1© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com V0003_VE • 2/9/2017
One world. One KEMET
Benets
Surface mount form factor
• Operatingambienttemperatureof−55°Cto+150°C
• Superioroperatingperformanceratedat150°C
(AEC-Q200 compliance)
Operating voltage range of 3 V to 170 V
AC voltage range (Vrms) of 2 V to 130 V
High resistance to cyclic temperature stress
• Lowleakagecurrentsafter1,000hoursratedat150°C
High energy absorption capability
Available case sizes: 0603, 0805, 1206, 1210, 1812, 2220
Short response time
Broad range of current and energy handling capabilities
Low clamping voltage – Uc
• Non-sensitivetomildlyactivateduxes
Barrier type end terminations solderable with Pb-free
solders according to JEDEC J–STD–020C and IEC
60068258
RoHS 2 2011/65/EC, REACH compliant
• AEC-Q200qualiedGrade1
Overview
KEMET's VE series of high temperature, low voltage
varistors are designed to protect sensitive electronic
devices against high voltage surges in the low voltage
region. In addition to superior operating performance at
rated150°C(AEC–Q200compliance)theyofferexcellent
transient energy absorption due to improved energy volume
distribution and power dissipation.
Applications
Typical applications include transient over-voltage
protection in automotive assembly motors and controllers
as well as surge protection of non-automotive electronic
products exposed to over-heating, i.e., consumer,
telecommunication or industrial.
Load dump and jump start protection of 12 to 24 V
supply systems. Protection of integrated circuits and
other components at the circuit board level including the
suppression of inductive switching or other transient events
such as surge voltage. ESD protection for components
sensitive to IEC 1000–4–2, MILSTD 883C Method 3015.7
and other industry spec. Replacement of larger surface
mount TVS Zeners in many applications. Designed to
achieve electromagnetic compliance of end products and
provide on-board transient voltage protection of ICs and
transistors.
Surface Mount Varistors
VE Series High Temperature 150°C
Click image above for interactive 3D content
Open PDF in Adobe Reader for full functionality
2© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com V0003_VE • 2/9/2017
SMD Varistors
VE Series – SMD 150°C Low Voltage High Temperature Varistors
Ordering Information
VE 0603 M300 R002
Series Chip
Size Code Tolerances Rated Peak Single Pulse
Transient Current (A)
Packaging/
Termination
Maximum Continuous
Working Voltage
(Vrms AC)
Varistor
SMD High
Temperature150°C
Low Voltage
Multilayer Chip
0603 = 0603
0805 = 0805
1206 = 1206
1210 = 1210
1812 = 1812
2220 = 2220
K = ±10%
L = ±15%
M = ±20%
300 = 30
101 = 100
121 = 120
151 = 150
201 = 200
251 = 250
301 = 300
401 = 400
501 = 500
601 = 600
801 = 800
102 = 1,000
122 = 1,200
(First two digits represent
signicantgures.Thirddigit
speciesnumberofzeros.)
R = Reel 180 mm/Ni Sn
Barrier Terminations
002 = 2
004 = 4
006 = 6
008 = 8
011 = 11
014 = 14
017 = 17
020 = 20
025 = 25
030 = 30
035 = 35
040 = 40
050 = 50
060 = 60
075 = 75
095 = 95
115 = 115
130 = 130
Dimensions – Millimeters
W
L
0.5±0.25
t
Size Code L W tmax
0603 1.6±0.20 0.80.10 0.95
0805
2.0±0.25
1.25±0.20
0.80
1206
3.2±0.30
1.60±0.20
0.85
1210
3.2±0.30
2.50±0.25
0.85
1812
4.7±0.40
3.20±0.30
1.25
2220
5.7±0.50
5.00±0.40
1.25
3© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com V0003_VE • 2/9/2017
SMD Varistors
VE Series – SMD 150°C Low Voltage High Temperature Varistors
Environmental Compliance
RoHS 2 2011/65/EC, REACH
Performance Characteristics
Continuous Units Value
Steady State Applied Voltage
DC Voltage Range (Vdc) V 3 to 170
AC Voltage Range (Vrms) V 2 to 130
Transient
Peak Single Pulse Surge Current, 8/20 µs Waveform (Imax) A 30 to 1200
Single Pulse Surge Energy, 10/1000 µs Waveform (Wmax) J 0.1 to 12.2
Operating Ambient Temperature °C −55to+150
Storage Temperature Range °C −55to+150
ThresholdVoltageTemperatureCoefcient %/°C <+0.05
Response Time ns < 2
Climatic Category 55/150/56
Qualications
Reliability Parameter Test Tested According to Condition to be Satised
after Testing
AC/DC Bias Reliability AC/DC Life Test CECC 42200, Test 4.20 or IEC 10511, Test 4.20.
