DG406/407
Siliconix
E-76983—Rev. F, 30-Jun-97 1
16-Ch/Dual 8-Ch High-Performance CMOS Analog MUX
Features Benefits Applications
Low On-Resistance—rDS(on): 50
Low Charge Injection—Q: 15 pC
Fast Transition Time—tTRANS: 200 ns
Low Power: 0.2 mW
Single Supply Capability
44-V Supply Max Rating
Higher Accuracy
Reduced Glitching
Improved Data Throughput
Reduced Power Consumption
Increased Ruggedness
Superior to DG506/507A
Wide Supply Ranges: 5 V to 20 V
Data Acquisition Systems
Audio Signal Routing
Medical Instrumentation
ATE Systems
Battery Powered Systems
High-Rel Systems
Single Supply Systems
Description
The DG406 is a 16-channel single-ended analog multiplexer
designed to connect one of sixteen inputs to a common
output as determined by a 4-bit binary address. The DG407
selects one of eight differential inputs to a common
differential output. Break-before-make switching action
protects against momentary shorting of inputs.
An on channel conducts current equally well in both
directions. In the off state each channel blocks voltages up
to the power supply rails. An enable (EN) function allows
the user to reset the multiplexer/demultiplexer to all
switches off for stacking several devices. All control inputs,
address (Ax) and enable (EN) are TTL compatible over the
full specified operating temperature range.
Applications for the DG406/407 include high speed data
acquisition, audio signal switching and routing, ATE
systems, and avionics. High performance and low power
dissipation make them ideal for battery operated and remote
instrumentation applications. For additional application
information, see application note AN206.
Designed in the 44-V silicon-gate CMOS process, the
absolute maximum voltage rating is extended to 44 volts,
allowing operation with 20-V supplies. Additionally
single (12-V) supply operation is allowed. An epitaxial layer
prevents latchup.
Functional Block Diagrams and Pin Configurations
DG407
V+
S3b
S2b
S1b
NC
NC
Da
S2a
S1a
GND
A1
A2
Db
Dual-In-Line and SOIC
A0
EN
V–
NC S8a
S8b S7a
S7b S6a
S6b S5a
S5b S4a
S4b S3a
1
2
3
4
5
6
7
8
28
27
26
25
24
23
22
21
Top V iew
920
10 19
11
12
18
17
13 16
14 15
V+
S11
S10
S9
NC
A3
D
S2
S1
GND
A1
A2
NC
Dual-In-Line and SOIC
A0
EN
V–
NC S8
S16 S7
S15 S6
S14 S5
S13 S4
S12 S3
1
2
3
4
5
6
7
8
28
27
26
25
24
23
22
21
Top V iew
920
10 19
11
12
18
17
13 16
14 15
DG406
Decoders/Drivers Decoders/Drivers
Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70061.
Applications information may be obtained via FaxBack, request documents #70601 and #70604.
DG406/407
2 Siliconix
E-76983—Rev. F, 30-Jun-97
Functional Block Diagrams and Pin Configurations (Cont’d)
Decoders/Drivers
PLCC and LCC
7
8
9
5
20
19
21
22
23
24
25
1234
10
11
12 13 14 15 16 17 18
262728
Top V iew
6
S7b
S5
a
S4b S4
a
S7
a
S3b
S6b S6
a
S3
a
S5b
S2b S2
a
S1b S1
a
PLCC and LCC
Top V iew
GND
NCNC
DNC
V+
D
V–
EN
S
2
1
0
S
A
A
A
8b
8a
b
a
DG407
S13
S15
S5
S12 S4
S7
S11
S14 S6
S3
S10 S2
S9S1
SGND
NCNC
NC
3
V+
2
D
1
V–
0
SEN
DG406
A
A
A
A
16
8
Decoders/Drivers
7
8
9
5
20
19
21
22
23
24
25
1234
10
11
12 13 14 15 16 17 18
262728
6
Truth Table
DG406
Truth Table
DG407
Truth
Table
DG406
Truth
Table
DG407
A3A2A1A0EN On Switch A2A1A0EN On Switch Pair
X X X X 0 None X X X 0 None
0 0 0 0 1 1 0 0 0 1 1
0 0 0 1 1 2 0 0 1 1 2
0 0 1 0 1 3 0 1 0 1 3
0 0 1 1 1 4 0 1 1 1 4
0 1 0 0 1 5 1 0 0 1 5
0 1 0 1 1 6 1 0 1 1 6
0 1 1 0 1 7 1 1 0 1 7
0 1 1 1 1 8 1 1 1 1 8
1 0 0 0 1 9 Logic “0” = VALv 0.8 V
1 0 0 1 1 10
Logic
0
VALv
0
.
