Precision Analog Microcontroller, 14-Bit Analog
Input/Output with MDIO Interface, ARM Cortex-M3
Data Sheet
ADuCM320
Rev. D Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©20142018 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Analog input/output
Multichannel, 14-bit, 1 MSPS analog-to-digital
converter (ADC)
Up to 16 ADC input channels
0 V to VREF analog input range
Fully differential and single-ended modes
AVDD and IOVDD monitors
12-bit voltage output digital-to-analog converters (VDACs)
8 VDACs with a range of 0 V to 2.5 V or AVDD outputs
12-bit current output DACs (IDACs)
4 IDACS with a range of 0 mA to 150 mA outputs
Voltage comparator
Microcontroller
ARM® Corte-M3 processor, 32-bit RISC architecture
Serial wire port supports code download and debug
Clocking options
80 MHz phase-locked loop (PLL) with programmable
divider
Trimmed on-chip oscillator (±3%)
External 16 MHz crystal option
External clock source up to 80 MHz
Memory
2 × 128 kB independent Flash/EE memories
10,000 cycle Flash/EE endurance
20-year Flash/EE retention
32 kB SRAM
Software triggered in-circuit reprogrammability via
management data input/output (MDIO)
On-chip peripherals
MDIO slave up to 4 MHz
2 × I2C, 2 × SPI, UART
Multiple general-purpose input/output (GPIO) pins: 3.6 V
compliant
7 × 1.2 V compatible when used for MDIO
32-element programmable logic array (PLA)
3 general-purpose timers
Wake-up timer
Watchdog timer
16-bit pulse width modulator (PWM)
Power
Supply range: 2.9 V to 3.6 V, and 1.8 V to 2.5 V for IDACs
Flexible operating modes for low power applications
Packages and temperature range
6 mm × 6mm, 96-ball CSP_BGA package
Fully specified for −40°C to +105°C ambient operation
Tools
Low cost QuickStart™ development system
Full third party support
APPLICATIONS
Optical networking
ADuCM320 Data Sheet
Rev. D | Page 2 of 30
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Revision History ............................................................................... 2
Functional Block Diagram .............................................................. 3
General Description ......................................................................... 4
Specifications ..................................................................................... 5
Microcontroller Electrical Specifications .................................. 5
Timing Specifications ................................................................ 15
Absolute Maximum Ratings ..................................................... 21
ESD Caution................................................................................ 21
Pin Configuration and Function Descriptions ........................... 22
Typical Performance Characteristics ........................................... 27
Recommended Circuit and Component Values ........................ 28
Packaging and Ordering Information ......................................... 30
Outline Dimensions ................................................................... 30
Ordering Guide .......................................................................... 30
REVISION HISTORY
5/2018—Rev. C to Rev. D
Change to Start-Up Time, At Power-On Parameter, Table 1 ...... 8
Change to Start-Up Time, At Power-On Parameter, Table 2 .... 13
10/2015—Rev. B to Rev. C
Change to Features Section ............................................................. 1
Added Table 2; Renumbered Sequentially .................................. 10
Changes to Table 7 and Figure 5 ................................................... 18
Changes to Table 8 and Figure 6 ................................................... 19
Change to Table 10 ......................................................................... 21
Changes to Figure 14 ...................................................................... 27
Changes to Ordering Guide .......................................................... 30
3/2015—Rev. A to Rev. B
Changes to Table 1 ............................................................................ 7
Changes to tSHD and tPSU Parameters, Table 3 .............................. 10
11/2014—Rev. 0 to Rev. A
Changes to Figure 1 ........................................................................... 3
Changes to General Description ..................................................... 4
Changes to Table 1 ............................................................................. 5
Added Timing Specifications Section .......................................... 10
Added Figure 2; Renumbered Sequentially ................................ 10
Added Figure 3 ................................................................................ 11
Added Figure 4 ................................................................................ 12
Added Figure 5 ................................................................................ 13
Added Figure 6 and Figure 7 ......................................................... 14
Changes to Absolute Maximum Ratings Section ....................... 15
Changes to Pin C3 and Pin A11 Descriptions ............................ 17
Changes to Ordering Guide .......................................................... 24
6/2014—Revision 0: Initial Version
Data Sheet ADuCM320
Rev. D | Page 3 of 30
FUNCTIONAL BLOCK DIAGRAM
MEMORY
128kB FLASH
32kB SRAM
ARM
CORTEX M3
PROCESSOR
MUX
RESET
AIN0
AIN5
AIN6
AIN15
BUF_VREF2V5
VDAC7
IDAC0
ADuCM320
PVDDx
AGNDx
IOVDDx
IOGNDx
GENERAL
PURPOSE
I/O PORTS
SWDIO
SWCLK
GPIO PORTS
UART
2 × SPI
2×I2C
EXT IRQS
MDIO
PLA
INTERNAL
CHANNELS:
TEMPERATURE,
AV
DD
, IOV
DD
2.5V BAND GAP
DMA
NVIC
RESET SYSTEM
SE RIAL WIRE
CLOCK SYSTEM
32.768kHz
16MHz OSC
80MHz P LL
GP TIMER
WD TIMER
WAKE-UP TI MER
PWM
VDAC
IDAC3
14-BIT
SAR ADC
IDAC
IDAC
COMPA-
RATOR
XTALO XTALI ECLKIN
PGND
AVDDx
DGNDx
PWM0 TO
PWM6
1.8 V LDO
12272-001
VDAC0 VDAC
Figure 1.
ADuCM320 Data Sheet
Rev. D | Page 4 of 30
GENERAL DESCRIPTION
The ADuCM320 is a fully integrated single package device that
incorporates high performance analog peripherals together
with digital peripherals controlled by an 80 MHz ARM Cortex-
M3 processor and integral flash for code and data.
The ADC on the ADuCM320 provides 14-bit, 1 MSPS data
acquisition on up to 16 input pins that can be programmed for
single-ended or differential operation. The voltage at the IDAC
output pins can also be measured by the ADC, which is useful for
controlling the power consumption of the current DACs.
Additionally, chip temperature and supply voltages can be
measured.
The ADC input voltage is 0 V to VREF. A sequencer is provided,
which allows a user to select a set of ADC channels to be measured
in sequence without software involvement during the sequence.
The sequence can optionally repeat automatically at a user
selectable rate.
Up to eight VDACs are provided with output ranges that are
programmable to one of two voltage ranges.
Four IDAC sources are provided. The output currents are
programmable with ranges of 0 mA to 150 mA. A low drift
band gap reference and voltage comparator completes the
analog input peripheral set.
The ADuCM320 can be configured so that the digital and analog
outputs will retain their output voltages and currents through
a watchdog or software reset sequence. Thus, a product can
remain functional even while the ADuCM320 is resetting itself.
The ADuCM320 has a low power ARM Cortex-M3 processor
and a 32-bit RISC machine that offers up to 100 MIPS peak
performance. Also integrated on chip are 2 × 128 kB Flash/EE
memory and 32 kB of SRAM. The flash comprises two separate
128 kB blocks supporting execution from one flash block and
simultaneous writing/erasing of the other flash block.
The ADuCM320 operates from an on-chip oscillator or a
16 MHz external crystal and a PLL at 80 MHz. This clock can
optionally be divided down to reduce current consumption.
Additional low power modes can be set via software. In normal
operating mode, the ADuCM320 digital core consumes about
300 µA per MHz.
The device includes an MDIO interface capable of operating at
up to 4 MHz. The capability to simultaneously execute from
one flash block and write/erase the other flash block makes the
ADuCM320 ideal for 10G, 40G, and 100G optical applications.
User programming is eased by incorporating PHYADR and
DEVADD hardware comparators. In addition, the nonerasable
kernel code plus flags in user flash provide assistance by
allowing user code to robustly switch between the two blocks
of user flash code and data spaces.
The ADuCM320 integrates a range of on-chip peripherals that
can be configured under software control, as required in the appli-
cation. These peripherals include 1 × UART, 2 × I2C, and 2 × SPI
serial input/output communication controllers, GPIO, 32-
element programmable logic array, 3 general-purpose timers,
plus a wake-up timer and system watchdog timer. A 16-bit
PWM with seven output channels is also provided.
GPIO pins on the device power up in high impedance input
mode. In output mode, the software chooses between open-
drain mode and push-pull mode. The pull-up resistors can be
disabled and enabled in software. In GPIO output mode, the
inputs can remain enabled to monitor the pins. The GPIO pins
can also be programmed to handle digital or analog peripheral
signals, in which case the pin characteristics are matched to the
specific requirement.
A large support ecosystem is available for the ARM Cortex-M3
processor to ease product development of the ADuCM320.
Access is via the ARM serial wire debug port (SW-DP). On-
chip factory firmware supports in-circuit serial download via
MDIO. These features are incorporated into a low cost
QuickStart development system supporting this precision
analog microcontroller family.
