Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Low-Power, Single and Dual-Channel Digital Isolators Silicon Lab's family of ultra-low-power digital isolators are CMOS devices offering substantial data rate, propagation delay, power, size, reliability, and external BOM advantages when compared to legacy isolation technologies. The operating parameters of these products remain stable across wide temperature ranges and throughout device service life for ease of design and highly uniform performance. All device versions have Schmitt trigger inputs for high noise immunity and only require VDD bypass capacitors. Data rates up to 150 Mbps are supported, and all devices achieve worst-case propagation delays of less than 10 ns. Ordering options include a choice of isolation ratings (up to 5 kV) and a selectable fail-safe operating mode to control the default output state during power loss. All products are safety certified by UL, CSA, and VDE, and products in wide-body packages support reinforced insulation withstanding up to 5 kVRMS. Applications * * * * Industrial automation systems Medical electronics Hybrid electric vehicles Isolated switch mode supplies * * * * Isolated ADC, DAC Motor control Power inverters Communication systems KEY FEATURES * High-speed operation * DC to 150 Mbps * No start-up initialization required * Wide Operating Supply Voltage: * 2.6 - 5.5 V * Up to 5000 VRMS isolation * High electromagnetic immunity * Ultra low power (typical) * 5 V Operation: * < 2.6 mA/channel at 1 Mbps * < 6.8 mA/channel at 100 Mbps * 2.70 V Operation: * < 2.3 mA/channel at 1 Mbps * < 4.6 mA/channel at 100 Mbps * Schmitt trigger inputs * Selectable fail-safe mode * Default high or low output * Precise timing (typical) * 11 ns propagation delay max * 1.5 ns pulse width distortion * 0.5 ns channel-channel skew Safety Regulatory Approvals * UL 1577 recognized * Up to 5000 VRMS for 1 minute * CSA component notice 5A approval * IEC 60950-1, 61010-1, 60601-1 (reinforced insulation) * VDE certification conformity * IEC 60747-5-5 (VDE0884 Part 5) * EN60950-1 (reinforced insulation) * 2 ns propagation delay skew * 5 ns minimum pulse width * Transient immunity 45 kV/s * AEC-Q100 qualification * Wide temperature range * -40 to 125 C at 150 Mbps * RoHS compliant packages * SOIC-16 wide body * SOIC-8 narrow body silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Features List 1. Features List * High-speed operation * DC to 150 Mbps * No start-up initialization required * Wide Operating Supply Voltage: * 2.6 - 5.5 V * Up to 5000 VRMS isolation * High electromagnetic immunity * Ultra low power (typical) * 5 V Operation: * < 2.6 mA/channel at 1 Mbps * < 6.8 mA/channel at 100 Mbps * 2.70 V Operation: * < 2.3 mA/channel at 1 Mbps * < 4.6 mA/channel at 100 Mbps silabs.com | Smart. Connected. Energy-friendly. * Schmitt trigger inputs * Selectable fail-safe mode * Default high or low output * Precise timing (typical) * 11 ns propagation delay max * 1.5 ns pulse width distortion * 0.5 ns channel-channel skew * 2 ns propagation delay skew * 5 ns minimum pulse width * Transient immunity 45 kV/s * AEC-Q100 qualification * Wide temperature range * -40 to 125 C at 150 Mbps * RoHS compliant packages * SOIC-16 wide body * SOIC-8 narrow body Rev. 1.4 | 1 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Ordering Guide 2. Ordering Guide Table 2.1. Ordering Guide1,2,3 Ordering Part Number (OPN) Number of Inputs VDD1 Side Number of Inputs VDD2 Side Maximum Data Rate (Mbps) Default Output State Isolation Rating Temp Range Package Type Si8422AB-D-IS 1 1 1 High 2.5 kVrms -40 to 125 C NB SOIC-8 Si8422BB-D-IS 1 1 150 High Si8423AB-D-IS 2 0 1 High Si8423BB-D-IS 2 0 150 High Si8410AD-D-IS4 1 0 1 Low 5.0 kVrms -40 to 125 C WB SOIC-16 Si8410BD-D-IS4 1 0 150 Low Si8420AD-D-IS4 2 0 1 Low Si8420BD-D-IS4 2 0 150 Low Si8421AD-D-IS4 1 1 1 Low Si8421BD-D-IS4 1 1 150 Low Si8422AD-D-IS 1 1 1 High Si8422BD-D-IS 1 1 150 High Si8423AD-D-IS 2 0 1 High Si8423BD-D-IS 2 0 150 High 1. All devices >1 kVRMS are AEC-Q100 qualified. 2. "Si" and "SI" are used interchangeably. 3. All packages are RoHS-compliant with peak solder reflow temperatures of 260 C according to the JEDEC industry standard classifications. 4. Refer to Si8410/20/21 data sheet for information regarding 2.5 kV rated versions of these products. 5. An "R" at the end of the part number denotes tape and reel packaging option. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 2 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Functional Description 3. Functional Description 3.1 Theory of Operation The operation of an Si84xx channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified block diagram for a single Si84xx channel is shown in the figure below. Transmitter Receiver RF OSCILLATOR A MODULATOR SemiconductorBased Isolation Barrier DEMODULATOR B Figure 3.1. Simplified Channel Diagram A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See the figure below for more details. Input Signal Modulation Signal Output Signal Figure 3.2. Modulation Scheme silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Functional Description 3.2 Eye Diagram The figure below illustrates an eye-diagram taken on an Si8422. For the data source, the test used an Anritsu (MP1763C) Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8422 were captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of 150 Mbps. The results also show that 2 ns pulse width distortion and 350 ps peak jitter were exhibited. Figure 3.3. Eye Diagram silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 4 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Device Operation 4. Device Operation Device behavior during start-up, normal operation, and shutdown is shown in Figure 4.1 Device Behavior during Normal Operation on page 6, where UVLO+ and UVLO- are the positive-going and negative-going thresholds respectively. Refer to the table below to determine outputs when power supply (VDD) is not present. Table 4.1. Si84xx Logic Operation Table VI Input1,4 VDDI State1,2,3 VDDO State1,2,3 VO Output1,4 H P P H L P P L X5 UP P H6 (Si8422/23) L6 (Si8410/20/21) X5 P UP Undetermined Comments Normal operation. Upon transition of VDDI from unpowered to powered, VO returns to the same state as VI in less than 1 s. Upon transition of VDDO from unpowered to powered, VO returns to the same state as VI within 1 s. Notes: 1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals. 2. Powered (P) state is defined as 2.72.60 V < VDD < 5.5 V. 3. Unpowered (UP) state is defined as VDD = 0 V. 4. X = not applicable; H = Logic High; L = Logic Low. 5. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current. 6. See Section 2. Ordering Guide for details. This is the selectable fail-safe operating mode (ordering option). Some devices have default output state = H, and some have default output state = L, depending on the ordering part number (OPN). 4.1 Device Startup Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following this, the outputs follow the states of inputs. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 5 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Device Operation 4.2 Under Voltage Lockout Under Voltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its specified operating circuits range. Both Side A and Side B each have their own undervoltage lockout monitors. Each side can enter or exit UVLO independently. For example, Side A unconditionally enters UVLO when VDD1 falls below VDD1(UVLO-) and exits UVLO when VDD1 rises above VDD1(UVLO+). Side B operates the same as Side A with respect to its VDD2 supply. UVLO+ UVLO- VDD1 UVLO+ UVLO- VDD2 INPUT tSD tSTART tSTART tSTART tPHL tPLH OUTPUT Figure 4.1. Device Behavior during Normal Operation 4.3 Layout Recommendations To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the safety extra-low voltage circuits (SELV is a circuit with <30 VAC) by a certain distance (creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating (commonly referred to as working voltage protection). Table 5.5 Regulatory Information1 on page 20 and Table 5.6 Insulation and Safety-Related Specifications on page 21 detail the working voltage and creepage/clearance capabilities of the Si84xx. These tables also detail the component standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, 60601-1, etc.) requirements before starting any design that uses a digital isolator. 4.3.1 Supply Bypass The Si841x/2x family requires a 0.1 F bypass capacitor between VDD1 and GND1 and VDD2 and GND2. The capacitor should be placed as close as possible to the package. To enhance the robustness of a design, it is further recommended that the user also add 1 F bypass capacitors and include 100 resistors in series with the inputs and outputs if the system is excessively noisy. 4.3.2 Pin Connections No connect pins are not internally connected. They can be left floating, tied to VDD, or tied to GND. 4.3.3 Output Pin Termination The nominal output impedance of an isolator driver channel is approximately 50 , 40%, which is a combination of the value of the onchip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 4.4 Fail-Safe Operating Mode Si84xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input supply is unpowered) can either be a logic high or logic low when the output supply is powered. See Table 4.1 Si84xx Logic Operation Table on page 5 and Section 2. Ordering Guide for more information. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 6 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Device Operation 4.5 Typical Performance Characteristics The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer to Table 5.2 Electrical Characteristics on page 9 through Table 5.4 Electrical Characteristics1 on page 17 for actual specification limits. Figure 4.2. Si8410 Typical VDD1 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation Figure 4.3. Si8420 Typical VDD1 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation Figure 4.4. Si8421 Typical VDD1 or VDD2 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load) Figure 4.5. Si8410 Typical VDD2 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load) Figure 4.6. Si8420 Typical VDD2 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load) Figure 4.7. Si8422 Typical VDD1 