AEC–Q200 Test 8 – 1,000 hours at UCT Vn (1 mA)| < 10 %
Pulse Current Capability Imax 8/20 µs
CECC 42200, Test C 2.1 or IEC 10511, Test 4.5.
10 pulses in the same direction at 2 pulses per minute
at maximum peak current for 10 pulses
Vn (1 mA)| < 10 %
no visible damage
Pulse Energy Capability Wmax 10/1,000 µs
CECC 42200, Test C 2.1 or IEC 10511, Test 4.5. 10
pulses in the same direction at 1 pulses every 2
minutes at maximum peak current for 10 pulses
Vn (1 mA)| < 10 %
no visible damage
WLD Capability WLD x 10 ISO 7637, Test pulse 5, 10 pulses at rate 1 per minute
Vn
(1 mA)| < 15 %
no visible damage
Vjump Capability Vjump 5 min IncreaseofsupplyvoltagetoV≥Vjump for 1 minute
Vn
(1 mA)| < 15 %
no visible damage
4© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com V0003_VE • 2/9/2017
SMD Varistors
VE Series – SMD 150°C Low Voltage High Temperature Varistors
Qualications cont'd
Reliability Parameter Test Tested According to Condition to be Satised
after Testing
Environmental and
Storage Reliability
Climatic Sequence
CECC 42200, Test 4.16 or IEC 10511, Test 4.17.
a) Dry heat, 16 hours, UCT, Test Ba, IEC 68–2–2
b)Dampheat,cyclic,therstcycle:5C,93%RH,
24 hours, Test Db 68–2–4
c) Cold, LCT, 2 hours Test Aa IEC 68–2–1
d)Dampheatcyclic,remaining5cycles:55°C,93%
RH, 24 hour/cycle, Test Bd, IEC 68–2–30
Vn (1 mA)| < 10 %
Thermal Shock CECC 42200, Test 4.12, Test Na, IEC 68–2–14,
AEC–Q200 Test 16, 5 cycles UCT/LCT, 30 minutes
Vn (1 mA)| < 10 %
no visible damage
Steady State Damp Heat
CECC 42200, Test 4.17, Test Ca, IEC 68–2–3,
AEC–Q200Test6,56days,40°C,93%RH.AEC–Q200
Test7: Bias, Rh, T all at 85.
Vn (1 mA)| < 10 %
Storage Test IEC 68–2–2, Test Ba, AEC–Q200 Test 3,
1,000 hours at maximum storage temperature
Vn (1 mA)| < 5 %
Mechanical Reliability
Solderability
CECC 42200, Test 4.10.1, Test Ta IEC 68–2–20
solderbathandreowmethod
Solderable at shipment
and after 2 year of storage,
criteria > 95% must be
coveredbysolderforreow
meniscus
Resistance to Soldering
Heat
CECC 42200, Test 4.10.2, Test Tb, IEC 68–2–20 solder
bathandreowmethod
Vn (1 mA)| < 5 %
Terminal Strength JIS–C–6429, App. 1, 18N for 60 seconds – same for
AEC–Q200 Test 22 no visual damage
Board Flex JIS–C–6429, App. 2, 2 mm minimum
AEC–Q200test21–Boardex:2mmexminimum
Vn (1 mA)| < 2 %
no visible damage
Vibration
CECC 42200, Test 4.15, Test Fc, IEC 68–2–6, AEC–
Q200 Test 14.
Frequency range 10 to 55 Hz (AEC: 10 – 2,000 Hz)
Amplitude 0.75 m/s2 or 98 m/s2 (AEC: 5 g's for 20
minutes)
Total duration 6 hours (3x2h) (AEC: 12 cycles each of
3 directions)
Waveshape – half sine
Vn (1 mA)| < 10 %
no visible damage
Mechanical Shock
CECC 42200, Test 4.14, Test Ea, IEC 68–2–27,
AEC–Q200 Test 13.
Acceleration = 490 m/s2 (AEC: MIL-STD–202–Method
213),
Pulse duration = 11 ms,
Waveshape – half sine; Number of shocks = 3x6
Vn (1 mA)| < 10 %
no visible damage
Electrical Transient
Conduction ISO–76371 Pulses AEC–Q200 Test 30: Test pulses 1 to 3.
Also other pulses – freestyle.
Vn (1 mA)| < 10 %
no visible damage
5© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com V0003_VE • 2/9/2017
SMD Varistors
VE Series – SMD 150°C Low Voltage High Temperature Varistors
Reliability
In general, reliability is the ability of a component to perform and maintain its functions in routine circumstances, as well as
hostile or unexpected circumstances. The mean life of series components is a function of:
• Factor of Applied Voltage
• Ambient temperature
Mean life is closely related to Failure rate (formula).
Mean life (ML) is the arithmetic mean (average) time to failure of a component.