Data Sheet ADuCM320
Rev. D | Page 5 of 30
SPECIFICATIONS
MICROCONTROLLER ELECTRICAL SPECIFICATIONS
AVDD = IOVDD = VDD1 = 2.9 V to 3.6 V (see Figure 14) maximum difference between supplies = 0.3 V, VREF = 2.5 V internal reference,
fCORE = 80 MHz, TA = −40°C to +85°C, unless otherwise noted. PVDDx for IDACs = 1.8 V to 2.5 V. Power-up sequence must be VDD1,
IOVDDx, AVDDx, and then PVDDx, but no delays in the sequence are required.
Table 1.
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
ADC BASIC SPECIFICATIONS Single-ended mode, unless
otherwise stated
ADC Power-Up Time 5 µs
Data Rate fSAMPLE 1 MSPS
DC Accuracy1 14 Bits 1 LSB = 2.5 V/214
Resolution1 16 Bits Number of data bits
Integral Nonlinearity INL ±1.75 LSB 2.5 V internal reference; 1 LSB =
2.5 V/214
±1.75 LSB 2.5 V external reference; 1 LSB =
2.5 V/214
Differential Nonlinearity DNL −0.99 ±0.75 +1 LSB 2.5 V internal reference; 1 LSB =
2.5 V/214
±0.75 LSB 2.5 V external reference; 1 LSB =
2.5 V/214
DC Code Distribution ±3 LSB ADC input 1.25 V; 1 LSB = 2.5 V/214
ADC ENDPOINT ERRORS
Offset Error
Input Buffer Off ±200 µV
Drift1 −2.25 +1.2 µV/°C Using 2.5 V external reference
Input Buffer On −250 µV
Drift1 −2.6 +2 µV/°C Using 2.5 V external reference
Match ±1 LSB Matching compared to AIN8
Full-Scale Error
Input Buffer Off ±400 µV
Gain Drift1 −4 +2 µV/°C Full-scale error drift minus offset
error drift
Input Buffer On −350 µV
Gain Drift1 −4.5 +3 µV/°C Full-scale error drift minus offset
error drift
Match
±1 LSB
ADC DYNAMIC PERFORMANCE fIN = 665.25 Hz sine wave, fSAMPLE =
100 kSPS; input filter = 15 Ω, 2 nF
Signal-to-Noise Ratio SNR Includes distortion and noise
components
Input Buffer
Disabled 80 dB
Enabled 74 dB
Total Harmonic Distortion THD
Input Buffer
Disabled −86 dB
Enabled −83 dB
Peak Harmonic or Spurious Noise −88 dB
Channel-to-Channel Crosstalk −90 dB Measured on adjacent channels
ADC INPUT Input buffer not enabled
Input Voltage Ranges
Single-Ended Mode1 AGND4 VREF
Differential Mode1 −VREF +VREF V Voltage between differential pins
Compliance1 AGND4 AVDD4
Common Mode1 0.9 1.6 V
ADuCM320 Data Sheet
Rev. D | Page 6 of 30
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
Leakage Current
AIN0 to AIN4, AIN6 to AIN15 ±1.5 nA
AIN5 ±20 nA Pin shared with comparator
Input Current ±9 µA/V At 1 MSPS; buffer off
±6 µA/V ≤800 kSPS; buffer off
±4 µA/V 500 kSPS; buffer off;
ADCCNVC[25:16] = 0x1E
Input Capacitance 20 pF During ADC acquisition
ADC INPUT BUFFER2 When enabled by software
Voltage Compliance1 0.15 2.5 V Reduced accuracy below 0.15 V
Input Current ±100 nA VIN = 0.15 V to 2.5 V, ADC converting
ON-CHIP VOLTAGE REFERENCE 2.51 V 0.47 µF from VREF_1V2 to AGND4;
reference is measured with all
ADCs, VDACs, and IDACs enabled
Accuracy ±5 mV TA = 25°C
Reference Temperature Coefficient1 −34 −15 +4 ppm/°C
Power Supply Rejection Ratio PSRR 60 dB
Internal VREF Power-On Time 50 ms
EXTERNAL REFERENCE INPUT
Range1 1.8 2.5 V ADC
Input Current 200 µA
BUFFERED REFERENCE OUTPUT
Output Voltage 2.504 V
Accuracy ±8 mV TA = 25°C, load = 1.2 mA
Reference Temperature Coefficient1 −55 −5 +40 µV/°C 100 nF from BUF_VREF2V5 to
AGND4
Output Impedance 10 TA = 25°C
Load Current1 1.2 mA
VDAC CHANNEL SPECIFICATIONS RL = 5 kΩ, CL = 100 pF3
DC Accuracy1 12 Bits 1 LSB = 2.5 V/212
Resolution1 12 Bits Number of data bits
Relative Accuracy4 INL ±4 LSB 1 LSB = 2.5 V/212
Differential Nonlinearity4 DNL −0.99 +1 LSB Guaranteed monotonic, 1 LSB =
2.5 V/212
Offset Error ±3 ±15 mV 2.5 V internal reference, DAC
Output Code 0
Drift ±13 µV/°C
Gain Error5 ±0.3 ±0.85 % 0 V to internal VREF range
±0.4 ±1 % 0 V to AVDD range
Drift 6.5 ppm/°C Excluding reference drift
Mismatch 0.1 % % of full scale on DAC0
Analog Outputs
Output Voltage Range 11 0.15 2.5 V
Output Voltage Range 21 0.15 AVDDx0.15 V
Output Impedance 2
DAC AC Characteristics
Output Settling Time 10 µs Settled to ±1 LSB
Glitch Energy ±20 nV-sec 1 LSB change when the maximum
number of bits changes
simultaneously in the
DACxDAT register
IDAC CHANNEL SPECIFICATIONS
Resolution1 14 Bits Combination of overlapping
11 bits and 5 bits
Full-Scale Output1 150 mA
Supply Voltage Each Channel1 1.8 2.5 V Separate PVDDx supply for each
channel
Output Compliance Range
IDAC0, IDAC1 0.4 PVDDx 400 mV V See Figure 11
IDAC2, IDAC3 0.4 PVDDx 250 mV V See Figure 11
Data Sheet ADuCM320
Rev. D | Page 7 of 30
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
Full-Scale Error IDAC set to 85% of full scale
IDAC0, IDAC1 ±0.75 % 25°C to 10C range
±3.5 % −40°C to +105°C range
IDAC2, IDAC3 ±0.75 % −40°C to +105°C range
Full-Scale Error Drift
IDAC0, IDAC1 Internal VREF
−40°C to +85°C 25 µA/°C
25°C to 85°C 5 µA/°C
IDAC2, IDAC3 2 µA/°C Internal VREF
Integral Nonlinearity INL ±3 ±6 LSB 1 LSB = 150 mA/211
Differential Nonlinearity DNL −0.99 +1.5 LSB Guaranteed 11-bit monotonic,
1 LSB = 150 mA/211
Zero-Scale Error ±50 µA
Zero-Scale Error Drift
IDAC0, IDAC1 ±300 nA/°C
IDAC2, IDAC3 ±800 nA/°C
Noise Current 2 µA IDACxCON[5:2] = 0
Pull-Down Current −220 −165 −100 µA When enabled
Settling Time IDACxCON[5:2] = 0
To 0.1% 100 µs ±4 mA change from midscale
To 1% 50 µs ±4 mA change from midscale
Full Scale to 0 mA 20 µs Pull-down enabled
Overheat Shutdown 135 °C Junction temperature
PVDD ACPSRR IDACxCON[5:2] = 0
100 Hz 51 dB
1 kHz 45 dB
10 kHz 25 dB
100 kHz 10 dB
COMPARATOR
Input
Offset Voltage ±10 mV
Bias Current 1 nA
Voltage Range1 AGNDx AVDDx 1.2 V
Capacitance 7 pF
Hysteresis1 8.5 15 mV When enabled in software
Response Time 7 µs AFECOMP[2:1] = 0
TEMPERATURE SENSOR Indicates die temperature, see
Figure 9
Resolution 0.5 °C When precision calibrated by the
user6
Accuracy1 1.34 1.43 V ADC measured voltage for
temperature sensor channel without
calibration, T = 25°C
POWER-ON RESET POR 2.85 2.9 V
External Reset Minimum Pulse Width1 1.5 µs Minimum pulse width required on
external reset pin to trigger a reset
sequence
WATCHDOG TIMER WDT
Timeout Period 32 sec Default at power-up
FLASH/EE MEMORY
Endurance1 10,000 Cycles
Data Retention1 20 Years TJ = 85°C
ADuCM320 Data Sheet
Rev. D | Page 8 of 30
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
DIGITAL INPUTS
Input Leakage Current
Logic 1 GPIO 1 nA VIH = VDD, pull-up resistor disabled
Logic 0 GPIO 10 nA VIL = 0 V, pull-up resistor disabled
PRTADDRx
Input Leakage Current 16 µA VIN = 0 to 1.8 V, due to weak pull-
up resistors to 1.8 V
Input Voltage 0.84 1.5 V External resistor 91 kΩ ± 1% to
ground, range for CFP MSA high1
Input Capacitance, All Pins Except MCK,
MDIO, PRTADDRx, and XTALx
10 pF
Input Capacitance
MCK, PRTADDRx 6.5 pF
MDIO 8.5 pF
Pin Capacitance
