Switching (p) # outputs/4
First Routed Array Clock Loads (q1)20% of register cells
Second Routed Array Clock Loads (q2)20% of register cells
Load Capacitance (CL)35 pF
Average Logic Module Switching Rate (fm)f/10
Average Input Switching Rate (fn)f/5
Average Output Switching Rate (fp)f/10
Average First Routed Array Clock Rate (fq1)f/2
Average Second Routed Array Clock Rate (fq2)f/2
Average Dedicated Array Clock Rate (fs1) f
Dedicated Clock Array Clock Loads (s1)20% of regular modules
SX Family FPGAs
1-18 v3.2
Step 3: Calculate DC Power Dissipation
DC Power Dissipation
PDC = (Istandby) × VCCA + (Istandby) × VCCR + (Istandby) ×
VCCI + X × VOL × IOL + Y(VCCI – VOH) × VOH
EQ 1-12
For a rough estimate of DC Power Dissipation, only use
PDC =(I
standby) × VCCA. The rest of the formula provides a
very small number that can be considered negligible.
PDC = (Istandby) × VCCA
PDC = .55 mA × 3.3 V
PDC = 0.001815 W
Step 4: Calculate Total Power Consumption
PTot a l = PAC + PDC
PTot a l = 1.461 + 0.001815
PTot a l = 1.4628 W
Step 5: Compare Estimated Power Consumption
against Characterized Power Consumption
The estimated total power consumption for this design is
1.46 W. The characterized power consumption for this
design at 200 MHz is 1.0164 W.
Step 1: Define Terms Used in Formula
VCCA 3.3
Module
Number of logic modules switching
at fm (Used 50%)
m 264
Average logic modules switching rate
fm (MHz) (Guidelines: f/10)
fm20
Module capacitance CEQM (pF) CEQM 4.0
Input Buffer
Number of input buffers switching at fnn1
Average input switching rate fn (MHz)
(Guidelines: f/5)
fn40
Input buffer capacitance CEQI (pF) CEQI 3.4
Output Buffer
Number of output buffers switching at fpp1
Average output buffers switching rate
fp(MHz) (Guidelines: f/10)
fp20
Output buffers buffer capacitance
CEQO (pF)
CEQO 4.7
Output Load capacitance CL (pF) CL35
RCLKA
Number of Clock loads q1q1528
Capacitance of routed array clock (pF) CEQCR 1.6
Average clock rate (MHz) fq1 200
Fixed capacitance (pF) r1138
RCLKB
Number of Clock loads q2q20
Capacitance of routed array clock (pF) CEQCR 1.6
Average clock rate (MHz) fq2 0
Fixed capacitance (pF) r2138
HCLK
Number of Clock loads s10
Variable capacitance of dedicated
array clock (pF)
CEQHV 0.61
5
Fixed capacitance of dedicated
array clock (pF)
CEQHF 96
Average clock rate (MHz) fs1 0
Step 2: Calculate Dynamic Power Consumption
VCCA × VCCA 10.89
m × fm × CEQM 0.02112
n × fn × CEQI 0.000136
p × fp × (CEQO+CL) 0.000794
0.5 (q1 × CEQCR × fq1) + (r1 × fq1) 0.11208
0.5(q2 × CEQCR × fq2) + (r2 × fq2)0
0.5 (s1 × CEQHV × fs1) + (CEQHF × fs1)0
PAC = 1.461 W
SX Family FPGAs
v3.2 1-19
Figure 1-11 shows the characterized power dissipation numbers for the shift register design using frequencies ranging
from 1 MHz to 200 MHz.
Junction Temperature (TJ)
The temperature that you select in Designer Series
software is the junction temperature, not ambient
temperature. This is an important distinction because the
heat generated from dynamic power consumption is
usually hotter than the ambient temperature. Use the
equation below to calculate junction temperature.
Junction Temperature = ΔT + Ta
EQ 1-13
Where:
Ta = Ambient Temperature
ΔT = Temperature gradient between junction (silicon)
and ambient
ΔT = θja × P
P = Power calculated from Estimating Power
Consumption section
θja = Junction to ambient of package. θja numbers are
located in the "Package Thermal Characteristics"
section.
Package Thermal Characteristics
The device junction to case thermal characteristic is θjc,
and the junction to ambient air characteristic is θja. The
thermal characteristics for θja are shown with two
different air flow rates.
The maximum junction temperature is 150 °C.
A sample calculation of the absolute maximum power
dissipation allowed for a TQFP 176-pin package at
commercial temperature and still air is as follows:
EQ 1-14
Figure 1-11 Power Dissipation
0
200
400
600
800
1000
1200
Frequency MHz
Power Dissipation mW
200 40 60 80 100 120 140 160 180 200
Maximum Power Allowed Max. junction temp. (°C) Max. ambient temp. (°C)
θja (°C/W)
------------------------------------------------------------------------------------------------------------------------------------ 150°C 70°C
28°C/W
----------------------------------- 2 . 8 6 W===
SX Family FPGAs
1-20 v3.2
Table 1-15 Package Thermal Characteristics
Package Type Pin Count θjc
θja
Still Air
θja
300 ft/min. Units
Plastic Leaded Chip Carrier (PLCC) 84 12 32 22 °C/W
Thin Quad Flat Pack (TQFP) 144 11 32 24 °C/W
Thin Quad Flat Pack (TQFP) 176 11 28 21 °C/W
Very Thin Quad Flatpack (VQFP) 100 10 38 32 °C/W
Plastic Quad Flat Pack (PQFP) without Heat Spreader 208 8 30 23 °C/W
Plastic Quad Flat Pack (PQFP) with Heat Spreader 208 3.8 20 17 °C/W
Plastic Ball Grid Array (PBGA) 272 3 20 14.5 °C/W
Plastic Ball Grid Array (PBGA) 313 3 23 17 °C/W
Plastic Ball Grid Array (PBGA) 329 3 18 13.5 °C/W
Fine Pitch Ball Grid Array (FBGA) 144 3.8 38.8 26.7 °C/W
Note: SX08 does not have a heat spreader.
Table 1-16 Temperature and Voltage Derating Factors*
VCCA
Junction Temperature
55–400 257085125
3.0 0.75 0.78 0.87 0.89 1.00 1.04 1.16
3.3 0.70 0.73 0.82 0.83 0.93 0.97 1.08
3.6 0.66 0.69 0.77 0.78 0.87 0.92 1.02
Note: *Normalized to worst-case commercial, TJ = 70°C, VCCA = 3.0 V
SX Family FPGAs
v3.2 1-21
SX Timing Model
Hardwired Clock
External Setup = tINY + tIRD1 + tSUD – tHCKH
= 1.5 + 0.3 + 0.5 – 1.0 = 1.3 ns
EQ 1-15
Clock-to-Out (Pin-to-Pin)
=t
HCKH + tRCO + tRD1 + tDHL
= 1.0 + 0.8 + 0.3 + 1.6 = 3.7 ns
EQ 1-16
Routed Clock
External Setup = tINY + tIRD1 + tSUD – tRCKH
= 1.5 + 0.3 + 0.5 – 1.5 = 0.8 ns
EQ 1-17
Clock-to-Out (Pin-to-Pin)
=t
RCKH + tRCO + tRD1 + tDHL
= 1.52+ 0.8 + 0.3 + 1.6 = 4.2 ns
EQ 1-18
Note: Values shown for A54SX08-3, worst-case commercial conditions.
Figure 1-12 SX Timing Model
DQ
Routed
Clock
FMAX = 250 MHz
tRCKH
= 1.5 ns
(100% Load)
tINY
= 1.5 ns
Output DelaysInput Delays
I/O Module Combinatorial Cell
Register Cell
I/O Module
I/O Module
Hardwired
Clock
DQ
Predicted
Routing
Delays
tIRD2
= 0.6 ns
tPD
= 0.6 ns
tRD1 = 0.3 ns
tRD4
= 1.0 ns
tRD8 = 1.9 ns
tDLH
= 1.6 ns
tDHL
= 1.6 ns
FHMAX
= 320 MHz
tHCKH = 1.0 ns
tRCO
= 0.8 ns
tRD1
= 0.3 ns
tENZH
= 2.3 ns
Internal Delays
tRD1
= 0.3 ns
tSUD
= 0.5 ns
tHD
= 0.0 ns
Register Cell
tRCO
= 0.8 ns
SX Family FPGAs
1-22 v3.2
Figure 1-13 Output Buffer Delays
Figure 1-14 AC Test Loads
To AC Test Loads (shown below)
PAD
D
E
TRIBUFF
In 50%
Out
V
OL
1.5 V
50%
1.5 V
En 50%
Out
V
OL
1.5 V
50%
10%
En 50%
Out
GND
1.5 V
50%
90%
t
DLH
t
DHL
t
ENZL
t
ENLZ
t
ENZH
t
ENHZ
V
OH
V
OH
GND
VCC
GND
V
CC
V
CC
V
CC
GND
Load 2
(used to measure
disable delays)
V
CC
GND
35 pF
R to VCC for t
PLZ
R to GND for t
PHZ
R = 1 kΩ
Load 1
(used to measure
propagation delay)
Load 2
(used to measure
enable delays)
35 pF
To Output
Under Test
V
CC
GND
35 pF
R to V
CC
for t
PLZ
R to GND for t
PHZ
R = 1 kΩ
To Output
Under Test
To Output
Under Test
Figure 1-15 Input Buffer Delays
PA D Y
INBUF
In
3 V
0 V
1.5 V
Out
GND
V
CC
50%
t
INY
1.5 V
50%
t
INY
Figure 1-16 C-Cell Delays
S
A
B
Y
S, A ,or B
Out
50%
t
PD
Out
50%
50% 50%
50% 50%
t
PD
tPD
t
PD
V
CC
GND
GND
VCC
GND
V
CC
SX Family FPGAs
v3.2 1-23
Register Cell Timing Characteristics
Timing Characteristics
Timing characteristics for SX devices fall into three
categories: family-dependent, device-dependent, and
design-dependent. The input and output buffer
characteristics are common to all SX family members.