or VDD2 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load) silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 7 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Device Operation Figure 4.8. Si8423 Typical VDD1 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation Figure 4.9. Si8423 Typical VDD2 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load) Figure 4.10. Propagation Delay vs. Temperature silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 8 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Electrical Specifications 5. Electrical Specifications Table 5.1. Recommended Operating Conditions Parameter Symbol Min Typ Max Unit TA -40 25 125 C VDD1 2.70 -- 5.5 V VDD2 2.70 -- 5.5 V Ambient Operating Temperature1 Supply Voltage Note: 1. The maximum ambient temperature is dependent upon data frequency, output loading, the number of operating channels, and supply voltage. Table 5.2. Electrical Characteristics (VDD1 = 5 V 10%, VDD2 = 5 V 10%, TA = -40 to 125 C) Parameter Symbol Test Condition Min Typ Max Unit VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 2.15 2.3 2.5 V VDD Negative-Going Lockout Hysteresis VDDHYS 45 75 95 mV Positive-Going Input Threshold VT+ All inputs rising 1.6 -- 1.9 V Negative-Going Input Threshold VT- All inputs falling 1.1 -- 1.4 V Input Hysteresis VHYS 0.40 0.45 0.50 V High Level Input Voltage VIH 2.0 -- -- V Low Level Input Voltage VIL -- -- 0.8 V High Level Output Voltage VOH loh = -4 mA VDD1,VDD2 - 0.4 4.8 -- V Low Level Output Voltage VOL lol = 4 mA -- 0.2 0.4 V Input Leakage Current IL -- -- 10 A Output Impedance1 ZO -- 50 -- mA DC Supply Current (All inputs 0 V or at Supply) Si8410Ax, Bx VDD1 All inputs 0 DC -- 1.0 1.5 VDD2 All inputs 0 DC -- 3.0 1.5 VDD1 All inputs 1 DC -- 3.0 4.5 VDD2 All inputs 1 DC -- 1.0 1.5 VDD1 All inputs 0 DC -- 1.3 2.0 VDD2 All inputs 0 DC -- 1.7 2.6 VDD1 All inputs 1 DC -- 5.8 8.7 VDD2 All inputs 1 DC -- 1.7 2.6 Si8420Ax, Bx silabs.com | Smart. Connected. Energy-friendly. mA Rev. 1.4 | 9 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit VDD1 All inputs 0 DC -- 1.7 2.6 mA VDD2 All inputs 0 DC -- 1.7 2.6 VDD1 All inputs 1 DC -- 3.7 5.6 VDD2 All inputs 1 DC -- 3.7 5.6 VDD1 All inputs 0 DC -- 3.7 5.6 VDD2 All inputs 0 DC -- 3.7 5.6 VDD1 All inputs 1 DC -- 1.7 2.6 VDD2 All inputs 1 DC -- 1.7 2.6 VDD1 All inputs 0 DC -- 5.4 8.1 VDD2 All inputs 0 DC -- 1.7 2.6 VDD1 All inputs 1 DC -- 1.3 2.0 VDD2 All inputs 1 DC -- 1.7 2.6 Si8421Ax, Bx Si8422Ax, Bx mA Si8423Ax, Bx mA 1 Mbps Supply Current (All inputs = 500 kHz square wave, CL = 15 pF on all outputs) Si8410Ax, Bx VDD1 -- 2.0 3.0 VDD2 -- 1.1 1.7 VDD1 -- 3.5 5.3 VDD2 -- 1.9 2.9 VDD1 -- 2.8 4.2 VDD2 -- 2.8 4.2 VDD1 -- 2.8 4.2 VDD2 -- 2.8 4.2 VDD1 -- 3.4 5.1 VDD2 -- 1.9 2.9 mA Si8420Ax, Bx mA Si8421Ax, Bx mA Si8422Ax, Bx mA Si8423Ax, Bx mA 10 Mbps Supply Current (All inputs = 5 MHz square wave, CL = 15 pF on all outputs) Si8410Bx VDD1 -- 2.1 3.1 VDD2 -- 1.5 2.1 mA Si8420Bx silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 10 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit VDD1 -- 3.6 5.4 mA VDD2 -- 2.6 3.6 VDD1 -- 3.2 4.5 VDD2 -- 3.2 4.5 VDD1 -- 3.2 4.5 VDD2 -- 3.2 4.5 VDD1 -- 3.4 5.1 VDD2 -- 2.5 3.5 Si8421Bx mA Si8422Bx mA Si8423Bx mA 100 Mbps Supply Current (All inputs = 50 MHz square wave, CL = 15 pF on all outputs) Si8410Bx VDD1 -- 2.1 3.1 mA VDD2 -- 5.0 6.3 VDD1 -- 3.7 5.4 VDD2 -- 9.8 12.3 VDD1 -- 6.8 8.5 VDD2 -- 6.8 8.5 VDD1 -- 6.8 8.5 VDD2 -- 6.8 8.5 VDD1 -- 3.4 5.1 VDD2 -- 9.2 11.5 Maximum Data Rate 0 -- 1.0 Mbps Minimum Pulse Width -- -- 250 ns Si8420Bx mA Si8421Bx mA Si8422Bx mA Si8423Bx mA Timing Characteristics Si841xAx, Si842xAx Propagation Delay tPHL, tPLH See Figure 5.1 Propagation Delay Timing on page 12 -- -- 35 ns PWD See Figure 5.1 Propagation Delay Timing on page 12 -- -- 25 ns -- -- 40 ns Pulse Width Distortion |tPLH - tPHL| Propagation Delay Skew2 tPSK(P-P) silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 11 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Electrical Specifications Parameter Symbol Min Typ Max Unit -- -- 35 ns Maximum Data Rate 0 -- 150 Mbps Minimum Pulse Width -- -- 6.0 ns Channel-Channel Skew Test Condition tPSK Si841xBx, Si842xBx Propagation Delay tPHL, tPLH See Figure 5.1 Propagation Delay Timing on page 12 4.0 8.0 11 ns PWD See Figure 5.1 Propagation Delay Timing on page 12 -- 1.5 3.0 ns tPSK(P-P) -- 2.0 3.0 ns tPSK -- 0.5 1.5 ns Pulse Width Distortion |tPLH - tPHL| Propagation Delay Skew2 Channel-Channel Skew All Models Output Rise Time tr CL = 15 pF -- 2.0 4.0 ns Output Fall Time tf CL = 15 pF -- 2.0 4.0 ns Peak Eye Diagram Jitter tJIT(PK) See Figure 3.3 Eye Diagram on page 4 -- 350 -- ps Common Mode Transient Immunity CMTI VI = VDD or 0 V 20 45 -- kV/s -- 15 40 s tSU Start-up Time3 Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , 40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. 