2 GHz to 18 GHz, Digitally Tunable,
High-Pass and Low-Pass Filter
Data Sheet
ADMV8818
Rev. 0 Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice.
No license is granted by implication or otherwise under any patent or patent rights of Analog
Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2020 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Digitally tunable, multioctave, high-pass and low-pass tuning
Independent 3 dB frequency control for up to 4 GHz of
bandwidth
Optimal wideband rejection: 35 dB
Single chip replacement for discrete filter banks
Compact 9 mm × 9 mm, 56-terminal LGA package
APPLICATIONS
Test and measurement equipment
Military radar, electronic warfare, and electronic
countermeasures
Satellite communications and space
Industrial and medical equipment
GENERAL DESCRIPTION
The ADMV8818 is a fully monolithic microwave integrated
circuit (MMIC) that features a digitally selectable frequency of
operation. The device features four independently controlled high-
pass filters (HPFs) and four independently controlled low-pass
filters (LPFs) that span the 2 GHz to 18 GHz frequency range.
The flexible architecture of the ADMV8818 allows the 3 dB cutoff
frequency (f3dB) of the high-pass and low-pass filters to be
controlled independently to generate up to 4 GHz of bandwidth.
The digital logic control on each filter is 4 bits wide (16 states) and
controls the on-chip reactive elements to adjust the f3dB. The typical
insertion loss is 9 dB, and the wideband rejection is 35 dB, which is
ideally suited for minimizing system harmonics.
This tunable filter can be used as a smaller alternative to large
switched filter banks and cavity tuned filters, and this device
provides a dynamically adjustable solution in advanced
communications applications.
FUNCTIONAL BLOCK DIAGRAM
SPI
ADMV8818
GND
14
13
12
11
10
9
8
7
5
4
3
2
1
6
GND
GND
GND
GND
GND
RFIN
GND
GND
GND
GND
GND
GND
RST
15
16
17
18
19
20
21
22
23
24
25
26
27
28
GND
SCLK
GND
CS
GND
GND
GND
GND
SDO
SDI
SFL
GND
GND
GND
56
55
54
53
52
51
50
49
48
47
46
45
44
43
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
29
30
31
32
33
34
35
36
37
38
39
40
41
42
GND
VSS1 (–2.5V)
GND
VDD2 (+3.3V)
GND
GND
RFOUT
GND
GND
GND
GND
VDD1 (+2.5V)
GND
GND
BYPASS
2
BYPASS
2
1
3
4
3
1
4
25603-001
Figure 1.
ADMV8818 Data Sheet
Rev. 0 | Page 2 of 36
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ...................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications .................................................................................... 3
Timing Specifications .................................................................. 5
Absolute Maximum Ratings ........................................................... 7
Electrostatic Discharge (ESD) Ratings ...................................... 7
ESD Caution.................................................................................. 7
Pin Configuration and Function Descriptions ............................ 8
Typical Performance Characteristics ............................................. 9
4 GHz Constant Bandwidth Data .............................................. 9
Board Loss and Bypass Configuration Data ........................... 11
HPF and LPF Configuration..................................................... 12
Theory of Operation ...................................................................... 14
Chip Architecture ....................................................................... 14
Tunable High-Pass Filters ......................................................... 14
Tunable Low-Pass Filters .......................................................... 15
SPI Configuration ...................................................................... 15
RF Connections .......................................................................... 15
Mode Selection ........................................................................... 15
SPI Write Mode .......................................................................... 16
Switch Positions ......................................................................... 16
Switch Set .................................................................................... 16
Filter Settings .............................................................................. 16
Write Group Priority ................................................................. 16
Frequency Terminology ............................................................ 16
SPI Fast Latch Mode .................................................................. 16
Chip Reset ................................................................................... 17
Applications Information ............................................................. 18
PCB Design Guidelines ............................................................. 18
Programming Flow Chart ............................................................. 19
Register Summary .......................................................................... 20
Register Details ............................................................................... 27
Outline Dimensions ....................................................................... 36
Ordering Guide .......................................................................... 36
REVISION HISTORY
12/2020—Revision 0: Initial Version
Data Sheet ADMV8818
Rev. 0 | Page 3 of 36
SPECIFICATIONS
TA = 25°C, unless otherwise noted.
Table 1.
Parameter Min Typ Max Unit Test Conditions/Comments
FREQUENCY RANGE (f3dB) 3 dB cutoff
Bypass Configuration 2 18 GHz
HPF 1
State 0 1.75 GHz
State 15 3.55 GHz
HPF 2
State 0 3.40 GHz
State 15 7.25 GHz
HPF 3
State 0 6.60 GHz
State 15 12.00 GHz
HPF 4
State 0 12.50 GHz
State 15 19.90 GHz
LPF 1
State 0 2.05 GHz
State 15 3.85 GHz
LPF 2
State 0 3.35 GHz
State 15 7.25 GHz
LPF 3
State 0 7.00 GHz
State 15 13.00 GHz
LPF 4
State 0 12.55 GHz
State 15 18.85 GHz
INSERTION LOSS
Bypass Configuration
2 GHz −3.2 dB
10 GHz −4.4 dB
18 GHz −6.0 dB
2 GHz to 6 GHz −7.3 dB HPF 1 State 2 and LPF 2 State 11
6 GHz to 10 GHz −8.6 dB HPF 2 State 11 and LPF 3 State 8
10 GHz to 14 GHz −11.8 dB HPF 3 State 10 and LPF 4 State 5
14 GHz to 18 GHz −14.6 dB HPF 4 State 5 and LPF 4 State 13
BANDWIDTH (3 dB) Smaller bandwidth possible with more insertion
loss
2 GHz to 10 GHz 0.5 to 4 GHz
10 GHz to 18 GHz 1 to 4 GHz
RESOLUTION 4 bits per filter (LPF and HPF)
HPF 1 0.12 GHz
HPF 2 0.26 GHz
HPF 3 0.36 GHz
HPF 4 0.49 GHz
LPF 1 0.12 GHz
LPF 2 0.26 GHz
LPF 3 0.40 GHz
LPF 4 0.42 GHz
ADMV8818 Data Sheet
Rev. 0 | Page 4 of 36
Parameter Min Typ Max Unit Test Conditions/Comments
WIDEBAND REJECTION FREQUENCY OFFSET Measured at 35 dB rejection
HPF 1
State 0 −0.65 ΔGHz
State 15 −1.25 ΔGHz
HPF 2
State 0 −0.85 ΔGHz
State 15 −2.00 ΔGHz
HPF 3
State 0 −1.15 ΔGHz
State 15 −1.90 ΔGHz
HPF 4
State 0 −2.35 ΔGHz
State 15 −3.10 ΔGHz
LPF 1
State 0 0.70 ΔGHz
State 15 1.00 ΔGHz
LPF 2
State 0 0.90 ΔGHz
State 15 1.50 ΔGHz
LPF 3
State 0 2.30 ΔGHz
State 15 3.20 ΔGHz
LPF 4
State 0 2.50 ΔGHz
State 15 3.95 ΔGHz
RE-ENTRY FREQUENCY 32 GHz ≤35 dB
RETURN LOSS 10 dB
DYNAMIC PERFORMANCE
Input Power for 0.1 dB Compression
(P0.1dB)
18 dBm
Input Third-Order Intercept (IP3) 45 dBm Input power (PIN)1 = 5 dBm per tone
Group Delay Flatness <0.8 ns
Amplitude Settling Time 1 µs To within ≤1 dB of static insertion loss
Phase Settling Time 2 µs To within ≤of static insertion phase
Drift Rate
Amplitude −0.018 dB/°C At 8 GHz
Frequency −100 ppm/°C 6 GHz to 10 GHz constant bandwidth state
RESIDUAL PHASE NOISE
At 1 MHz Offset 165 dBc/Hz
SUPPLY VOLTAGE
VSS1 −2.6 −2.5 −2.4 V
VDD1 2.4 2.5 2.6 V
VDD2 3.2 3.3 3.4 V
SUPPLY CURRENT (STATIC)
VSS1 −50 µA
VDD1 200 µA
VDD2 50 µA
SUPPLY CURRENT (DYNAMIC)
VDD2 fSCLK/2 mA Where fSCLK is the SCLK toggle frequency in MHz,
for example, continuous SPI writing at 10 MHz
yields 5 mA of dynamic supply current
Data Sheet ADMV8818
Rev. 0 | Page 5 of 36
Parameter Min Typ Max Unit Test Conditions/Comments
LOGIC (RST, CS, SCLK, SDI, SDO, SFL)
Logic Low –0.3 0 +0.8 V
Logic High 1.2 3.3 3.6 V
1 When the insertion loss is less than 20 dB, PIN = 8 dBm per tone.
TIMING SPECIFICATIONS
Table 2.