Internal routing delays are device-dependent. Design
dependency means actual delays are not determined
until after placement and routing of the user’s design is
complete. Delay values may then be determined by using
the DirectTime Analyzer utility or performing simulation
with post-layout delays.
Critical Nets and Typical Nets
Propagation delays are expressed only for typical nets,
which are used for initial design performance evaluation.
Critical net delays can then be applied to the most time-
critical paths. Critical nets are determined by net
property assignment prior to placement and routing. Up
to 6% of the nets in a design may be designated as
critical, while 90% of the nets in a design are typical.
Long Tracks
Some nets in the design use long tracks. Long tracks are
special routing resources that span multiple rows,
columns, or modules. Long tracks employ three and
sometimes five antifuse connections. This increases
capacitance and resistance, resulting in longer net delays
for macros connected to long tracks. Typically up to 6
percent of nets in a fully utilized device require long
tracks. Long tracks contribute approximately 4 ns to 8.4
ns delay. This additional delay is represented statistically
in higher fanout (FO = 24) routing delays in the
datasheet specifications section.
Timing Derating
SX devices are manufactured in a CMOS process.
Therefore, device performance varies according to
temperature, voltage, and process variations. Minimum
timing parameters reflect maximum operating voltage,
minimum operating temperature, and best-case
processing. Maximum timing parameters reflect
minimum operating voltage, maximum operating
temperature, and worst-case processing.
Figure 1-17 Flip-Flops
t
CLR
(positive edge triggered)
D
CLK
CLR
PRESET Q
D
CLK
Q
CLR
PRESET
t
HPWH'
t
WASYN
t
HD
t
SUD
t
HP
t
HPWL
'
t
RCO
t
PRESET
RPWL
RPWH
SX Family FPGAs
1-24 v3.2
A54SX08 Timing Characteristics
Table 1-17 A54SX08 Timing Characteristics
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C)
Parameter Description
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Min. Max. Min. Max. Min. Max. Min. Max. Units
C-Cell Propagation Delays1
tPD Internal Array Module 0.6 0.7 0.8 0.9 ns
Predicted Routing Delays2
tDC FO = 1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns
tFC FO = 1 Routing Delay, Fast Connect 0.3 0.4 0.4 0.5 ns
tRD1 FO = 1 Routing Delay 0.3 0.4 0.4 0.5 ns
tRD2 FO = 2 Routing Delay 0.6 0.7 0.8 0.9 ns
tRD3 FO = 3 Routing Delay 0.8 0.9 1.0 1.2 ns
tRD4 FO = 4 Routing Delay 1.0 1.2 1.4 1.6 ns
tRD8 FO = 8 Routing Delay 1.9 2.2 2.5 2.9 ns
tRD12 FO = 12 Routing Delay 2.8 3.2 3.7 4.3 ns
R-Cell Timing
tRCO Sequential Clock-to-Q 0.8 1.1 1.2 1.4 ns
tCLR Asynchronous Clear-to-Q 0.5 0.6 0.7 0.8 ns
tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.0 ns
tSUD Flip-Flop Data Input Set-Up 0.5 0.5 0.7 0.8 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 1.4 1.6 1.8 2.1 ns
Input Module Propagation Delays
tINYH Input Data Pad-to-Y HIGH 1.5 1.7 1.9 2.2 ns
tINYL Input Data Pad-to-Y LOW 1.5 1.7 1.9 2.2 ns
Input Module Predicted Routing Delays2
tIRD1 FO = 1 Routing Delay 0.3 0.4 0.4 0.5 ns
tIRD2 FO = 2 Routing Delay 0.6 0.7 0.8 0.9 ns
tIRD3 FO = 3 Routing Delay 0.8 0.9 1.0 1.2 ns
tIRD4 FO = 4 Routing Delay 1.0 1.2 1.4 1.6 ns
tIRD8 FO = 8 Routing Delay 1.9 2.2 2.5 2.9 ns
tIRD12 FO = 12 Routing Delay 2.8 3.2 3.7 4.3 ns
Note:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
SX Family FPGAs
v3.2 1-25
Dedicated (Hardwired) Array Clock Network
tHCKH Input LOW to HIGH (pad to R-Cell input) 1.0 1.1 1.3 1.5 ns
tHCKL Input HIGH to LOW (pad to R-Cell input) 1.0 1.2 1.4 1.6 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 ns
tHCKSW Maximum Skew 0.1 0.2 0.2 0.2 ns
tHP Minimum Period 2.7 3.1 3.6 4.2 ns
fHMAX Maximum Frequency 350 320 280 240 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (light load)
(pad to R-Cell input)
1.3 1.5 1.7 2.0 ns
tRCKL Input HIGH to LOW (light load)
(pad to R-Cell Input)
1.4 1.6 1.8 2.1 ns
tRCKH Input LOW to HIGH (50% load)
(pad to R-Cell input)
1.4 1.7 1.9 2.2 ns
tRCKL Input HIGH to LOW (50% load)
(pad to R-Cell input)
1.5 1.7 2.0 2.3 ns
tRCKH Input LOW to HIGH (100% load)
(pad to R-Cell input)
1.5 1.7 1.9 2.2 ns
tRCKL Input HIGH to LOW (100% load)
(pad to R-Cell input)
1.5 1.8 2.0 2.3 ns
tRPWH Min. Pulse Width HIGH 2.1 2.4 2.7 3.2 ns
tRPWL Min. Pulse Width LOW 2.1 2.4 2.7 3.2 ns
tRCKSW Maximum Skew (light load) 0.1 0.2 0.2 0.2 ns
tRCKSW Maximum Skew (50% load) 0.3 0.3 0.4 0.4 ns
tRCKSW Maximum Skew (100% load) 0.3 0.3 0.4 0.4 ns
TTL Output Module Timing1
tDLH Data-to-Pad LOW to HIGH 1.6 1.9 2.1 2.5 ns
tDHL Data-to-Pad HIGH to LOW 1.6 1.9 2.1 2.5 ns
tENZL Enable-to-Pad, Z to L 2.1 2.4 2.8 3.2 ns
tENZH Enable-to-Pad, Z to H 2.3 2.7 3.1 3.6 ns
tENLZ Enable-to-Pad, L to Z 1.4 1.7 1.9 2.2 ns
Table 1-17 A54SX08 Timing Characteristics (Continued)
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C)
Parameter Description
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Min. Max. Min. Max. Min. Max. Min. Max. Units
Note:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
SX Family FPGAs
1-26 v3.2
A54SX16 Timing Characteristics
Table 1-18 A54SX16 Timing Characteristics
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA ,VCCI = 3.0 V, TJ = 70°C)
Parameter Description
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Min. Max. Min. Max. Min. Max. Min. Max. Units
C-Cell Propagation Delays1
tPD Internal Array Module 0.6 0.7 0.8 0.9 ns
Predicted Routing Delays2
tDC FO = 1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns
tFC FO = 1 Routing Delay, Fast Connect 0.3 0.4 0.4 0.5 ns
tRD1 FO = 1 Routing Delay 0.3 0.4 0.4 0.5 ns
tRD2 FO = 2 Routing Delay 0.6 0.7 0.8 0.9 ns
tRD3 FO = 3 Routing Delay 0.8 0.9 1.0 1.2 ns
tRD4 FO = 4 Routing Delay 1.0 1.2 1.4 1.6 ns
tRD8 FO = 8 Routing Delay 1.9 2.2 2.5 2.9 ns
tRD12 FO = 12 Routing Delay 2.8 3.2 3.7 4.3 ns
R-Cell Timing
tRCO Sequential Clock-to-Q 0.8 1.1 1.2 1.4 ns
tCLR Asynchronous Clear-to-Q 0.5 0.6 0.7 0.8 ns
tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.0 ns
tSUD Flip-Flop Data Input Set-Up 0.5 0.5 0.7 0.8 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 1.4 1.6 1.8 2.1 ns
Input Module Propagation Delays
tINYH Input Data Pad-to-Y HIGH 1.5 1.7 1.9 2.2 ns
tINYL Input Data Pad-to-Y LOW 1.5 1.7 1.9 2.2 ns
Predicted Input Routing Delays2
tIRD1 FO = 1 Routing Delay 0.3 0.4 0.4 0.5 ns
tIRD2 FO = 2 Routing Delay 0.6 0.7 0.8 0.9 ns
tIRD3 FO = 3 Routing Delay 0.8 0.9 1.0 1.2 ns
tIRD4 FO = 4 Routing Delay 1.0 1.2 1.4 1.6 ns
tIRD8 FO = 8 Routing Delay 1.9 2.2 2.5 2.9 ns
tIRD12 FO = 12 Routing Delay 2.8 3.2 3.7 4.3 ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH, the loading is 5 pF.