8
V
Logic “1” = VAHw 2.4 V
10 1 0 1 11
gAH
X = Don’t Care
10 1 1 1 12
1 1 0 0 1 13
1 1 0 1 1 14
1 1 1 0 1 15
1 1 1 1 1 16
Ordering Information — DG406 Ordering Information — DG407
Temp Range Package Part Number Temp Range Package Part Number
28-Pin Plastic DIP DG406DJ 28-Pin Plastic DIP DG407DJ
–40 to 85_C28-Pin PLCC DG406DN –40 to 85_C28-Pin PLCC DG407DN
28-Pin Widebody SOIC DG406DW 28-Pin Widebody SOIC DG407DW
55 to 125
_
C
28-Pin CerDIP DG406AK/883
55 to 125
_
C
28-Pin CerDIP DG407AK/883
55
t
o
125_C
LCC-28 DG406AZ/883
55
t
o
125_C
LCC-28 DG407AZ/883
DG406/407
Siliconix
E-76983—Rev. F, 30-Jun-97 3
Absolute Maximum Ratings
Voltages Referenced to V–
V+ 44 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GND 25 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Inputsa, VS, VD(V–) –2 V to (V+) +2 V or. . . . . . . . . . . . . . .
20 mA, whichever occurs first
Current (Any Terminal,) 30 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle Max) 100 mA. . . . . . . . . . . . . . . . . .
Storage Temperature (AK, AZ Suffix) –65 to 150_C. . . . . . . .
(DJ, DN Suffix) –65 to 125_C. . . . . . . . .
Power Dissipation (Package)b
28-Pin Plastic DIPc625 mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28-Pin CerDIPd1.2 W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28-Pin Plastic PLCCc450 mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LCC-28e1.35 W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28-Pin Widebody SOIC 450 mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Notes:
a. Signals on SX, DX or INX exceeding V+ or V– will be clamped by
internal diodes. Limit forward diode current to maximum current
ratings.
b. All leads soldered or welded to PC board.
c. Derate 6 mW/_C above 75_C
d. Derate 12 mW/_C above 75_C
e. Derate 13.5 mW/_C above 75_C
Specificationsa
Test Conditions
Unless Otherwise Specified A Suffix
–55 to 125_CD Suffix
–40 to 85_C
Parameter Symbol V+ = 15 V, V– = –15 V
VAL = 0.8 V, VAH = 2.4 VfTempbTypcMindMaxdMindMaxdUnit
Analog Switch
Analog Signal RangeeVANALOG Full –15 15 –15 15 V
Drain-Source
On-Resistance rDS(on) VD = "10 V, IS = –10 mA
Sequence Each Switch On Room
Full 50 100
125 100
125 W
rDS(on) Matching
Between ChannelsgDrDS(on) VD = "10 V Room 5 %
Source Off
Leakage Current IS(off)
V0V
Room
Full 0.01 –0.5
–50 0.5
50 –0.5
–5 0.5
5
Drain Off
Lk C
ID(off)
VEN = 0 V
VD = "10 V
VS = #10 V DG406 Room
Full 0.04 –1
–200 1
200 –1
–40 1
40
Leakage Current
I
D(off)
VS
#10
V
DG407 Room
Full 0.04 –1
–100 1
100 –1
–20 1
20 nA
Drain On
Lk C
ID(on)
VS = VD = "10 V
Sequence Each
DG406 Room
Full 0.04 –1
–200 1
200 –1
–40 1
40
Leakage Current
I
D(on)
Sequence
Each
Switch On DG407 Room
Full 0.04 –1
–100 1
100 –1
–20 1
20
Digital Control
Logic High Input Voltage VINH Full 2.4 2.4
V
Logic Low Input Voltage VINL Full 0.8 0.8
V
Logic High Input Current IAH VA = 2.4 V, 15 V Full –1 1 –1 1
mA
Logic Low Input Current IAL VEN = 0 V, 2.4 V, VA = 0 V Full –1 1 –1 1 m
A
Logic Input Capacitance Cin f = 1 MHz Room 7 pF
Dynamic Characteristics
Transition Time t TRANS See Figure 2 Room