Failure rate is the frequency with which an engineered system or component fails, expressed for example in failures per
hour. Failure rate is usually time dependent, an intuitive corollary is that the rate changes over time versus the expected
life cycle of a system.
Failure rate formula – calculation
Λ= 109
[t]
ML[h]
FAV – Factor of Applied Voltage
Λ= Vapl
Vmax
Vapl = applied voltage
Vmax = maximum operating voltage
Years
Mean Life on Arrhenius model
1,000
100
10
103
104
105
106
107
108
1
h
120 100 80 60 40 20 °C
Ta
Mean life (ML)
FAV
0,7
0,8
0,9
1,0
6© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com V0003_VE • 2/9/2017
SMD Varistors
VE Series – SMD 150°C Low Voltage High Temperature Varistors
Table 1 – Ratings & Part Number Reference
KEMET Part
Number
L
(mm)
W
(mm)
tmax
(mm) Vrms VDC Vn
1 mA Vc
Ic
8/20 µs
(A)
Wmax
10/1000 µs
(J)
Pmax
(W)
Imax
8/20 µs
(A)
Ctyp
at 1 kHz
(pF)
Ltyp
100mA/ns
(nH)
VE0603M300R002 1.6 ± 0.20 0.80 ± 0.10 0.95 23412 10.1 0.003 30 360 1.0
VE0805M101R002 2.0 ± 0.25 1.25 ± 0.20 0.80 23412 10.1 0.005 100 930 1.5
VE1206M151R002 3.2 ± 0.30 1.60 ± 0.20 0.85 23412 10.2 0.008 150 4000 1.8
VE0603M300R004 1.6 ± 0.20 0.80 ± 0.10 0.95 45.5 816 10.1 0.003 30 295 1.0
VE0805M101R004 2.0 ± 0.25 1.25 ± 0.20 0.80 45.5 816 10.1 0.005 100 695 1.5
VE1206M151R004 3.2 ± 0.30 1.60 ± 0.20 0.85 45.5 816 10.3 0.008 150 3300 1.8
VE1210M251R004 3.2 ± 0.30 2.50 ± 0.25 0.85 45.5 816 30.4 0.010 250 5000 1.8
VE1812M501R004 4.7 ± 0.40 3.20 ± 0.30 1.25 45.5 816 50.8 0.015 500 10000 2.5
VE2220M102R004 5.7 ± 0.50 5.00 ± 0.40 1.25 45.5 816 10 1.5 0.020 1000 19500 3.0
VE0603M300R006 1.6 ± 0.20 0.80 ± 0.10 0.95 6 8 11 23 10.1 0.003 30 260 1.0
VE0805M101R006 2.0 ± 0.25 1.25 ± 0.20 0.80 6 8 11 23 10.2 0.005 100 560 1.5
VE1206M151R006 3.2 ± 0.30 1.60 ± 0.20 0.85 6 8 11 23 10.5 0.008 150 2600 1.8
VE1210M301R006 3.2 ± 0.30 2.50 ± 0.25 0.85 6 8 11 23 30.8 0.010 300 4100 1.8
VE1812M501R006 4.7 ± 0.40 3.20 ± 0.30 1.25 6 8 11 23 51.0 0.015 500 7500 2.5
VE2220M122R006 5.7 ± 0.50 5.00 ± 0.40 1.25 6 8 11 23 10 3.8 0.020 1200 17000 3.0
VE0603L300R008 1.6 ± 0.20 0.80 ± 0.10 0.95 811 15 27 10.1 0.003 30 240 1.0
VE0805L121R008 2.0 ± 0.25 1.25 ± 0.20 0.80 811 15 27 10.2 0.005 120 475 1.5
VE1206L201R008 3.2 ± 0.30 1.60 ± 0.20 0.85 811 15 27 10.6 0.008 200 2000 1.8
VE1210L401R008 3.2 ± 0.30 2.50 ± 0.25 0.85 811 15 27 31.1 0.010 400 3400 1.8
VE1812L501R008 4.7 ± 0.40 3.20 ± 0.30 1.25 811 15 27 51.9 0.015 500 6300 2.5
VE2220L122R008 5.7 ± 0.50 5.00 ± 0.40 1.25 811 15 27 10 4.3 0.020 1200 15000 3.0
VE0603K300R011 1.6 ± 0.20 0.80 ± 0.10 0.95 11 14 18 35 10.2 0.003 30 210 1.0
VE0805K121R011 2.0 ± 0.25 1.25 ± 0.20 0.80 11 14 18 35 10.3 0.005 120 400 1.5
VE1206K201R011 3.2 ± 0.30 1.60 ± 0.20 0.85 11 14 18 35 10.6 0.008 200 1300 1.8