XTALI 5 pF
XTALO 5 pF
LOGIC INPUTS
GPIO Input Voltage
Low VINL 0.25 × IOVDDx V
High VINH 0.58 × IOVDDx V
MDIO
PRTADDRx Input Voltage
Low VINL 0.36 V
High VINH 0.84 V
MCK, MDIO Input Voltage Setup time ≥10 ns; hold time
≥10 ns; MCK/MDIO
Low VINL 0.36 V
High VINH 0.84 V
XTALI Input Voltage
Low VINL 1.1 V
High VINH 1.7 V
Pull-Up Current 30 120 µA VIN = 0 V, see Figure 10
Pull-Down Current 30 100 µA VIN = 3.3 V, see Figure 10
LOGIC OUTPUTS All digital outputs excluding
XTALO
GPIO Output Voltage7
High VOH IOVDDx − 0.4 V ISOURCE = 2 mA
Low VOL 0.4 V ISINK = 2 mA
GPIO Short-Circuit Current1 11 mA See Figure 13
MDIO
Output Voltage
High VOH 1.0 V ISOURCE = 4 mA
Low VOL 0.2 V ISINK = 4 mA
Delay Time 100 ns MCK to MDIO out
OSCILLATORS
Internal System Oscillator 16 MHz
Accuracy ±0.5 ±3 %
System PLL 80 MHz Main system clock
External Crystal Oscillator 16 MHz Can be selected in place of
internal oscillator
32 kHz Internal Oscillator 32.768 kHz Use for watchdog
Accuracy ±5 ±20 %
External Clock 0.05 80 MHz Can be selected in place of PLL
START-UP TIME Processor clock = 80 MHz
At Power-On 50 ms POR to first user code execution
After Other Reset 1.5 ms Reset to first user code execution
From All Power-Down Modes 1.25 µs
Data Sheet ADuCM320
Rev. D | Page 9 of 30
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
PROGRAMMABLE LOGIC ARRAY PLA
Propagation Delay
Pin 17 ns From input pin to output pin
Element 1.5 ns Per PLA cell
EXTERNAL INTERRUPTS
Pulse Width1
Level Triggered 7 ns
Edge Triggered 1 ns
POWER REQUIREMENTS8
Power Supply Voltage Range
AVDDx to AGNDx and IOVDDx
to DGNDx1
2.9 3.3 3.6 V
Analog Power Supply Currents
AVDDx Current 6.3 mA Analog peripherals in idle mode
Digital Power Supply Current
IOVDDx Current in Normal Mode 4 mA All GPIO pull-up resistors enabled
VDDx Current
Normal Mode9 29 mA CD = 0 (80 MHz clock) executing
typical code
20 mA CD = 1 executing typical code
10 mA CD = 7 executing typical code
CORE_SLEEP Mode9 16 mA
SYS_SLEEP Mode9 8 mA
Hibernate Mode9 6.6 mA
Additional Power Supply Currents
ADC 4.1 mA Continuously converting at 100 kSPS
ADC Input Buffer 4.0 mA Both buffers enabled
IDAC 16.5 mA Excluding load current
DAC 340 µA Per powered up DAC, excluding
load current
Total Supply Current 35 40 45 mA VDD1, IOVDDx, AVDDx connected
together; condition when entering
user code: peripheral clocks on,
peripherals idle, no load currents
Thermal Performance
Impedance Junction-to-Ambient 45 °C/W JEDEC 2S2P
1 These numbers are not production tested but are guaranteed by design and/or characterization data at production release.
2 Enabling the input buffer changes the ADC input characteristics as described in this subsection.
3 The data in this section also applies for a load of RL = 1 kΩ and CL = 100 pF to GND but only for 0 V to 2.5 V. However, this is not production tested.
4 DAC linearity is calculated using a reduced code range of 100 to 3900.
5 DAC gain error is calculated using a reduced code range of 100 to an internal 2.5 V VREF.
6 Due to self heating, internal temperature measurements cannot be used to predict external temperatures. This value is only relevant after user calibration and only for
internal and external conditions identical to those at calibration.
7 The average current from all GPIO pins must not exceed 3 mA per pin.
8 Power figures exclude any load currents to external circuits.
9 See the ADuCM320 reference manual, How to Set up and Use the ADuCM320.
ADuCM320 Data Sheet
Rev. D | Page 10 of 30
AVDD = IOVDD = VDD1 = 2.9 V to 3.6 V maximum difference between supplies = 0.3 V, VREF = 2.5 V internal reference, fCORE = 80 MHz,
TA = −40°C to +105°C, unless otherwise noted. PVDDx for IDACs = 1.8 V to 2.5 V. Power-up sequence must be VDD1, IOVDDx, AVDDx, and
then PVDDx, but no delays in the sequence are required.
Table 2.
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
ADC BASIC SPECIFICATIONS Single-ended mode, unless
otherwise stated
ADC Power-Up Time 5 µs
Data Rate fSAMPLE 1 MSPS
DC Accuracy1 14 Bits 1 LSB = 2.5 V/214
Resolution1 16 Bits Number of data bits
Integral Nonlinearity INL ±1.75 LSB 2.5 V internal reference; 1 LSB =
2.5 V/214
±1.75 LSB 2.5 V external reference; 1 LSB =
2.5 V/214
Differential Nonlinearity DNL −0.99 ±0.75 +1.5 LSB 2.5 V internal reference; 1 LSB =
2.5 V/214
±0.75 LSB 2.5 V external reference; 1 LSB =
2.5 V/214
DC Code Distribution ±3 LSB ADC input 1.25 V; 1 LSB = 2.5 V/214
ADC ENDPOINT ERRORS
Offset Error
Input Buffer Off ±200 µV
Drift1 −2.25 +1.2 µV/°C Using 2.5 V external reference
Input Buffer On −250 µV
Drift1 −3 +2 µV/°C Using 2.5 V external reference
Match ±1 LSB Matching compared to AIN8
Full-Scale Error
Input Buffer Off ±400 µV
Gain Drift1 −4.3 +2 µV/°C Full-scale error drift minus offset
error drift
Input Buffer On −350 µV
Gain Drift1 −4.5 +3 µV/°C Full-scale error drift minus offset
error drift
Match
±1 LSB
ADC DYNAMIC PERFORMANCE fIN = 665.25 Hz sine wave, fSAMPLE =
100 kSPS; input filter = 15 Ω, 2 nF
Signal-to-Noise Ratio SNR Includes distortion and noise
components
Input Buffer
Disabled 80 dB
Enabled 74 dB
Total Harmonic Distortion THD
Input Buffer
Disabled −86 dB
Enabled −83 dB
Peak Harmonic or Spurious Noise −88 dB
Channel-to-Channel Crosstalk −90 dB Measured on adjacent channels
ADC INPUT Input buffer not enabled
Input Voltage Ranges
Single-Ended Mode1 AGND4 VREF
Differential Mode1 −VREF +VREF V Voltage between differential pins
Compliance1 AGND4 AVDD4
Common Mode1 0.9 1.6 V
Data Sheet ADuCM320
Rev. D | Page 11 of 30
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
Leakage Current
AIN0 to AIN4, AIN6 to AIN15 ±1.5 nA
AIN5 ±20 nA Pin shared with comparator
Input Current ±9 µA/V At 1 MSPS; buffer off
±6 µA/V ≤800 kSPS; buffer off
±4 µA/V 500 kSPS; buffer off;
ADCCNVC[25:16] = 0x1E
Input Capacitance 20 pF During ADC acquisition
ADC INPUT BUFFER2 When enabled by software
Voltage Compliance1 0.15 2.5 V Reduced accuracy below 0.15 V
Input Current ±100 nA VIN = 0.15 V to 2.5 V, ADC converting
ON-CHIP VOLTAGE REFERENCE 2.51 V 0.47 µF from VREF_1V2 to AGND4;
reference is measured with all
ADCs, VDACs, and IDACs enabled
Accuracy ±5 mV TA = 25°C
Reference Temperature Coefficient1 −34 −15 +4 ppm/°C
Power Supply Rejection Ratio PSRR 60 dB
Internal VREF Power-On Time 50 ms
EXTERNAL REFERENCE INPUT
Range1 1.8 2.5 V ADC
Input Current 200 µA
BUFFERED REFERENCE OUTPUT
Output Voltage 2.504 V
Accuracy ±8 mV TA = 25°C, load = 1.2 mA
Reference Temperature Coefficient1 −55 −5 +40 µV/°C 100 nF from BUF_VREF2V5 to
AGND4
Output Impedance 10 TA = 25°C
Load Current1 1.2 mA