1.4 V Typical Input tPLH tPHL 90% 90% 10% 10% 1.4 V Typical Output tr tf Figure 5.1. Propagation Delay Timing silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 12 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Electrical Specifications Table 5.3. Electrical Characteristics (VDD1 = 3.3 V 10%, VDD2 = 3.3 V 10%, TA = -40 to 125 C) Parameter Symbol Test Condition Min Typ Max Unit VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 2.15 2.3 2.5 V VDD Negative-Going Lockout Hysteresis VDDHYS 45 75 95 mV Positive-Going Input Threshold VT+ All inputs rising 1.6 -- 1.9 V Negative-Going Input Threshold VT- All inputs falling 1.1 -- 1.4 V Input Hysteresis VHYS 0.40 0.45 0.50 V High Level Input Voltage VIH 2.0 -- -- V Low Level Input Voltage VIL -- -- 0.8 V High Level Output Voltage VOH VDD1,VDD2 3.1 -- V -- 0.2 0.4 V loh = -4 mA - 0.4 Low Level Output Voltage VOL lol = 4 mA Input Leakage Current IL -- -- 10 A Output Impedance (Si8410/20)1 ZO -- 50 -- mA DC Supply Current (All inputs 0 V or at supply) Si8410Ax, Bx VDD1 All inputs 0 DC -- 1.0 1.5 VDD2 All inputs 0 DC -- 1.0 1.5 VDD1 All inputs 1 DC -- 3.0 4.5 VDD2 All inputs 1 DC -- 1.0 1.5 VDD1 All inputs 0 DC -- 1.3 2.0 VDD2 All inputs 0 DC -- 1.7 2.6 VDD1 All inputs 1 DC -- 5.8 8.7 VDD2 All inputs 1 DC -- 1.7 2.6 VDD1 All inputs 0 DC -- 1.7 2.6 VDD2 All inputs 0 DC -- 1.7 2.6 VDD1 All inputs 1 DC -- 3.7 5.6 VDD2 All inputs 1 DC -- 3.7 5.6 Si8420Ax, Bx mA Si8421Ax, Bx mA Si8422Ax, Bx silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 13 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit VDD1 All inputs 0 DC -- 3.7 5.6 mA VDD2 All inputs 0 DC -- 3.7 5.6 VDD1 All inputs 1 DC -- 1.7 2.6 VDD2 All inputs 1 DC -- 1.7 2.6 VDD1 All inputs 0 DC -- 5.4 8.1 VDD2 All inputs 0 DC -- 1.7 2.6 VDD1 All inputs 1 DC -- 1.3 2.0 VDD2 All inputs 1 DC -- 1.7 2.6 Si8423Ax, Bx mA 1 Mbps Supply Current (All inputs = 500 kHz square wave, CL = 15 pF on all outputs) Si8410Ax, Bx VDD1 -- 2.0 3.0 VDD2 -- 1.1 1.7 VDD1 -- 3.5 5.3 VDD2 -- 1.9 2.9 VDD1 -- 2.8 4.2 VDD2 -- 2.8 4.2 VDD1 -- 2.8 4.2 VDD2 -- 2.8 4.2 VDD1 -- 3.4 5.1 VDD2 -- 1.9 2.9 mA Si8420Ax, Bx mA Si8421Ax, Bx mA Si8422Ax, Bx mA Si8423Ax, Bx mA 10 Mbps Supply Current (All inputs = 5 MHz square wave, CL = 15 pF on all outputs) Si8410Bx VDD1 -- 2.0 3.0 VDD2 -- 1.3 1.8 VDD1 -- 3.5 5.3 VDD2 -- 2.3 3.2 VDD1 -- 3.0 4.4 VDD2 -- 3.0 4.4 mA Si8420Bx mA Si8421Bx mA Si8422Bx silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 14 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit VDD1 -- 3.0 4.4 mA VDD2 -- 3.0 4.4 VDD1 -- 3.4 5.1 VDD2 -- 2.2 3.1 VDD1 -- 2.0 3.0 VDD2 -- 3.6 4.5 VDD1 -- 4.5 5.3 VDD2 -- 7.0 8.8 VDD1 -- 5.3 6.6 VDD2 -- 5.3 6.6 VDD1 -- 5.3 6.6 VDD2 -- 5.3 6.6 VDD1 -- 3.4 5.1 VDD2 -- 6.6 8.3 Maximum Data Rate 0 -- 1.0 Mbps Minimum Pulse Width -- -- 250 ns Si8423Bx mA 100 Mbps Supply Current (All inputs = 50 MHz square wave, CL = 15 pF on all outputs) Si8410Bx mA Si8420Bx mA Si8421Bx mA Si8422Bx mA Si8423Bx mA Timing Characteristics Si841xAx, Si842xAx Propagation Delay tPHL, tPLH See Figure 5.1 Propagation Delay Timing on page 12 -- -- 35 ns PWD See Figure 5.1 Propagation Delay Timing on page 12 -- -- 25 ns tPSK(P-P) -- -- 40 ns tPSK -- -- 35 ns Maximum Data Rate 0 -- 150 Mbps Minimum Pulse Width -- -- 6.0 ns 4.0 8.0 11 ns Pulse Width Distortion |tPLH - tPHL| Propagation Delay Skew2 Channel-Channel Skew Si841xBx, Si842xBx Propagation Delay tPHL, tPLH silabs.com | Smart. Connected. Energy-friendly. See Figure 5.1 Propagation Delay Timing on page 12 Rev. 1.4 | 15 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit PWD See Figure 5.1 Propagation Delay Timing on page 12 -- 1.5 3.0 ns tPSK(P-P) -- 2.0 3.0 ns tPSK -- 0.5 1.5 ns Pulse Width Distortion |tPLH - tPHL| Propagation Delay Skew2 Channel-Channel Skew All Models Output Rise Time tr CL = 15 pF -- 2.0 4.0 ns Output Fall Time tf CL = 15 pF -- 2.0 4.0 ns Peak Eye Diagram Jitter tJIT(PK) See Figure 3.3 Eye Diagram on page 4 -- 350 -- ps Common Mode Transient Immunity CMTI VI = VDD or 0 V 20 45 -- kV/s -- 15 40 s Start-up Time3 tSU Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , 40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 16 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Electrical Specifications Table 5.4. Electrical Characteristics1 (VDD1 = 2.70 V, VDD2 = 2.70 V, TA = -40 to 125 C) Parameter Symbol Test Condition Min Typ Max Unit VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 2.15 2.3 2.5 V VDD Negative-Going Lockout Hysteresis VDDHYS 45 75 95 mV Positive-Going Input Threshold VT+ All inputs rising 1.6 -- 1.9 V Negative-Going Input Threshold VT- All inputs falling 1.1 -- 1.4 V Input Hysteresis VHYS 0.40 0.45 0.50 V High Level Input Voltage VIH 2.0 -- -- V Low Level Input Voltage VIL -- -- 0.8 V High Level Output Voltage VOH VDD1,VDD2 2.3 -- V -- 0.2 0.4 V loh = -4 mA - 0.4 Low Level Output Voltage VOL lol = 4 mA Input Leakage Current IL -- -- 10 A Output Impedance2 ZO -- 50 -- mA DC Supply Current (All inputs 0 V or at supply) Si8410Ax, Bx VDD1 All inputs 0 DC -- 1.0 1.5 VDD2 All inputs 0 DC -- 1.0 1.5 VDD1 All inputs 1 DC -- 3.0 4.5 VDD2 All inputs 1 DC -- 1.0 1.5 VDD1 All inputs 0 DC -- 1.3 2.0 VDD2 All inputs 0 DC -- 1.7 2.6 VDD1 All inputs 1 DC -- 5.8 8.7 VDD2 All inputs 1 DC -- 1.7 2.6 VDD1 All inputs 0 DC -- 1.7 2.6 VDD2 All inputs 0 DC -- 1.7 2.6 VDD1 All inputs 1 DC -- 3.7 5.6 VDD2 All inputs 1 DC -- 3.7 5.6 Si8420Ax, Bx mA Si8421Ax, Bx