VE1210K401R011 3.2 ± 0.30 2.50 ± 0.25 0.85 11 14 18 35 31.3 0.010 400 2600 1.8
VE1812K801R011 4.7 ± 0.40 3.20 ± 0.30 1.25 11 14 18 35 52.0 0.015 800 5100 2.5
VE2220K122R011 5.7 ± 0.50 5.00 ± 0.40 1.25 11 14 18 35 10 5.5 0.020 1200 12000 3.0
VE0603K300R014 1.6 ± 0.20 0.80 ± 0.10 0.95 14 18 22 40 10.3 0.003 30 195 1.0
VE0805K121R014 2.0 ± 0.25 1.25 ± 0.20 0.80 14 18 22 40 10.4 0.005 120 355 1.5
VE1206K201R014 3.2 ± 0.30 1.60 ± 0.20 0.85 14 18 22 40 10.6 0.008 200 950 1.8
VE1210K401R014 3.2 ± 0.30 2.50 ± 0.25 0.85 14 18 22 40 31.6 0.010 400 2000 1.8
VE1812K801R014 4.7 ± 0.40 3.20 ± 0.30 1.25 14 18 22 40 52.4 0.015 800 4200 2.5
VE2220K122R014 5.7 ± 0.50 5.00 ± 0.40 1.25 14 18 22 40 10 6.0 0.020 1200 9400 3.0
VE0603K300R017 1.6 ± 0.20 0.80 ± 0.10 0.95 17 22 27 46 10.3 0.003 30 185 1.0
VE0805K121R017 2.0 ± 0.25 1.25 ± 0.20 1.05 17 22 27 46 10.4 0.005 120 315 1.5
VE1206K201R017 3.2 ± 0.30 1.60 ± 0.20 1.25 17 22 27 46 10.7 0.008 200 740 1.8
VE1210K401R017 3.2 ± 0.30 2.50 ± 0.25 1.35 17 22 27 46 31.8 0.010 400 1700 1.8
VE1812K801R017 4.7 ± 0.40 3.20 ± 0.30 1.25 17 22 27 46 52.8 0.015 800 3500 2.5
VE2220K122R017 5.7 ± 0.50 5.00 ± 0.40 1.25 17 22 27 46 10 7.5 0.020 1200 7700 3.0
VE0603K300R020 1.6 ± 0.20 0.80 ± 0.10 0.95 20 26 33 56 10.3 0.003 30 175 1.0
VE0805K121R020 2.0 ± 0.25 1.25 ± 0.20 1.05 20 26 33 56 10.4 0.005 120 290 1.5
VE1206K201R020 3.2 ± 0.30 1.60 ± 0.20 1.25 20 26 33 56 10.8 0.008 200 620 1.8
VE1210K401R020 3.2 ± 0.30 2.50 ± 0.25 1.35 20 26 33 56 32.0 0.010 400 1400 1.8
VE1812K801R020 4.7 ± 0.40 3.20 ± 0.30 1.55 20 26 33 56 53.0 0.015 800 3000 2.5
VE2220K122R020 5.7 ± 0.50 5.00 ± 0.40 1.45 20 26 33 56 10 8.0 0.020 1200 6500 3.0
VE0603K300R025 1.6 ± 0.20 0.80 ± 0.10 0.95 25 31 39 67 1 0.1 0.003 30 165 1.0
VE0805K121R025 2.0 ± 0.25 1.25 ± 0.20 1.05 25 31 39 67 1 0.2 0.005 120 260 1.5
VE1206K201R025 3.2 ± 0.30 1.60 ± 0.20 1.25 25 31 39 67 1 1.0 0.008 200 510 1.8
VE1210K401R025 3.2 ± 0.30 2.50 ± 0.25 1.45 25 31 39 67 3 1.8 0.010 400 1060 1.8
KEMET Part
Number
L
mm
W
mm
tmax
mm
Vrms
V
Vdc
V
Vn 1 mA
V
Vc
V
Ic 8/20 µs
A
Wmax 10/1000 µs
J
Pmax
W
Imax 8/20 µs
A
Ctyp @ 1 kHz
pF
Ltyp 100mA/ns
nH
7© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com V0003_VE • 2/9/2017
SMD Varistors
VE Series – SMD 150°C Low Voltage High Temperature Varistors
Table 1 – Ratings & Part Number Reference (cont'd)
KEMET Part
Number
L
(mm)
W
(mm)
tmax
(mm) Vrms VDC Vn
1 mA Vc
Ic
8/20 µs
(A)
Wmax
10/1000 µs
(J)
Pmax
(W)
Imax
8/20 µs
(A)
Ctyp
at 1 kHz
(pF)
Ltyp
100mA/ns
(nH)
VE1812K801R025 4.7 ± 0.40 3.20 ± 0.30 1.55 25 31 39 67 5 3.9 0.015 800 2300 2.5
VE2220K122R025 5.7 ± 0.50 5.00 ± 0.40 1.45 25 31 39 67 10 9.5 0.020 1200 5000 3.0
VE0603K300R030 1.6 ± 0.20 0.80 ± 0.10 0.95 30 38 47 79 10.1 0.003 30 160 1.0
VE0805K121R030 2.0 ± 0.25 1.25 ± 0.20 1.05 30 38 47 79 10.2 0.005 120 230 1.5