Parameter Min Typ Max Unit Test Conditions / Comments
t1 10 ns RST low time to perform reset
10 ns SCLK cycle time (write)
t2 20 ns SCLK cycle time (read)
t3 2.5 ns SCLK high time
t4 2.5 ns SCLK low time
t5 5 ns CS falling edge to SCLK rising edge setup time
t6 2 ns SCLK rising edge to CS hold time
t7 5 ns Minimum CS high time for latching in data (for multiple SPI transactions)
t8 5 ns CS rising edge to next SCLK rising edge ignore
t9 5 ns SDI data setup time
t10 2 ns SDI data hold time
t11 10 ns SFL falling edge (exiting SFL mode) to CS falling edge time (start SPI transaction)
t12 10 ns CS rising edge (end SPI transaction) to SFL rising edge time (entering SFL mode)
t13 10 ns SFL rising edge to CS falling edge time
t14 10 ns CS cycle time (SFL mode)
t15 2.5 ns CS high time (SFL mode)
t16 2.5 ns CS low time (SFL mode)
t17 6 ns SCLK falling edge to SDO valid (load capacitance (CL) = 10 pF)
t18 5 ns SDO rise and fall time (CL = 10 pF)
t19 4 ns CS rising edge to SDO tristate (CL = 10 pF)
ADMV8818 Data Sheet
Rev. 0 | Page 6 of 36
Timing Diagram
1 2SCLK
CS
SDI
SFL
RST
SDO
R/W
t1
t7
t2t3t8
t15
t16
t13
t12
t11
t14
t6
t4
t5
t10
t17 t19
t18
t9
3
A14 A13 TO A0
17 18 19 20 21 22 23 24
D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0
DON’ T CARE
NOTES
1. FOR RE AD OPE RATION THE DATA BITS ON SDI ARE DON’T CARE S .
4 5
25603-103
Figure 2. Timing Diagram
Data Sheet ADMV8818
Rev. 0 | Page 7 of 36
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Rating
SUPPLY
VDD1 −0.3 V to +2.8 V
VDD2 −0.3 V to +3.6 V
VSS1 −3.6 V to +0.3 V
Digital Control Inputs
Voltage 0.3 V to VDD2 + 0.3 V
Current 2 mA
RF Input Power1 20 dBm
Temperature
Operating Range −55°C to +105°C
Storage Range −65°C to +150°C
Junction to Maintain 1,000,000 Hours
Mean Time to Failure (MTTF)
135°C
Nominal Junction (TPADDLE = 85°C) 90°C
Moisture Sensitivity Level (MSL) Rating MSL3
1 Maximum RF input power valid for frequencies above 1 GHz. For incident
signals below this frequency, contact Analog Devices, Inc., to discuss the use
case scenario.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the
operational section of this specification is not implied.
Operation beyond the maximum operating conditions for
extended periods may affect product reliability.
ELECTROSTATIC DISCHARGE (ESD) RATINGS
The following ESD information is provided for handling of
ESD-sensitive devices in an ESD protected area only.
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.
Field induced charged device model (FICDM) per ANSI/ESDA/
JEDEC JS-002.
ESD Ratings for ADMV8818
Table 4. ADMV8818, 56-Terminal LGA
ESD Model Withstand Threshold (V) Class
HBM 2000 2
FICDM 250 C3
ESD CAUTION
ADMV8818 Data Sheet
Rev. 0 | Page 8 of 36
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
GND
GND
GND
GND
GND
GND
RFIN
GND
GND
GND
GND
GND
GND
RST
GND
SCLK
GND
CS
GND
GND
GND
GND
SDO
SDI
SFL
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
1
2
3
29
30
31
32
33
34
35
36
37
38
39
40
41
42
15
16
18
17
19
20
21
22
23
24
25
26
27
28 43
44
45
46
47
48
49
50
51
52
53
54
55
56
4
5
6
7
8
9
10
11
12
13
14
ADMV8818
TOP VIEW
(No t t o Scale)
GND
NOTES
1. EXPOSED PAD. THE EXPOSED PAD MUS T BE
CONNECTED TO THE RF AND DC GRO UND.
VSS1 (–2.5V)
GND
VDD2 (+3.3V)
GND
GND
RFOUT
GND
GND
GND
GND
VDD1 (+2.5V)
GND
GND
25603-102
Figure 3. Pin Configuration
Table 5. Pin Function Descriptions
Pin No. Mnemonic Description
1 to 6, 8 to 13, 15, 17, 19,
21, 23, 25 to 30, 32 to
35, 37, 38, 40, 42 to 56
GND Ground. Connect the GND pins to the RF and dc ground.
7 RFIN RF Input Pin. RFIN is dc-coupled and matched to 50 Ω. Do not apply an external voltage to RFIN.
14 RST Chip Reset. 3.3 V logic. Active low. The RST pin is internally pulled high with a 260 resistor.
16 SCLK Serial Peripheral Interface (SPI) Clock. 3.3 V logic. The SCLK pin is internally pulled low with a
260 resistor.
18 CS SPI Chip Select. 3.3 V logic. Active low. The CS pin is internally pulled low with a 260 resistor.
20 SDO SPI Data Output. 3.3 V logic. The SDO pin is internally pulled low with a 260 resistor.
22 SDI SPI Data Input. 3.3 V logic. The SDI pin is internally pulled low with a 260 resistor.
24 SFL SPI Fast Latch Enable. 3.3 V logic. Set SFL high to enable fast latching of filter states on each
rising edge of CS. While SFL is in this mode, the SCLK, SDO, and SDI pins are not active. The SFL
pin is internally pulled low with a 260 resistor.
31 VDD1 2.5 V Power Supply Pin. Place 0.1 µF and 100 pF decoupling capacitors close to VDD1.
36 RFOUT RF Output Pin. RFOUT is dc-coupled and matched to 50 Ω. Do not apply an external voltage to RFOUT.
39 VDD2 3.3 V Power Supply Pin. Place 0.1 µF and 100 pF decoupling capacitors close to VDD2.
41 VSS1 –2.5 V Power Supply Pin. Place 0.1 µF and 100 pF decoupling capacitors close to VSS1.
EPAD Exposed Pad. The exposed pad must be connected to the RF and dc ground.
Data Sheet ADMV8818
Rev. 0 | Page 9 of 36
TYPICAL PERFORMANCE CHARACTERISTICS
4 GHz CONSTANT BANDWIDTH DATA
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–60
–55
INSERTION LOSS (dB)
0246810 12 14 16 18
RF FREQ UE NC Y (GHz)
20 22 24 26 28 30 32 34 36 38 40
25603-002
HPF 1 AND L P F 2
HPF 2 AND L P F 3
HPF 3 AND L P F 4
HPF 4 AND L P F 4
Figure 4. Insertion Loss vs. RF Frequency at 4 GHz Constant Bandwidth
Figure 5. Input and Output Return Loss and Insertion Loss vs. RF Frequency,
HPF 1 and LPF 2 Band at 4 GHz Constant Bandwidth
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–60
–55
RF FREQ UE NCY (GHz)
0246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
25603-004
INPUT AND OUT P UT RETURN L OSS
AND INSE RTI ON L OSS ( dB)
INPUT RE TURN L OSS
OUTPUT RETURN L OSS
INSERTION LOSS
Figure 6. Input and Output Return Loss and Insertion Loss vs. RF Frequency,
HPF 2 and LPF 3 Band at 4 GHz Constant Bandwidth
0
–2
–4
–6
–8
–10
–22
–24
–26
–28
–30
–14
–16
–18
–20
–12
HPF 1
AND
LPF 2
INSERTION LOSS (dB)
HPF 2
AND
LPF 3 HPF 3
AND
LPF 4 HPF 4
AND
LPF 4
25603-005
RF FREQ UE NCY (G Hz)
0 2 4 6 8 10 12 2214 16 18 20
−55°C
−40°C
+25°C
+85°C
+105°C
Figure 7. Insertion Loss vs. RF Frequency at 4 GHz Constant Bandwidth and
Various Temperatures
–5
0
–10
–15
–20
–25
–30
–35
–40
–45
–50
–60
–55
INPUT AND OUT P UT RETURN L OSS
AND INSE RTI ON L OSS ( dB)
RF FREQ UE NC Y (GHz)
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
25603-006
INPUT RE TURN L OSS
OUTPUT RETURN L OSS
INSERTION LOSS
Figure 8. Input and Output Return Loss and Insertion Loss vs. RF Frequency,
HPF 3 and LPF 4 Band at 4 GHz Constant Bandwidth
–5
0
–10
–15
–20
–25
–30
–35
–40
–45
–50
–60
–55
INPUT AND OUT P UT RETURN L OSS
AND INSE RTI ON L OSS ( dB)
RF FREQ UE NCY (G Hz)
0246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
25603-007
INPUT RE TURN L OSS
OUTPUT RETURN L OSS
INSERTION LOSS
Figure 9. Input and Output Return Loss and Insertion Loss vs. RF Frequency,
HPF 4 and LPF 4 Band at 4 GHz Constant Bandwidth
ADMV8818 Data Sheet
Rev. 0 | Page 10 of 36
GROUP DE LAY (ns)
INSERTION LOSS (dB)
INSERTION LOSS
GROUP DELAY
25603-008
–5
0
–10
–15
–20
–25
–30
–35
–40
–45
–50
–60
–55
0 21 3 4 5 6 7 8
RF FREQ UE NCY (GHz)
0
0.15
0.30
0.45
0.60
0.75
0.90
1.05
1.20
1.35
1.50
1.65
1.80
Figure 10. Insertion Loss and Group Delay vs. RF Frequency, HPF 1 and LPF 2
at 4 GHz Constant Bandwidth
INSERTION LOSS (dB)
GROUP DELAY ( ns)
25603-009
–5
0
–10
–15
–20
–25
–30
–35
–40
–45
–50
–60
–55
3 75 9 11 13 15
RF FREQ UE NCY (GHz)
0
0.15
0.30
0.45
0.60
0.75
0.90
1.05
1.20
1.35