SX Family FPGAs
v3.2 1-27
Dedicated (Hardwired) Array Clock Network
tHCKH Input LOW to HIGH (pad to R-Cell input) 1.2 1.4 1.5 1.8 ns
tHCKL Input HIGH to LOW (pad to R-Cell input) 1.2 1.4 1.6 1.9 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 ns
tHCKSW Maximum Skew 0.2 0.2 0.3 0.3 ns
tHP Minimum Period 2.7 3.1 3.6 4.2 ns
fHMAX Maximum Frequency 350 320 280 240 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (light load)
(pad to R-Cell input)
1.61.82.12.5ns
tRCKL Input HIGH to LOW (light load)
(pad to R-Cell input)
1.82.02.32.7ns
tRCKH Input LOW to HIGH (50% load)
(pad to R-Cell input)
1.82.12.52.8ns
tRCKL Input HIGH to LOW (50% load)
(pad to R-Cell input)
2.02.22.53.0ns
tRCKH Input LOW to HIGH (100% load)
(pad to R-Cell input)
1.82.12.42.8ns
tRCKL Input HIGH to LOW (100% load)
(pad to R-Cell input)
2.02.22.53.0ns
tRPWH Min. Pulse Width HIGH 2.1 2.4 2.7 3.2 ns
tRPWL Min. Pulse Width LOW 2.1 2.4 2.7 3.2 ns
tRCKSW Maximum Skew (light load) 0.5 0.5 0.5 0.7 ns
tRCKSW Maximum Skew (50% load) 0.5 0.6 0.7 0.8 ns
tRCKSW Maximum Skew (100% load) 0.5 0.6 0.7 0.8 ns
TTL Output Module Timing3
tDLH Data-to-Pad LOW to HIGH 1.6 1.9 2.1 2.5 ns
tDHL Data-to-Pad HIGH to LOW 1.6 1.9 2.1 2.5 ns
tENZL Enable-to-Pad, Z to L 2.1 2.4 2.8 3.2 ns
tENZH Enable-to-Pad, Z to H 2.3 2.7 3.1 3.6 ns
tENLZ Enable-to-Pad, L to Z 1.4 1.7 1.9 2.2 ns
tENHZ Enable-to-Pad, H to Z 1.3 1.5 1.7 2.0 ns
Table 1-18 A54SX16 Timing Characteristics (Continued)
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA ,VCCI = 3.0 V, TJ = 70°C)
Parameter Description
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Min. Max. Min. Max. Min. Max. Min. Max. Units
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH, the loading is 5 pF.
SX Family FPGAs
1-28 v3.2
A54SX16P Timing Characteristics
Table 1-19 A54SX16P Timing Characteristics
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C)
Parameter Description
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Min. Max. Min. Max. Min. Max. Min. Max. Units
C-Cell Propagation Delays1
tPD Internal Array Module 0.6 0.7 0.8 0.9 ns
Predicted Routing Delays2
tDC FO = 1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns
tFC FO = 1 Routing Delay, Fast Connect 0.3 0.4 0.4 0.5 ns
tRD1 FO = 1 Routing Delay 0.3 0.4 0.4 0.5 ns
tRD2 FO = 2 Routing Delay 0.6 0.7 0.8 0.9 ns
tRD3 FO = 3 Routing Delay 0.8 0.9 1.0 1.2 ns
tRD4 FO = 4 Routing Delay 1.0 1.2 1.4 1.6 ns
tRD8 FO = 8 Routing Delay 1.9 2.2 2.5 2.9 ns
tRD12 FO = 12 Routing Delay 2.8 3.2 3.7 4.3 ns
R-Cell Timing
tRCO Sequential Clock-to-Q 0.9 1.1 1.3 1.4 ns
tCLR Asynchronous Clear-to-Q 0.5 0.6 0.7 0.8 ns
tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.0 ns
tSUD Flip-Flop Data Input Set-Up 0.5 0.5 0.7 0.8 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 1.4 1.6 1.8 2.1 ns
Input Module Propagation Delays
tINYH Input Data Pad-to-Y HIGH 1.5 1.7 1.9 2.2 ns
tINYL Input Data Pad-to-Y LOW 1.5 1.7 1.9 2.2 ns
Predicted Input Routing Delays2
tIRD1 FO = 1 Routing Delay 0.3 0.4 0.4 0.5 ns
tIRD2 FO = 2 Routing Delay 0.6 0.7 0.8 0.9 ns
tIRD3 FO = 3 Routing Delay 0.8 0.9 1.0 1.2 ns
tIRD4 FO = 4 Routing Delay 1.0 1.2 1.4 1.6 ns
tIRD8 FO = 8 Routing Delay 1.9 2.2 2.5 2.9 ns
tIRD12 FO = 12 Routing Delay 2.8 3.2 3.7 4.3 ns
Note:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Delays based on 10 pF loading.
SX Family FPGAs
v3.2 1-29
Dedicated (Hardwired) Array Clock Network
tHCKH Input LOW to HIGH (pad to R-Cell input) 1.2 1.4 1.5 1.8 ns
tHCKL Input HIGH to LOW (pad to R-Cell input) 1.2 1.4 1.6 1.9 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 ns
tHCKSW Maximum Skew 0.2 0.2 0.3 0.3 ns
tHP Minimum Period 2.7 3.1 3.6 4.2 ns
fHMAX Maximum Frequency 350 320 280 240 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (light load)
(pad to R-Cell input)
1.61.82.12.5ns
tRCKL Input HIGH to LOW (Light Load)
(pad to R-Cell input)
1.82.02.32.7ns
tRCKH Input LOW to HIGH (50% load)
(pad to R-Cell input)
1.82.12.52.8ns
tRCKL Input HIGH to LOW (50% load)
(pad to R-Cell input)
2.02.22.53.0ns
tRCKH Input LOW to HIGH (100% load)
(pad to R-Cell input)
1.82.12.42.8ns
tRCKL Input HIGH to LOW (100% load)
(pad to R-Cell input)
2.02.22.53.0ns
tRPWH Min. Pulse Width HIGH 2.1 2.4 2.7 3.2 ns
tRPWL Min. Pulse Width LOW 2.1 2.4 2.7 3.2 ns
tRCKSW Maximum Skew (light load) 0.5 0.5 0.5 0.7 ns
tRCKSW Maximum Skew (50% load) 0.5 0.6 0.7 0.8 ns
tRCKSW Maximum Skew (100% load) 0.5 0.6 0.7 0.8 ns
TTL Output Module Timing
tDLH Data-to-Pad LOW to HIGH 2.4 2.8 3.1 3.7 ns
tDHL Data-to-Pad HIGH to LOW 2.3 2.9 3.2 3.8 ns
tENZL Enable-to-Pad, Z to L 3.0 3.4 3.9 4.6 ns
tENZH Enable-to-Pad, Z to H 3.3 3.8 4.3 5.0 ns
tENLZ Enable-to-Pad, L to Z 2.3 2.7 3.0 3.5 ns
tENHZ Enable-to-Pad, H to Z 2.8 3.2 3.7 4.3 ns
Table 1-19 A54SX16P Timing Characteristics (Continued)
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C)
Parameter Description
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Min. Max. Min. Max. Min. Max. Min. Max. Units
Note:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Delays based on 10 pF loading.
SX Family FPGAs
1-30 v3.2
TTL/PCI Output Module Timing
tDLH Data-to-Pad LOW to HIGH 1.5 1.7 2.0 2.3 ns
tDHL Data-to-Pad HIGH to LOW 1.9 2.2 2.4 2.9 ns
tENZL Enable-to-Pad, Z to L 2.3 2.6 3.0 3.5 ns
tENZH Enable-to-Pad, Z to H 1.5 1.7 1.9 2.3 ns
tENLZ Enable-to-Pad, L to Z 2.7 3.1 3.5 4.1 ns
tENHZ Enable-to-Pad, H to Z 2.9 3.3 3.7 4.4 ns
PCI Output Module Timing3
tDLH Data-to-Pad LOW to HIGH 1.8 2.0 2.3 2.7 ns
tDHL Data-to-Pad HIGH to LOW 1.7 2.0 2.2 2.6 ns
tENZL Enable-to-Pad, Z to L 0.8 1.0 1.1 1.3 ns
tENZH Enable-to-Pad, Z to H 1.2 1.2 1.5 1.8 ns
tENLZ Enable-to-Pad, L to Z 1.0 1.1 1.3 1.5 ns
tENHZ Enable-to-Pad, H to Z 1.1 1.3 1.5 1.7 ns
TTL Output Module Timing
tDLH Data-to-Pad LOW to HIGH 2.1 2.5 2.8 3.3 ns
tDHL Data-to-Pad HIGH to LOW 2.0 2.3 2.6 3.1 ns
tENZL Enable-to-Pad, Z to L 2.5 2.9 3.2 3.8 ns
tENZH Enable-to-Pad, Z to H 3.0 3.5 3.9 4.6 ns
tENLZ Enable-to-Pad, L to Z 2.3 2.7 3.1 3.6 ns
tENHZ Enable-to-Pad, H to Z 2.9 3.3 3.7 4.4 ns
Table 1-19 A54SX16P Timing Characteristics (Continued)
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C)
Parameter Description
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Min. Max. Min. Max. Min. Max. Min. Max. Units
Note:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Delays based on 10 pF loading.