Full 200 350
450 350
450
Break-Before-Make
Interval tOPEN See Figure 4 Room
Full 50 25
10 25
10
ns
Enable Turn-On Time tON(EN)
Room
Full 150 200
400 200
400
ns
Enable Turn-Off Time tOFF(EN)
ee
gure
Room
Full 70 150
300 150
300
DG406/407
4 Siliconix
E-76983—Rev. F, 30-Jun-97
Specificationsa
Test Conditions
Unless Otherwise Specified A Suffix
–55 to 125_CD Suffix
–40 to 85_C
Parameter Symbol V+ = 15 V, V– = –15 V
VAL = 0.8 V, VAH = 2.4 VfTempbTypcMindMaxdMindMaxdUnit
Dynamic Characteristics (Cont’d)
Charge Injection Q CL = 1 nF, VS = 0 V, Rs = 0 WRoom 15 pC
Off IsolationhOIRR VEN = 0 V, RL = 1 kW
f = 100 kHz Room –69 dB
Source Off Capacitance CS(off) VEN = 0 V, VS = 0 V, f = 1 MHz Room 8
Drain Off Capacitance
CD(off)
Room 130
D
ra
i
n
Off
C
apac
it
ance
C
D(off) VEN = 0 V, VD = 0 V
f1MH
DG407 Room 65 pF
Drain On Capacitance
CD(on)
EN ,D
f = 1 MHz DG406 Room 140
D
ra
i
n
O
n
C
apac
it
ance
C
D(on) DG407 Room 70
Power Supplies
Positive Supply Current I+
Room
Full 13 30
75 30
75
Negative Supply Current I–
EN =
A =
or
Room
Full –0.01 –1
–10 –1
–10
mA
Positive Supply Current I+
Room
Full 50 500
900 500
700
m
A
Negative Supply Current I–
EN =
.
,
A =
Room
Full –0.01 –20
–20 –20
–20
Specificationsa for Single Supply
Test Conditions
Unless Otherwise Specified
V12VV0V
A Suffix
–55 to 125_CD Suffix
–40 to 85_C
Parameter Symbol V+ = 12 V, V– = 0 V
VAL = 0.8 V, VAH = 2.4 VfTempbTypcMindMaxdMindMaxdUnit
Analog Switch
Analog Signal RangeeVANALOG Full 0 12 0 12 V
Drain-Source
On-Resistance rDS(on) VD = 3 V, 10 V, IS = – 1 mA
S EhSihO
Room 90 120 120 W
rDS(on) Matching
Between ChannelsgDrDS(on)
D,,
S
Sequence Each Switch On Room 5 %
Source Off
Leakage Current IS(off) VEN = 0 V
VD=10Vor05V
Room 0.01
Drain Off
Lk C
ID(off)
VD =
10
V or
0
.
5
V
VS = 0.5 V or 10 V DG406 Room 0.04
nA
Leakage Current
I
D(off)
VS
0
.
5
V
or
10
V
DG407 Room 0.04 nA
Drain On
Lk C
ID(on)
VS = VD = 10 V
S EhSihO
DG406 Room 0.04
Leakage Current
I
D(on)
SD
Sequence Each Switch On DG407 Room 0.04
Dynamic Characteristics
Switching T ime of
Multiplexer tTRANS VS1 = 8 V, VS8 = 0 V, VIN = 2.4 V Room 300 450 450
ns
Enable Turn-On Time tON(EN) VINH = 2.4 V, VINL = 0 V
V5V
Room 250 600 600 ns
Enable Turn-Off Time tOFF(EN)
INH ,INL
VS1 = 5 V Room 150 300 300
Charge Injection Q CL = 1 nF, VS= 6 V, RS = 0 Room 20 pC
DG406/407
Siliconix
E-76983—Rev. F, 30-Jun-97 5
Specifications for Single Supply
Test Conditions
Unless Otherwise Specified
V+=12VV =0V
A Suffix
–55 to 125_CD Suffix
–40 to 85_C
Parameter Symbol V+ = 12 V, V– = 0 V
VAL = 0.8 V, VAH = 2.4 VfTempbTypcMindMaxdMindMaxdUnit
Power Supplies
Positive Supply Current I+
VEN =0Vor5VV
A=0Vor5V
Room
Full 13 30
75 30
75
mA
Negative Supply Current I–
V
EN =
0
V
or
5
V
,
V
A =
0
V
or
5
V
Room
Full –0.01 –20
–20 –20
–20
m
A
Notes:
a. Refer to PROCESS OPTION FLOWCHART.
b. Room = 25_C, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. VIN = input voltage to perform proper function.
g. DrDS(on) = rDS(on) MAX – rDS(on) MIN.
h. Worst case isolation occurs on Channel 4 due to proximity to the drain pin.