1.50
1.65
1.80
INSERTION LOSS
GROUP DELAY
Figure 11. Insertion Loss and Group Delay vs. RF Frequency, HPF 2 and LPF 3
at 4 GHz Constant Bandwidth
55
45
35
25
15
5
HPF 1
AND
LPF 2
HPF 2
AND
LPF 3
HPF 3
AND
LPF 4
HPF 4
AND
LPF 4
−40°C, HPF 1 STATE 2, LPF 2 STATE 11
+25° C, HPF 1 STATE 2, LPF 2 STATE 11
+85° C, HPF 1 STATE 2, LPF 2 STATE 11
−40°C, HPF 2 STATE 11, LPF 3 STATE 8
+25° C, HPF 2 STATE 11, LPF 3 STATE 8
+85° C, HPF 2 STATE 11, LPF 3 STATE 8
−40°C, HPF 3 STATE 10, LPF 4 STATE 5
+25° C, HPF 3 STATE 10, LPF 4 STATE 5
+85° C, HPF 3 STATE 10, LPF 4 STATE 5
−40°C, HPF 4 STATE 5, LPF 4 STAT E 13
+25° C, HPF 4 STATE 5, LPF 4 STATE 13
+85° C, HPF 4 STATE 5, LPF 4 STATE 13
RF FREQ UE NCY (GHz)
25603-040
INPUT I P 3 ( dBm)
60
50
40
30
20
10
020 4 6 8 10 12 14 16 18 20
Figure 12. Input IP3 vs. RF Frequency, 4 GHz, 3 dB Bandwidth Configuration
at Various Temperatures
INSERTION LOSS (dB)
GROUP DE LAY (ns)
25603-011
–5
0
–10
–15
–20
–25
–30
–35
–40
–45
–50
–60
–55
7 11
913 15 17
RF FREQ UE NC Y (GHz)
INSERTION LOSS
GROUP DE LAY
0
0.15
0.30
0.45
0.60
0.75
0.90
1.05
1.20
1.35
1.50
1.65
1.80
Figure 13. Insertion Loss and Group Delay vs. RF Frequency, HPF 3 and LPF 4
at 4 GHz Constant Bandwidth
INSERTION LOSS (dB)
INSERTION LOSS
GROUP DE LAY
GROUP DE LAY (ns)
25603-012
–5
0
–10
–15
–20
–25
–30
–35
–40
–45
–50
–60
–55
9131115 17 19 21 23
RF FREQ UE NCY (GHz)
0
0.15
0.30
0.45
0.60
0.75
0.90
1.05
1.20
1.35
1.50
1.65
1.80
Figure 14. Insertion Loss and Group Delay vs. RF Frequency, HPF 4 and LPF 4
at 4 GHz Constant Bandwidth
–1801k 10k 100k 1M 10M 100M
–160
–140
–120
–100
–170
–150
–130
–110
–165
–145
–125
–105
–175
–155
–135
–115
25°C, HPF 1 STATE 2, LPF 2 STATE 11
25°C, HPF 2 STATE 11, LPF 3 STATE 8
25°C, HPF 3 STATE 10, LPF 4 STATE 5
25°C, HPF 4 STATE 5, LPF 4 STATE 13
OFFSET FREQUENCY (Hz)
RESIDUAL PHASE NO I SE (d Bc/Hz)
25603-042
Figure 15. Residual Phase Noise vs. Offset Frequency
Data Sheet ADMV8818
Rev. 0 | Page 11 of 36
BOARD LOSS AND BYPASS CONFIGURATION DATA
–35
–30
–25
–20
–15
–10
–5
0
0246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
INSERTION LOSS (dB)
RF FREQ UE NC Y (GHz)
25603-010
BOARD LOS S
BYPASS CONF IG URATION (SWITCHES ONLY)
BOARD LOS S AND BYPAS S CONF IG URATION
Figure 16. Insertion Loss vs. RF Frequency for Board Loss and
Bypass Configuration
INPUT AND OUT P UT RETURN L OSS ( dB)
0246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
INPUT RETURN L OSS
OUT P UT RETURN L OSS
25603-013
–5
0
–10
–15
–20
–25
–30
–35
–40
–45
–50
–60
–55
RF FREQ UE NCY (G Hz)
Figure 17. Input and Output Return Loss vs. RF Frequency in
Bypass Configuration
0
10
20
30
40
50
5
15
25
35
45
55
60
RF FREQ UE NCY (GHz)
–40°C
+25°C
+85°C
25603-041
135791113 15 17 19 21 23 25
INPUT I P 3 ( dBm)
Figure 18. Input IP3 vs. RF Frequency for Various Temperatures,
Bypass Configuration
ADMV8818 Data Sheet
Rev. 0 | Page 12 of 36
HPF AND LPF CONFIGURATION
3dB CUTOFF FREQUENCY (GHz)
25603-014
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
HPF 1
HPF 2
HPF 3
HPF 4
012345678
HPF S TATE
910 11 12 13 14 15
Figure 19. 3 dB Cutoff Frequency vs. HPF State, HPF Configuration
INSERTION LOSS (dB)
25603-015
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–60
–55
0246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
RF FREQ UE NC Y (GHz)
STATE 0
STATE 1
STATE 2
STATE 3
STATE 4
STATE 5
STATE 6
STATE 7
STATE 8
STATE 9
STATE 10
STATE 11
STATE 12
STATE 13
STATE 14
STATE 15
Figure 20. Insertion Loss vs. RF Frequency, HPF 1 Configuration Swept
HPF State
–5
0
–10
–15
–20
–25
–30
–35
–40
–55
–45
–60
–50
INSERTION LOSS (dB)
STATE 0
STATE 1
STATE 2
STATE 3
STATE 4
STATE 5
STATE 6
STATE 7
STATE 8
STATE 9
STATE 10
STATE 11
STATE 12
STATE 13
STATE 14
STATE 15
25603-022
0246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
RF FREQ UE NCY (GHz)
Figure 21. Insertion Loss vs. RF Frequency, HPF 2 Configuration Swept
HPF State
3dB CUTOFF FREQUENCY (GHz)
25603-017
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
LPF STATE
LPF 1
LPF 2
LPF 3
LPF 4
012345678910 11 12 13 14 15
Figure 22. 3 dB Cutoff Frequency vs. LPF State, LPF Configuration
INSERTION LOSS (dB)
25603-018
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–60
–55
0246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
RF FREQ UE NCY (G Hz)
STATE 0
STATE 1
STATE 2
STATE 3
STATE 4
STATE 5
STATE 6
STATE 7
STATE 8
STATE 9
STATE 10
STATE 11
STATE 12
STATE 13
STATE 14
STATE 15
Figure 23. Insertion Loss vs. RF Frequency, LPF 1 Configuration Swept
LPF State
INSERTION LOSS (dB)
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–60
–55
0246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
25603-025
RF FREQ UE NCY (G Hz)
STATE 0
STATE 1
STATE 2
STATE 3
STATE 4
STATE 5
STATE 6
STATE 7
STATE 8
STATE 9
STATE 10
STATE 11
STATE 12
STATE 13
STATE 14
STATE 15
Figure 24. Insertion Loss vs. RF Frequency, LPF 2 Configuration Swept
LPF State
Data Sheet ADMV8818
Rev. 0 | Page 13 of 36
INSERTION LOSS (dB)
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–60
–55
0246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
25603-028
RF FREQ UE NCY (G Hz)
STATE 0
STATE 1
STATE 2
STATE 3
STATE 4
STATE 5
STATE 6
STATE 7
STATE 8
STATE 9
STATE 10
STATE 11
STATE 12
STATE 13
STATE 14
STATE 15
Figure 25. Insertion Loss vs. RF Frequency, HPF 3 Configuration Swept
HPF State
INSERTION LOSS (dB)
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–60
–55
0246810 12 14 16 18
RF FREQ UE NCY (GHz)
20 22 24 26 28 30 32 34 36 38 40
25603-034
STATE 0
STATE 1
STATE 2
STATE 3
STATE 4
STATE 5
STATE 6
STATE 7
STATE 8
STATE 9
STATE 10
STATE 11
STATE 12
STATE 13
STATE 14
STATE 15
Figure 26. Insertion Loss vs. RF Frequency, HPF 4 Configuration Swept
HPF State
INSERTION LOSS (dB)
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–60
–55
0246810 12 14 16 18
RF FREQ UE NC Y (GHz)
20 22 24 26 28 30 32 34 36 38 40
HPF 3 S TATE 2 + LPF 3 STATE 15
HPF 3 S TATE 3 + LPF 3 STATE 14
HPF 3 S TATE 4 + LPF 3 STATE 13
HPF 3 S TATE 5 + LPF 3 STATE 12
HPF 3 S TATE 6 + LPF 3 STATE 11
HPF 3 S TATE 7 + LPF 3 STATE 10
HPF 3 S TATE 8 + LPF 3 STATE 9
HPF 3 S TATE 9 + LPF 3 STATE 8
HPF 3 S TATE 10 + LPF 3 STATE 7
25603-043
Figure 27. Insertion Loss vs. RF Frequency, Center Frequency (fCENTER) = 10 GHz in
Various 3 dB Bandwidth for HPF 3 and LPF 3 Configuration
INSERTION LOSS (dB)
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–60
–55
0246810 12 14 16 18
RF FREQ UE NCY (G Hz)
20 22 24 26 28 30 32 34 36 38 40
25603-031
STATE 0
STATE 1
STATE 2
STATE 3
STATE 4
STATE 5
STATE 6
STATE 7
STATE 8
STATE 9
STATE 10
STATE 11
STATE 12
STATE 13
STATE 14
STATE 15
Figure 28. Insertion Loss vs. RF Frequency, LPF 3 Configuration Swept
LPF State
INSERTION LOSS (dB)
RF FREQ UE NC Y (GHz)
STATE 0
STATE 1
STATE 2
STATE 3
STATE 4
STATE 5
STATE 6
STATE 7
STATE 8
STATE 9
STATE 10
STATE 11
STATE 12
STATE 13
STATE 14
STATE 15
25603-037
0246810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
Figure 29. Insertion Loss vs. RF Frequency, LPF 4 Configuration Swept
LPF State
ADMV8818 Data Sheet
Rev. 0 | Page 14 of 36
THEORY OF OPERATION
CHIP ARCHITECTURE
The ADMV8818 is a highly flexible filter that can achieve tunable
band-pass, high-pass, low-pass, all pass, or all reject responses
from 2 GHz to 18 GHz. Due to the flexible architecture of the
ADMV8818 with four SP5T switches coupled with digitally
tunable high-pass and low-pass filter arrays, the device provides
full coverage over the frequency band without any dead zones.