SX Family FPGAs
v3.2 1-31
A54SX32 Timing Characteristics
Table 1-20 A54SX32 Timing Characteristics
(Worst-Case Commercial Conditions, VCCR= 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C)
Parameter Description
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Min. Max. Min. Max. Min. Max. Min. Max. Units
C-Cell Propagation Delays1
tPD Internal Array Module 0.6 0.7 0.8 0.9 ns
Predicted Routing Delays2
tDC FO = 1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns
tFC FO = 1 Routing Delay, Fast Connect 0.3 0.4 0.4 0.5 ns
tRD1 FO = 1 Routing Delay 0.3 0.4 0.4 0.5 ns
tRD2 FO = 2 Routing Delay 0.7 0.8 0.9 1.0 ns
tRD3 FO = 3 Routing Delay 1.0 1.2 1.4 1.6 ns
tRD4 FO = 4 Routing Delay 1.4 1.6 1.8 2.1 ns
tRD8 FO = 8 Routing Delay 2.7 3.1 3.5 4.1 ns
tRD12 FO = 12 Routing Delay 4.0 4.7 5.3 6.2 ns
R-Cell Timing
tRCO Sequential Clock-to-Q 0.8 1.1 1.3 1.4 ns
tCLR Asynchronous Clear-to-Q 0.5 0.6 0.7 0.8 ns
tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.0 ns
tSUD Flip-Flop Data Input Set-Up 0.5 0.6 0.7 0.8 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 1.4 1.6 1.8 2.1 ns
Input Module Propagation Delays
tINYH Input Data Pad-to-Y HIGH 1.5 1.7 1.9 2.2 ns
tINYL Input Data Pad-to-Y LOW 1.5 1.7 1.9 2.2 ns
Predicted Input Routing Delays2
tIRD1 FO = 1 Routing Delay 0.3 0.4 0.4 0.5 ns
tIRD2 FO = 2 Routing Delay 0.7 0.8 0.9 1.0 ns
tIRD3 FO = 3 Routing Delay 1.0 1.2 1.4 1.6 ns
tIRD4 FO = 4 Routing Delay 1.4 1.6 1.8 2.1 ns
tIRD8 FO = 8 Routing Delay 2.7 3.1 3.5 4.1 ns
tIRD12 FO = 12 Routing Delay 4.0 4.7 5.3 6.2 ns
Note:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH the loading is 5 pF.
SX Family FPGAs
1-32 v3.2
Dedicated (Hardwired) Array Clock Network
tHCKH Input LOW to HIGH (pad to R-Cell input) 1.9 2.1 2.4 2.8 ns
tHCKL Input HIGH to LOW (pad to R-Cell input) 1.9 2.1 2.4 2.8 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 ns
tHCKSW Maximum Skew 0.3 0.4 0.4 0.5 ns
tHP Minimum Period 2.7 3.1 3.6 4.2 ns
fHMAX Maximum Frequency 350 320 280 240 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (light load)
(pad to R-Cell input)
2.4 2.7 3.0 3.5 ns
tRCKL Input HIGH to LOW (light load)
(pad to R-Cell input)
2.4 2.7 3.1 3.6 ns
tRCKH Input LOW to HIGH (50% load)
(pad to R-Cell input)
2.7 3.0 3.5 4.1 ns
tRCKL Input HIGH to LOW (50% load)
(pad to R-Cell input)
2.7 3.1 3.6 4.2 ns
tRCKH Input LOW to HIGH (100% load)
(pad to R-Cell input)
2.7 3.1 3.5 4.1 ns
tRCKL Input HIGH to LOW (100% load)
(pad to R-Cell input)
2.8 3.2 3.6 4.3 ns
tRPWH Min. Pulse Width HIGH 2.1 2.4 2.7 3.2 ns
tRPWL Min. Pulse Width LOW 2.1 2.4 2.7 3.2 ns
tRCKSW Maximum Skew (light load) 0.85 0.98 1.1 1.3 ns
tRCKSW Maximum Skew (50% load) 1.23 1.4 1.6 1.9 ns
tRCKSW Maximum Skew (100% load) 1.30 1.5 1.7 2.0 ns
TTL Output Module Timing3
tDLH Data-to-Pad LOW to HIGH 1.6 1.9 2.1 2.5 ns
tDHL Data-to-Pad HIGH to LOW 1.6 1.9 2.1 2.5 ns
tENZL Enable-to-Pad, Z to L 2.1 2.4 2.8 3.2 ns
tENZH Enable-to-Pad, Z to H 2.3 2.7 3.1 3.6 ns
tENLZ Enable-to-Pad, L to Z 1.4 1.7 1.9 2.2 ns
tENHZ Enable-to-Pad, H to Z 1.3 1.5 1.7 2.0 ns
Table 1-20 A54SX32 Timing Characteristics (Continued)
(Worst-Case Commercial Conditions, VCCR= 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C)
Parameter Description
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Min. Max. Min. Max. Min. Max. Min. Max. Units
Note:
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH the loading is 5 pF.
SX Family FPGAs
v3.2 1-33
Pin Description
CLKA/B Clock A and B
These pins are 3.3 V / 5.0 V PCI/TTL clock inputs for clock
distribution networks. The clock input is buffered prior
to clocking the R-cells. If not used, this pin must be set
LOW or HIGH on the board. It must not be left floating.
(For A54SX72A, these clocks can be configured as
bidirectional.)
GND Ground
LOW supply voltage.
HCLK Dedicated (hardwired) Array Clock
This pin is the 3.3 V / 5.0 V PCI/TTL clock input for sequential
modules. This input is directly wired to each R-cell and
offers clock speeds independent of the number of R-cells
being driven. If not used, this pin must be set LOW or
HIGH on the board. It must not be left floating.
I/O Input/Output
The I/O pin functions as an input, output, tristate, or
bidirectional buffer. Based on certain configurations,
input and output levels are compatible with standard
TTL, LVTTL, 3.3 V PCI or 5.0 V PCI specifications. Unused
I/O pins are automatically tristated by the Designer Series
software.
NC No Connection
This pin is not connected to circuitry within the device.
PRA, I/O Probe A
The Probe A pin is used to output data from any user-
defined design node within the device. This independent
diagnostic pin can be used in conjunction with the Probe
B pin to allow real-time diagnostic output of any signal
path within the device. The Probe A pin can be used as a
user-defined I/O when verification has been completed.
The pin’s probe capabilities can be permanently disabled
to protect programmed design confidentiality.
PRB, I/O Probe B
The Probe B pin is used to output data from any node
within the device. This diagnostic pin can be used in
conjunction with the Probe A pin to allow real-time
diagnostic output of any signal path within the device.
The Probe B pin can be used as a user-defined I/O when
verification has been completed. The pin’s probe
capabilities can be permanently disabled to protect
programmed design confidentiality.
TCK Test Clock
Test clock input for diagnostic probe and device
programming. In flexible mode, TCK becomes active
when the TMS pin is set LOW (refer to Table 1-2 on
page 1-6). This pin functions as an I/O when the
boundary scan state machine reaches the "logic reset"
state.
TDI Test Data Input
Serial input for boundary scan testing and diagnostic
probe. In flexible mode, TDI is active when the TMS pin is
set LOW (refer to Table 1-2 on page 1-6). This pin
functions as an I/O when the boundary scan state
machine reaches the "logic reset" state.
TDO Test Data Output
Serial output for boundary scan testing. In flexible mode,
TDO is active when the TMS pin is set LOW (refer to
Table 1-2 on page 1-6). This pin functions as an I/O when
the boundary scan state machine reaches the “logic
reset” state.
TMS Test Mode Select
The TMS pin controls the use of the IEEE 1149.1
Boundary Scan pins (TCK, TDI, TDO). In flexible mode
when the TMS pin is set LOW, the TCK, TDI, and TDO pins
are boundary scan pins (refer to Table 1-2 on page 1-6).
Once the boundary scan pins are in test mode, they will
remain in that mode until the internal boundary scan
state machine reaches the "logic reset" state. At this
point, the boundary scan pins will be released and will
function as regular I/O pins. The "logic reset" state is
reached 5 TCK cycles after the TMS pin is set HIGH. In
dedicated test mode, TMS functions as specified in the
IEEE 1149.1 specifications.
VCCI Supply Voltage
Supply voltage for I/Os. See Table 1-1 on page 1-5.
VCCA Supply Voltage
Supply voltage for Array. See Table 1-1 on page 1-5.
VCCR Supply Voltage
Supply voltage for input tolerance (required for internal
biasing). See Table 1-1 on page 1-5.
54SX Family FPGAs
v3.2 2-1
Package Pin Assignments
84-Pin PLCC
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/rescenter/package/index.html.
Figure 2-1 84-Pin PLCC (Top View)
184
84-Pin
PLCC
54SX Family FPGAs
2-2 v3.2
84-Pin PLCC
Pin Number
A54SX08
Function
1V
CCR
2GND
3V
CCA
4PRA, I/O
5I/O
6I/O
7V
CCI
8I/O
9I/O
10 I/O
11 TCK, I/O
12 TDI, I/O
13 I/O
14 I/O
15 I/O
16 TMS
17 I/O
18 I/O
19 I/O
20 I/O
21 I/O
22 I/O
23 I/O
24 I/O
25 I/O
26 I/O
27 GND
28 VCCI
29 I/O
30 I/O
31 I/O
32 I/O
33 I/O
34 I/O
35 I/O
36 I/O
37 I/O
38 I/O
39 I/O
40 PRB, I/O
41 VCCA
42 GND
43 VCCR
44 I/O
45 HCLK
46 I/O
47 I/O
48 I/O
49 I/O
50 I/O
51 I/O
52 TDO, I/O
53 I/O
54 I/O
55 I/O
56 I/O
57 I/O
58 I/O
59 VCCA
60 VCCI
61 GND
62 I/O
63 I/O
64 I/O
65 I/O
66 I/O
67 I/O
68 VCCA
69 GND
70 I/O
84-Pin PLCC
Pin Number
A54SX08
Function
71 I/O
72 I/O
73 I/O
74 I/O
75 I/O
76 I/O
77 I/O
78 I/O
79 I/O
80 I/O
81 I/O
82 I/O
83 CLKA
84 CLKB
84-Pin PLCC
Pin Number
A54SX08
Function
54SX Family FPGAs
v3.2 2-3
208-Pin PQFP
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/rescenter/package/index.html.
