MIC5353 500mA LDO in 1.6mm x 1.6mm Package General Description Features The MIC5353 is a high-performance, single-output, ultralow LDO (ULDOTM) regulator, offering a low total output noise of 30VRMS. The MIC5353 is capable of sourcing 500mA output current and offers high-PSRR and lowoutput noise, making it an ideal solution for RF applications. The MIC5353 provides 2% accuracy, extremely low dropout voltage (160mV @ 500mA), and low ground current (typically 90A) making it ideal for battery-operated applications. When disabled, the MIC5353 enters a zerooff-mode current state, thereby drawing almost no current. The MIC5353 is available in the 1.6mm x 1.6mm Thin (R) 2 MLF package, occupying only 2.56mm of PCB area, a 36% reduction in board area compared to SC-70 and 2mm (R) x 2mm Thin MLF packages. The MIC5353 has an operating junction temperature range of -40C to +125C and is available in fixed and adjustable (R) output voltages in lead-free (RoHS-compliant) Thin MLF package. Data sheets and support documentation can be found on Micrel's web site at: www.micrel.com. * * * * * * * * * * 500mA guaranteed output current Input voltage range: 2.6V to 6V Ultra low dropout voltage: 160mV @ 500mA 2% initial accuracy Ultra low output noise: 30Vrms Low quiescent current: 90A Stable with ceramic output capacitors 35s turn-on time Thermal shutdown and current limit protection (R) Tiny 6-pin 1.6mm x 1.6mm Thin MLF leadless package Applications * * * * * Mobile Phones GPS, PDAs, PMP, handhelds Portable electronics Digital still and video cameras Digital TV _________________________________________________________________________________________________________________________ Typical Application Portable Application ULDO is a trademark of Micrel, Inc MLF and MicroLeadFrame are registered trademarks of Amkor Technology, Inc. Micrel Inc. * 2180 Fortune Drive * San Jose, CA 95131 * USA * tel +1 (408) 944-0800 * fax + 1 (408) 474-1000 * http://www.micrel.com October 27, 2015 Revision 2.0 Micrel, Inc. MIC5353 Ordering Information Part Number Marking Code (1) (2) Output Voltage Temperature Range Package MIC5353-1.8YMT 18R 1.8V -40C to +125C 6-Pin 1.6mm x 1.6mm Thin MLF (R) MIC5353-2.5YMT 25R 2.5V -40C to +125C 6-Pin 1.6mm x 1.6mm Thin MLF (R) MIC5353-2.6YMT 26R 2.6V -40C to +125C 6-Pin 1.6mm x 1.6mm Thin MLF (R) MIC5353-2.8YMT 28R 2.8V -40C to +125C 6-Pin 1.6mm x 1.6mm Thin MLF (R) MIC5353-3.0YMT 30R 3.0V -40C to +125C 6-Pin 1.6mm x 1.6mm Thin MLF (R) MIC5353-3.3YMT 33R 3.3V -40C to +125C 6-Pin 1.6mm x 1.6mm Thin MLF (R) MIC5353YMT AAR ADJ -40C to +125C 6-Pin 1.6mm x 1.6mm Thin MLF (R) Notes: 1. Pin 1 identifier= "". 2. For other voltage options contact Micrel Marketing. 3. Thin MLF(R) is a GREEN RoHS compliant package. Lead finish is NiPdAu, Mold compound is Halogen Free. Pin Configuration 6-Pin 1.6mm x 1.6mm Thin MLF (MT) Fixed (TOP VIEW) 6-Pin 1.6mm x 1.6mm Thin MLF (MT) Adjustable (TOP VIEW) (R) (R) Pin Description Pin Number Thin MLF-6 Fixed Pin Number Thin MLF-6 Adjustable Pin Name 1 1 EN 2 2 GND Ground. 3 3 VIN Supply Input. 4 4 VOUT Output Voltage. 5 - NC No connection. - 5 ADJ Adjust Input. Connect to external resistor voltage divider network. 6 6 BYP Reference Bypass: Connect external 0.1F to GND for reduced Output Noise. May be left open. EPad EPad HS PAD October 27, 2015 Pin Function Enable Input. Active High. High = ON, low = OFF. Do not leave floating. Exposed Heat-sink Pad connected to ground internally. 2 Revision 2.0 Micrel, Inc. MIC5353 Absolute Maximum Ratings(1) Operating Ratings(2) Supply Voltage (VIN) ..................................... -0.3V to +6.5V Enable Input Voltage (VEN) ................................ -0.3V to VIN (3) Power Dissipation .................................. Internally Limited Lead Temperature (soldering, 3sec) .......................... 