Figure 1 is a conceptual block diagram of the ADMV8818.
The ADMV8818 consists of two sections, the input and the output
section. The input section has four high-pass filters and an optional
bypass configuration that is selectable by the two SP5T RFIN
switches. Similarly, the output section has four low-pass filters
and an optional bypass configuration that is selectable by the two
SP5T RFOUT switches. Because the input and output sections
are independent from one another, the chip can be configured
for any combination of high-pass filter, low-pass filter, or
bypass configuration.
The two SP5T RFIN switches are controlled simultaneously with a
3-bit digital control. Likewise, the two SP5T RFOUT switches
are controlled simultaneously with a 3-bit digital control. This
control scheme creates a total of 25 possible combinations of
switch settings, achieving many possible filter responses.
Figure 30 shows an example of the signal path when the two
SP5T RFIN and two SP5T RFOUT switches are configured for
the HPF 1 and LPF 1, respectively. Using this switch setting, a
band-pass or a no pass response can be created in the 2 GHz to
3.8 GHz frequency range, depending on the filter settings for
the HPF 1 and LPF 1.
SPI
GND
14
13
12
11
10
9
8
7
5
4
3
2
1
6
GND
GND
GND
GND
GND
RFIN
GND
GND
GND
GND
GND
GND
RST
15
16
17
18
19
20
21
22
23
24
25
26
27
28
GND
SCLK
GND
CS
GND
GND
GND
GND
SDO
SDI
SFL
GND
GND
GND
56
55
54
53
52
51
50
49
48
47
46
45
44
43
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
29
30
31
32
33
34
35
36
37
38
39
40
41
42
GND
VSS1 (– 2.5V)
GND
VDD2 (+3.3V)
GND
GND
RFOUT
GND
GND
GND
GND
VDD1 (+2.5V)
GND
GND
BYPASS
2
BYPASS
2
1
3
4
3
1
4
25603-044
Figure 30. ADMV8818 Configured for HPF 1 and LPF 1
Similarly, any of the filters can be bypassed, creating a low-pass
or a high-pass response, as shown in Figure 31, where the HPF
is bypassed and LPF 3 filter is selected. This configuration enables a
tunable LPF response in the 8 GHz to 12 GHz frequency range.
SPI
GND
14
13
12
11
10
9
8
7
5
4
3
2
1
6
GND
GND
GND
GND
GND
RFIN
GND
GND
GND
GND
GND
GND
RST
15
16
17
18
19
20
21
22
23
24
25
26
27
28
GND
SCLK
GND
CS
GND
GND
GND
GND
SDO
SDI
SFL
GND
GND
GND
56
55
54
53
52
51
50
49
48
47
46
45
44
43
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
29
30
31
32
33
34
35
36
37
38
39
40
41
42
GND
VSS1 (– 2.5V)
GND
VDD2 (+3.3V)
GND
GND
RFOUT
GND
GND
GND
GND
VDD1 (+2.5V)
GND
GND
BYPASS
22
1
3
4
3
1
4
BYPASS
25603-045
Figure 31. ADMV8818 Configured for LPF 3
Moreover, any of the high-pass filters can be coupled with any
of the low-pass filters, achieving virtually no dead zones in the
2 GHz to 18 GHz frequency range and a wide band-pass response.
Figure 32 shows the conceptual block diagram of ADMV8818
when HPF 3 and LPF 2 are selected.
SPI
GND
14
13
12
11
10
9
8
7
5
4
3
2
1
6
GND
GND
GND
GND
GND
RFIN
GND
GND
GND
GND
GND
GND
RST
15
16
17
18
19
20
21
22
23
24
25
26
27
28
GND
SCLK
GND
CS
GND
GND
GND
GND
SDO
SDI
SFL
GND
GND
GND
56
55
54
53
52
51
50
49
48
47
46
45
44
43
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
29
30
31
32
33
34
35
36
37
38
39
40
41
42
GND
VSS1 (– 2.5V)
GND
VDD2 (+3.3V)
GND
GND
RFOUT
GND
GND
GND
GND
VDD1 (+2.5V)
GND
GND
BYPASS
2
BYPASS
2
1
3
4
3
1
4
25603-046
Figure 32. ADMV8818 Configured for HPF 3 and LPF 2
TUNABLE HIGH-PASS FILTERS
Figure 33 shows a simplified schematic of the HPF 1, which is a
Chebyshev type filter. The f3dB can be adjusted by varying
Capacitor C1 to Capacitor C4. These tunable capacitors are
constructed with 4-bit digital capacitor arrays, providing 16
distinct values. The step size of these tunable capacitors is
adjusted so that each digital binary code increment creates
approximately the same increment in the f3dB.
Data Sheet ADMV8818
Rev. 0 | Page 15 of 36
L1
RFIN RFOUT
L2 L3
C1 C2 C3 C4
25603-047
Figure 33. HPF 1 Simplified Schematic
The HPF 2, HPF 3, and HPF 4 filters share the same architecture as
the HPF 1 filter. However, the filter order is increased with respect
to the frequency to achieve a similar rejection response for all
filters.
TUNABLE LOW-PASS FILTERS
Figure 34 shows a simplified schematic of the LPF 1, which is a
Chebyshev type filter. The f3dB can be adjusted by varying
Capacitor C1 to Capacitor C4. These tunable capacitors are
constructed with 4-bit digital capacitor arrays, providing 16
distinct values. The step size of these tunable capacitors is
adjusted so that each digital binary code increment creates
approximately the same increment in the f3dB.
L1 L2 L3
RFIN RFOUT
C1 C2 C3 C4
25603-048
Figure 34. LPF 1 Simplified Schematic
The LPF 2, LPF 3, and LPF 4 filters share the same architecture as
the LPF 1 filter. However, the filter order is increased with respect
to the frequency to achieve a similar rejection response for all
filters.
SPI CONFIGURATION
The SPI of the ADMV8818 allows configuration of the device
for specific functions or operations via the 5-pin SPI port. This
interface provides users with added flexibility and customization.
The SPI consists of five control lines: SFL, SCLK, SDI, SDO,
and CS. For normal SPI operations, keep the SFL pin low.
The SPI protocol consists of an R/W bit followed by 15 register
address bits and 8 data bits. The address field and data field are
organized MSB first and end with the LSB.
Set the MSB to 0 for a write operation and set the MSB to 1 for a
read operation. The write cycle must be sampled on the rising
edge of SCLK. The 24 bits of the serial write address and data are
shifted in on the SDI control line, MSB to LSB. The ADMV8818
input logic level for the write cycle supports a 3.3 V interface.
For a read cycle, the R/W bit and the 15 register address bits
shift in on the rising edge of SCLK on the SDI control line. Then,
8 bits of serial read data shift out on the SDO control line, MSB
first, on the falling edge of SCLK. The output logic level for a
read cycle is 3.3 V. The output drivers of the SDO are enabled
after the last rising edge of SCLK of the instruction cycle and
remain active until the end of the read cycle. In a read operation,
when CS is deasserted, SDO returns to high impedance until the
next read transaction. CS is active low and must be deasserted
at the end of the write or read sequence.
An active low input on CS starts and gates a communication
cycle. The CS pin allows more than one device to be used on
the same serial communications lines. The SDO pin goes to a
high impedance state when the CS input is high. During the
communication cycle, the chip select must stay low. The SPI
communications protocol follows the Analog Devices SPI
standard. For more information, see the ADI-SPI Serial
Control Interface Standard (Rev 1.0).
RF CONNECTIONS
The RFIN and RFOUT pins of the ADMV8818 are dc-coupled
to on-chip RF switches. If a dc voltage is present on the RFIN
and RFOUT pins from other components within the system, it
is recommended to place dc blocking capacitors in series with
these pins. The dc blocking capacitors must be selected based
on the operating frequency of the filter. Generally, a value
greater than 100 pF is sufficient to minimize insertion loss at
the lower frequencies of operation. At higher frequencies of
operation, it may be necessary to consider the parasitic elements of
the selected capacitor. Figure 35 shows a general model of a
capacitor with the parasitic elements. The parasitic series
inductance (LESL) is typically of most concern given that its
impedance can become dominant at frequencies above 10 GHz.
The other parasitic elements, including the leakage resistance
(RL), the dielectric absorption resistance (RDA), the dielectric
absorption capacitance (CDA), and electrical series resistance (RESR)
are less critical elements for consideration but are shown here for
completeness.
L
ESL
C
R
L
R
ESR
R
DA
C
DA
25603-049
Figure 35. General Model of a Capacitor
MODE SELECTION
The ADMV8818 has two modes of operation: SPI write and SPI
fast latch. SPI write mode is the normal operating mode,
whereas SPI fast latch mode is used to sequence through the
on-chip lookup table (LUT) using the internal state machine.
To select SPI write mode, set the SFL pin low. For operation in
SPI fast latch mode, program the on-chip lookup table and fast
latch parameters with the SFL pin low, and then bring the SFL
pin high to enter this mode. Figure 36 shows a simplified
representation of the SPI with the register map and internal
state machine.