Typical Characteristics
rDS(on) vs. VD and Supply rDS(on) vs. VD and Temperature
ID , IS Leakage Currents vs. Analog Voltage
VD – Drain Voltage (V)
VS , VD – Source Drain Voltage (V)
VD – Drain Voltage (V)
VD – Drain Voltage (V)
rDS(on) vs. VD and Supply
– Current (pA), I S
ID
160
120
80
40
0–20 20–4–12 4 12
5 V
10 V
12 V
15 V
20 V
8 V
0
40
30
20
10
80
70
60
50
15105–15 –10 –5 0
–55_C
–40_C
0_C
25_C
85_C
125_C
V+ = 15 V
V– = –15 V
160
120
80
40
00204 8 12 16
V+ = 7.5 V
200
240 V– = 0 V
10 V
12 V
15 V 20 V 22 V
120
–120–15 –10 –5 0 5 10 15
–80
–40
0
40
80
V+ = 15 V
V– = –15 V
VS = –VD for ID(off)
VD = VS(open) for ID(on)
DG406 ID(on), ID(off)
IS(off)
DG407 ID(on), ID(off)
– On-Resistance (rDS(on) W)– On-Resistance (rDS(on) W)
– On-Resistance (rDS(on) W)
DG406/407
6 Siliconix
E-76983—Rev. F, 30-Jun-97
Typical Characteristics (Cont’d)
ID , IS Leakages vs. Temperature Switching Times vs. Bipolar Supplies
Temperature (_C) VSUPPLY – Supply Voltage (V)
Time (ns)
– Current , I S
ID
V+ = 15 V
V– = –15 V
VD = 14 V
ID(on), ID(off)
IS(off)
100 nA
10 nA
1 nA
100 pA
10 pA
1 pA
0.1 pA–55 –35 –15 5 25 45 65 85 105 125
350
300
150
100
50
0
510 15 20
200
250 tTRANS
tON(EN)
tOFF(EN)
Switching Times vs. Single Supply Charge Injection vs. Analog Voltage
V+ – Supply Voltage (V) VS – Source Voltage (V)
Q (pC)
Time (ns)
700
600
300
200
100
0510 1520
400
500
tTRANS
tON(EN)
tOFF(EN)
V– = 0 V
0
40
30
20
10
70
60
50
15105–15 –10 –5 0
V+ = 15 V,
V– = –15 V
V+ = 12 V,
V– = 0 V
Off-Isolation vs. Frequency Supply Currents vs. Switching Frequency
f – Frequency (Hz) f – Frequency (Hz)
I – Current (mA)
ISOL (dB)
–80
–60
–40
–20
010 k 100 k 1 M 10 M
–100
–120
1 k100
–140 10
–10 10 100 1 k 10 k 100 k 1 M 10 M
–8
–6
0
4
6
IGND
–4
–2
2
8
I–
I+
EN = 5 V
AX = 0 or 5 V
DG406/407
Siliconix
E-76983—Rev. F, 30-Jun-97 7
Typical Characteristics (Cont’d)
tON/tOFF vs. Temperature Switching Threshold vs. Supply Voltage
Temperature (_C) VSUPPLY – Supply Voltage (V)
– Source Current (A)IS
Time (ns)
180
140
100
60
220
tON(EN)
tOFF(EN)
tTRANS
260
300
V+ = 15 V
V– = –15 V
3
1
0
510 15 20
2
0
ÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇ
–55 –35 125–15 5 25 45 65 85 105
Schematic Diagram (Typical Channel)
Figure 1.