VE1206K201R030 3.2 ± 0.30 1.60 ± 0.20 1.25 30 38 47 79 11.2 0.008 200 450 1.8
VE1210K301R030 3.2 ± 0.30 2.50 ± 0.25 1.45 30 38 47 79 32.1 0.010 300 850 1.8
VE1812K801R030 4.7 ± 0.40 3.20 ± 0.30 1.55 30 38 47 79 54.4 0.015 800 1800 2.5
VE2220K122R030 5.7 ± 0.50 5.00 ± 0.40 1.45 30 38 47 79 10 12.2 0.020 1200 4000 3.0
VE1206K121R035 3.2 ± 0.30 1.60 ± 0.20 1.25 35 45 56 92 10.6 0.008 120 400 1.8
VE1210K251R035 3.2 ± 0.30 2.50 ± 0.25 1.45 35 45 56 92 32.2 0.010 250 670 1.8
VE1812K601R035 4.7 ± 0.40 3.20 ± 0.30 1.55 35 45 56 92 54.2 0.015 600 1340 2.5
VE2220K102R035 5.7 ± 0.50 5.00 ± 0.40 1.45 35 45 56 92 10 7.6 0.020 1000 3000 3.0
VE1206K121R040 3.2 ± 0.30 1.60 ± 0.20 1.25 40 56 68 112 10.8 0.008 120 370 1.8
VE1210K251R040 3.2 ± 0.30 2.50 ± 0.25 1.45 40 56 68 112 32.4 0.010 250 570 1.8
VE1812K601R040 4.7 ± 0.40 3.20 ± 0.30 1.55 40 56 68 112 54.8 0.015 600 1000 2.5
VE2220K102R040 5.7 ± 0.50 5.00 ± 0.40 1.45 40 56 68 112 10 9.2 0.020 1000 2200 3.0
VE1206K121R050 3.2 ± 0.30 1.60 ± 0.20 1.65 50 65 82 137 10.8 0.008 120 340 1.8
VE1210K251R050 3.2 ± 0.30 2.50 ± 0.25 1.75 50 65 82 137 31.7 0.010 250 470 1.8
VE1812K401R050 4.7 ± 0.40 3.20 ± 0.30 1.85 50 65 82 137 54.8 0.015 400 710 2.5
VE2220K801R050 5.7 ± 0.50 5.00 ± 0.40 1.85 50 65 82 137 10 5.8 0.020 800 1500 3.0
VE1206K121R060 3.2 ± 0.30 1.60 ± 0.20 1.65 60 85 100 167 10.9 0.008 120 330 1.8
VE1210K251R060 3.2 ± 0.30 2.50 ± 0.25 1.75 60 85 100 167 32.2 0.010 250 390 1.8
VE1812K401R060 4.7 ± 0.40 3.20 ± 0.30 1.85 60 85 100 167 55.8 0.015 400 580 2.5
VE2220K801R060 5.7 ± 0.50 5.00 ± 0.40 1.85 60 85 100 167 10 6.2 0.020 800 1000 3.0
VE1812K401R075 4.7 ± 0.40 3.20 ± 0.30 1.90 75 100 120 202 55.8 0.015 400 440 2.5
VE2220K801R075 5.7 ± 0.50 5.00 ± 0.40 1.90 75 100 120 202 10 6.2 0.020 800 700 3.0
VE1812K301R095 4.7 ± 0.40 3.20 ± 0.30 1.90 95 125 150 252 55.2 0.015 300 340 2.5
VE2220K501R095 5.7 ± 0.50 5.00 ± 0.40 1.90 95 125 150 252 10 7.4 0.020 500 600 3.0
VE1812K301R115 4.7 ± 0.40 3.20 ± 0.30 1.90 115 150 180 302 55.2 0.015 300 310 2.5
VE2220K501R115 5.7 ± 0.50 5.00 ± 0.40 1.90 115 150 180 302 10 7.4 0.020 500 560 3.0
VE2220K501R130 5.7 ± 0.50 5.00 ± 0.40 1.90 130 170 205 342 10 7.4 0.020 500 500 3.0
KEMET Part
Number
L
mm
W
mm
tmax
mm
Vrms
V
Vdc
V
Vn 1 mA
V
Vc
V
Ic 8/20 µs
A
Wmax 10/1000 µs
J
Pmax
W
Imax 8/20 µs
A
Ctyp @ 1 kHz
pF
Ltyp 100mA/ns
nH
8© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com V0003_VE • 2/9/2017
SMD Varistors
VE Series – SMD 150°C Low Voltage High Temperature Varistors
Soldering
PopularsolderingtechniquesusedforsurfacemountedcomponentsareWaveandInfraredReowprocesses.Bothprocessescanbe
performed with Pb-containing or Pb-free solders. The termination option available for these soldering techniques is Barrier Type End
Terminations.