SCLK REGI ST ER MAP
PARAMETERS AND
LOOKUP TABLE
INTERNAL STATE
MACHINE
START LOCATION
...
STOP LOCATION
WR
SDO
SDI
CS
SFL
FILTERS
25603-050
Figure 36. Simplified SPI Diagram
ADMV8818 Data Sheet
Rev. 0 | Page 16 of 36
SPI WRITE MODE
SPI write mode has five write groupings, WR0 through WR4 in
Register 0x020 through Register 0x029. The groupings can be
thought of as a small lookup table for SPI write mode. Each
grouping consists of the following:
RFIN switch position
RFIN switch set
RFOUT switch position
RFOUT switch set
HPF state
LPF state
See the Register Details section for an example of the write
grouping of WR0 (Register 0x020 and Register 0x021).
SWITCH POSITIONS
The RFIN switch position dictates where the HPF state bits are
assigned, and the RFOUT switch position dictates where the
LPF state bits are assigned. For example, in the WR0_SW write
group (Register 0x020), when SW_IN_WR0 is set for Band 1 and
SW_OUT_WR0 is set for Band 2, HPF_WR0 and LPF_WR0
(Register 0x021) are applied to HPF 1 and LPF 2, respectively.
SWITCH SET
The RFIN switch set bit is used to determine if the RFIN switch
position is moved to that setting. Similarly, the RFOUT switch
set bit is used to determine if the RFOUT switch position is moved
to that setting. This functionality is useful for configuring a filter to
a known state and leaving the switch position unchanged (switch
set bits low). For most applications, the switch set bits are high.
FILTER SETTINGS
Each high-pass filter and low-pass filter contains 16 states (4 bits).
A value of zero corresponds to setting the f3dB of the filter to its
lowest possible frequency. Conversely, a value of 15 corresponds to
setting the f3dB of the filter to its highest possible frequency.
WRITE GROUP PRIORITY
In SPI write mode, because there are five write groupings, it is
possible that multiple RFIN switch set bits or RFOUT switch
set bits are high. The behavior of the switches depends on the
type of SPI transaction, either streaming or single instruction.
In general, there are two types of SPI streaming transactions,
Endian register ascending order and descending order. The
ADMV8818 supports the ascending order only. To enable SPI
streaming with Endian register ascending order, program
Register 0x000 to 0x3C.
For SPI streaming transactions (recommended), the priority
order for the RFIN switch set bits and the RFOUT switch set
bits is WR0 to WR4.
The SPI streaming transaction for Register 0x020 to Register 0x029
then points to Address 0x020 and streams out 10 bytes of data.
The SPI streaming transaction is 96 bits in total (R/W bit +
15 address bits + 80 data bits).
An example of the priority order for an SPI streaming transaction
follows: if the switch set bits are high for both WR1 and WR2, the
resulting switch positions are the positions programmed in WR1.
For SPI single instruction transactions, the most recently
programmed RFIN switch set and RFOUT switch set takes
effect to move the switch positions. To use SPI single instruction
transactions, the switch register must be written first followed
by the filter setting register. For example, to use write grouping
WR0, Register 0x020 is written first using a 24-bit transaction
(R/W bit + 15 address bits + 8 data bits, followed by writing
Register 0x021 also using a 24-bit transaction.
FREQUENCY TERMINOLOGY
Because the ADMV8818 is designed to operate over a wide
frequency range, there is frequency dependent insertion loss
that results in a negative slope vs. frequency. Additionally,
depending upon the selected filter and the state, there may also
be ripple within the pass band. Given these characteristics, a proper
definition is necessary to establish a reference frequency (fREF)
from which the f3dB for each filter can be computed.
Analog Devices has found that a consistent methodology
for determining the fREF and f3dB is to rely on the group delay
performance of a filter. The following is the methodology used
for determining the ADMV8818 specifications:
1. Find the peak group delay (GDPEAK) and peak group delay
frequency (fPEAK) as the filter insertion loss (S21) begins to
roll off.
2. For a low-pass filter, divide fPEAK by 2 to find the average
frequency (fAVG). For a high-pass filter, multiply fPEAK by 2.
Once fAVG is calculated, determine the group delay at this
frequency. Generally, the group delay is flat and approximately
equal to the average at this particular frequency (fAVG).
3. Take the mathematical mean of the group delay from Step 1
and Step 2 to find the reference group delay (GDREF), and
then find the corresponding fREF and reference insertion
loss (ILREF) for this group delay.
4. Subtract 3 dB from the ILREF to find the 3 dB insertion loss
(IL3dB), and then find the corresponding f3dB.
SPI FAST LATCH MODE
The ADMV8818 has a 128 state lookup table and an internal
state machine that is useful for quickly changing filter states in
SPI fast latch mode. When the SFL pin is high, SPI fast latch
mode is enabled, and the internal state machine sequences on
each rising edge of the CS pin.
The lookup table has 128 groupings, LUT0 through LUT127, in
Register 0x100 through Register 0x1FF. Each grouping consists
of the same type of parameters as those of SPI write mode.
The functionality of the switch positions and filter state bits for
SPI fast latch mode is similar to those of SPI write mode. That is,
the filter state bits are assigned based on the switch position bits.
However, the switch set parameters do not contain any priority.
Data Sheet ADMV8818
Rev. 0 | Page 17 of 36
If the RFIN switch set bits and RFOUT switch set bits are
enabled for a particular LUT, the switch positions change.
The functionality of the internal state machine is such that on
each rising edge of the CS pin, the internal state machine sequences
a pointer based on the programmed direction. The internal
state machine has the following parameters:
FAST_LATCH_POINTER (Register 0x010)
FAST_LATCH_LOAD (Register 0x010)
FAST_LATCH_STOP (Register 0x011)
FAST_LATCH_START (Register 0x012)
FAST_LATCH_DIRECTION (Register 0x013)
FAST_LATCH_STATE (Register 0x014)
The FAST_LATCH_STATE is the next LUT grouping that is
selected on the next rising edge of the CS pin. The FAST_LATCH_
STATE is considered the internal pointer location.
The internal pointer location can be changed by using the FAST_
LATCH_LOAD and FAST_LATCH_POINTER bits. When the
FAST_LATCH_LOAD bit is set high, the FAST_LATCH_
POINTER value is loaded into the internal pointer. The FAST_
LATCH_LOAD bit is self resetting after the load operation
completes.
When the FAST_LATCH_DIRECTION bit is set to zero, the
sequencing direction is incremental. When the FAST_LATCH_
DIRECTION bit is set to one, the sequencing direction is
decremental.
The FAST_LATCH_START and FAST_LATCH_STOP bits are
used to set the start and stop location, respectively. For incremental
direction, the internal state machine sequences from the start
location to the stop location and then rolls over to the start
location. For the decremental direction, the sequence is from
the stop location to the start location and then rolls over to the
stop location.
The FAST_LATCH_STATE value can fall outside of the start
and stop locations, which occurs if the start and stop locations
are updated and the internal pointer is left unchanged from its
prior value. If this situation occurs, additional LUT groupings
are selected before the FAST_LATCH_STATE value eventually
falls within the start and stop locations. For example, if the FAST_
LATCH_STATE value is 12, the direction is incremental, the start
location is 15, and the stop location is 31, the LUT groupings
selected on the next six rising edges of the CS pin are the LUT
grouping numbers, 12, 13, 14, 15, 16, and 17.
CHIP RESET
There are two methods that can be used to reset the ADMV8818
registers to their default power-on state, a hard reset and a soft
reset. The hard reset utilizes the RST pin, and the soft reset
utilizes Register 0x000.
To perform a hard reset, momentarily bring the RST pin low
and then high. See Figure 2 for the minimum required duration
time for the RST pin to be low.
To perform a soft reset, program Register 0x000 to a value of 0x81.
This action sets the SOFTRESET and SOFTRESET_ bits high to
initiate the reset. The SOFTRESET and SOFTRESET_ bits are
self resetting once the reset operation is complete.
Regardless of the reset method used, it is recommended to
perform the following after the chip resets:
Program Register 0x000 to 0x3C to enable the SDO pin
and allow SPI streaming with Endian ascending order.
Read back all registers on the chip.
ADMV8818 Data Sheet
Rev. 0 | Page 18 of 36
APPLICATIONS INFORMATION
PCB DESIGN GUIDELINES
The PCB used to implement the ADMV8818 must use a high
quality dielectric material between the top metallization layer
and internal ground layer, such as the Rogers 4003 or the
Rogers 4350. All other dielectric layers of the PCB can be standard
material, such as the Isola 370HR. The characteristic impedance
of the transmission lines to the RFIN and RFOUT pins of the
ADMV8818 must be carefully controlled to 50 to ensure
optimal RF performance. Connect the GND pins and exposed
pads of the ADMV8818 directly to the ground plane of the PCB.
Use a sufficient number of via holes to connect the top and bottom
ground planes of the PCB.
Data Sheet ADMV8818
Rev. 0 | Page 19 of 36
PROGRAMMING FLOW CHART
START
LUT
WRITE
SPI W RITE M ODE
WHERE x = 0 TO 4
MODE
SELECTION
COMPLETE
POW ER UP
RESET S TATE
ALL FILTER
BIT FI ELDS ZERO
SET SW_IN_y
TO DES IRED HPF BAND
SET SW_OUT_y
TO DESIRED L PF BAND
WHERE
y = 0 TO 127
SET HPF_y
TO DESIRED HPF VALUE
SET LPF_y
TO DESI RED LPF VALUE
FO R BYPASS
CONFIGURATION
VALUES ARE DO N’T CARES
SET THE DESIRED
FAST_LATCH_START
AND FAST_LATCH_STOP
FAST_LATCH_DIRECTION
(INCREMENT/DECREMENT)
SEQ UENCE T HROUG H
LUT O N EACH
RISING EDGE OF CS.