VDAC CHANNEL SPECIFICATIONS RL = 5 kΩ, CL = 100 pF3
DC Accuracy1 12 Bits 1 LSB = 2.5 V/212
Resolution1 12 Bits Number of data bits
Relative Accuracy4 INL ±4 LSB 1 LSB = 2.5 V/212
Differential Nonlinearity4 DNL −0.99 +1 LSB Guaranteed monotonic, 1 LSB =
2.5 V/212
Offset Error ±3 ±15 mV 2.5 V internal reference, DAC
Output Code 0
Drift ±13 µV/°C
Gain Error5 ±0.3 ±0.85 % 0 V to internal VREF range
±0.4 ±1 % 0 V to AVDD range
Drift 6.5 ppm/°C Excluding reference drift
Mismatch 0.1 % % of full scale on DAC0
Analog Outputs
Output Voltage Range 11 0.15 2.5 V
Output Voltage Range 21 0.15 AVDDx0.15 V
Output Impedance 2
DAC AC Characteristics
Output Settling Time 10 µs Settled to ±1 LSB
Glitch Energy ±20 nV-sec 1 LSB change when the maximum
number of bits changes
simultaneously in the
DACxDAT register
IDAC CHANNEL SPECIFICATIONS
Resolution1 14 Bits Combination of overlapping
11 bits and 5 bits
Full-Scale Output1 150 mA
Supply Voltage Each Channel1 1.8 2.5 V Separate PVDDx supply for each
channel
Output Compliance Range
IDAC0, IDAC1 0.4 PVDDx 400 mV V See Figure 11
IDAC2, IDAC3 0.4 PVDDx − 250 mV V See Figure 11
ADuCM320 Data Sheet
Rev. D | Page 12 of 30
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
Full-Scale Error IDAC set to 85% of full scale
IDAC0, IDAC1 ±0.75 % 25°C to 105°C range
±3.5 %
IDAC2, IDAC3 ±0.75 %
Full-Scale Error Drift
IDAC0, IDAC1 Internal VREF
−40°C to 105°C 25 µA/°C
25°C to 105°C 5 µA/°C
IDAC2, IDAC3 2 µA/°C Internal VREF
Integral Nonlinearity INL ±3 ±6 LSB 1 LSB = 150 mA/211
Differential Nonlinearity DNL −0.99 +1.5 LSB Guaranteed 11-bit monotonic,
1 LSB = 150 mA/211
Zero-Scale Error ±50 µA
Zero-Scale Error Drift
IDAC0, IDAC1 ±300 nA/°C
IDAC2, IDAC3 ±800 nA/°C
Noise Current 2 µA IDACxCON[5:2] = 0
Pull-Down Current −220 −165 −100 µA When enabled
Settling Time IDACxCON[5:2] = 0
To 0.1% 100 µs ±4 mA change from midscale
To 1% 50 µs ±4 mA change from midscale
Full Scale to 0 mA 20 µs Pull-down enabled
Overheat Shutdown 135 °C Junction temperature
PVDD ACPSRR IDACxCON[5:2] = 0
100 Hz 51 dB
1 kHz 45 dB
10 kHz 25 dB
100 kHz 10 dB
COMPARATOR
Input
Offset Voltage ±10 mV
Bias Current 1 nA
Voltage Range1 AGNDx AVDDx 1.2 V
Capacitance 7 pF
Hysteresis1 8.5 15 mV When enabled in software
Response Time 7 µs AFECOMP[2:1] = 0
TEMPERATURE SENSOR Indicates die temperature, see
Figure 9
Resolution 0.5 °C When precision calibrated by the
user6
Accuracy1 1.34 1.43 V ADC measured voltage for
temperature sensor channel without
calibration, T = 25°C
POWER-ON RESET POR 2.85 2.9 V
External Reset Minimum Pulse Width1 1.5 µs Minimum pulse width required on
external reset pin to trigger a reset
sequence
WATCHDOG TIMER WDT
Timeout Period 32 sec Default at power-up
FLASH/EE MEMORY
Endurance1 10,000 Cycles
Data Retention1 20 Years TJ = 85°C
Data Sheet ADuCM320
Rev. D | Page 13 of 30
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
DIGITAL INPUTS
Input Leakage Current
Logic 1 GPIO 1 nA VIH = VDD, pull-up resistor disabled
Logic 0 GPIO 10 nA VIL = 0 V, pull-up resistor disabled
PRTADDRx
Input Leakage Current 16 µA VIN = 0 to 1.8 V, due to weak pull-
up resistors to 1.8 V
Input Voltage 0.84 1.5 V External resistor 91 kΩ ± 1% to
ground, range for CFP MSA high1
Input Capacitance, All Pins Except MCK,
MDIO, PRTADDRx, and XTALx
10 pF
Input Capacitance
MCK, PRTADDRx 6.5 pF
MDIO 8.5 pF
Pin Capacitance
XTALI 5 pF
XTALO 5 pF
LOGIC INPUTS
GPIO Input Voltage
Low VINL 0.25 × IOVDDx V
High VINH 0.58 × IOVDDx V
MDIO
PRTADDRx Input Voltage
Low VINL 0.36 V
High VINH 0.84 V
MCK, MDIO Input Voltage Setup time ≥10 ns; hold time
≥10 ns; MCK/MDIO
Low VINL 0.36 V
High VINH 0.84 V
XTALI Input Voltage
Low VINL 1.1 V
High VINH 1.7 V
Pull-Up Current 30 120 µA VIN = 0 V, see Figure 10
Pull-Down Current 30 100 µA VIN = 3.3 V, see Figure 10
LOGIC OUTPUTS All digital outputs excluding
XTALO
GPIO Output Voltage7
High VOH IOVDDx − 0.4 V ISOURCE = 2 mA
Low VOL 0.4 V ISINK = 2 mA
GPIO Short-Circuit Current1 11 mA See Figure 13
MDIO
Output Voltage
High VOH 1.0 V ISOURCE = 4 mA
Low VOL 0.2 V ISINK = 4 mA
Delay Time 100 ns MCK to MDIO out
OSCILLATORS
Internal System Oscillator 16 MHz
Accuracy ±0.5 ±3 %
System PLL 80 MHz Main system clock
External Crystal Oscillator 16 MHz Can be selected in place of
internal oscillator
32 kHz Internal Oscillator 32.768 kHz Use for watchdog
Accuracy ±5 ±20 %
External Clock 0.05 80 MHz Can be selected in place of PLL
START-UP TIME Processor clock = 80 MHz
At Power-On 50 ms POR to first user code execution
After Other Reset 1.5 ms Reset to first user code execution
From All Power-Down Modes 1.25 µs
ADuCM320 Data Sheet
Rev. D | Page 14 of 30
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
PROGRAMMABLE LOGIC ARRAY PLA
Propagation Delay
Pin 17 ns From input pin to output pin
Element 1.5 ns Per PLA cell
EXTERNAL INTERRUPTS
Pulse Width1
Level Triggered 7 ns
Edge Triggered 1 ns
POWER REQUIREMENTS8
Power Supply Voltage Range
AVDDx to AGNDx and IOVDDx
to DGNDx1
2.9 3.3 3.6 V
Analog Power Supply Currents
AVDDx Current 6.3 mA Analog peripherals in idle mode
Digital Power Supply Current
IOVDDx Current in Normal Mode 4 mA All GPIO pull-up resistors enabled
VDDx Current
Normal Mode9 29 mA CD = 0 (80 MHz clock) executing
typical code
20 mA CD = 1 executing typical code
10 mA CD = 7 executing typical code
CORE_SLEEP Mode9 16 mA
SYS_SLEEP Mode9 8 mA
Hibernate Mode9 6.6 mA
Additional Power Supply Currents
ADC 4.1 mA Continuously converting at
100 kSPS
ADC Input Buffer 4.0 mA Both buffers enabled
IDAC 16.5 mA Excluding load current
DAC 340 µA Per powered up DAC, excluding
load current
Total Supply Current 35 40 45 mA VDD1, IOVDDx, AVDDx connected
together; condition when entering
user code: peripheral clocks on,
peripherals idle, no load currents
Thermal Performance
Impedance Junction-to-Ambient 45 °C/W JEDEC 2S2P
1 These numbers are not production tested but are guaranteed by design and/or characterization data at production release.
2 Enabling the input buffer changes the ADC input characteristics as described in this subsection.
3 The data in this section also applies for a load of RL = 1 kΩ and CL = 100 pF to GND but only for 0 V to 2.5 V. However, this is not production tested.
4 DAC linearity is calculated using a reduced code range of 100 to 3900.
5 DAC gain error is calculated using a reduced code range of 100 to an internal 2.5 V VREF.
6 Due to self heating, internal temperature measurements cannot be used to predict external temperatures. This value is only relevant after user calibration and only for
internal and external conditions identical to those at calibration.