End Termination Designation Recommended and
Suitable for
Component RoHS
Compliant
Ni Sn Barrier Type End
Termination
Ni R1 Pb-containing and
Pb-free soldering
Yes
Wave Soldering – this process is generally associated with discrete components mounted on the underside of printed circuit boards, or
for large top-side components with bottom-side mounting tabs to be attached, such as the frames of transformers, relays, connectors,
etc.SMDvaristorstobewavesolderedarerstgluedtothecircuitboard,usuallywithanepoxyadhesive.Whenallcomponentsonthe
PCB have been positioned and an appropriate time is allowed for adhesive curing, the completed assembly is then placed on a conveyor
and run through a single, double wave process.
Infrared Reow Soldering–thesereowprocessesaretypicallyassociatedwithtop-sidecomponentplacement.Thistechniqueutilizes
amixtureofadhesiveandsoldercompounds(andsometimesuxes)thatareblendedintoapaste.ThepasteisthenscreenedontoPCB
solderingpadsspecicallydesignedtoacceptaparticularsizedSMDcomponent.Therecommendedsolderpastewetlayerthickness
is100to300µm.OncethecircuitboardisfullypopulatedwithMDcomponents,itisplacedinareowenvironment,wherethepasteis
heatedtoslightlyaboveitseutectictemperature.Whenthesolderpastereows,theSMDcomponentsareattachedtothesolderpads.
Solder Fluxes–solderuxesaregenerallyappliedtopopulatedcircuitboardstocleanoxidesformingduringtheheatingprocessandto
facilitatetheowingofthesolder.Solderuxescanbeeitherapartofthesolderpastecompoundorcanbeseparatematerials,usually
uids.Recommendeduxesare:
•non-activated(R)uxes,wheneverpossible
•mildlyactivated(RMA)uxesofclassL3CN
• class ORLO
Activated (RA),watersolubleorstrongacidicuxeswithachlorinecontent>0.2wt.%areNOTRECOMMENDED.Theuseofsuchuxes
could create high leakage current paths along the body of the varistor components.
Whenauxisappliedpriortowavesoldering,itisimportanttocompletelydryanyresidualuxsolventspriortothesolderingprocess.
Thermal Shock – to avoid the possibility of generating stresses in the varistor chip due to thermal shock, a preheat stage to within 100
°Cofthepeaksolderingprocesstemperatureisrecommended.Additionally,SMDvaristorsshouldnotbesubjectedtoatemperature
gradientgreaterthan4°C/sec.,withanidealgradientbeing2°C/sec.Peaktemperaturesshouldbecontrolled.WaveandReow
solderingconditionsforSMDvaristorswithPb-containingsoldersareshowninFig.1and2respectively,whileWaveandReowsoldering
conditions for SMD varistors with Pb-free solders are shown in Fig, 1 and 3
9© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com V0003_VE • 2/9/2017
SMD Varistors
VE Series – SMD 150°C Low Voltage High Temperature Varistors
Soldering cont'd
WheneverseveraldifferenttypesofSMDcomponentsarebeingsoldered,eachhavingaspecicsolderingprole,thesolderingprole
with the least heat and the minimum amount of heating time is recommended. Once soldering has been completed, it is necessary to
minimizethepossibilityofthermalshockbyallowingthehotPCBtocooltolessthan50°Cbeforecleaning.
Inspection Criteria–theinspectioncriteriatodetermineacceptablesolderjoints,whenWaveorInfraredReowprocessesareused,will
dependonseveralkeyvariables,principallyterminationmaterialprocessproles.
Pb-contining Wave and IR Reow Soldering – typical “before” and “after” soldering results for Barrier Type End Terminations can be seen
in Fig. 4. Barrier type terminated varistors form a reliable electrical contact and metallurgical bond between the end terminations and the
solder pads. The bond between these two metallic surfaces is exceptionally strong and has been tested by both vertical pull and lateral
(horizontal) push tests. The results exceed established industry standards for adhesion.
The solder joint appearance of a barrier type terminated varistor shows that solder forms a metallurgical junction with the thin tin-alloy
(over the barrier layer), and due to its small volume “climbs” the outer surface of the terminations, the meniscus will be slightly lower.
This optical appearance should be taken into consideration when programming visual inspection of the PCB after soldering.