mA Si8422Ax, Bx silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 17 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit VDD1 All inputs 0 DC -- 3.7 5.6 mA VDD2 All inputs 0 DC -- 3.7 5.6 VDD1 All inputs 1 DC -- 1.7 2.6 VDD2 All inputs 1 DC -- 1.7 2.6 VDD1 All inputs 0 DC -- 5.4 8.1 VDD2 All inputs 0 DC -- 1.7 2.6 VDD1 All inputs 1 DC -- 1.3 2.0 VDD2 All inputs 1 DC -- 1.7 2.6 Si8423Ax, Bx mA 1 Mbps Supply Current (All inputs = 500 kHz square wave, CL = 15 pF on all outputs) Si8410Ax, Bx VDD1 -- 2.0 3.0 VDD2 -- 1.1 1.7 VDD1 -- 3.5 5.3 VDD2 -- 1.9 2.9 VDD1 -- 2.8 4.2 VDD2 -- 2.8 4.2 VDD1 -- 2.8 4.2 VDD2 -- 2.8 4.2 VDD1 -- 3.3 5.0 VDD2 -- 1.8 2.8 mA Si8420Ax, Bx mA Si8421Ax, Bx mA Si8422Ax, Bx mA Si8423Ax, Bx mA 10 Mbps Supply Current (All inputs = 5 MHz square wave, CL = 15 pF on all outputs) Si8410Bx VDD1 -- 2.0 3.0 VDD2 -- 1.1 1.7 VDD1 -- 3.5 5.3 VDD2 -- 2.1 3.0 VDD1 -- 2.9 4.3 VDD2 -- 2.9 4.3 mA Si8420Bx mA Si8421Bx mA Si8422Bx silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 18 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit VDD1 -- 2.9 4.3 mA VDD2 -- 2.9 4.3 VDD1 -- 3.4 5.1 VDD2 -- 2.0 2.9 Si8423Bx mA 100 Mbps Supply Current (All inputs = 50 MHz square wave, CL = 15 pF on all outputs) Si8410Bx VDD1 -- 2.0 3.0 mA VDD2 -- 2.0 3.0 VDD1 -- 3.5 5.3 VDD2 -- 5.5 6.9 VDD1 -- 4.6 5.8 VDD2 -- 4.6 5.8 VDD1 -- 4.6 5.8 VDD2 -- 4.6 5.8 VDD1 -- 3.4 5.1 VDD2 -- 5.2 6.5 Maximum Data Rate 0 -- 1.0 Mbps Minimum Pulse Width -- -- 250 ns Si8420Bx mA Si8421Bx mA Si8422Bx mA Si8423Bx mA Timing Characteristics Si841xAx, Si842xAx Propagation Delay tPHL, tPLH See Figure 5.1 Propagation Delay Timing on page 12 -- -- 35 ns PWD See Figure 5.1 Propagation Delay Timing on page 12 -- -- 25 ns tPSK(P-P) -- -- 40 ns tPSK -- -- 35 ns Maximum Data Rate 0 -- 150 Mbps Minimum Pulse Width -- -- 6.0 ns 4.0 8.0 11 ns Pulse Width Distortion |tPLH - tPHL| Propagation Delay Skew3 Channel-Channel Skew Si841xBx, Si842xBx Propagation Delay tPHL, tPLH silabs.com | Smart. Connected. Energy-friendly. See Figure 5.1 Propagation Delay Timing on page 12 Rev. 1.4 | 19 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit PWD See Figure 5.1 Propagation Delay Timing on page 12 -- 1.5 3.0 ns tPSK(P-P) -- 2.0 3.0 ns tPSK -- 0.5 1.5 ns Pulse Width Distortion |tPLH - tPHL| Propagation Delay Skew3 Channel-Channel Skew All Models Output Rise Time tr CL = 15 pF -- 2.0 4.0 ns Output Fall Time tf CL = 15 pF -- 2.0 4.0 ns Peak Eye Diagram Jitter tJIT(PK) See Figure 3.3 Eye Diagram on page 4 -- 350 -- ps Common Mode Transient Immunity CMTI VI = VDD or 0 V 20 45 -- kV/s -- 15 40 s Start-up Time4 tSU Notes: 1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is constrained to TA = 0 to 85 C. 2. The nominal output impedance of an isolator driver channel is approximately 50 , 40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 4. Start-up time is the time period from the application of power to valid data at the output. Table 5.5. Regulatory Information1 CSA The Si84xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873. 61010-1: Up to 600 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage. 60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage. 60601-1: Up to 125 VRMS reinforced insulation working voltage; up to 380 VRMS basic insulation working voltage. VDE The Si84xx is certified according to IEC 60747-5-5. For more details, see File 5006301-4880-0001. 60747-5-5: Up to 891 Vpeak for basic insulation working voltage. 60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage. UL The Si84xx is certified under UL1577 component recognition program. For more details, see File E257455. Rated up to 5000 VRMS isolation voltage for basic insulation. Note: 1. Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec. Regulatory Certifications apply to 5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec. For more information, see Section 2. Ordering Guide. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 20 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Electrical Specifications Table 5.6. Insulation and Safety-Related Specifications Parameter Symbol Test Condition Value Unit WB SOIC-16 NB SOIC-8 Nominal Air Gap (Clearance)1 L(IO1) 8.0 min 4.9 min mm Nominal External Tracking (Creepage)1 L(IO2) 8.0 min 4.01 min mm 0.014 0.008 mm 600 600 VRMS Minimum Internal Gap (Internal Clearance) Tracking Resistance (Proof Tracking Index) PTI Erosion Depth ED 0.019 0.040 mm Resistance (Input-Output)2 RIO 101,2 101,2 Capacitance (Input-Output)2 CIO 2.0 1.0 pF 4.0 4.0 pF Input Capacitance3 CI IEC60112 f = 1 MHz Notes: 1. The values in this table correspond to the nominal creepage and clearance values as detailed in Section 7.1 Package Outline (16-Pin Wide Body SOIC) and Section 7.2 Package Outline (8-Pin Narrow Body SOIC). VDE certifies the clearance and creepage limits as 8.5 mm minimum for the WB SOIC-16 package and 4.7 mm minimum for the NB SOIC-8 package. UL does not impose a clearance and creepage minimum for component level certifications. CSA certifies the clearance and creepage limits as 3.9 mm minimum for the NB SOIC-8 and 7.6 mm minimum for the WB SOIC-16 package. 