Figure 2-2 208-Pin PQFP (Top View)
208-Pin PQFP
1
208
54SX Family FPGAs
2-4 v3.2
208-Pin PQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
1 GND GND GND
2 TDI, I/O TDI, I/O TDI, I/O
3 I/O I/O I/O
4NCI/OI/O
5 I/O I/O I/O
6NCI/OI/O
7 I/O I/O I/O
8 I/O I/O I/O
9 I/O I/O I/O
10 I/O I/O I/O
11 TMS TMS TMS
12 VCCI VCCI VCCI
13 I/O I/O I/O
14 NC I/O I/O
15 I/O I/O I/O
16 I/O I/O I/O
17 NC I/O I/O
18 I/O I/O I/O
19 I/O I/O I/O
20 NC I/O I/O
21 I/O I/O I/O
22 I/O I/O I/O
23 NC I/O I/O
24 I/O I/O I/O
25 VCCR VCCR VCCR
26 GND GND GND
27 VCCA VCCA VCCA
28 GND GND GND
29 I/O I/O I/O
30 I/O I/O I/O
31 NC I/O I/O
32 I/O I/O I/O
33 I/O I/O I/O
34 I/O I/O I/O
35 NC I/O I/O
36 I/O I/O I/O
37 I/O I/O I/O
38 I/O I/O I/O
39 NC I/O I/O
40 VCCI VCCI VCCI
41 VCCA VCCA VCCA
42 I/O I/O I/O
43 I/O I/O I/O
44 I/O I/O I/O
45 I/O I/O I/O
46 I/O I/O I/O
47 I/O I/O I/O
48 NC I/O I/O
49 I/O I/O I/O
50 NC I/O I/O
51 I/O I/O I/O
52 GND GND GND
53 I/O I/O I/O
54 I/O I/O I/O
55 I/O I/O I/O
56 I/O I/O I/O
57 I/O I/O I/O
58 I/O I/O I/O
59 I/O I/O I/O
60 VCCI VCCI VCCI
61 NC I/O I/O
62 I/O I/O I/O
63 I/O I/O I/O
64 NC I/O I/O
65* I/O I/O NC*
66 I/O I/O I/O
67 NC I/O I/O
68 I/O I/O I/O
69 I/O I/O I/O
70 NC I/O I/O
71 I/O I/O I/O
72 I/O I/O I/O
208-Pin PQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).
54SX Family FPGAs
v3.2 2-5
73 NC I/O I/O
74 I/O I/O I/O
75 NC I/O I/O
76 PRB, I/O PRB, I/O PRB, I/O
77 GND GND GND
78 VCCA VCCA VCCA
79 GND GND GND
80 VCCR VCCR VCCR
81 I/O I/O I/O
82 HCLK HCLK HCLK
83 I/O I/O I/O
84 I/O I/O I/O
85 NC I/O I/O
86 I/O I/O I/O
87 I/O I/O I/O
88 NC I/O I/O
89 I/O I/O I/O
90 I/O I/O I/O
91 NC I/O I/O
92 I/O I/O I/O
93 I/O I/O I/O
94 NC I/O I/O
95 I/O I/O I/O
96 I/O I/O I/O
97 NC I/O I/O
98 VCCI VCCI VCCI
99 I/O I/O I/O
100 I/O I/O I/O
101 I/O I/O I/O
102 I/O I/O I/O
103 TDO, I/O TDO, I/O TDO, I/O
104 I/O I/O I/O
105 GND GND GND
106 NC I/O I/O
107 I/O I/O I/O
108 NC I/O I/O
208-Pin PQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
109 I/O I/O I/O
110 I/O I/O I/O
111 I/O I/O I/O
112 I/O I/O I/O
113 I/O I/O I/O
114 VCCA VCCA VCCA
115 VCCI VCCI VCCI
116 NC I/O I/O
117 I/O I/O I/O
118 I/O I/O I/O
119 NC I/O I/O
120 I/O I/O I/O
121 I/O I/O I/O
122 NC I/O I/O
123 I/O I/O I/O
124 I/O I/O I/O
125 NC I/O I/O
126 I/O I/O I/O
127 I/O I/O I/O
128 I/O I/O I/O
129 GND GND GND
130 VCCA VCCA VCCA
131 GND GND GND
132 VCCR VCCR VCCR
133 I/O I/O I/O
134 I/O I/O I/O
135 NC I/O I/O
136 I/O I/O I/O
137 I/O I/O I/O
138 NC I/O I/O
139 I/O I/O I/O
140 I/O I/O I/O
141 NC I/O I/O
142 I/O I/O I/O
143 NC I/O I/O
144 I/O I/O I/O
208-Pin PQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).
54SX Family FPGAs
2-6 v3.2
145 VCCA VCCA VCCA
146 GND GND GND
147 I/O I/O I/O
148 VCCI VCCI VCCI
149 I/O I/O I/O
150 I/O I/O I/O
151 I/O I/O I/O
152 I/O I/O I/O
153 I/O I/O I/O
154 I/O I/O I/O
155 NC I/O I/O
156 NC I/O I/O
157 GND GND GND
158 I/O I/O I/O
159 I/O I/O I/O
160 I/O I/O I/O
161 I/O I/O I/O
162 I/O I/O I/O
163 I/O I/O I/O
164 VCCI VCCI VCCI
165 I/O I/O I/O
166 I/O I/O I/O
167 NC I/O I/O
168 I/O I/O I/O
169 I/O I/O I/O
170 NC I/O I/O
171 I/O I/O I/O
172 I/O I/O I/O
173 NC I/O I/O
174 I/O I/O I/O
175 I/O I/O I/O
176 NC I/O I/O
177 I/O I/O I/O
178 I/O I/O I/O
179 I/O I/O I/O
180 CLKA CLKA CLKA
208-Pin PQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
181 CLKB CLKB CLKB
182 VCCR VCCR VCCR
183 GND GND GND
184 VCCA VCCA VCCA
185 GND GND GND
186 PRA, I/O PRA, I/O PRA, I/O
187 I/O I/O I/O
188 I/O I/O I/O
189 NC I/O I/O
190 I/O I/O I/O
191 I/O I/O I/O
192 NC I/O I/O
193 I/O I/O I/O
194 I/O I/O I/O
195 NC I/O I/O
196 I/O I/O I/O
197 I/O I/O I/O
198 NC I/O I/O
199 I/O I/O I/O
200 I/O I/O I/O
201 VCCI VCCI VCCI
202 NC I/O I/O
203 NC I/O I/O
204 I/O I/O I/O
205 NC I/O I/O
206 I/O I/O I/O
207 I/O I/O I/O
208 TCK, I/OTCK, I/OTCK, I/O
208-Pin PQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).
54SX Family FPGAs
v3.2 2-7
144-Pin TQFP
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/rescenter/package/index.html.
Figure 2-3 144-Pin TQFP (Top View)
1
144
144-Pin
TQFP
54SX Family FPGAs
2-8 v3.2
144-Pin TQFP
Pin Number
A54SX08
Function
A54SX16P
Function
A54SX32
Function
1 GND GND GND
2 TDI, I/O TDI, I/O TDI, I/O
3I/OI/OI/O
4I/OI/OI/O
5I/OI/OI/O
6I/OI/OI/O
7I/OI/OI/O
8I/OI/OI/O
9 TMS TMS TMS
10 VCCI VCCI VCCI
11 GND GND GND
12 I/O I/O I/O
13 I/O I/O I/O
14 I/O I/O I/O
15 I/O I/O I/O
16 I/O I/O I/O
17 I/O I/O I/O
18 I/O I/O I/O
19 VCCR VCCR VCCR
20 VCCA VCCA VCCA
21 I/O I/O I/O
22 I/O I/O I/O
23 I/O I/O I/O
24 I/O I/O I/O
25 I/O I/O I/O
26 I/O I/O I/O
27 I/O I/O I/O
28 GND GND GND
29 VCCI VCCI VCCI
30 VCCA VCCA VCCA
31 I/O I/O I/O
32 I/O I/O I/O
33 I/O I/O I/O
34 I/O I/O I/O
35 I/O I/O I/O
36 GND GND GND
37 I/O I/O I/O
38 I/O I/O I/O
39 I/O I/O I/O
40 I/O I/O I/O
41 I/O I/O I/O
42 I/O I/O I/O
43 I/O I/O I/O
44 VCCI VCCI VCCI
45 I/O I/O I/O
46 I/O I/O I/O
47 I/O I/O I/O
48 I/O I/O I/O
49 I/O I/O I/O
50 I/O I/O I/O
51 I/O I/O I/O
52 I/O I/O I/O
53 I/O I/O I/O
54 PRB, I/O PRB, I/O PRB, I/O
55 I/O I/O I/O
56 VCCA VCCA VCCA
57 GND GND GND
58 VCCR VCCR VCCR
59 I/O I/O I/O
60 HCLK HCLK HCLK
61 I/O I/O I/O
62 I/O I/O I/O
63 I/O I/O I/O
64 I/O I/O I/O
65 I/O I/O I/O
66 I/O I/O I/O
67 I/O I/O I/O
68 VCCI VCCI VCCI
69 I/O I/O I/O
70 I/O I/O I/O
71 TDO, I/O TDO, I/O TDO, I/O
72 I/O I/O I/O
144-Pin TQFP
Pin Number
A54SX08
Function
A54SX16P
Function
A54SX32
Function
54SX Family FPGAs
v3.2 2-9
73 GND GND GND
74 I/O I/O I/O
75 I/O I/O I/O
76 I/O I/O I/O
77 I/O I/O I/O
78 I/O I/O I/O
79 VCCA VCCA VCCA
80 VCCI VCCI VCCI
81 GND GND GND
82 I/O I/O I/O
83 I/O I/O I/O
84 I/O I/O I/O
85 I/O I/O I/O
86 I/O I/O I/O
87 I/O I/O I/O
88 I/O I/O I/O
89 VCCA VCCA VCCA
90 VCCR VCCR VCCR
91 I/O I/O I/O
92 I/O I/O I/O
93 I/O I/O I/O
94 I/O I/O I/O
95 I/O I/O I/O
96 I/O I/O I/O
97 I/O I/O I/O
98 VCCA VCCA VCCA
99 GND GND GND
100 I/O I/O I/O
101 GND GND GND
102 VCCI VCCI VCCI
103 I/O I/O I/O
104 I/O I/O I/O
105 I/O I/O I/O
106 I/O I/O I/O
107 I/O I/O I/O
108 I/O I/O I/O
144-Pin TQFP
Pin Number
A54SX08
Function
A54SX16P
Function
A54SX32
Function
109 GND GND GND
110 I/O I/O I/O
111 I/O I/O I/O
112 I/O I/O I/O
113 I/O I/O I/O
114 I/O I/O I/O
115 VCCI VCCI VCCI
116 I/O I/O I/O
117 I/O I/O I/O
118 I/O I/O I/O
119 I/O I/O I/O
120 I/O I/O I/O
121 I/O I/O I/O
122 I/O I/O I/O
123 I/O I/O I/O
124 I/O I/O I/O
125 CLKA CLKA CLKA
126 CLKB CLKB CLKB
127 VCCR VCCR VCCR
128 GND GND GND
129 VCCA VCCA VCCA
130 I/O I/O I/O
131 PRA, I/O PRA, I/O PRA, I/O
132 I/O I/O I/O
133 I/O I/O I/O
134 I/O I/O I/O
135 I/O I/O I/O
136 I/O I/O I/O
137 I/O I/O I/O
138 I/O I/O I/O
139 I/O I/O I/O
140 VCCI VCCI VCCI
141 I/O I/O I/O
142 I/O I/O I/O
143 I/O I/O I/O
144 TCK, I/OTCK, I/OTCK, I/O
144-Pin TQFP
Pin Number
A54SX08
Function
A54SX16P
Function
A54SX32
Function
54SX Family FPGAs
2-10 v3.2
176-Pin TQFP
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/rescenter/package/index.html.