Ni Sn Barrier Type End Terminations
Fig.4–SolderingCriterionincaseofWaveandIRReowPb-containingSoldering
Pb-free Wave and IR Reow Soldering – typical “before” and “after” soldering results for Barrier Type End Terminations are given
in a phenomenon knows as “mirror” or “negative” meniscus. Solder forms a metallurgical junction with the entire volume of the end
termination, i.e. it diffuses from pad to end termination across the inner side, forming a “mirror” or “negative” meniscus. The height of the
solder penetration can be clearly seen on the end termination and is always 30% higher than the chip height.
10© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com V0003_VE • 2/9/2017
SMD Varistors
VE Series – SMD 150°C Low Voltage High Temperature Varistors
Soldering cont'd
Solder Test and Retained Samples–reowsolderingtestbasedonJ-STD-020D.1andsolderingtestbydippingbasedonIEC60068-
2 for Pb-free solders are preformed on each production lot as shown in the following chart. Test results and accompanying samples
areretainedforaminimumoftwo(2)years.Thesolderabilityofaspeciclotcanbecheckedatanytimewithinthisperiodshoulda
customer require this information.
Test Resistance to Flux Solderability
Static leaching
(Simulation of Reow
Soldering)
Dynamic Leaching
(Simulation of Wave
Soldering)
Parameter
Soldering method dipping dipping dipping dipping with agitation
Flux L3CN, ORL0 L3CN, ORL0, R L3CN, ORL0, R L3CN, ORL0, R
Pb Solder 62Sn/36Pb/2 Ag
PbSolderingtemperature(°C) 235±5 235±5 260±5 235±5
Pb-FREE Solder Sn96/Cu0,4–0,8/3–4Ag
Pb-FREE Soldering
Temperature(°C)
250±5 250±5 280±5 250±5
Soldering Time (s) 2210 10 > 15
Burn-in Conditions VDC
max
, 48 h
Acceptance Criterion dVn < 5 %, idc must stay
unchanged
> 95 % of end termination
must be covered by solder
> 95 % of end termination
must be intact and covered
by solder
> 95 % of end termination
must be intact and covered
by solder
Rework Criteria Soldering Iron – unless absolutely necessary, the use of soldering irons is NOT recommended for reworking varistor
chips. If no other means of rework is available, the following criteria must be strictly followed:
• Do not allow the tip of the iron to directly contact the top of the chip
•Donotexceedthefollowingsolderingironspecications:
Output Power: 30 Watts maximum
TemperatureofSolderingIronTip: 280°Cmaximum
Soldering Time: 10 Seconds maximum
Storage Conditions – SMD varistors should be used within 1 year of purchase to avoid possible soldering problems caused by oxidized
terminals.Thestorageenvironmentshouldbecontrolled,withhumiditylessthan40%andtemperaturebetween-25and45°C.Varistor
chips should always be stored in their original packaged unit.
11© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com V0003_VE • 2/9/2017
SMD Varistors
VE Series – SMD 150°C Low Voltage High Temperature Varistors
Soldering Pad Conguration
W
L
t
M
B C B
A
D
A
Size L (mm) W (mm) h (mm) tmax (mm) A (mm) B (mm) C (mm) D (mm)
0603 1.6±0.20 0.80.10 0.5±0.25 1.0 1.0 1.0 0.6 2.6
0805 2.0±0.25 1.25±0.20 0.5±0.25 1.1 1.4 1.2 1.0 3.4
1206 3.0.30 1.60±0.20 0.5±0.25 1.6 1.8 1.2 2.1 4.5
1210 3.2±0.30 2.50±0.25 0.5±0.25 1.8 2.8 1.2 2.1 4.5
1812 4.7±0.40 3.20.30 0.5±0.25 1.9 3.6 1.5 3.2 6.2
2220 5.7±0.50 5.00±0.40 0.5±0.25 1.9 5.5 1.5 4.2 7.2
Packaging
Voltage
Range (V)
Chip Size
0603
0805
1206
1210
1812
2220
Reel Size
180
180
180
180
180
180
2 to 14
4000
4000
4000
4000
1500
1500
17
3500
3500
2500
2500
1500
1500
20 to 40
3500
3500
2500
2500
1000
1000
50 to 130
2000
2000
1000
1000
12© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com V0003_VE • 2/9/2017
SMD Varistors
VE Series – SMD 150°C Low Voltage High Temperature Varistors
Construction
Glass Passivation
Detailed Cross Section
Inner Electrodes
(Ag) Terminate
Edge
Terminate
Edge
ZnO Layer
Inner Electrodes
(Ag)
Glass Passivation
Termination
(Ag/Pd, Ni/Sn)
Termination
(Ag/Pd, Ni/Sn)
13© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com V0003_VE • 2/9/2017
SMD Varistors
VE Series – SMD 150°C Low Voltage High Temperature Varistors
Taping & Reel Specications
Tape Size (mm) 8 mm 12 mm
Ao
Bo
Ko Maximum
B1 Maximum
D1 Minimum
E2 Minimum
P1
F
W
T2 Maximum
W1
W2 Maximum
W3
A
14© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com V0003_VE • 2/9/2017
SMD Varistors
VE Series – SMD 150°C Low Voltage High Temperature Varistors
Terms and Denitions
Term Symbol Denition
Rated AC
Voltage Vrms
Maximum continuous sinusoidal AC voltage (<5% total harmonic distortion) which may be
appliedtothecomponentundercontinuousoperationconditionsat25°C
Rated DC
Voltage
Vdc
Maximum continuous DC voltage (<5% ripple) which may be applied to the component under