2. To determine resistance and capacitance, the Si84xx is converted into a 2-terminal device. Pins 1-8 (1-4, NB SOIC-8) are shorted together to form the first terminal and pins 9-16 (5-8, NB SOIC-8) are shorted together to form the second terminal. The parameters are then measured between these two terminals. 3. Measured from input pin to ground. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 21 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Electrical Specifications Table 5.7. IEC 60747-5-5 Insulation Characteristics for Si84xxxx1 Parameter Maximum Working Insulation Voltage Symbol VIOTM NB SOIC-8 891 560 Method b1 (VIORM x 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC) 1671 1050 t = 60 sec 6000 4000 2 2 >109 >109 Pollution Degree (DIN VDE 0110, Table 1) Insulation Resistance at TS, VIO = 500 V Characteristic WB SOIC-16 VIORM Input to Output Test Voltage Transient Overvoltage Test Condition RS Unit Vpeak Vpeak Note: 1. Maintenance of the safety data is ensured by protective circuits. The Si84xx provides a climate classification of 40/125/21. Table 5.8. IEC Safety Limiting Values1 Parameter Symbol Case Temperature TS Safety Input, Output, or Supply Current IS Device Power Dissipation2 PD Test Condition JA = 140 C/W (NB SOIC-8), 100 C (WB SOIC-16), VI = 5.5 V, TJ = 150 C, TA = 25 C Max Unit WB SOIC-16 NB SOIC-8 150 150 C 220 160 mA 150 150 mW Notes: 1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 5.2 (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-5 on page 23 and Figure 5.3 (NB SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-5 on page 23. 2. The Si84xx is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 C, CL = 15 pF, input a 150 Mbps 50% duty cycle square wave. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 22 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Electrical Specifications Table 5.9. Thermal Characteristics Parameter Safety-Limiting Values (mA) IC Junction-to-Air Thermal Resistance Symbol WB SOIC-16 NB SOIC-8 Unit JA 100 140 C/W 500 460 VDD1, VDD2 = 2.70 V 375 360 250 VDD1, VDD2 = 3.3 V 220 VDD1, VDD2 = 5.5 V 125 0 0 50 100 150 Case Temperature (C) 200 Safety-Limiting Values (mA) Figure 5.2. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-5 400 320 VDD1, VDD2 = 2.70 V 300 270 200 VDD1, VDD2 = 3.3 V 160 VDD1, VDD2 = 5.5 V 100 0 0 50 100 150 Case Temperature (C) 200 Figure 5.3. (NB SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-5 silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 23 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Electrical Specifications Table 5.10. Absolute Maximum Ratings1 Parameter Symbol Min Typ Max Unit Storage Temperature2 TSTG -65 -- 150 C Operating Temperature TA -40 -- 125 C Junction Temperature TJ -- -- 150 C VDD1, VDD2 -0.5 -- 6.0 V Input Voltage VI -0.5 -- VDD + 0.5 V Output Voltage VO -0.5 -- VDD + 0.5 V Output Current Drive Channel IO -- -- 10 mA Lead Solder Temperature (10 s) -- -- 260 C Maximum Isolation Voltage (1 s) NB SOIC-8 -- -- 4500 VRMS Maximum Isolation Voltage (1 s) WB SOIC-16 -- -- 6500 VRMS Supply Voltage Notes: 1. Permanent device damage may occur if the above absolute maximum ratings are exceeded. Functional operation should be restricted to conditions as specified in the operational sections of this data sheet. 2. VDE certifies storage temperature from -40 to 150 C. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 24 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Pin Descriptions 6. Pin Descriptions 6.1 Pin Descriptions (Wide-Body SOIC) GND2 GND1 NC VDD1 A1 RF XMITR NC NC I s o l a t i o n RF RCVR GND1 NC Si8410 WB SOIC-16 GND2 GND1 NC NC VDD2 VDD1 B1 A1 RF XMITR NC A2 RF XMITR NC NC NC GND1 GND2 NC I s o l a t i o n GND2 GND1 NC NC VDD2 VDD1 RF RCVR B1 A1 RF XMITR RF RCVR B2 A2 RF RCVR NC NC NC GND1 Si8420/23 WB SOIC-16 GND2 NC I s o l a t i o n GND2 GND1 NC NC VDD2 VDD1 NC RF RCVR B1 A1 RF RCVR RF XMITR B2 A2 RF RF XMITR XMITR NC NC NC GND1 GND2 Si8421 WB SOIC-16 I s o l a t i o n VDD2 RF XMITR B1 RF RCVR B2 NC NC NC Si8422 WB SOIC-16 GND2 Figure 6.1. Wide-Body SOIC Table 6.1. Pin Descriptions Name SOIC-16 Pin# SOIC-16 Pin# Type Description Si8410 Si842x GND1 1 1 Ground NC1 2, 5, 6, 8,10, 11, 12, 15 2, 6, 8,10, 11, 15 No Connect VDD1 3 3 Supply A1 4 4 Digital I/O Side 1 digital input or output. A2 NC 5 Digital I/O Side 1 digital input or output. GND1 7 7 Ground Side 1 ground. GND2 9 9 Ground Side 2 ground. B2 NC 12 Digital I/O Side 2 digital input or output. B1 13 13 Digital I/O Side 2 digital input or output. VDD2 14 14 Supply Side 2 power supply. GND2 16 16 Ground Side 2 ground. Side 1 ground. NC Side 1 power supply. Note: 1. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 25 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Pin Descriptions 6.2 Pin Descriptions (Narrow-Body SOIC) VDD1 A1 RF RCVR A2 RF RF RCVR XMITR I s o l a t i o n VDD1 VDD2 RF XMITR B1 A1 RF XMITR RF XMITR RCVR B2 A2 RF XMITR GND2 GND1 GND1 Si8422 NB SOIC-8 I s o l a t i o n VDD2 RF RCVR B1 RF RCVR B2 GND2 Si8423 NB SOIC-8 Figure 6.2. Narrow-Body SOIC Name SOIC-8 Pin# Type Description Si842x VDD1 1 Supply Side 1 power supply. GND1 4 Ground Side 1 ground. A1 2 Digital I/O Side 1 digital input or output. A2 3 Digital I/O Side 1 digital input or output. B1 7 Digital I/O Side 2 digital input or output. B2 6 Digital I/O Side 2 digital input or output. VDD2 8 Supply Side 2 power supply. GND2 5 Ground Side 2 ground. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 26 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Package Outlines 7. Package Outlines 7.1 Package Outline (16-Pin Wide Body SOIC) The figure below illustrates the package details for the Si84xx Digital Isolator. The table below lists the values for the dimensions shown in the illustration. Figure 7.1. 16-Pin Wide Body SOIC Table 7.1. Package Diagram Dimensions Symbol Millimeters Min Max A -- 2.65 A1 0.1 0.3 D 10.3 BSC E 10.3 BSC E1 7.5 BSC b 0.31 0.51 c 0.20 0.33 e 1.27 BSC h 0.25 0.75 L 0.4 1.27 0 7 silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 27 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Package Outlines 7.2 Package Outline (8-Pin Narrow Body SOIC) The figure below illustrates the package details for the Si84xx. The table below lists the values for the dimensions shown in the illustration. Figure 7.2. 8-pin Small Outline Integrated Circuit (SOIC) Package silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 28 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Package Outlines Table 7.2. Package Diagram Dimensions Symbol Millimeters Min Max A 1.35 1.75 A1 0.10 0.25 A2 1.40 REF 1.55 REF B 0.33 0.51 C 0.19 0.25 D 4.80 5.00 E 3.80 4.00 e 1.27 BSC H 5.80 6.20 h 0.25 0.50 L 0.40 1.27 0 8 silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 29 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Land Patterns 8. Land Patterns 8.1 Land Pattern (16-Pin Wide-Body SOIC) The figure below illustrates the recommended land pattern details for the Si84xx in a 16-pin wide-body SOIC. The table below lists the values for the dimensions shown in the illustration. Figure 8.1. 16-Pin SOIC Land Pattern Table 8.1. 16-Pin Wide Body SOIC Land Pattern Dimensions Dimension Feature (mm) C1 Pad Column Spacing 9.40 E Pad Row Pitch 1.27 X1 Pad Width 0.60 Y1 Pad Length 1.90 Notes: 1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN for Density Level B (Median Land Protrusion). 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 30 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Land Patterns 8.2 Land Pattern (8-Pin Narrow Body SOIC) The figure below illustrates the recommended land pattern details for the Si84xx in an 8-pin narrow-body SOIC. The table below lists the values for the dimensions shown in the illustration. Figure 8.2. PCB Land Pattern: 8-Pin Narrow Body SOIC Table 8.2. PCM Land Pattern Dimensions (8-Pin Narrow Body SOIC) Dimension Feature (mm) C1 Pad Column Spacing 5.40 E Pad Row Pitch 1.27 X1 Pad Width 0.60 Y1 Pad Length 1.55 Notes: 1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for Density Level B (Median Land Protrusion). 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 31 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Top Markings 9. Top Markings 9.1 Top Marking (16-Pin Wide Body SOIC) Si84XYSV YYWWTTTTTT e4 TW Figure 9.1. Isolator Top Marking Table 9.1. Top Marking Explanation Line 1 Marking: Base Part Number Ordering Options (See 2. Ordering Guide for more information). Si84 = Isolator product series XY = Channel Configuration X = # of data channels (2, 1) Y = # of reverse channels (1, 0)1,2 S = Speed Grade A = 1 Mbps B = 150 Mbps V = Insulation rating A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5 kV Line 2 Marking: YY = Year WW = Workweek TTTTTT = Mfg Code Line 3 Marking: Circle = 1.7 mm Diameter Assigned by assembly subcontractor. Corresponds to the year and workweek of the mold date. Manufacturing code from assembly house. "e4" Pb-Free Symbol. (Center-Justified) Country of Origin ISO Code Abbreviation TW = Taiwan. Notes: 1. The Si8422 has one reverse channel. 2. The Si8423 has zero reverse channels. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 32 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Top Markings 9.2 Top Marking (8-Pin Narrow-Body SOIC) Si84XYSV YYWWRF e3 AIXX Figure 9.2. Isolator Top Marking Table 9.2. Top Marking Explanation Line 1 Marking: Base Part Number Ordering Options (See 2. Ordering Guide for more information). Si84 = Isolator product series XY = Channel Configuration X = # of data channels (2, 1) Y = # of reverse channels (1, 0)1,2 S = Speed Grade A = 1 Mbps B = 150 Mbps V = Insulation rating A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5 kV Line 2 Marking: YY = Year WW = Workweek Assigned by assembly subcontractor. Corresponds to the year and workweek of the mold date. R = Product (OPN) Revision F = Wafer Fab Line 3 Marking: Circle = 1.1 mm Diameter "e3" Pb-Free Symbol. Left-Justified First two characters of the manufacturing code. A = Assembly Site Last four characters of the manufacturing code. I = Internal Code XX = Serial Lot Number Notes: 1. The Si8422 has one reverse channel. 2. The Si8423 has zero reverse channels. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 33 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet Document Change List 10. Document Change List 10.1 Revision 0.1 * Initial release. 