7 The average current from all GPIO pins must not exceed 3 mA per pin.
8 Power figures exclude any load currents to external circuits.
9 See the ADuCM320 reference manual, How to Set up and Use the ADuCM320.
Data Sheet ADuCM320
Rev. D | Page 15 of 30
TIMING SPECIFICATIONS
I2C Timing
Table 3. I2C Timing in Standard Mode (100 kHz)
Slave
Parameter Description Min Typ Max Unit
tL SCL low pulse width 4.7 µs
tH SCL high pulse width 4.0 ns
t
SHD
4.0
µs
tDSU Data setup time 250 ns
tDHD Data hold time (SDA held internally for 300 ns after falling edge of SCL) 0 3.45 µs
tRSU Setup time for repeated start 4.7 µs
tPSU Stop condition setup time 4.0 µs
tBUF Bus-free time between a stop condition and a start condition 4.7 µs
tR Rise time for both SLC and SDA 1 µs
tF Fall time for both SLC and SDA 15 300 ns
tVD;DAT Data valid time 3.45 µs
tVD;ACK Data valid acknowledge time 3.45 µs
Table 4. I2C Timing in Fast Mode (400 kHz)
Slave
Parameter Description Min Typ Max Unit
tL SCL low pulse width 1.3 µs
tH SCL high pulse width 0.6 ns
tSHD Start condition hold time 0.3 µs
tDSU Data setup time 100 ns
t
DHD
0
µs
tRSU Setup time for repeated start 0.6 µs
tPSU Stop condition setup time 0.3 µs
tBUF Bus-free time between a stop condition and a start condition 1.3 µs
tR Rise time for both SCL and SDA 20 300 ns
tF Fall time for both SCL and SDA 15 300 ns
t
VD;DAT
0.9
µs
tVD;ACK Data valid acknowledge time 0.9 µs
12272-002
SDA (I/O) MSB LSB ACK MSB
1982–71
SCL (I)
P S
START
CONDITION REPEATED
START
STOP
CONDITION
S(R)
t
DSU
t
H
t
L
t
SHD
t
PSU
t
DSU
t
BUF
t
DHD
t
VD; DAT
t
VD; ACK
t
R
t
F
t
F
t
R
t
DHD
t
RSU
Figure 2. I2C Compatible Interface Timing
ADuCM320 Data Sheet
Rev. D | Page 16 of 30
SPI Timing
Table 5. SPI Master Mode Timing (Phase Mode = 1)
Parameter Description Min Typ Max Unit
tSL SCLK low pulse width (SPIDIV + 1) × tHCLK/2 ns
tSH SCLK high pulse width (SPIDIV + 1) × tHCLK/2 ns
tDAV Data output valid after SCLK edge 0 3 ns
tDSU Data input setup time before SCLK edge ½ SCLK ns
tDHD Data input hold time after SCLK edge SCLK ns
tDF Data output fall time SCLK ns
tDR Data output rise time 25 ns
t
SR
SCLK rise time
25
ns
tSF SCLK fall time 20 ns
12727-003
SCLK
(POLARITY = 0)
SCLK
(POLARITY = 1)
MOSI MSB BITS 6 TO 1 LSB
MISO MSB IN BITS 6 TO 1 LSB IN
tSH tSL tSR tSF
tDR
tDF
tDAV
tDSU
tDHD
Figure 3. SPI Master Mode Timing (Phase Mode = 1)
Data Sheet ADuCM320
Rev. D | Page 17 of 30
Table 6. SPI Master Mode Timing (Phase Mode = 0)
Parameter Description Min Typ Max Unit
tSL SCLK low pulse width (SPIDIV + 1) × tHCLK/2 ns
tSH SCLK high pulse width (SPIDIV + 1) × tHCLK/2 ns
tDAV Data output valid after SCLK edge 0 3 ns
tDOSU Data output setup before SCLK edge ½ SCLK ns
tDSU Data input setup time before SCLK edge SCLK ns
tDHD Data input hold time after SCLK edge SCLK ns
tDF Data output fall time 25 ns
tDR Data output rise time 25 ns
tSR SCLK rise time 20 ns
t
SF
SCLK fall time
20
ns
12272-004
SCLK
(POLARITY = 0)
SCLK
(POLARITY = 1)
t
SH
t
SL
t
SR
t
SF
MOSI MSB BITS 6 TO 1 LSB
MISO MSB IN BITS 6 TO 1 LSB IN
t
DR
t
DF
t
DAV
t
DOSU
t
DSU
t
DHD
Figure 4. SPI Master Mode Timing (Phase Mode = 0)
ADuCM320 Data Sheet
Rev. D | Page 18 of 30
Table 7. SPI Slave Mode Timing (Phase Mode = 1)
Parameter Description Min Typ Max Unit
tCS CS to SCLK edge 10 ns
t
CSM
CS high time between active periods
SCLKx
ns
tSL SCLK low pulse width (SPIDIV + 1) × tHCLK ns
tSH SCLK high pulse width (SPIDIV + 1) × tHCLK ns
tDAV Data output valid after SCLK edge 20 ns
tDSU Data input setup time before SCLK edge 10 ns
tDHD Data input hold time after SCLK edge 10 ns
tDF Data output fall time 25 ns
tDR Data output rise time 25 ns
tSR SCLK rise time 1 ns
tSF SCLK fall time 1 ns
tSFS CS high after SCLK edge 20 ns
12272-005
SCLK
(POLARITY = 0)
SCLK
(POLARITY = 1)
t
SH
t
SL
t
SR
t
SF
t
SFS
MISO MSB BITS 6 TO 1 LSB
MOSI MSB IN BITS 6 TO 1 LSB IN
t
DHD
t
DSU
t
DAV
t
DR
t
DF
CS
t
CS
t
CSM
Figure 5. SPI Slave Mode Timing (Phase Mode = 1)
Data Sheet ADuCM320
Rev. D | Page 19 of 30
Table 8. SPI Slave Mode Timing (Phase Mode = 0)
Parameter Description Min Typ Max Unit
tCS CS to SCLK edge 10 ns
t
CSM
CS high time between active periods
SCLKx
ns
tSL SCLK low pulse width (SPIDIV + 1) × tHCLK ns
tSH SCLK high pulse width (SPIDIV + 1) × tHCLK ns
tDAV Data output valid after SCLK edge 20 ns
tDSU Data input setup time before SCLK edge 10 ns
tDHD Data input hold time after SCLK edge 10 ns
tDF Data output fall time 25 ns
tDR Data output rise time 25 ns
tSR SCLK rise time 1 ns
tSF SCLK fall time 1 ns
tDOCS Data output valid after CS edge 20 ns
tSFS CS high after SCLK edge 10 ns
12272-006
SCLK
(POLARITY = 0)
CS
SCLK
(POLARITY = 1)
t
SH
t
SL
t
SR
t
SF
t
SFS
MISO
MOSI MSB IN BITS 6 TO 1 LSB IN
t
DHD
t
DSU
MSB BITS 6 TO 1 LSB
t
DOCS
t
DAV
t
DR
t
DF
t
CS
t
CSM
Figure 6. SPI Slave Mode Timing (Phase Mode = 0)
ADuCM320 Data Sheet
Rev. D | Page 20 of 30
Table 9. MDIO vs MDC Timing
Parameter Description Min Typ Max Unit
tSETUP MDIO setup before MCK edge 10 ns
tHOLD MDIO valid after MCK edge 10 ns
tDELAY Data output after MCK edge 100 ns
12272-007
MCK VIH
VIL
VIH
VIL
VOH
VOL
CFP
INPUT
MDIO
CFP
INPUT
MDIO
CFP
OUTPUT
tSETUP tHOLD tDELAY
Figure 7. MDIO Timing
Data Sheet ADuCM320
Rev. D | Page 21 of 30
ABSOLUTE MAXIMUM RATINGS
All requirements applicable to each pin must be met. Where
multiple limits apply to a pin each one must be met individually.
The limits apply according to the functionality of the pins at the
time. Pins that can be either analog or digital, that is, that have
two types indicated in the pin descriptions, must meet the limits
for both types. For pin types, see Table 11.
When powered up, it is required that all ground pins plus
ADC_REFN be connected together to a node referred to as
GND in Tabl e 10. The limits that are listed must be reduced by
any difference between any GNDs. Also, it is required that
AVDD3 is connected to AVDD4 and that IOVDD1 to IOVDD3
are connected together.