continuousoperatingconditionsat25°C
Supply
Voltage VThe voltage by which the system is designated and to which certain operating characteristics of
the system are referred; V
rms
= 1,1 x V
Leakage Current Idc
ThecurrentpassingthroughthevaristoratVdcandat25°Coratanyotherspecied
temperature
Varistor Voltage
Vn
Voltage across the varistor measured at a given reference current In
Reference Current
In
Reference current = 1 mA DC
Clamping Voltage
Protection Level
Vc
The peak voltage developed across the varistor under standard atmospheric conditions, when
passingan8/20μsclasscurrentpulse
Class Current Ic
A peak value of current which is 1/10 of the maximum peak current for 100 pulses at two per
minuteforthe8/20μspulse
Voltage
Clamping
Ratio
Vc/Vapp
Agureofmeritmeasureofthevaristorclampingeffectivenessasdenedbythesymbols
Vc/Vapp, where (Vapp = Vrms or Vdc)
Jump
Start
Transient
Vjump
The jump start transient resulting from the temporary application of an overvoltage in excess
of the rated battery voltage. The circuit power supply may be subjected to a temporary
overvoltage condition due to the voltage regulation failing or it may be deliberately generated
when it becomes necessary to boost start the car
Rated Single Pulse
Transient Energy
Wmax
Energywhichmaybedissipatedforasingle10/1000μspulseofamaximumratedcurrent,
with rated AC voltage or rated DC voltage also applied, without causing device failure
Load
Dump
Transient
WLD
Load Dump is a transient which occurs in an automotive environment. It is an exponentially
decaying positive voltage which occurs in the event of a battery disconect while the alternator
is still generating charging current with other loads remaining on the alternator circuit at the
time of battery disconect
Rated Peak Single
Pulse Transient
Current
Imax
Maximumpeakcurrentwhichmaybeappliedforasingle8/20μspulse,with,ratedline
voltage also applies, without causing device failure
Rated Transient
Average Power
Dissipation
PMaximum average power which may be dissipated due to a group of pulses occurring within a
speciedisolatedtimeperiod,withoutcausingdevicefailureat25°C
Capacitance
C
Capacitance between two terminals of the varistor measured at at 1 kHz
Response Time
tr
The time lag between application of a surge and varistor's "turn-on" conduction action
Varistor Voltage
Temperature
Coefcient
TC (Vnat85°C–Vnat25°C)/(Vnat25°C)x60°C)x100
Insulation Resistance IR Minimum resistance between shorted terminals and varistor surface
Isolation
Voltage
The maximum peak voltage which may be applied under continuous operating conditions
between the varistor terminations and any conducting mounting surface
Operating
Temperature
The range of ambient temperature for which the varistor is designed to operate continuously as
denedbythetemperaturelimitsofitsclimaticcategory
Climatic Category LCT/UCT/DHD
UCT = Upper Category Temperature – the maximum ambient temperature for which a varistor
has been designed to operate continuously, LCT = Lower Category Temperature – the minimum
ambient temperature at which a varistor has been designed to operate continuously
DHD = Dump Heat Test Duration
Storage Temperature
Storage temperature range without voltage applied
15© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com V0003_VE • 2/9/2017
SMD Varistors
VE Series – SMD 150°C Low Voltage High Temperature Varistors
KEMET Electronic Corporation Sales Of ces
Foracompletelistofourglobalsalesofces,pleasevisitwww.kemet.com/sales.
Disclaimer
Allproductspecications,statements,informationanddata(collectively,the“Information”)inthisdatasheetaresubjecttochange.Thecustomerisresponsiblefor
checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.
All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.
Statements of suitability for certain applications are based on KEMET Electronics Corporation’s (“KEMET) knowledge of typical operating conditions for such
applications,butarenotintendedtoconstitute–andKEMETspecicallydisclaims–anywarrantyconcerningsuitabilityforaspeciccustomerapplicationoruse.
The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any
technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET’s products is given gratis, and KEMET assumes no
obligation or liability for the advice given or results obtained.
Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component
failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards
(such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or
property damage.
Although all product–related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other
measures may not be required.
KEMET is a registered trademark of KEMET Electronics Corporation.