10.2 Revision 0.1 to Revision 1.0 * Updated features list. * Updated transient immunity. * Removed block diagram from front page. * Added chip graphics on front page. * Added Peak Eye Diagram jitter in Table 5.2 Electrical Characteristics on page 9 through Table 5.4 Electrical Characteristics1 on page 17. * Updated transient immunity * Moved Table 4.1 Si84xx Logic Operation Table on page 5 to Section 4. Device Operation. * Added Section 4. Device Operation. * Added Section 4.4 Fail-Safe Operating Mode. * Moved Section 4.5 Typical Performance Characteristics. * Deleted RF Radiated Emissions section. * Deleted RF Magnetic and Common-Mode Transient Immunity section. * Updated MSL rating to MSL2A. 10.3 Revision 1.0 to Revision 1.1 * Numerous text edits. * Added table notes to Table 9.1 Top Marking Explanation on page 32 and Table 9.2 Top Marking Explanation on page 33. 10.4 Revision 1.1 to Revision 1.2 * Updated Timing Characteristics in Table 5.2 Electrical Characteristics on page 9 through Table 5.4 Electrical Characteristics1 on page 17. 10.5 Revision 1.2 to Revision 1.3 * Added references to AEC-Q100 qualified throughout. * Changed all 60747-5-2 references to 60747-5-5. * Updated Table 2.1 Ordering Guide1,2,3 on page 2. * Added table notes 1 and 2. * Removed references to moisture sensitivity levels. * Added Revision D ordering information. * Removed older revisions. * Updated Section 9.1 Top Marking (16-Pin Wide Body SOIC). 10.6 Revision 1.3 to Revision 1.4 September 16, 2016 * Updated data sheet format. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.4 | 34 Table of Contents 1. Features List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1 Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . . 4. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.1 Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.2 Under Voltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.3 Layout Recommendations. 4.3.1 Supply Bypass . . . . 4.3.2 Pin Connections . . . 4.3.3 Output Pin Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Fail-Safe Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.5 Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . 7 6 6 6 6 5. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Pin Descriptions (Wide-Body SOIC) 25 . . . . . . . . . . . . . . . . . . . . . .25 6.2 Pin Descriptions (Narrow-Body SOIC) . . . . . . . . . . . . . . . . . . . . . .26 7. Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.1 Package Outline (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . .27 7.2 Package Outline (8-Pin Narrow Body SOIC). . . . . . . . . . . . . . . . . . . .28 8. Land Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 8.1 Land Pattern (16-Pin Wide-Body SOIC) . . . . . . . . . . . . . . . . . . . . .30 8.2 Land Pattern (8-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . .31 9. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 9.1 Top Marking (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . .32 9.2 Top Marking (8-Pin Narrow-Body SOIC) . . . . . . . . . . . . . . . . . . . . .33 10. Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . 34 10.1 Revision 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 10.2 Revision 0.1 to Revision 1.0. . . . . . . . . . . . . . . . . . . . . . . . .34 10.3 Revision 1.0 to Revision 1.1. . . . . . . . . . . . . . . . . . . . . . . . .34 10.4 Revision 1.1 to Revision 1.2. . . . . . . . . . . . . . . . . . . . . . . . .34 10.5 Revision 1.2 to Revision 1.3. . . . . . . . . . . . . . . . . . . . . . . . .34 10.6 Revision 1.3 to Revision 1.4. . . . . . . . . . . . . . . . . . . . . . . . .34 Table of Contents 35 Smart. Connected. Energy-Friendly. Products Quality Support and Community www.silabs.com/products www.silabs.com/quality community.silabs.com Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc.(R) , Silicon Laboratories(R), Silicon Labs(R), SiLabs(R) and the Silicon Labs logo(R), Bluegiga(R), Bluegiga Logo(R), Clockbuilder(R), CMEMS(R), DSPLL(R), EFM(R), EFM32(R), EFR, Ember(R), Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember(R), EZLink(R), EZRadio(R), EZRadioPRO(R), Gecko(R), ISOmodem(R), Precision32(R), ProSLIC(R), Simplicity Studio(R), SiPHY(R), Telegesis, the Telegesis Logo(R), USBXpress(R) and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Silicon Laboratories: SI8422BB-D-IS SI8422AB-D-IS Si8423AB-D-IS Si8420BD-D-IS SI8422BB-D-ISR SI8422AB-D-ISR Si8421AD-D-IS Si8422AD-D-IS Si8423BB-D-IS Si8420AD-D-IS Si8423BD-D-ISR Si8421AD-D-ISR Si8410AD-D-IS Si8422BD-D-IS Si8420BD-D-ISR Si8423AD-D-IS Si8410BD-D-IS Si8423BD-D-IS Si8421BD-D-IS Si8423AD-D-ISR Si8410BD-DISR Si8423AB-D-ISR Si8423BB-D-ISR Si8420AD-D-ISR Si8421BD-D-ISR Si8410AD-D-ISR Si8422BD-D-ISR Si8422AD-D-ISR SI8420BD-D-ISR SI8421BD-D-IS SI8423AD-D-ISR SI8410BD-D-IS SI8421BD-D-ISR SI8410ADD-IS SI8422AD-D-ISR SI8423BB-D-ISR SI8410AD-D-ISR SI8420BD-D-IS SI8423AB-D-ISR SI8423BB-D-IS SI8421AD-D-IS SI8423BD-D-IS SI8423BD-D-ISR SI8423AB-D-IS SI8410BD-D-ISR SI8421AD-D-ISR SI8420AD-DISR SI8420AD-D-IS SI8423AD-D-IS SI8422BD-D-IS SI8422AD-D-IS SI8422BD-D-ISR