Table 10. Absolute Maximum Ratings
Parameter Rating
Any Pin to GND −0.3 V to +3.9 V
Any PVDDx Pin to GND −0.3 V to +2.8 V
MDIO1, MCK, and PRTADDR0-4 in
MDIO Mode to GND
−0.3 V to +2.1 V
Between Any of AVDDx, IOVDDx, and
VDD1 Pins
−0.3 V to +0.3 V
Any Type I Pin to GND2 −0.3 V to IOVDDx + 0.3 V
Any Type AI or AO Pin to GND3 −0.3 V to AVDDx + 0.3 V
Any IDACx, CDAMPx, IDACTST, IREF
to GND
−0.3 V to PVDDx + 0.3 V
ADC_REFP to GND −0.3 V to AVDDx + 0.3 V
Total Positive GPIO Pin Currents 0 mA to 30 mA
Total Negative GPIO Pin Currents −30 mA to 0 mA
Maximum Power Dissipation 1 W
Operating Ambient Temperature
Range
−40°C to +105°C
Storage Temperature Range −65°C to +160°C
Operating Junction Temperature
Range
−40°C to +150°C
ESD HBM
2 kV
ESD FICDM 1 kV
1 Note this pin is always in MDIO mode.
2 This limit does not apply if no current can be drawn by external circuits on
IOVDDx because then IOVDD follows to a suitable level.
3 This limit does not apply if no current can be drawn by external circuits on
AVDDx because then AVDD follows to a suitable level.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
ESD CAUTION
ADuCM320 Data Sheet
Rev. D | Page 22 of 30
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
A
B
C
D
E
F
G
H
J
K
L
2 3 4 5 6 7 8 9 10 11
IDAC_
TST IDAC0 IDAC2
IOVDD1
IOGND1
P3.3/
PRTADDR3/
PLAI[15]
P0.0/
SCLK0/
PLAI[0]
CDAMP0 CDAMP2 CDAMP3 CDAMP1
IDAC1 IREFIDAC3PGND
DGND2
SWCLK
AIN15/
P4.7
AIN14/
P4.6 AIN12/
P4.4
AIN11/
BUF_
VREF2V5
AIN10
AIN7
AIN2
AIN1
AIN0AGND1
VDAC4
VDAC7/
P5.2
VDAC6/
P5.1
XTALI
IOVDD3
IOGND3 VDAC3/
P5.0 VDAC1 VDD1
AVDD3
AGND2
AGND3
AIN3
AIN4
AIN6
AIN5
AIN9/
P4.3
AIN8/
P4.2
VDAC0/
P5.3
VDAC2/
P3.7/
PLAO[29]
VDAC5DGND1
AGND4
AIN13/
P4.5 AVDD4
SWDIO IOGND2
IOVDD2
PGND
PVDD0 PVDD2 PVDD3 PVDD1
RESET
12272-008
P1.0/SIN/
ECLKIN/
PLAI[4]
P1.2/
PWM0/
PLAI[6]
P1.1/SOUT/
PLACLK1/
PLAI[5]
P2.4/IRQ5/
ADCCONV/
PWM6/
PLAO[18]
P1.3/
PWM1/
PLAI[7]
P1.4/
PWM2/
SCLK1/
PLAO[10]
P1.5/
PWM3/
MISO1/
PLAO[11]
P1.6/
PWM4/
MOSI1/
PLAO[12]
P1.7/IRQ1/
PWM5/
CS1/
PLAO[13]
P2.0/IRQ2/
PWMTRIP/
PLACLK2/
PLAI[8]
P2.2/
IRQ4/POR/
CLKOUT/
PLAI[10]
P2.3/BM
P0.2/
MOSI0/
PLAI[2]
P0.5/
SDA0/
PLAO[3]
P2.6/
IRQ7/
PLAO[20]
P0.7/
SDA1/
PLAO[5]
P0.6/
SCL1/
PLAO[4]
P3.0/
PRTADDR0/
PLAI[12]
P3.1/
PRTADDR1/
PLAI[13]
P2.7/
IRQ8/
PLAO[21]
P3.5/
MCK/
PLAO[27] XTALO MDIO
P0.4/
SCL0/
PLAO[2]
P0.3/
IRQ0/CS0/
PLACLK0/
PLAI[3]
P0.1/
MISO0/
PLAI[1]
P3.2/
PRTADDR2/
PLAI[14]
P3.4/
PRTADDR4/
PLAO[26]
AVDD_
REG0 AVDD_
REG1 VREF_1V2
ADC_
REFP
ADC_
REFN
DVDD_
2V5
DVDD_1V8
ADuCM320
TOP VIEW
(No t t o Scal e)
Figure 8. Pin Configuration
Table 11. Pin Function Descriptions
Pin No. Mnemonic Type 1 Description
B2 RESET I Reset Input (Active Low). An internal pull-up resistor is included.
C2 P0.0/SCLK0/PLAI[0] I/O Digital I/O Port 0.0 (P0.0).
SPI0 Clock (SCLK0).
Input to PLA Element 0 (PLAI[0]).
D2 P0.1/MISO0/PLAI[1] I/O Digital I/O Port 0.1 (P0.1).
SPI0 Master In, Slave Out (MISO0).
Input to PLA Element 1 (PLAI[1]).
D1 P0.2/MOSI0/PLAI[2] I/O Digital I/O Port 0.2 (P0.2).
SPI0 Master Out, Slave In (MOSI0).
Input to PLA Element 2 (PLAI[2]).
E3 P0.3/IRQ0/CS0/PLACLK0/PLAI[3] I/O Digital I/O Port 0.3 (P0.3).
External Interrupt 0 (IRQ0).
SPI0 Chip Select 0 (CS0). When using SPI0, configure this pin as CS0.
PLA Clock 0 (PLACLK0).
Input to PLA Element 3 (PLAI[3]).
E2 P0.4/SCL0/PLAO[2] I/O Digital I/O Port 0.4 (P0.4).
I2C0 Serial Clock (SCL0).
Output of PLA Element 2 (PLAO[2]).
E1 P0.5/SDA0/PLAO[3] I/O Digital I/O Port 0.5 (P0.5).
I2C0 Serial Data (SDA0).
Output of PLA Element 3 (PLAO[3]).
Data Sheet ADuCM320
Rev. D | Page 23 of 30
Pin No. Mnemonic Type 1 Description
F3 P0.6/SCL1/PLAO[4] I/O Digital I/O Port 0.6 (P0.6).
I2C1 Serial Clock (SCL1).
Output of PLA Element 4 (PLAO[4]).
F2 P0.7/SDA1/PLAO[5] I/O Digital I/O Port 0.7 (P0.7).
I2C1 Serial Data (SDA1).
Output of PLA Element 5 (PLAO[5]).
B9 P1.0/SIN/ECLKIN/PLAI[4] I/O Digital I/O Port 1.0 (P1.0).
UART Input (SIN).
External Input Clock (ECLKIN).
Input to PLA Element 4 (PLAI[4]).
B10
P1.1/SOUT/PLACLK1/PLAI[5]
I/O
Digital I/O Port 1.1 (P1.1).
UART Output (SOUT)
PLA Clock 1(PLACLK1).
Input to PLA Element 5 (PLAI[5]).
B11 P1.2/PWM0/PLAI[6] I/O Digital I/O Port 1.2 (P1.2).
PWM Output 0 (PWM0).
Input to PLA Element 6 (PLAI[6]).
C6 P1.3/PWM1/PLAI[7] I/O Digital I/O Port 1.3 (P1.3).
PWM Output 1 (PWM1).
Input to PLA Element 7 (PLAI[7]).
C7 P1.4/PWM2/SCLK1/PLAO[10] I/O Digital I/O Port 1.4 (P1.4).
PWM Output 2 (PWM2).
SPI1 Clock (SCLK1).
Output of PLA Element 10 (PLAO[10]).
C8 P1.5/PWM3/MISO1/PLAO[11] I/O Digital I/O Port 1.5 (P1.5).
PWM Output 3 (PWM3).
SPI1 Master In, Slave Out (MISO1).
Output of PLA Element 11 (PLAO[11]).
C9 P1.6/PWM4/MOSI1/PLAO[12] I/O Digital I/O Port 1.6 (P1.6).
PWM Output 4 (PWM4).
SPI1 Master Out, Slave Input (MOSI1).
Output of PLA Element 12 (PLAO[12]).
C10 P1.7/IRQ1/PWM5/CS1/PLAO[13] I/O Digital I/O Port 1.7 (P1.7).
External Interrupt 1 (IRQ1).
PWM Output 5 (PWM5).
SPI1 Chip Select 1 (CS1). When using SPI1, configure this pin as CS1.
Output of PLA Element 13 (PLAO[13]).
C5 P2.0/IRQ2/PWMTRIP/PLACLK2/PLAI[8] I/O Digital I/O Port 2.0 (P2.0).
External Interrupt 2 (IRQ2).
PWM Trip (PWMTRIP).
PLA Input Clock 2 (PLACLK2).
Input to PLA Element 8 (PLAI[8]).
C4 P2.2/IRQ4/POR/CLKOUT/PLAI[10] I/O Digital I/O Port 2.2 (P2.2).
External Interrupt 4 (IRQ4).
Reset Output (POR). This pin function is an output and it is the default for Pin
C4.
Clock Output (CLKOUT).
Input to PLA Element 10 (PLAI[10]).