260C Junction Temperature (TJ) ........................ -40C to +125C Storage Temperature (TS) ......................... -65C to +150C (4) ESD Rating ................................................................. 2KV Supply Voltage (VIN) ...................................... +2.6V to +6.0V Enable Input Voltage (VEN) ...................................... 0V to VIN Junction Temperature (TJ) .......................... -40C to +125C Junction Thermal Resistance (R) 6-Pin 1.6mm x1.6mm Thin MLF (JA) ........... 92.4C/W Electrical Characteristics(5) VIN = VOUT + 1.0V; COUT = 1.0F; IOUT = 100A; TJ = 25C, bold values indicate -40C to +125C, unless noted. Parameter Output Voltage Accuracy Conditions Min. Variation from nominal VOUT -2.0 +2.0 Variation from nominal VOUT; -40C to +125C -3.0 +3.0 Line Regulation VIN = VOUT + 1V to 6V; IOUT = 100A Load Regulation IOUT = 100A to 500mA Dropout Voltage (6) 0.05 Max. Units % 0.3 %/V 0.6 0.15 2.0 IOUT = 150mA 50 100 IOUT = 300mA 100 200 IOUT = 500mA 160 350 90 175 A 0.01 2 A Ground Pin Current IOUT = 0 to 500mA Ground Pin Current in Shutdown VEN 0.2V Ripple Rejection Typ. f = 1kHz; COUT = 1.0F; CBYP = 0.1F 60 f = 20kHz; COUT = 1.0F; CBYP = 0.1F 45 Current Limit VOUT = 0V 600 Output Voltage Noise COUT = 1.0F; CBYP = 0.1F; 10Hz to 100kHz 1100 % mV dB 1600 mA 30 VRMS Enable Input Enable Input Voltage Enable Input Current 0.2 Logic Low V 1.2 Logic High VIL 0.2V 0.01 1 VIH 1.2V 0.01 1 35 100 A Turn-on Time Turn-on Time COUT = 1.0F; CBYP = 0.1F s Notes: 1. Exceeding the absolute maximum rating may damage the device. 2. The device is not guaranteed to function outside its operating rating. 3. The maximum allowable power dissipation of any TA (ambient temperature) is PD(max) = (TJ(max) - TA) / JA. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. 4. Devices are ESD sensitive. Handling precautions recommended. Human body model 1.5K in series with 100pF. 5. Specification for packaged product only. 6. Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value measured at 1V differential. October 27, 2015 3 Revision 2.0 Micrel, Inc. MIC5353 Functional Diagram MIC5353 Block Diagram - FIXED MIC5353 Block Diagram - ADJUSTABLE October 27, 2015 4 Revision 2.0 Micrel, Inc. MIC5353 Typical Characteristics Dropout Voltage vs. Temperature Dropout Voltage vs. Output Current Ground Current vs. Output Current 92 250 160 140 120 100 80 60 40 90 200 Ground Current(A) 180 DROPOUT VOLTAGE (mV) DROPOUT VOLTAGE (mV) 200 500mA 150 300mA 100 50 88 86 84 VOUT = 2.8V VIN = 3.8V 82 150mA 20 80 0 0 0 -40 -20 50 100 150 200 250 300 350 400 450 500 0 20 40 60 0 80 100 120 140 100 OUTPUT CURRENT (mA) Output Voltage vs. Output Current Ground Current vs. Temperature 200 300 400 500 Output Current(mA) TEMPERATURE (C) Output Voltage vs. Input Voltage 1.84 3.6 120 110 100 IOUT = 500mA 90 80 IOUT = 100A 1.82 1.81 1.8 1.79 1.78 VIN =2.8V COUT=CIN =1F 1.77 70 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE(V) GROUND CURRENT (A) 1.83 3.4 3.2 100A 3 2.8 2.6 500mA 2.4 300mA VOUT = 2.8V CIN = COUT = 1F 2.2 150mA 2 1.76 0 60 -40 -20 0 20 40 60 80 100 120 140 50 2.6 100 150 200 250 300 350 400 450 500 OUTPUT CURRENT(mA) 3.4 3.8 4.2 4.6 5 5.4 5.8 INPUT VOLTAGE (V) TEMPERATURE (C) Current Limit vs. Input Voltage 3 Output Noise Spectral Density PSRR 1.4 10 -100 -90 1.2 500A -80 1 1.1 Noise uV/Hz -70 100A -60 VOUT =2.8V 1 dB CURRENT LIMIT(mA) 1.3 CIN=COUT =1F -50 300A 0.9 -40 0.1 -30 0.8 2.5 3 3.5 4 4.5 5 5.5 6 VIN = 4.5V COUT = 1F VOUT = 1.8V ILOAD = 50mA CBYP = 0.1F 0.01 -20 INPUT VOLTAGE(V) COUT = 1F CBYP = 0.1F -10 0 10 100 1,000 10,000 100,000 1,000,000 10,000,000 0.001 10 100 1,000 10,000 100,000 1,000,000 10,000,000 FREQUENCY (Hz) FREQUENCY (Hz) October 27, 2015 5 Revision 2.0 Micrel, Inc. MIC5353 Functional Characteristics October 27, 