Figure 2-4 176-Pin TQFP (Top View)
176-Pin
TQFP
176
1
54SX Family FPGAs
v3.2 2-11
176-Pin TQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
1 GND GND GND
2 TDI, I/O TDI, I/O TDI, I/O
3NCI/OI/O
4I/OI/OI/O
5I/OI/OI/O
6I/OI/OI/O
7I/OI/OI/O
8I/OI/OI/O
9I/OI/OI/O
10 TMS TMS TMS
11 VCCI VCCI VCCI
12 NC I/O I/O
13 I/O I/O I/O
14 I/O I/O I/O
15 I/O I/O I/O
16 I/O I/O I/O
17 I/O I/O I/O
18 I/O I/O I/O
19 I/O I/O I/O
20 I/O I/O I/O
21 GND GND GND
22 VCCA VCCA VCCA
23 GND GND GND
24 I/O I/O I/O
25 I/O I/O I/O
26 I/O I/O I/O
27 I/O I/O I/O
28 I/O I/O I/O
29 I/O I/O I/O
30 I/O I/O I/O
31 I/O I/O I/O
32 VCCI VCCI VCCI
33 VCCA VCCA VCCA
34 I/O I/O I/O
35 I/O I/O I/O
36 I/O I/O I/O
37 I/O I/O I/O
38 I/O I/O I/O
39 I/O I/O I/O
40 NC I/O I/O
41 I/O I/O I/O
42 NC I/O I/O
43 I/O I/O I/O
44 GND GND GND
45 I/O I/O I/O
46 I/O I/O I/O
47 I/O I/O I/O
48 I/O I/O I/O
49 I/O I/O I/O
50 I/O I/O I/O
51 I/O I/O I/O
52 VCCI VCCI VCCI
53 I/O I/O I/O
54 NC I/O I/O
55 I/O I/O I/O
56 I/O I/O I/O
57 NC I/O I/O
58 I/O I/O I/O
59 I/O I/O I/O
60 I/O I/O I/O
61 I/O I/O I/O
62 I/O I/O I/O
63 I/O I/O I/O
64 PRB, I/O PRB, I/O PRB, I/O
65 GND GND GND
66 VCCA VCCA VCCA
67 VCCR VCCR VCCR
68 I/O I/O I/O
176-Pin TQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
54SX Family FPGAs
2-12 v3.2
69 HCLK HCLK HCLK
70 I/O I/O I/O
71 I/O I/O I/O
72 I/O I/O I/O
73 I/O I/O I/O
74 I/O I/O I/O
75 I/O I/O I/O
76 I/O I/O I/O
77 I/O I/O I/O
78 I/O I/O I/O
79 NC I/O I/O
80 I/O I/O I/O
81 NC I/O I/O
82 VCCI VCCI VCCI
83 I/O I/O I/O
84 I/O I/O I/O
85 I/O I/O I/O
86 I/O I/O I/O
87 TDO, I/O TDO, I/O TDO, I/O
88 I/O I/O I/O
89 GND GND GND
90 NC I/O I/O
91 NC I/O I/O
92 I/O I/O I/O
93 I/O I/O I/O
94 I/O I/O I/O
95 I/O I/O I/O
96 I/O I/O I/O
97 I/O I/O I/O
98 VCCA VCCA VCCA
99 VCCI VCCI VCCI
100 I/O I/O I/O
101 I/O I/O I/O
102 I/O I/O I/O
176-Pin TQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
103 I/O I/O I/O
104 I/O I/O I/O
105 I/O I/O I/O
106 I/O I/O I/O
107 I/O I/O I/O
108 GND GND GND
109 VCCA VCCA VCCA
110 GND GND GND
111 I/O I/O I/O
112 I/O I/O I/O
113 I/O I/O I/O
114 I/O I/O I/O
115 I/O I/O I/O
116 I/O I/O I/O
117 I/O I/O I/O
118 NC I/O I/O
119 I/O I/O I/O
120 NC I/O I/O
121 NC I/O I/O
122 VCCA VCCA VCCA
123 GND GND GND
124 VCCI VCCI VCCI
125 I/O I/O I/O
126 I/O I/O I/O
127 I/O I/O I/O
128 I/O I/O I/O
129 I/O I/O I/O
130 I/O I/O I/O
131 NC I/O I/O
132 NC I/O I/O
133 GND GND GND
134 I/O I/O I/O
135 I/O I/O I/O
136 I/O I/O I/O
176-Pin TQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
54SX Family FPGAs
v3.2 2-13
137 I/O I/O I/O
138 I/O I/O I/O
139 I/O I/O I/O
140 VCCI VCCI VCCI
141 I/O I/O I/O
142 I/O I/O I/O
143 I/O I/O I/O
144 I/O I/O I/O
145 I/O I/O I/O
146 I/O I/O I/O
147 I/O I/O I/O
148 I/O I/O I/O
149 I/O I/O I/O
150 I/O I/O I/O
151 I/O I/O I/O
152 CLKA CLKA CLKA
153 CLKB CLKB CLKB
154 VCCR VCCR VCCR
155 GND GND GND
156 VCCA VCCA VCCA
176-Pin TQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
157 PRA, I/O PRA, I/O PRA, I/O
158 I/O I/O I/O
159 I/O I/O I/O
160 I/O I/O I/O
161 I/O I/O I/O
162 I/O I/O I/O
163 I/O I/O I/O
164 I/O I/O I/O
165 I/O I/O I/O
166 I/O I/O I/O
167 I/O I/O I/O
168 NC I/O I/O
169 VCCI VCCI VCCI
170 I/O I/O I/O
171 NC I/O I/O
172 NC I/O I/O
173 NC I/O I/O
174 I/O I/O I/O
175 I/O I/O I/O
176 TCK, I/O TCK, I/O TCK, I/O
176-Pin TQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
54SX Family FPGAs
2-14 v3.2
100-Pin VQFP
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/rescenter/package/index.html.
Figure 2-5 100-Pin VQFP (Top View)
1
100-Pin
VQFP
100
54SX Family FPGAs
v3.2 2-15
100-Pin VQFP
Pin
Number
A54SX08
Function
A54SX16,
A54SX16P
Function
1GNDGND
2 TDI, I/O TDI, I/O
3I/OI/O
4I/OI/O
5I/OI/O
6I/OI/O
7 TMS TMS
8V
CCI VCCI
9GNDGND
10 I/O I/O
11 I/O I/O
12 I/O I/O
13 I/O I/O
14 I/O I/O
15 I/O I/O
16 I/O I/O
17 I/O I/O
18 I/O I/O
19 I/O I/O
20 VCCI VCCI
21 I/O I/O
22 I/O I/O
23 I/O I/O
24 I/O I/O
25 I/O I/O
26 I/O I/O
27 I/O I/O
28 I/O I/O
29 I/O I/O
30 I/O I/O
31 I/O I/O
32 I/O I/O
33 I/O I/O
34 PRB, I/O PRB, I/O
35 VCCA VCCA
36 GND GND
37 VCCR VCCR
38 I/O I/O
39 HCLK HCLK
40 I/O I/O
41 I/O I/O
42 I/O I/O
43 I/O I/O
44 VCCI VCCI
45 I/O I/O
46 I/O I/O
47 I/O I/O
48 I/O I/O
49 TDO, I/O TDO, I/O
50 I/O I/O
51 GND GND
52 I/O I/O
53 I/O I/O
54 I/O I/O
55 I/O I/O
56 I/O I/O
57 VCCA VCCA
58 VCCI VCCI
59 I/O I/O
60 I/O I/O
61 I/O I/O
62 I/O I/O
63 I/O I/O
64 I/O I/O
65 I/O I/O
66 I/O I/O
67 VCCA VCCA
68 GND GND
100-Pin VQFP
Pin
Number
A54SX08
Function
A54SX16,
A54SX16P
Function
69 GND GND
70 I/O I/O
71 I/O I/O
72 I/O I/O
73 I/O I/O
74 I/O I/O
75 I/O I/O
76 I/O I/O
77 I/O I/O
78 I/O I/O
79 I/O I/O
80 I/O I/O
81 I/O I/O
82 VCCI VCCI
83 I/O I/O
84 I/O I/O
85 I/O I/O
86 I/O I/O
87 CLKA CLKA
88 CLKB CLKB
89 VCCR VCCR
90 VCCA VCCA
91 GND GND
92 PRA, I/O PRA, I/O
93 I/O I/O
94 I/O I/O
95 I/O I/O
96 I/O I/O
97 I/O I/O
98 I/O I/O
99 I/O I/O
100 TCK, I/O TCK, I/O
100-Pin VQFP
Pin
Number
A54SX08
Function
A54SX16,
A54SX16P
Function
54SX Family FPGAs
2-16 v3.2
313-Pin PBGA
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/rescenter/package/index.html.