START L OCATION
... LOCATION
STOP LOCATION
THEN RO LL OVER
TOGGLE HIGH
SW_IN_SET_y
AND/OR
SW_OUT_SET_y
PICK NE W LUTy
(INCREMENT y )
PICK NE W
WRx L OCATION
(INCREMENT x )
SET HPF_WRx
TO DESI RED
HPF S TATE
SET LPF_W Rx
TO DESI RED
LPF STATE
TOGGLE HIGH
SW_IN_SET_WRx
AND/OR
SW_OUT_SET_WRx
SET THE DESIRED
FAST_LATCH_POINTER
TOGGLE HIGH
FAST_LATCH_LOAD
TO LOAD POINTER
INTO STATE MACHI NE
(BIT WILL SELF RESET)
READ BACK
FAST_LATCH_STATE
SET SW_IN_W Rx
TO DESI RED
HPF BAND
SET SW_OUT_W Rx
TO DESI RED
LPF BAND
CONFIGURE
REGISTER 0x100 TO
REGISTER 0x1 FF
CONFIGURE
REGISTER 0x020 TO
REGISTER 0x029
CONFIGURE
REGISTER 0x010 TO
REGISTER 0x014
SET THE SFL PIN HIGH
SET THE
SFL PIN LOW
WRITE DUMM Y
VALUES TO
HPF_WRx
AND
LPF_WRx
IF MULTIPLE
SW_IN_SETx/
SW_OUT_SETx
BIT FIELDSARE
HIGH, PRIORITY
ORDER IS
WR0 TO W R4
UNLESS EXPLICITLY
SET, THE POI NTER
LOCATIONAND
FILTER STATE
REMAIN
UNCHANGED
WHICH
FILTER TO
ADJUST
ADJUST
ANOTHER
FILTER?
ACTUALLY
SET SWI T CHES
READY TO
ENTER
SFL MODE?
WISH TO
MAKE A CHANGE
TO LUT?
WHICH LUT
TO ADJUST?
ADJUST
ANOTHER
LUT?
WISH TO KNOW
CURRENT PO INTE R
LOCATION?
WISH TO SET
CURRENT PO INTE R
LOCATION?
WILL T HIS
LUT SET
SWITCHES?
WISH TO
EXIT SFL
MODE?
CS
PULSE
SPI FAST
LATCH MO DE NO
YES
YES
YES
NO
YES
NO
NO
NO
NO
YES
YES
YES
YES
YES
YES
NO
NO
NO
NO
NOTES
1. SPI WRITE MODE SWITCH PRIORITY ORDER ASSUME S S P I STREAM ING TRANSACTI ON F OR RE GI S TER 0x020 TO REG ISTER 0x029.
BYPAS S BOTH
HPF AND LPF
25603-054
Figure 37. Programming Flow Chart
ADMV8818 Data Sheet
Rev. 0 | Page 20 of 36
REGISTER SUMMARY
Table 6. ADMV8818 Register Summary
Reg Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset R/W
0x000
ADI_SPI_
CONFIG_A
[7:0] SOFTRESET_ LSB_FIRST_ ENDIAN_ SDOACTIVE_ SDOACTIVE ENDIAN LSB_FIRST SOFTRESET 0x00 R/W
0x001 ADI_SPI_
CONFIG_B
[7:0] SINGLE_
INSTRUCTION
CSB_STALL MASTER_
SLAVE_RB
RESERVED MASTER_
SLAVE_
TRANSFER
0x00 R/W
0x003 CHIPTYPE [7:0] CHIPTYPE 0x01 R
0x004 PRODUCT_ID_L [7:0] PRODUCT_ID_L 0x18 R
0x005 PRODUCT_ID_H [7:0] PRODUCT_ID_H 0x88 R
0x010 FAST_LATCH_
POINTER
[7:0] FAST_
LATCH_
LOAD
FAST_LATCH_POINTER 0x00 R/W
0x011 FAST_LATCH_
STOP
[7:0] RESERVED FAST_LATCH_STOP 0x7F R/W
0x012 FAST_LATCH_
START
[7:0] RESERVED FAST_LATCH_START 0x00 R/W
0x013 FAST_LATCH_
DIRECTION
[7:0] RESERVED FAST_
LATCH_
DIRECTION
0x00 R/W
0x014 FAST_LATCH_
STATE
[7:0] RESERVED FAST_LATCH_STATE 0x00 R
0x020 WR0_SW [7:0] SW_IN_
SET_WR0
SW_OUT_
SET_WR0
SW_IN_WR0 SW_OUT_WR0 0x00 R/W
0x021 WR0_FILTER [7:0] HPF_WR0 LPF_WR0 0x00 R/W
0x022 WR1_SW [7:0] SW_IN_
SET_WR1
SW_OUT_
SET_WR1
SW_IN_WR1 SW_OUT_WR1 0x00 R/W
0x023 WR1_FILTER [7:0] HPF_WR1 LPF_WR1 0x00 R/W
0x024 WR2_SW [7:0] SW_IN_
SET_WR2
SW_OUT_
SET_WR2
SW_IN_WR2 SW_OUT_WR2 0x00 R/W
0x025 WR2_FILTER [7:0] HPF_WR2 LPF_WR2 0x00 R/W
0x026 WR3_SW [7:0] SW_IN_
SET_WR3
SW_OUT_
SET_WR3
SW_IN_WR3 SW_OUT_WR3 0x00 R/W
0x027 WR3_FILTER [7:0] HPF_WR3 LPF_WR3 0x00 R/W
0x028 WR4_SW [7:0] SW_IN_
SET_WR4
SW_OUT_
SET_WR4
SW_IN_WR4 SW_OUT_WR4 0x00 R/W
0x029 WR4_FILTER [7:0] HPF_WR4 LPF_WR4 0x00 R/W
0x100 LUT0_SW [7:0] SW_IN_
SET_0
SW_OUT_
SET_0
SW_IN_0 SW_OUT_0 0x00 R/W
0x101 LUT0_FILTER [7:0] HPF_0 LPF_0 0x00 R/W
0x102 LUT1_SW [7:0] SW_IN_
SET_1
SW_OUT_
SET_1
SW_IN_1 SW_OUT_1 0x00 R/W
0x103 LUT1_FILTER [7:0] HPF_1 LPF_1 0x00 R/W
0x104 LUT2_SW [7:0] SW_IN_
SET_2
SW_OUT_
SET_2
SW_IN_2 SW_OUT_2 0x00 R/W
0x105 LUT2_FILTER [7:0] HPF_2 LPF_2 0x00 R/W
0x106 LUT3_SW [7:0] SW_IN_
SET_3
SW_OUT_
SET_3
SW_IN_3 SW_OUT_3 0x00 R/W
0x107 LUT3_FILTER [7:0] HPF_3 LPF_3 0x00 R/W
0x108 LUT4_SW [7:0] SW_IN_
SET_4
SW_OUT_
SET_4
SW_IN_4 SW_OUT_4 0x00 R/W
0x109 LUT4_FILTER [7:0] HPF_4 LPF_4 0x00 R/W
0x10A LUT5_SW [7:0] SW_IN_
SET_5
SW_OUT_
SET_5
SW_IN_5 SW_OUT_5 0x00 R/W
0x10B LUT5_FILTER [7:0] HPF_5 LPF_5 0x00 R/W
0x10C LUT6_SW [7:0] SW_IN_
SET_6
SW_OUT_
SET_6
SW_IN_6 SW_OUT_6 0x00 R/W
0x10D LUT6_FILTER [7:0] HPF_6 LPF_6 0x00 R/W
0x10E LUT7_SW [7:0] SW_IN_
SET_7
SW_OUT_
SET_7
SW_IN_7 SW_OUT_7 0x00 R/W
0x10F LUT7_FILTER [7:0] HPF_7 LPF_7 0x00 R/W
0x110 LUT8_SW [7:0] SW_IN_
SET_8
SW_OUT_
SET_8
SW_IN_8 SW_OUT_8 0x00 R/W
0x111 LUT8_FILTER [7:0] HPF_8 LPF_8 0x00 R/W
0x112 LUT9_SW [7:0] SW_IN_
SET_9
SW_OUT_
SET_9
SW_IN_9 SW_OUT_9 0x00 R/W
0x113 LUT9_FILTER [7:0] HPF_9 LPF_9 0x00 R/W
Data Sheet ADMV8818
Rev. 0 | Page 21 of 36
Reg Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset R/W
0x114 LUT10_SW [7:0] SW_IN_
SET_10
SW_OUT_
SET_10
SW_IN_10 SW_OUT_10 0x00 R/W
0x115 LUT10_FILTER [7:0] HPF_10 LPF_10 0x00 R/W
0x116 LUT11_SW [7:0] SW_IN_
SET_11
SW_OUT_
SET_11
SW_IN_11 SW_OUT_11 0x00 R/W
0x117 LUT11_FILTER [7:0] HPF_11 LPF_11 0x00 R/W
0x118 LUT12_SW [7:0] SW_IN_
SET_12
SW_OUT_
SET_12
SW_IN_12 SW_OUT_12 0x00 R/W
0x119 LUT12_FILTER [7:0] HPF_12 LPF_12 0x00 R/W
0x11A LUT13_SW [7:0] SW_IN_
SET_13
SW_OUT_
SET_13
SW_IN_13 SW_OUT_13 0x00 R/W