C3 P2.3/BM I/O Digital I/O Port 2.3 (P2.3).
Boot Mode (BM). This pin determines the start-up sequence after every reset.
Pull-up is enabled at power-up.
ADuCM320 Data Sheet
Rev. D | Page 24 of 30
Pin No. Mnemonic Type 1 Description
D9 P2.4/IRQ5/ADCCONV/PWM6/PLAO[18] I/O Digital I/O Port 2.4 (P2.4).
External Interrupt 5 (IRQ5).
External Input to Start ADC Conversions (ADCCONV).
PWM Output 6 (PWM6).
Output of PLA Element 18 (PLAO[18]).
F1 P2.6/IRQ7/PLAO[20] I/O Digital I/O Port 2.6 (P2.6).
External Interrupt 7 (IRQ7).
Output of PLA Element 20 (PLAO[20]).
G1 P2.7/IRQ8/PLAO[21] I/O Digital I/O Port 2.7 (P2.7).
External Interrupt 8 (IRQ8).
Output of PLA Element 21 (PLAO[21]).
G3 P3.0/PRTADDR0/PLAI[12] I/O Digital I/O Port 3.0 (P3.0).
MDIO Port Address Bit 0 (PRTADDR0). See the digital inputs parameter in
Table 1 for details.
Input to PLA Element 12 (PLAI[12]).
G2 P3.1/PRTADDR1/PLAI[13] I/O Digital I/O Port 3.1 (P3.1).
MDIO Port Address Bit 1 (PRTADDR1). See the digital inputs parameter in
Table 1 for details.
Input to PLA Element 13 (PLAI[13]).
D3 P3.2/PRTADDR2/PLAI[14] I/O Digital I/O Port 3.2 (P3.2).
MDIO Port Address Bit 2 (PRTADDR2). See the digital inputs parameter in
Table 1 for details.
Input to PLA Element 14 (PLAI[14]).
B3 P3.3/PRTADDR3/PLAI[15] I/O Digital I/O Port 3.3 (P3.3).
MDIO Port Address Bit 3 (PRTADDR3). See the digital inputs parameter in
Table 1 for details.
Output of PLA Element 15 (PLAI[15]).
C11
P3.4/PRTADDR4/PLAO[26]
I/O
Digital I/O Port 3.4 (P3.4).
MDIO Port Address Bit 4 (PRTADDR4). See the digital inputs parameter in
Table 1 for details.
Output of PLA Element 26 (PLAO[26]).
H1 P3.5/MCK/PLAO[27] I/O Digital I/O Port 3.5 (P3.5).
MDIO Clock (MCK) See the digital inputs parameter in Table 1 for more details.
Output of PLA Element 27 (PLAO[27]).
H3 MDIO I/O MDIO Data.
E9 SWCLK I Serial Wire Debug Clock.
E10 SWDIO I/O Serial Wire Bidirectional Data.
F11 VREF_1V2 S 1.2 V Reference. This pin cannot be used to source current externally. Connect
VREF_1V2 to AGNDx via a 470 nF capacitor.
A11 IREF AI IDAC Reference Current. This pin generates the reference current for the IDACs
and is set by an external resistor, REXT. Connect REXT from IREF to AGND4.
J6 AIN0 AI Analog Input 0.
J7 AIN1 AI Analog Input 1.
J8 AIN2 AI Analog Input 2.
K8 AIN3 AI Analog Input 3.
L8 AIN4 AI Analog Input 4.
L9 AIN5 AI Analog Input 5. AIN5 can be the −ve input for the comparator.
K9 AIN6 AI Analog Input 6. AIN6 is also the +ve input for the comparator.
J9 AIN7 AI Analog Input 7.
L10
AIN8/P4.2
AI/I/O
Analog Input 8 (AIN8).
Digital I/O Port 4.2 (P4.2).
K10 AIN9/P4.3 AI/I/O Analog Input 9 (AIN9).
Digital I/O Port 4.3 (P4.3).
J10 AIN10 AI Analog Input 10.
Data Sheet ADuCM320
Rev. D | Page 25 of 30
Pin No. Mnemonic Type 1 Description
J11 AIN11/BUF_VREF2V5 AI/AO Analog Input 11 (AIN11).
Buffered 2.5 V Bias (BUF_VREF2V5). The maximum load = 1.2 mA. Connect
BUF_VREF2V5 to AGNDx via a 100 nF capacitor.
H10 AIN12/P4.4 AI/I/O Analog Input 12 (AIN12).
Digital I/O Port 4.4 (P4.4).
G10 AIN13/P4.5 AI/I/O Analog Input 13 (AIN13).
Digital I/O Port 4.5 (P4.5).
H9 AIN14/P4.6 AI/I/O Analog Input 14 (AIN14).
Digital I/O Port 4.6 (P4.6).
G9 AIN15/P4.7 AI/I/O Analog Input 15 (AIN15).
Digital I/O Port 4.7 (P4.7).
L5 VDAC0/P5.3 AO/I/O Voltage DAC0 Output (VDAC0).
Digital I/O Port 5.3 (P5.3).
K5 VDAC1 AO Voltage DAC1 Output.
L4 VDAC2/P3.7/PLAO[29] AO/I/O Voltage DAC2 Output (VDAC2).
Digital I/O Port 3.7 (P3.7).
Output of PLA Element 29 (PLAO[29]).
K4 VDAC3/P5.0 AO/I/O Voltage DAC3 Output (VDAC3).
Digital I/O Port 5.0 (P5.0).
J4 VDAC4 AO Voltage DAC4 Output (VDAC4).
L3 VDAC5 AO Voltage DAC5 Output (VDAC5).
K3
VDAC6/P5.1
AO/I/O
Voltage DAC6 Output (VDAC6).
Digital I/O Port 5.1 (P5.1).
J3 VDAC7/P5.2 AO/I/O Voltage DAC7 Output (VDAC7).
Digital I/O Port 5.2 (P5.2).
A2 IDAC0 AO IDAC0. 0 mA to 150 mA full-scale output.
A3 PVDD0 S Power for IDAC0.
B4
CDAMP0
AI
Damping Capacitor 0. Connect damping capacitor from this pin to PVDD0.
A10 IDAC1 AO IDAC1. 0 mA to 150 mA full-scale output.
A9 PVDD1 S Power for IDAC1.
B8 CDAMP1 AI Damping Capacitor 1. Connect damping capacitor from this pin to PVDD1.
A5 IDAC2 AO IDAC2. 0 mA to 150 mA full-scale output.
A4 PVDD2 S Power for IDAC2.
B5 CDAMP2 AI Damping Capacitor 2. Connect damping capacitor from this pin to PVDD2.
A7 IDAC3 AO IDA3C. 0 mA to 150 mA full-scale output.
A8 PVDD3 S Power for IDAC3.
B7 CDAMP3 AI Damping Capacitor 3. Connect damping capacitor from this pin to PVDD3.
B6 PGND S Power Supply Ground for IDACs.
A6
PGND
S
Power Supply Ground for IDACs.
A1 IDAC_TST AI/AO Pin for IDAC Test Purposes. Leave IDAC_TST unconnected.
L2 DVDD_1V8 AO 1.8 V Digital Supply. A 470 nF capacitor to DGND1 must be connected to this
pin to stabilize the internal 1.8 V regulator that supplies flash memory and the
ARM Cortex-M3 processor.
K2 DVDD_2V5 AO 2.5 V Digital Supply. A 470 nF capacitor to IOGND3 must be connected to this
pin to stabilize the internal 2.5 V regulator that supplies the analog digital
control.
F9 AVDD_REG0 AO Analog Regulator 0 Supply. A 470 nF capacitor to AGND4 must be connected
to this pin to stabilize the internal 2.5 V regulator that supplies the ADC.
F10 AVDD_REG1 AO Analog Regulator 1 Supply. Output of 2.5 V on-chip LDO regulator. A 470 nF
capacitor to AGND4 must be connected to this pin. This regulator supplies the
IDACs.
L1 DGND1 S Digital Ground 1 for DVDD_1V8.
D10 DGND2 S Digital Ground 2. Connect to DGND1.
B1 IOVDD1 S 3.3 V GPIO Supply.
ADuCM320 Data Sheet
Rev. D | Page 26 of 30
Pin No. Mnemonic Type 1 Description
D11 IOVDD2 S 3.3 V GPIO Supply and Interdie Communications.
J1 IOVDD3 S 3.3 V GPIO Supply.
C1 IOGND1 S Ground for IOVDD1.
E11 IOGND2 S Ground for IOVDD2.
K1
IOGND3
S
Ground for IOVDD3 and Interdie Communications.
J5 AGND1 S Analog Ground for VDD1.
K7 AGND2 S ESD Ground for Pad Ring.
L7 AGND3 S Ground for AVDD3.
H11 AGND4 S Ground for AVDD4, AVDD_REG0, and AVDD_REG1.