2015 6 Revision 2.0 Micrel, Inc. MIC5353 A unique, quick-start circuit allows the MIC5353 to drive a large capacitor on the bypass pin without significantly slowing turn-on time. Applications Information Enable/Shutdown The MIC5353 comes with an active-high enable pin that allows the regulator to be disabled. Forcing the enable pin low disables the regulator and sends it into a "zero" off-mode-current state. In this state, current consumed by the regulator goes nearly to zero. Forcing the enable pin high enables the output voltage. The active-high enable pin uses CMOS technology and the enable pin cannot be left floating; a floating enable pin may cause an indeterminate state on the output. No-Load Stability Unlike many other voltage regulators, the MIC5353 will remain stable and in regulation with no load. This is especially important in CMOS RAM keep-alive applications. Adjustable Regulator Application Adjustable regulators use the ratio of two resistors to multiply the reference voltage to produce the desired output voltage. The MIC5353 can be adjusted from 1.25V to 5.5V by using two external resistors (Figure 1). The resistors set the output voltage based on the following equation: Input Capacitor The MIC5353 is a high-performance, high bandwidth device. Therefore, it requires a well-bypassed input supply for optimal performance. A 1F capacitor is required from the input-to-ground to provide stability. Low-ESR ceramic capacitors provide optimal performance at a minimum of space. The use of additional high-frequency capacitors, such as smallvalued NPO dielectric-type capacitors, help filter out high-frequency noise and are good practice in any RFbased circuit. R1 VOUT = VREF 1 + R2 VREF = 1.25V Output Capacitor The MIC5353 requires an output capacitor of 1F or greater to maintain stability. The design is optimized for use with low-ESR ceramic chip capacitors. High-ESR capacitors may cause high-frequency oscillation. The output capacitor can be increased, although performance has been optimized for a 1F ceramic output capacitor and doing so does not improve significantly with larger capacitance. X7R/X5R dielectric-type ceramic capacitors are recommended because of their temperature performance. The X7R-type capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much as 50% and 60%, respectively, over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric, the value must be much higher than an X7R ceramic capacitor thereby ensuring the same minimum capacitance over the equivalent operating temperature range. Figure 1. Adjustable Voltage Output Thermal Considerations The MIC5353 is designed to provide 500mA of continuous current. Maximum ambient operating temperature can be calculated based on the output current and the voltage drop across the part. Given that the input voltage is 3.3V, the output voltage is 2.8V and the output current = 500mA. The actual power dissipation of the regulator circuit can be determined using the equation: PD = (VIN - VOUT) IOUT + VIN IGND Bypass Capacitor A capacitor can be placed from the noise bypass pin-toground to reduce output voltage noise. The capacitor bypasses the internal reference. A 0.1F capacitor is recommended for applications that require low-noise outputs. The bypass capacitor can be increased, further reducing noise and improving PSRR. Turn-on time increases slightly with respect to bypass capacitance. October 27, 2015 7 Revision 2.0 Micrel, Inc. MIC5353 The maximum power dissipation must not be exceeded for proper operation. Because this device is CMOS and the ground current is typically <100A over the load range, the power dissipation contributed by the ground current is < 1% and can be ignored for this calculation: For example, when operating the MIC5353-2.8YMT at an input voltage of 3.3V and 500mA