Figure 2-6 313-Pin PBGA (Top View)
123456789101112131415
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
16 17 18 19 20 21 22 23 24 25
12345678910111213141516171819202122232425
54SX Family FPGAs
v3.2 2-17
313-Pin PBGA
Pin
Number
A54SX32
Function
A1 GND
A3 NC
A5 I/O
A7 I/O
A9 I/O
A11 I/O
A13 VCCR
A15 I/O
A17 I/O
A19 I/O
A21 I/O
A23 NC
A25 GND
AA1 I/O
AA3 I/O
AA5 NC
AA7 I/O
AA9 NC
AA11 I/O
AA13 I/O
AA15 I/O
AA17 I/O
AA19 I/O
AA21 I/O
AA23 NC
AA25 I/O
AB2 NC
AB4 NC
AB6 I/O
AB8 I/O
AB10 I/O
AB12 I/O
AB14 I/O
AB16 I/O
AB18 VCCI
AB20 NC
AB22 I/O
AB24 I/O
AC1 I/O
AC3 I/O
AC5 I/O
AC7 I/O
AC9 I/O
AC11 I/O
AC13 VCCR
AC15 I/O
AC17 I/O
AC19 I/O
AC21 I/O
AC23 I/O
AC25 NC
AD2 GND
AD4 I/O
AD6 VCCI
AD8 I/O
AD10 I/O
AD12 PRB, I/O
AD14 I/O
AD16 I/O
AD18 I/O
AD20 I/O
AD22 NC
AD24 I/O
AE1 NC
AE3 I/O
AE5 I/O
AE7 I/O
AE9 I/O
AE11 I/O
AE13 VCCA
AE15 I/O
AE17 I/O
AE19 I/O
AE21 I/O
AE23 TDO, I/O
AE25 GND
B2 TCK, I/O
B4 I/O
B6 I/O
B8 I/O
313-Pin PBGA
Pin
Number
A54SX32
Function
B10 I/O
B12 I/O
B14 I/O
B16 I/O
B18 I/O
B20 I/O
B22 I/O
B24 I/O
C1 TDI, I/O
C3 I/O
C5 NC
C7 I/O
C9 I/O
C11 I/O
C13 VCCI
C15 I/O
C17 I/O
C19 VCCI
C21 I/O
C23 I/O
C25 NC
D2 I/O
D4 NC
D6 I/O
D8 I/O
D10 I/O
D12 I/O
D14 I/O
D16 I/O
D18 I/O
D20 I/O
D22 I/O
D24 NC
E1 I/O
E3 NC
E5 I/O
E7 I/O
E9 I/O
E11 I/O
E13 VCCA
313-Pin PBGA
Pin
Number
A54SX32
Function
E15 I/O
E17 I/O
E19 I/O
E21 I/O
E23 I/O
E25 I/O
F2 I/O
F4 I/O
F6 NC
F8 I/O
F10 NC
F12 I/O
F14 I/O
F16 NC
F18 I/O
F20 I/O
F22 I/O
F24 I/O
G1 I/O
G3 TMS
G5 I/O
G7 I/O
G9 VCCI
G11 I/O
G13 CLKB
G15 I/O
G17 I/O
G19 I/O
G21 I/O
G23 I/O
G25 I/O
H2 I/O
H4 I/O
H6 I/O
H8 I/O
H10 I/O
H12 PRA, I/O
H14 I/O
H16 I/O
H18 NC
313-Pin PBGA
Pin
Number
A54SX32
Function
54SX Family FPGAs
2-18 v3.2
H20 I/O
H22 VCCI
H24 I/O
J1 I/O
J3 I/O
J5 I/O
J7 NC
J9 I/O
J11 I/O
J13 CLKA
J15 I/O
J17 I/O
J19 I/O
J21 GND
J23 I/O
J25 I/O
K2 I/O
K4 I/O
K6 I/O
K8 VCCI
K10 I/O
K12 I/O
K14 I/O
K16 I/O
K18 I/O
K20 VCCA
K22 I/O
K24 I/O
L1 I/O
L3 I/O
L5 I/O
L7 I/O
L9 I/O
L11 I/O
L13 GND
L15 I/O
L17 I/O
L19 I/O
L21 I/O
L23 I/O
313-Pin PBGA
Pin
Number
A54SX32
Function
L25 I/O
M2 I/O
M4 I/O
M6 I/O
M8 I/O
M10 I/O
M12 GND
M14 GND
M16 VCCI
M18 I/O
M20 I/O
M22 I/O
M24 I/O
N1 I/O
N3 VCCA
N5 VCCR
N7 I/O
N9 VCCI
N11 GND
N13 GND
N15 GND
N17 I/O
N19 I/O
N21 I/O
N23 VCCR
N25 VCCA
P2 I/O
P4 I/O
P6 I/O
P8 I/O
P10 I/O
P12 GND
P14 GND
P16 I/O
P18 I/O
P20 NC
P22 I/O
P24 I/O
R1 I/O
R3 I/O
313-Pin PBGA
Pin
Number
A54SX32
Function
R5 I/O
R7 I/O
R9 I/O
R11 I/O
R13 GND
R15 I/O
R17 I/O
R19 I/O
R21 I/O
R23 I/O
R25 I/O
T2 I/O
T4 I/O
T6 I/O
T8 I/O
T10 I/O
T12 I/O
T14 HCLK
T16 I/O
T18 I/O
T20 I/O
T22 I/O
T24 I/O
U1 I/O
U3 I/O
U5 VCCI
U7 I/O
U9 I/O
U11 I/O
U13 I/O
U15 I/O
U17 I/O
U19 I/O
U21 I/O
U23 I/O
U25 I/O
V2 VCCA
V4 I/O
V6 I/O
V8 I/O
313-Pin PBGA
Pin
Number
A54SX32
Function
V10 I/O
V12 I/O
V14 I/O
V16 NC
V18 I/O
V20 I/O
V22 VCCA
V24 VCCI
W1 I/O
W3 I/O
W5 I/O
W7 NC
W9 I/O
W11 I/O
W13 VCCI
W15 I/O
W17 I/O
W19 I/O
W21 I/O
W23 I/O
W25 I/O
Y2 I/O
Y4 I/O
Y6 I/O
Y8 I/O
Y10 I/O
Y12 I/O
Y14 I/O
Y16 I/O
Y18 I/O
Y20 NC
Y22 I/O
Y24 NC
313-Pin PBGA
Pin
Number
A54SX32
Function
54SX Family FPGAs
v3.2 2-19
329-Pin PBGA
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/rescenter/package/index.html.
