Standard Power MOSFETs IRFP350, IRFP351, IRFP352, IRFP353 File Number 2319 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 14 A and 16 A, 350 V - 400 V Toston = 0.38 QO and 0.4Q N-CHANNEL ENHANCEMENT MODE o Features: w SOA is power-dissipation limited a Nanosecond switching speeds e Linear transter characteristics a High input impedance w Majority carrier device $s 92CS-33741 TERMINAL DIAGRAM The IRFP350, IRFP351, IRFP352, and IRFP353 are n-channel enhancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regula- tors, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requir- ing high speed and low gate-drive power. These types can TERMINAL DESIGNATION SOURCE be operated directly from integrated circuits. Lo y ( The IRFP-types are supplied in the JEDEC TO-247 plastic i DRAIN package. mat |, O = | [] ! x TOP VIEW GATE JEDEC TO-247 Absolute Maximum Ratings Parameter Power Dissipation Linear Factor Operating Junction and Storage Temperature Range Lead Temperature 3-314 Standard Power MOSFETs IRFP350, IRFP351, IRFP352, IRFP353 Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) Parameter Type Min. Typ Max. | Units Test Conditions BVpss_Orain - Source Breakdown Voltage IRFP350 400 _ _ v Veg = 0V IRFP352 IRFP3S | so | ~ | | Vv | ip = 2580p IRFP353 Vgsith) Gate Threshold Voltage ALL 2.0 - 4.0 v Vos = Ves. Ip = 250 pA loss Gate-Source Leakage Forward ALL =~ - 500 nA Veg = 20V loss Gate-Source Leakage Reverse ALL = _ 00 nA Veg = 20V Ipsg Zero. Gate Voltage Drain Cursent ALL = ~ 250 uA Vps = Max. Rating, Vgg = OV ~ | 1000 [ pA | Vog = Max. Rating x 0.8, Vgg = OV, Tc = 125C IDion) ~-On-State Drain Current 'RFP350 16 _ _ A IRFPS5! Vos > 'pion) RDSionimax. Ves = 10V (RFP352 14 _ _ A IRFP353 Rpsion) Static Drain-Source On-State Resistance | IRFP350 IRFP351 Ves = 10V, Ip = BOA IRFP352 _ 0.30 0.40 Q IRFP353 Ofs Forward Transconductance ALL 80 12 _ Si | Vps = 2 < Ves, Ipg = 8.0 Ciss input Capacitance ALL _ 2400 _ pF Ves = 0V. Vps = 25V, f = 1.0 MHz Coss Output Capacitance ALL = 460 pF See Fig. 10 | Crss Reverse Transfer Capacitance ALL - 99 ~ pF | tdion) __ Turn-On Delay Time ALL = 12 18 ns Vpp = 200V, Ip = 15A, Rg = 6.22, Rp = 130 ty Rise Time ALL = 51 77 ns See fig. 16 td(off Turn-Off Delay Time ALL _ vie) n10 ns (MOSFET switching times are essentially independent of tf Fall Time ALL = 47 nN ns operating temperature) % (Gane Source Plas Gate-Drain) ALL ~ 87 130 ne oS tig, 7 test ane oe chorge fs esontally Ogs Gate-Source Charge ALL _ 10 15 nc independent of operating temperature.) ga Gate-Drain (Miller) Charge ALL - 33 50 nc Lp Intemal Drain Inductance ALL ~ 5.0 - oH Measured from the drain Modified MOSFET symbol tead, 6 mm (0.25 in.) from showing the internal device package to center of die. inductances. Lg Internal Source inductance ALL - 13 = nH Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad. Thermal Resistance socket mount Standard 6-32 screw Source-Drain Diode Ratings and Characteristics (Body Diode) ~ - 16 PN junction rectifier. 