load with a minimum footprint layout, the maximum ambient operating temperature TA can be determined as follows: PD = (3.3V - 2.8V) x 500mA PD = 0.25W 0.25W = (125C - TA)/(92.4C/W) To determine the maximum ambient operating temperature of the package, use the junction-to-ambient thermal resistance of the device and the following basic equation: PD(MAX) = TA=101C Therefore, a 2.8V application with 500mA of output current can accept an ambient operating temperature of (R) 101C in a 1.6mm x 1.6mm Thin MLF package. For a full discussion of heat sinking and thermal effects on voltage regulators, refer to the "Regulator Thermals" section of Micrel's Designing with Low-Dropout Voltage Regulators handbook. This information can be found on Micrel's website at: http://www.micrel.com/_PDF/other/LDOBk_ds.pdf TJ(MAX) - TA JA TJ(max) = 125C, the maximum junction temperature of the die JA thermal resistance = 92.4C/W. Thermal Resistance Substituting PD for PD(max) and solving for the ambient operating temperature will give the maximum operating conditions for the regulator circuit. The junction-toambient thermal resistance for the minimum footprint is 92.4C/W. October 27, 2015 8 Revision 2.0 Micrel, Inc. MIC5353 Typical Application Schematic (Fixed Output) Bill of Materials Item C1,C3 C2 U1 Part Number 06036D105KAT2A GRM188R60J105KE19D 06035C104KAT2A GRM188R71H104KA93D MIC5353-XXYMT Manufacturer Description Qty. (1) AVX (2) muRata Capacitor, 1F Ceramic, 6.3V, X5R, Size 0603 2 Capacitor, 0.1F Ceramic, 50V, X5R, Size 0603 1 (1) AVX (2) muRata (3) Micrel, Inc. 500mA LDO, 1.6mm x 1.6mm Thin MLF (R) 1 Notes: 1. AVX: www.avx.com. 2. Murata Tel: www.murata.com. 3. Micrel, Inc.: www.micrel.com. October 27, 2015 9 Revision 2.0 Micrel, Inc. MIC5353 Typical Application Schematic (Adjustable Output) Bill of Materials Item C1,C3 C2 Part Number 06036D105KAT2A GRM188R60J105KE19D 06035C104KAT2A Manufacturer AVX 2 Capacitor, 0.1F Ceramic, 50V, X5R, Size 0603 1 (3) Resistor, 20k, 1%, 1/16W, Size 0603 1 (3) Resistor, 10k, 1%, 1/16W, Size 0603 (1) AVX (2) muRata R1 CRCW060320K0FKEA Vishay R2 CRCW060310K0FKEA Vishay MIC5353YMT Qty. Capacitor, 1F Ceramic, 6.3V, X5R, Size 0603 (2) muRata GRM188R71H104KA93D U1 Description (1) (4) Micrel, Inc. 1 (R) Adjustable 500mA LDO, 1.6mm x 1.6mm Thin MLF 1 Notes: 1. AVX: www.avx.com. 2. Murata Tel: www.murata.com. 3. Vishay Tel: www.vishay.com. 4. Micrel, Inc.: www.micrel.com. October 27, 2015 10 Revision 2.0 Micrel, Inc. MIC5353 PCB Layout Recommendations TOP LAYER BOTTOM LAYER October 27, 2015 11 Revision 2.0 Micrel, Inc. MIC5353 Package Information (R) 6-Pin 1.6mm x 1.6mm Thin MLF (MT) October 27, 2015 12 Revision 2.0 Micrel, Inc. MIC5353 MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com Micrel, Inc. is a leading global manufacturer of IC solutions for the worldwide high-performance linear and power, LAN, and timing & communications markets. The Company's products include advanced mixed-signal, analog & power semiconductors; high-performance communication, clock management, MEMs-based clock oscillators & crystal-less clock generators, Ethernet switches, and physical layer transceiver ICs. Company customers include leading manufacturers of enterprise, consumer, industrial, mobile, telecommunications, automotive, and computer products. Corporation headquarters and state-of-the-art wafer fabrication facilities are located in San Jose, CA, with regional sales and support offices and advanced technology design centers situated throughout the Americas, Europe, and Asia. Additionally, the Company maintains an extensive network of distributors and reps worldwide. Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this datasheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. (c) 2010 Micrel, Incorporated. October 27, 2015 13 Revision 2.0