Figure 2-7 329-Pin PBGA (Top View)
2322212019181716151410 11 12 13987654321
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
54SX Family FPGAs
2-20 v3.2
329-Pin PBGA
Pin
Number
A54SX32
Function
A1 GND
A2 GND
A3 VCCI
A4 NC
A5 I/O
A6 I/O
A7 VCCI
A8 NC
A9 I/O
A10 I/O
A11 I/O
A12 I/O
A13 CLKB
A14 I/O
A15 I/O
A16 I/O
A17 I/O
A18 I/O
A19 I/O
A20 I/O
A21 NC
A22 VCCI
A23 GND
AA1 VCCI
AA2 I/O
AA3 GND
AA4 I/O
AA5 I/O
AA6 I/O
AA7 I/O
AA8 I/O
AA9 I/O
AA10 I/O
AA11 I/O
AA12 I/O
AA13 I/O
AA14 I/O
AA15 I/O
AA16 I/O
AA17 I/O
AA18 I/O
AA19 I/O
AA20 TDO, I/O
AA21 VCCI
AA22 I/O
AA23 VCCI
AB1 I/O
AB2 GND
AB3 I/O
AB4 I/O
AB5 I/O
AB6 I/O
AB7 I/O
AB8 I/O
AB9 I/O
AB10 I/O
AB11 PRB, I/O
AB12 I/O
AB13 HCLK
AB14 I/O
AB15 I/O
AB16 I/O
AB17 I/O
AB18 I/O
AB19 I/O
AB20 I/O
AB21 I/O
AB22 GND
AB23 I/O
AC1 GND
329-Pin PBGA
Pin
Number
A54SX32
Function
AC2 VCCI
AC3 NC
AC4 I/O
AC5 I/O
AC6 I/O
AC7 I/O
AC8 I/O
AC9 VCCI
AC10 I/O
AC11 I/O
AC12 I/O
AC13 I/O
AC14 I/O
AC15 NC
AC16 I/O
AC17 I/O
AC18 I/O
AC19 I/O
AC20 I/O
AC21 NC
AC22 VCCI
AC23 GND
B1 VCCI
B2 GND
B3 I/O
B4 I/O
B5 I/O
B6 I/O
B7 I/O
B8 I/O
B9 I/O
B10 I/O
B11 I/O
B12 PRA, I/O
B13 CLKA
329-Pin PBGA
Pin
Number
A54SX32
Function
B14 I/O
B15 I/O
B16 I/O
B17 I/O
B18 I/O
B19 I/O
B20 I/O
B21 I/O
B22 GND
B23 VCCI
C1 NC
C2 TDI, I/O
C3 GND
C4 I/O
C5 I/O
C6 I/O
C7 I/O
C8 I/O
C9 I/O
C10 I/O
C11 I/O
C12 I/O
C13 I/O
C14 I/O
C15 I/O
C16 I/O
C17 I/O
C18 I/O
C19 I/O
C20 I/O
C21 VCCI
C22 GND
C23 NC
D1 I/O
D2 I/O
329-Pin PBGA
Pin
Number
A54SX32
Function
54SX Family FPGAs
v3.2 2-21
D3 I/O
D4 TCK, I/O
D5 I/O
D6 I/O
D7 I/O
D8 I/O
D9 I/O
D10 I/O
D11 VCCA
D12 VCCR
D13 I/O
D14 I/O
D15 I/O
D16 I/O
D17 I/O
D18 I/O
D19 I/O
D20 I/O
D21 I/O
D22 I/O
D23 I/O
E1 VCCI
E2 I/O
E3 I/O
E4 I/O
E20 I/O
E21 I/O
E22 I/O
E23 I/O
F1 I/O
F2 TMS
F3 I/O
F4 I/O
F20 I/O
F21 I/O
329-Pin PBGA
Pin
Number
A54SX32
Function
F22 I/O
F23 I/O
G1 I/O
G2 I/O
G3 I/O
G4 I/O
G20 I/O
G21 I/O
G22 I/O
G23 GND
H1 I/O
H2 I/O
H3 I/O
H4 I/O
H20 VCCA
H21 I/O
H22 I/O
H23 I/O
J1 NC
J2 I/O
J3 I/O
J4 I/O
J20 I/O
J21 I/O
J22 I/O
J23 I/O
K1 I/O
K2 I/O
K3 I/O
K4 I/O
K10 GND
K11 GND
K12 GND
K13 GND
K14 GND
329-Pin PBGA
Pin
Number
A54SX32
Function
K20 I/O
K21 I/O
K22 I/O
K23 I/O
L1 I/O
L2 I/O
L3 I/O
L4 VCCR
L10 GND
L11 GND
L12 GND
L13 GND
L14 GND
L20 VCCR
L21 I/O
L22 I/O
L23 NC
M1 I/O
M2 I/O
M3 I/O
M4 VCCA
M10 GND
M11 GND
M12 GND
M13 GND
M14 GND
M20 VCCA
M21 I/O
M22 I/O
M23 VCCI
N1 I/O
N2 I/O
N3 I/O
N4 I/O
N10 GND
329-Pin PBGA
Pin
Number
A54SX32
Function
N11 GND
N12 GND
N13 GND
N14 GND
N20 NC
N21 I/O
N22 I/O
N23 I/O
P1 I/O
P2 I/O
P3 I/O
P4 I/O
P10 GND
P11 GND
P12 GND
P13 GND
P14 GND
P20 I/O
P21 I/O
P22 I/O
P23 I/O
R1 I/O
R2 I/O
R3 I/O
R4 I/O
R20 I/O
R21 I/O
R22 I/O
R23 I/O
T1 I/O
T2 I/O
T3 I/O
T4 I/O
T20 I/O
T21 I/O
329-Pin PBGA
Pin
Number
A54SX32
Function
54SX Family FPGAs
2-22 v3.2
T22 I/O
T23 I/O
U1 I/O
U2 I/O
U3 VCCA
U4 I/O
U20 I/O
U21 VCCA
U22 I/O
U23 I/O
V1 VCCI
V2 I/O
V3 I/O
329-Pin PBGA
Pin
Number
A54SX32
Function
V4 I/O
V20 I/O
V21 I/O
V22 I/O
V23 I/O
W1 I/O
W2 I/O
W3 I/O
W4 I/O
W20 I/O
W21 I/O
W22 I/O
329-Pin PBGA
Pin
Number
A54SX32
Function
W23 NC
Y1 NC
Y2 I/O
Y3 I/O
Y4 GND
Y5 I/O
Y6 I/O
Y7 I/O
Y8 I/O
Y9 I/O
Y10 I/O
Y11 I/O
329-Pin PBGA
Pin
Number
A54SX32
Function
Y12 VCCA
Y13 VCCR
Y14 I/O
Y15 I/O
Y16 I/O
Y17 I/O
Y18 I/O
Y19 I/O
Y20 GND
Y21 I/O
Y22 I/O
Y23 I/O
329-Pin PBGA
Pin
Number
A54SX32
Function
54SX Family FPGAs
v3.2 2-23
144-Pin FBGA
Note
For Package Manufacturing and Environmental information, visit the Package Resource center at
http://www.actel.com/products/rescenter/package/index.html.
Figure 2-8 144-Pin FBGA (Top View)
12345678910 11 12
A
B
C
D
E
F
G
H
J
K
L
M
54SX Family FPGAs
2-24 v3.2
144-Pin FBGA
Pin
Number
A54SX08
Function
A1 I/O
A2 I/O
A3 I/O
A4 I/O
A5 VCCA
A6 GND
A7 CLKA
A8 I/O
A9 I/O
A10 I/O
A11 I/O
A12 I/O
B1 I/O
B2 GND
B3 I/O
B4 I/O
B5 I/O
B6 I/O
B7 CLKB
B8 I/O
B9 I/O
B10 I/O
B11 GND
B12 I/O
C1 I/O
C2 I/O
C3 TCK, I/O
C4 I/O
C5 I/O
C6 PRA, I/O
C7 I/O
C8 I/O
C9 I/O
C10 I/O
C11 I/O
C12 I/O
D1 I/O
D2 VCCI
D3 TDI, I/O
D4 I/O
D5 I/O
D6 I/O
D7 I/O
D8 I/O
D9 I/O
D10 I/O
D11 I/O
D12 I/O
E1 I/O
E2 I/O
E3 I/O
E4 I/O
E5 TMS
E6 VCCI
E7 VCCI
E8 VCCI
E9 VCCA
E10 I/O
E11 GND
E12 I/O
F1 I/O
F2 I/O
F3 VCCR
F4 I/O
F5 GND
F6 GND
F7 GND
F8 VCCI
F9 I/O
F10 GND
F11 I/O
F12 I/O
144-Pin FBGA
Pin
Number
A54SX08
Function
G1 I/O
G2 GND
G3 I/O
G4 I/O
G5 GND
G6 GND
G7 GND
G8 VCCI
G9 I/O
G10 I/O
G11 I/O
G12 I/O
H1 I/O
H2 I/O
H3 I/O
H4 I/O
H5 VCCA
H6 VCCA
H7 VCCI
H8 VCCI
H9 VCCA
H10 I/O
H11 I/O
H12 VCCR
J1 I/O
J2 I/O
J3 I/O
J4 I/O
J5 I/O
J6 PRB, I/O
J7 I/O
J8 I/O
J9 I/O
J10 I/O
J11 I/O
J12 VCCA
144-Pin FBGA
Pin
Number
A54SX08
Function
K1 I/O
K2 I/O
K3 I/O
K4 I/O
K5 I/O
K6 I/O
K7 GND
K8 I/O
K9 I/O
K10 GND
K11 I/O
K12 I/O
L1 GND
L2 I/O
L3 I/O
L4 I/O
L5 I/O
L6 I/O
L7 HCLK
L8 I/O
L9 I/O
L10 I/O
L11 I/O
L12 I/O
M1 I/O
M2 I/O
M3 I/O
M4 I/O
M5 I/O
M6 I/O
M7 VCCA
M8 I/O
M9 I/O
M10 I/O
M11 TDO, I/O
M12 I/O
144-Pin FBGA
Pin
Number
A54SX08
Function
54SX Family FPGAs
v3.2 3-1
Datasheet Information
List of Changes
The following table lists critical changes that were made in the current version of the document.
Datasheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet
Supplement." The definitions of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advanced or production) containing general product
information. This brief gives an overview of specific device and family information.
Advanced
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.
Unmarked (production)
This datasheet version contains information that is considered to be final.
Datasheet Supplement
The datasheet supplement gives specific device information for a derivative family that differs from the general family
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and
for specifications that do not differ between the two families.
International Traffic in Arms Regulations (ITAR) and Export
Administration Regulations (EAR)
The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the
Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export
can include a release or disclosure to a foreign national inside or outside the United States.
Previous Version Changes in Current Version (v3.2) Page
v3.1
(June 2003)
The "Ordering Information" was updated to include RoHS information. 1-ii
The Product Plan was removed since all products have been released. N/A
Information concerning the TRST pin in the "Probe Circuit Control Pins" section was removed. 1-6
The "Dedicated Test Mode" section is new. 1-6
The "Programming" section is new. 1-7
A note was added to the "Power-Up Sequencing" table. 1-15
A note was added to the "Power-Down Sequencing" table. The 3.3 V comments were updated for the
following devices: A54SX08, A54SX16, A54SX32.
1-15
U11 and U13 were added to the "313-Pin PBGA" table. 2-17
v3.0.1 Storage temperature in Tab l e 1 -3 was updated. 1-7
Tab le 1 - 1 was updated. 1-5
5172137-5/6.06
Actel Corporation
2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600
Actel Europe Ltd.
Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490
Actel Japan
www.jp.actel.com
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
Actel Hong Kong
www.actel.com.cn
Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488
www.actel.com
Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.