K6 VDD1 S 3.3 V Supply for Digital Die.
L6
AVDD3
S
VDAC and IDAC Supply (3.3 V).
G11 AVDD4 S ADC Supply (3.3 V).
L11 ADC_REFN AO/A Decoupling Capacitor Connection for ADC Reference Buffer. Connect this pin
to AGND4.
K11 ADC_REFP AO/A Decoupling Capacitor Connection for ADC Reference Buffer. Connect this pin
to a 4.7 µF capacitor to the ADC_REFN pin. ADC_REFP can be overdriven by an
external reference.
H2 XTALO O Output from the Crystal Oscillator Inverter. When not using an external
crystal, leave XTALO unconnected.
J2 XTALI I Input to the Crystal Oscillator Inverter and Input to the Internal Clock
Generator Circuits. When not using an external crystal, connect XTALI to
DGND.
1 AI is analog input, AO is analog output, I is digital input, O is digital output, S is supply.
Data Sheet ADuCM320
Rev. D | Page 27 of 30
TYPICAL PERFORMANCE CHARACTERISTICS
25000
30000
35000
40000
45000
50000
–60 –40 –20 020 40 60 80 100 120
ADC CODE (LS B 16)
TEMPERATURE ( °C)
DEVICE 1
DEVICE 2
DEVICE 3
DEVICE 4
DEVICE 5
12272-009
Figure 9. Typical Temperature Measurement vs. Internal Temperature
(VDD = 3.3 V, 50 kSPS)
–10
0
10
20
30
40
50
60
70
80
90
00.5 1.0 1.5 2.0 2.5 3.0 3.5
PIN CURRE NTA)
PIN VOLTAGE (V)
MAX PULL UP
MI N P UL L UP
MIN PULLDOWN
MAX P ULLDOW N
12272-010
Figure 10. Typical Pull-Up/Pull-Down Pin Current vs. Pin Voltage
(VDD = 3.3 V, 25°C)
0
50
100
150
200
250
300
350
025 50 75 100 125 150
IDAC HEADROO M ( mV )
IDAC O UTPUT CURRENT (mA)
IDAC 2
IDAC 3
IDAC 0
IDAC 1
12272-011
Figure 11. Typical IDAC Headroom vs. IDAC Output Current
–70
–60
–50
–40
–30
–20
–10
0
100 1k 10k 100k
PVDD AC PSRR (dB)
FREQUENCY (Hz)
IDAC0
IDAC1
IDAC2
IDAC3
12272-012
Figure 12. Typical PVDD AC PSRR vs. Frequency
0
0.5
1.0
1.5
2.0
2.5
3.0
2610 14 16
04 8 12
OUTPUT VOLTAGE (V)
LOAD CURRENT ( mA)
12272-013
VOH MAX
VOH MIN
VOL MIN
VOL MAX
Figure 13. Typical Output Voltage vs. Load Current
TIME (Not to Scale)
3.60
50ms min
VDD1 (V )
DVDD MUS T BE ABO V E 2.9V
FOR AT LEAS T 50ms TO
COMPLETE PO R
AFTER 50ms DVDD M US T
ST AY ABOVE 2.85V INCLUDING
NOI S E E X CURS IO NS
2.90
2.85
12272-014
Figure 14. VDD1 Power-On Requirements
ADuCM320 Data Sheet
Rev. D | Page 28 of 30
RECOMMENDED CIRCUIT AND COMPONENT VALUES
Figure 15 shows a typical connection diagram for the ADuCM320.
Supplies and regulators must be adequately decoupled with
capacitors connected between the AVDDx, PVDDx, DVDD_x,
AVDD_REGx, IOVDDx, and VDD1 balls and their associated
GND balls (AGNDx, PGND, IOGNDx, and DGNDx). Table 11
indicates which ground balls are paired with which supply balls.
There are four digital supply balls, IOVDD1, IOVDD2, IOVDD3,
and VDD1. Decouple these balls with a 100 nF capacitor placed
as near as possible to each of the four balls and their associated
GND balls (IOGNDx and AGND1, respectively). In addition,
place a 10 μF capacitor conveniently near to these balls.
Similarly, the analog supply pins, AVDD3 and AVDD4, each
require a 100 nF capacitor placed as near as possible to each ball
and its associated AGNDx ball, and place a 10 μF capacitor
conveniently near to these balls.
The IDACs source their output currents from the PVDDx
supply balls. Each PVDDx supply ball must have a 100 nF
capacitor near to each ball and their associated GND balls
(PGND). In addition, place at least one 10 μF capacitor at the
source of the PVDDx supply.
The IDAC output filters depend on a 10 nF capacitor being
placed between the CDAMPx and PVDDx.
The ADC reference requires a 4.7 μF capacitor placed between
ADC_REFP and ADC_REFN and located as near as possible to
each ball. ADC_REFN must be connected directly to AGND4.
The ADuCM320 contains four internal regulators. These
regulators require external decoupling capacitors. The
DVDD_1V8 and DVDD_2V5 balls each require a 470 nF
capacitor to DGND1 and IOGND3, respectively. AVDD_REG0
and AVDD_REG1 each require a decoupling capacitor to
AGND4.
To generate an accurate and low drift reference current, connect
the IREF ball to AGND4 via a low ppm 3.16 kΩ resistor.
Take care in the layout to ensure that currents flowing from the
ground end of each decoupling capacitor to its associated
ground ball share as little track as possible with other ground
currents on the printed circuit board.
Data Sheet ADuCM320
Rev. D | Page 29 of 30
G11
L6
B6
PGND
RESET RESET
ADC_REFP
GND
DGND
SWDIO
TX
SWCLK
AVDD
AVDD3
AVDD4
VREF_1V2
IREF
ADC_REFN
AVDD_REG0
AVDD_REG1
AGND1
AGND3
AGND2
F9
L11
K11
A11
F11 H11
L7
K7
J5
F10
AGND4
3.16k
0.47µF 4.7µF 0.47µF 0.47µF
B2
C1 E11
P1.1/SOUT
J2
SWDIO
H2
A3
A9
12pF
10nF
A6
PGND
L1 D10
ADuCM320
CDAMP2
CDAMP1
CDAMP0
PVDD3
PVDD2
PVDD1
PVDD0
XTALO
XTALI
RESET
RESET
A4
A8
B4
B8
B5
VDD1
CDAMP3
B7
SWCLK
P1.0/SIN/ECLKIN/PLAI[4]
P2.3/BM
K1
IOVDD1
IOVDD3
IOVDD2
VDD1
DVDD_1V8
DVDD_2V5
DGND1
DGND2
IOGND1
IOGND2
IOGND3
10k
PVDD
10nF
10nF
10nF
DVDD VDD1
0.47µF 0.47µF
VDD1
10k
10µF
10µF 0.1µF
10kΩ
1.6Ω
VIN VOUT
EN
GND DGND
AVDD
DVDD
AGND AGND
0.1µF 10µF
ADP7102ARDZ3.3
0.1µF
VIN
SENSE0
PG
0.1µF
1.6Ω
VDD1
DGND DGND1
10µF
VIN VOUT
EN
GND
ADP1741ACPZ
SS
EP
10µF
30kΩ
10kΩ
10µF
+2.5V
10µF ADJ
PVDD
12pF
PGND
PGND
PGND
DGND
NC
DVDD
AGND
0.1µF
AGND1
L2
K6
J1
D11
B1 K2
E10
B10
E9
B9
C3
12272-015
INTERF ACE BOARD CO NNE CTOR
RX
Figure 15. Recommended Circuit and Component Values
ADuCM320 Data Sheet
Rev. D | Page 30 of 30
PACKAGING AND ORDERING INFORMATION
OUTLINE DIMENSIONS
6.10
6.00 SQ
5.90
5.00 REF
SQ
0.35
0.30
0.25
04-02-2013-A
COPLANARITY
0.08
A
B
C
D
E
F
G
H
J
K
L
76321
54
BALL DIAMETER
0.50
BSC
0.50
REF
DETAIL A
A1 BALL
CORNER
A1 BALL
CORNER
DETAIL A
BOTTOM VIEW
TOP VIEW
SEATING
PLANE
1.200
1.083
1.000
89
1011
COMPLIANT TO JEDEC STANDARDS MO-195-AC
WITH THE EXCEPTION TO BALL COUNT.
0.223 NOM
0.173 MIN
0.93
0.86
0.79
Figure 16. 96-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
(BC-96-2)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option Ordering Quantity
ADuCM320BBCZ −40°C to +105°C 96-Ball Chip Scale Package Ball Grid Array [CSP_BGA] BC-96-2 429
ADuCM320BBCZ-RL −40°C to +105°C 96-Ball Chip Scale Package Ball Grid Array [CSP_BGA] BC-96-2 2,500
EV-ADuCM320QSPZ Evaluation Board with QuickStart Development System 1
1 Z = RoHS Compliant Part.
©2014–2018 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D12272-0-5/18(D)