0x11B LUT13_FILTER [7:0] HPF_13 LPF_13 0x00 R/W
0x11C LUT14_SW [7:0] SW_IN_
SET_14
SW_OUT_
SET_14
SW_IN_14 SW_OUT_14 0x00 R/W
0x11D LUT14_FILTER [7:0] HPF_14 LPF_14 0x00 R/W
0x11E LUT15_SW [7:0] SW_IN_
SET_15
SW_OUT_
SET_15
SW_IN_15 SW_OUT_15 0x00 R/W
0x11F LUT15_FILTER [7:0] HPF_15 LPF_15 0x00 R/W
0x120 LUT16_SW [7:0] SW_IN_
SET_16
SW_OUT_
SET_16
SW_IN_16 SW_OUT_16 0x00 R/W
0x121
LUT16_FILTER
[7:0]
HPF_16
LPF_16
0x00
R/W
0x122 LUT17_SW [7:0] SW_IN_
SET_17
SW_OUT_
SET_17
SW_IN_17 SW_OUT_17 0x00 R/W
0x123 LUT17_FILTER [7:0] HPF_17 LPF_17 0x00 R/W
0x124 LUT18_SW [7:0] SW_IN_
SET_18
SW_OUT_
SET_18
SW_IN_18 SW_OUT_18 0x00 R/W
0x125 LUT18_FILTER [7:0] HPF_18 LPF_18 0x00 R/W
0x126 LUT19_SW [7:0] SW_IN_
SET_19
SW_OUT_
SET_19
SW_IN_19 SW_OUT_19 0x00 R/W
0x127 LUT19_FILTER [7:0] HPF_19 LPF_19 0x00 R/W
0x128 LUT20_SW [7:0] SW_IN_
SET_20
SW_OUT_
SET_20
SW_IN_20 SW_OUT_20 0x00 R/W
0x129
LUT20_FILTER
[7:0]
HPF_20
LPF_20
0x00
R/W
0x12A LUT21_SW [7:0] SW_IN_
SET_21
SW_OUT_
SET_21
SW_IN_21 SW_OUT_21 0x00 R/W
0x12B LUT21_FILTER [7:0] HPF_21 LPF_21 0x00 R/W
0x12C LUT22_SW [7:0] SW_IN_
SET_22
SW_OUT_
SET_22
SW_IN_22 SW_OUT_22 0x00 R/W
0x12D LUT22_FILTER [7:0] HPF_22 LPF_22 0x00 R/W
0x12E LUT23_SW [7:0] SW_IN_
SET_23
SW_OUT_
SET_23
SW_IN_23 SW_OUT_23 0x00 R/W
0x12F LUT23_FILTER [7:0] HPF_23 LPF_23 0x00 R/W
0x130 LUT24_SW [7:0] SW_IN_
SET_24
SW_OUT_
SET_24
SW_IN_24 SW_OUT_24 0x00 R/W
0x131
LUT24_FILTER
[7:0]
HPF_24
LPF_24
0x00
R/W
0x132 LUT25_SW [7:0] SW_IN_
SET_25
SW_OUT_
SET_25
SW_IN_25 SW_OUT_25 0x00 R/W
0x133 LUT25_FILTER [7:0] HPF_25 LPF_25 0x00 R/W
0x134 LUT26_SW [7:0] SW_IN_
SET_26
SW_OUT_
SET_26
SW_IN_26 SW_OUT_26 0x00 R/W
0x135 LUT26_FILTER [7:0] HPF_26 LPF_26 0x00 R/W
0x136 LUT27_SW [7:0] SW_IN_
SET_27
SW_OUT_
SET_27
SW_IN_27 SW_OUT_27 0x00 R/W
0x137 LUT27_FILTER [7:0] HPF_27 LPF_27 0x00 R/W
0x138 LUT28_SW [7:0]
SW_IN_
SET_28
SW_OUT_
SET_28
SW_IN_28 SW_OUT_28 0x00 R/W
0x139
LUT28_FILTER
[7:0]
HPF_28
LPF_28
0x00
R/W
0x13A LUT29_SW [7:0] SW_IN_
SET_29
SW_OUT_
SET_29
SW_IN_29 SW_OUT_29 0x00 R/W
0x13B LUT29_FILTER [7:0] HPF_29 LPF_29 0x00 R/W
0x13C LUT30_SW [7:0] SW_IN_
SET_30
SW_OUT_
SET_30
SW_IN_30 SW_OUT_30 0x00 R/W
0x13D LUT30_FILTER [7:0] HPF_30 LPF_30 0x00 R/W
0x13E LUT31_SW [7:0] SW_IN_
SET_31
SW_OUT_
SET_31
SW_IN_31 SW_OUT_31 0x00 R/W
0x13F LUT31_FILTER [7:0] HPF_31 LPF_31 0x00 R/W
0x140 LUT32_SW [7:0] SW_IN_
SET_32
SW_OUT_
SET_32
SW_IN_32 SW_OUT_32 0x00 R/W
0x141 LUT32_FILTER [7:0] HPF_32 LPF_32 0x00 R/W
ADMV8818 Data Sheet
Rev. 0 | Page 22 of 36
Reg Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset R/W
0x142 LUT33_SW [7:0] SW_IN_
SET_33
SW_OUT_
SET_33
SW_IN_33 SW_OUT_33 0x00 R/W
0x143 LUT33_FILTER [7:0] HPF_33 LPF_33 0x00 R/W
0x144 LUT34_SW [7:0] SW_IN_
SET_34
SW_OUT_
SET_34
SW_IN_34 SW_OUT_34 0x00 R/W
0x145 LUT34_FILTER [7:0] HPF_34 LPF_34 0x00 R/W
0x146 LUT35_SW [7:0] SW_IN_
SET_35
SW_OUT_
SET_35
SW_IN_35 SW_OUT_35 0x00 R/W
0x147 LUT35_FILTER [7:0] HPF_35 LPF_35 0x00 R/W
0x148 LUT36_SW [7:0] SW_IN_
SET_36
SW_OUT_
SET_36
SW_IN_36 SW_OUT_36 0x00 R/W
0x149 LUT36_FILTER [7:0] HPF_36 LPF_36 0x00 R/W
0x14A LUT37_SW [7:0] SW_IN_
SET_37
SW_OUT_
SET_37
SW_IN_37 SW_OUT_37 0x00 R/W
0x14B LUT37_FILTER [7:0] HPF_37 LPF_37 0x00 R/W
0x14C LUT38_SW [7:0] SW_IN_
SET_38
SW_OUT_
SET_38
SW_IN_38 SW_OUT_38 0x00 R/W
0x14D LUT38_FILTER [7:0] HPF_38 LPF_38 0x00 R/W
0x14E LUT39_SW [7:0] SW_IN_
SET_39
SW_OUT_
SET_39
SW_IN_39 SW_OUT_39 0x00 R/W
0x14F
LUT39_FILTER
[7:0]
HPF_39
LPF_39
0x00
R/W
0x150 LUT40_SW [7:0] SW_IN_
SET_40
SW_OUT_
SET_40
SW_IN_40 SW_OUT_40 0x00 R/W
0x151 LUT40_FILTER [7:0] HPF_40 LPF_40 0x00 R/W
0x152 LUT41_SW [7:0] SW_IN_
SET_41
SW_OUT_
SET_41
SW_IN_41 SW_OUT_41 0x00 R/W
0x153 LUT41_FILTER [7:0] HPF_41 LPF_41 0x00 R/W
0x154 LUT42_SW [7:0] SW_IN_
SET_42
SW_OUT_
SET_42
SW_IN_42 SW_OUT_42 0x00 R/W
0x155 LUT42_FILTER [7:0] HPF_42 LPF_42 0x00 R/W
0x156 LUT43_SW [7:0] SW_IN_
SET_43
SW_OUT_
SET_43
SW_IN_43 SW_OUT_43 0x00 R/W
0x157
LUT43_FILTER
[7:0]
HPF_43
LPF_43
0x00
R/W
0x158 LUT44_SW [7:0] SW_IN_
SET_44
SW_OUT_
SET_44
SW_IN_44 SW_OUT_44 0x00 R/W
0x159 LUT44_FILTER [7:0] HPF_44 LPF_44 0x00 R/W
0x15A LUT45_SW [7:0] SW_IN_
SET_45
SW_OUT_
SET_45
SW_IN_45 SW_OUT_45 0x00 R/W
0x15B LUT45_FILTER [7:0] HPF_45 LPF_45 0x00 R/W
0x15C LUT46_SW [7:0] SW_IN_
SET_46
SW_OUT_
SET_46
SW_IN_46 SW_OUT_46 0x00 R/W
0x15D LUT46_FILTER [7:0] HPF_46 LPF_46 0x00 R/W
0x15E LUT47_SW [7:0] SW_IN_
SET_47
SW_OUT_
SET_47
SW_IN_47 SW_OUT_47 0x00 R/W
0x15F
LUT47_FILTER
[7:0]
HPF_47
LPF_47
0x00
R/W
0x160 LUT48_SW [7:0] SW_IN_
SET_48
SW_OUT_
SET_48
SW_IN_48 SW_OUT_48 0x00 R/W
0x161 LUT48_FILTER [7:0] HPF_48 LPF_48 0x00 R/W
0x162 LUT49_SW [7:0] SW_IN_
SET_49
SW_OUT_
SET_49
SW_IN_49 SW_OUT_49 0x00 R/W
0x163 LUT49_FILTER [7:0] HPF_49 LPF_49 0x00 R/W
0x164 LUT50_SW [7:0] SW_IN_
SET_50