14 (Body Diode) @ SRFP353 turn-on + Ty = 25C to 150C. @ Repetitive Rating: Pulse width limited by @ @ Vag = SOV, Ti = 25C, @ Pulse Test: Pulse width < 300us, J dd j KW = CIW max. junction temperature. See Transient L = 100 zH, RG = 252 Duty Cycle < 2%. WIK = WPC Thermal Impedance Curve (Fig. 5). 3-315 Standard Power MOSFETs IRFP350, IRFP351, IRFP352, IRFP353 Ip. DRAIN CURRENT (AMPERES) Ip. DRAIN CURRENT (AMPERES) 3-316 25 10 5| os 80ps PULSE st ry oO wa oS on a Qo i) a ul Ip, ORAIN CURRENT (AMPERES) 0 . 40 80 120 160 200 Oty 2 4 6 8 10 Vos. DRAIN-TO-SOQURCE VOLTAGE (VOLTS) Vgg, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics 103 e o a te Oy a iy Ip. DAAIN CURRENT (AMPERES) - o 5 Tp=25C 2]T y= 150C 0 INGLE PULSE 0 2 4 6 8 10 42 5 40 2 5 402 2 5 103 Vps: ORAIN-TO-SOURCE VOLTAGE (VOLTS) Vpg DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area zZ 10 So z 8 e 1 vw ws : oe a LS 3 , 5 : NOTES: 7] . 42 z 4972 1. DUTY FACTOR, O=ty/to foe, z 2. PEAK T)=Ppw X Zenge (NORM) X Ringe + Te 49-3 3. Zthuc (NORM) =Zenuc/Penuc - r 40-5 10-4 1073 1072 0.1 1 10 t,. RECTANGULAR PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 25 80ys PULSE TEST Vos = 2 X Yes 20 10 TRANSCONDUCTANCE (SIEMENS) Sts: 0 5 10 15 20 25 Ip, DRAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current 1.25 BVpgg. ORAIN-TO-SQURCE BREAKDOWN VOLTAGE (NORMALIZED) 0.75 -60 -40 -20 0 20 40 60 80 100 120 140 160 T JUNCTION TEMPERATURE ( C) Fig. 8 Breakdown Voltage Vs. Temperature 5000 = Cys + Cgg. Cys SHORTED = od 4000 + Cyg + Cys Coq / (gg + Cgg) r Cas + fgg 2 3000 oO Zz << - et oO a& 2000 <_< a ou 4000 0 1 2 5 10 2 5 102 Vps: ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voitage Standard Power MOSFETs IRFP350, IRFP351, IRFP352, IRFP353 102 Ipp, REVERSE ORAIN CURRENT (AMPERES) 0.4 0.0 0.4 0.8 1.2 1.6 2.0 Vgp. SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7 Typical Source-Drain Diode Forward Voltage 2.5 Tp = 158 = ol Ros (an) ORAIN-TO-SOURCE ON RESISTANCE (NORMALIZED Veg = 10V 260 -40 -20 0 20 40 60 80 100 120 140 160 Ty. JUNCTION TEMPERATURE (C) Fig. 9 Normalized On-Resistance Vs. Temperature 20 Ip = 15A 16 Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS) FOR TEST CIRCUIT SEE FIGURE 17 0 30 60 390 120 150 Qy. TOTAL GATE CHARGE (nC) Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 3-317 Standard Power MOSFETs IRFP350, IRFP351, IRFP352, IRFP353 DRAIN-TO-SOURCE ON AESISTANCE Ros (on): Vgg = 10V 3-318 0.75 0 13 26 39 52 65 Ip. ORAIN CURRENT (AMPERES) Fig. 12 ~ Typical On-Resistance Vs. Drain Current VARY ty TO OBTAIN REQUIRED PEAK 1) t . y t buT os Yoo . Veg V Lt, =, 0.050 ue K Vpp=258pgg Eg = 0.75 BVygg Fig. 14 Clamped Inductive Test Circuit 'p Fig. 16 Switching Time Test Circuit (AMPERES) IRFP352, 353 DRAIN CURRENT DO I %s 50 75 100 125 150 Tc. CASE TEMPERATURE ( C) Fig. 13 Maximum Drain Current Vs. Case Temperature Fig. 16 Clamped Inductive Waveforms Ys CURRENT ! REGULATOR SUPE SAME TYPE BATTEAY -Ypg 'p CURRENT CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 17 Gate Charge Test Circuit