EN
A0
GND
S1
V+
D
V+
Sn
V–
Decode/
Drive
Level
Shift
V–
V+
VREF
AX
DG406/407
8 Siliconix
E-76983—Rev. F, 30-Jun-97
Test Circuits
Figure 2. Transition Time
Figure 3. Enable Switching Time
VO
tr <20 ns
tf <20 ns
VO
Logic
Input
tON(EN)
90%
Switch
Output
50%
tOFF(EN)
3 V
0 V
0 V
Logic
Input
Switch
Output
VS8
VO
tTRANS
tr <20 ns
tf <20 ns
S8 ONS1 ON tTRANS
0 V
VS1
50%
90%
90%
3 V
0 V
DG406
S1b
S8b
A2
Db
A1
*
A0
* = S1a – S8a, S2b – S7b, Da
50 W 300 W
V
O
#10 V
"10 V
+2.4 V
+15 V
–15 V
EN V+
V–GND
35 pF
A1
50 W
A
0
S
1
V
O
A
2–5 V
+15 V
–15 V 300 W
EN
S2 – S16
V+
V–GND D
35 pF
A3
VO
S1b
A2
S1a – S8a
S2b – S8b
A1
Da and Db
A0
50 W 300 W
+15 V
–15 V
EN
V+
V–GND 35 pF
S1
S2 – S15
S16
A2
A1
A0
50W 300 W
V
O
A
3
#10 V
"10 V
+2.4 V
+15 V
–15 V
EN V+
V–GND D
35 pF
DG407
DG406
DG407
–5 V
90%
DG406/407
Siliconix
E-76983—Rev. F, 30-Jun-97 9
Test Circuits (Cont’d)
Figure 4. Break-Before-Make Interval
50%
80%
Logic
Input
Switch
Output
VO
VS
tOPEN
tr <20 ns
tf <20 ns
0 V
3 V
0 V
50 W
A0
All S and Da
300 W
A3
D,Db
A1
A2
+2.4 V
+15 V
–15 V
EN V+
V–
VO
GND
+5 V
35 pF
DG406
DG407
Application Hints
Sampling speed is limited by two consecutive events: the
transition time of the multiplexer, and the settling time of
the sampled signal at the output.
tTRANS is given on the data sheet. Settling time at the load
depends on several parameters: rDS(on) of the multiplexer ,
source impedance, multiplexer and load capacitances,
charge injection of the multiplexer and accuracy desired.
The settling time for the multiplexer alone can be derived
from the model shown in Figure 5. Assuming a low
impedance signal source like that presented by an op amp
or a buffer amplifier, the settling time of the RC network
for a given accuracy is equal to nt:
% Accuracy # Bits n
0.25 8 6
0.012 12 9
0.0017 15 11
RS = 0
rDS(on) VOUT
CD(on)
Figure 5. Simplified Model of One Multiplexer Channel
The maximum sampling frequency of the multiplexer is:
(1)
fs = 1
N (tSETTLING + tTRANS)
where N = number of channels to scan
tSETTLING = nt = n x rDS(on) x CD(on)
For the DG406 then, at room temp and for 12-bit
accuracy, using the maximum limits:
(2)
fs+1
16 (9 x 100 Wx10
–12F) )300x10
–12 s
or
(3)
fs = 694 kHz
DG406/407
10 Siliconix
E-76983—Rev. F, 30-Jun-97
Application Hints (Cont’d)
From the sampling theorem, to properly recover the
original signal, the sampling frequency should be more
than twice the maximum component frequency of the
original signal. This assumes perfect bandlimiting. In a
real application sampling at three to four times the filter
cutoff frequency is a good practice.
Therefore from equation 2 above:
(4)
fc = 1
4x fs = 173 kHz
From this we can see that the DG406 can be used to
sample 16 different signals whose maximum component
frequency can be as high as 173 kHz. If for example, two
channels are used to double sample the same incoming
signal then its cutof f frequency can be doubled.
The block diagram shown in Figure 6 illustrates a typical
data acquisition front end suitable for low-level analog
signals. Differential multiplexing of small signals is
preferred since this method helps to reject any common
mode noise. This is especially important when the sensors
are located at a distance and it may eliminate the need for
individual amplifiers. A low rDS(on), low leakage
multiplexer like the DG407 helps to reduce measurement
errors. The low power dissipation of the DG407
minimizes on-chip thermal gradients which can cause
errors due to temperature mismatch along the parasitic
thermocouple paths. Please refer to Application Note
AN203 for additional information.
12-Bit
A/D
Converter
Analog
Multiplexer
DG407
Controller
To
Sensor 1
To
Sensor 8
Inst
Amp S/H
Figure 6. Measuring low-level analog signals is more accurate when using a differential multiplexing technique.