SW_OUT_
SET_50
SW_IN_50 SW_OUT_50 0x00 R/W
0x165 LUT50_FILTER [7:0] HPF_50 LPF_50 0x00 R/W
0x166 LUT51_SW [7:0]
SW_IN_
SET_51
SW_OUT_
SET_51
SW_IN_51 SW_OUT_51 0x00 R/W
0x167
LUT51_FILTER
[7:0]
HPF_51
LPF_51
0x00
R/W
0x168 LUT52_SW [7:0] SW_IN_
SET_52
SW_OUT_
SET_52
SW_IN_52 SW_OUT_52 0x00 R/W
0x169 LUT52_FILTER [7:0] HPF_52 LPF_52 0x00 R/W
0x16A LUT53_SW [7:0] SW_IN_
SET_53
SW_OUT_
SET_53
SW_IN_53 SW_OUT_53 0x00 R/W
0x16B LUT53_FILTER [7:0] HPF_53 LPF_53 0x00 R/W
0x16C LUT54_SW [7:0] SW_IN_
SET_54
SW_OUT_
SET_54
SW_IN_54 SW_OUT_54 0x00 R/W
0x16D LUT54_FILTER [7:0] HPF_54 LPF_54 0x00 R/W
0x16E LUT55_SW [7:0] SW_IN_
SET_55
SW_OUT_
SET_55
SW_IN_55 SW_OUT_55 0x00 R/W
0x16F LUT55_FILTER [7:0] HPF_55 LPF_55 0x00 R/W
Data Sheet ADMV8818
Rev. 0 | Page 23 of 36
Reg Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset R/W
0x170 LUT56_SW [7:0] SW_IN_
SET_56
SW_OUT_
SET_56
SW_IN_56 SW_OUT_56 0x00 R/W
0x171 LUT56_FILTER [7:0] HPF_56 LPF_56 0x00 R/W
0x172 LUT57_SW [7:0] SW_IN_
SET_57
SW_OUT_
SET_57
SW_IN_57 SW_OUT_57 0x00 R/W
0x173 LUT57_FILTER [7:0] HPF_57 LPF_57 0x00 R/W
0x174 LUT58_SW [7:0] SW_IN_
SET_58
SW_OUT_
SET_58
SW_IN_58 SW_OUT_58 0x00 R/W
0x175 LUT58_FILTER [7:0] HPF_58 LPF_58 0x00 R/W
0x176 LUT59_SW [7:0] SW_IN_
SET_59
SW_OUT_
SET_59
SW_IN_59 SW_OUT_59 0x00 R/W
0x177 LUT59_FILTER [7:0] HPF_59 LPF_59 0x00 R/W
0x178 LUT60_SW [7:0] SW_IN_
SET_60
SW_OUT_
SET_60
SW_IN_60 SW_OUT_60 0x00 R/W
0x179 LUT60_FILTER [7:0] HPF_60 LPF_60 0x00 R/W
0x17A LUT61_SW [7:0] SW_IN_
SET_61
SW_OUT_
SET_61
SW_IN_61 SW_OUT_61 0x00 R/W
0x17B LUT61_FILTER [7:0] HPF_61 LPF_61 0x00 R/W
0x17C LUT62_SW [7:0] SW_IN_
SET_62
SW_OUT_
SET_62
SW_IN_62 SW_OUT_62 0x00 R/W
0x17D
LUT62_FILTER
[7:0]
HPF_62
LPF_62
0x00
R/W
0x17E LUT63_SW [7:0] SW_IN_
SET_63
SW_OUT_
SET_63
SW_IN_63 SW_OUT_63 0x00 R/W
0x17F LUT63_FILTER [7:0] HPF_63 LPF_63 0x00 R/W
0x180 LUT64_SW [7:0] SW_IN_
SET_64
SW_OUT_
SET_64
SW_IN_64 SW_OUT_64 0x00 R/W
0x181 LUT64_FILTER [7:0] HPF_64 LPF_64 0x00 R/W
0x182 LUT65_SW [7:0] SW_IN_
SET_65
SW_OUT_
SET_65
SW_IN_65 SW_OUT_65 0x00 R/W
0x183 LUT65_FILTER [7:0] HPF_65 LPF_65 0x00 R/W
0x184 LUT66_SW [7:0] SW_IN_
SET_66
SW_OUT_
SET_66
SW_IN_66 SW_OUT_66 0x00 R/W
0x185
LUT66_FILTER
[7:0]
HPF_66
LPF_66
0x00
R/W
0x186 LUT67_SW [7:0] SW_IN_
SET_67
SW_OUT_
SET_67
SW_IN_67 SW_OUT_67 0x00 R/W
0x187 LUT67_FILTER [7:0] HPF_67 LPF_67 0x00 R/W
0x188 LUT68_SW [7:0] SW_IN_
SET_68
SW_OUT_
SET_68
SW_IN_68 SW_OUT_68 0x00 R/W
0x189 LUT68_FILTER [7:0] HPF_68 LPF_68 0x00 R/W
0x18A LUT69_SW [7:0] SW_IN_
SET_69
SW_OUT_
SET_69
SW_IN_69 SW_OUT_69 0x00 R/W
0x18B LUT69_FILTER [7:0] HPF_69 LPF_69 0x00 R/W
0x18C LUT70_SW [7:0] SW_IN_
SET_70
SW_OUT_
SET_70
SW_IN_70 SW_OUT_70 0x00 R/W
0x18D
LUT70_FILTER
[7:0]
HPF_70
LPF_70
0x00
R/W
0x18E LUT71_SW [7:0] SW_IN_
SET_71
SW_OUT_
SET_71
SW_IN_71 SW_OUT_71 0x00 R/W
0x18F LUT71_FILTER [7:0] HPF_71 LPF_71 0x00 R/W
0x190 LUT72_SW [7:0] SW_IN_
SET_72
SW_OUT_
SET_72
SW_IN_72 SW_OUT_72 0x00 R/W
0x191 LUT72_FILTER [7:0] HPF_72 LPF_72 0x00 R/W
0x192 LUT73_SW [7:0] SW_IN_
SET_73
SW_OUT_
SET_73
SW_IN_73 SW_OUT_73 0x00 R/W
0x193 LUT73_FILTER [7:0] HPF_73 LPF_73 0x00 R/W
0x194 LUT74_SW [7:0]
SW_IN_
SET_74
SW_OUT_
SET_74
SW_IN_74 SW_OUT_74 0x00 R/W
0x195
LUT74_FILTER
[7:0]
HPF_74
LPF_74
0x00
R/W
0x196 LUT75_SW [7:0] SW_IN_
SET_75
SW_OUT_
SET_75
SW_IN_75 SW_OUT_75 0x00 R/W
0x197 LUT75_FILTER [7:0] HPF_75 LPF_75 0x00 R/W
0x198 LUT76_SW [7:0] SW_IN_
SET_76
SW_OUT_
SET_76
SW_IN_76 SW_OUT_76 0x00 R/W
0x199 LUT76_FILTER [7:0] HPF_76 LPF_76 0x00 R/W
0x19A LUT77_SW [7:0] SW_IN_
SET_77
SW_OUT_
SET_77
SW_IN_77 SW_OUT_77 0x00 R/W
0x19B LUT77_FILTER [7:0] HPF_77 LPF_77 0x00 R/W
0x19C LUT78_SW [7:0] SW_IN_
SET_78
SW_OUT_
SET_78
SW_IN_78 SW_OUT_78 0x00 R/W
0x19D LUT78_FILTER [7:0] HPF_78 LPF_78 0x00 R/W
ADMV8818 Data Sheet
Rev. 0 | Page 24 of 36
Reg Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset R/W
0x19E LUT79_SW [7:0] SW_IN_
SET_79
SW_OUT_
SET_79
SW_IN_79 SW_OUT_79 0x00 R/W
0x19F LUT79_FILTER [7:0] HPF_79 LPF_79 0x00 R/W
0x1A0 LUT80_SW [7:0] SW_IN_
SET_80
SW_OUT_
SET_80
SW_IN_80 SW_OUT_80 0x00 R/W
0x1A1 LUT80_FILTER [7:0] HPF_80 LPF_80 0x00 R/W
0x1A2 LUT81_SW [7:0] SW_IN_
SET_81
SW_OUT_
SET_81
SW_IN_81 SW_OUT_81 0x00 R/W
0x1A3 LUT81_FILTER [7:0] HPF_81 LPF_81 0x00 R/W
0x1A4 LUT82_SW [7:0] SW_IN_
SET_82
SW_OUT_
SET_82
SW_IN_82 SW_OUT_82 0x00 R/W
0x1A5 LUT82_FILTER [7:0] HPF_82 LPF_82 0x00 R/W
0x1A6 LUT83_SW [7:0] SW_IN_
SET_83
SW_OUT_
SET_83
SW_IN_83 SW_OUT_83 0x00 R/W
0x1A7 LUT83_FILTER [7:0] HPF_83 LPF_83 0x00 R/W
0x1A8 LUT84_SW [7:0] SW_IN_
SET_84
SW_OUT_
SET_84
SW_IN_84 SW_OUT_84 0x00 R/W
0x1A9 LUT84_FILTER [7:0] HPF_84 LPF_84 0x00 R/W
0x1AA LUT85_SW [7:0] SW_IN_
SET_85
SW_OUT_
SET_85
SW_IN_85 SW_OUT_85 0x00 R/W
0x1AB
LUT85_FILTER
[7:0]
HPF_85
LPF_85
0x00
R/W
0x1AC LUT86_SW [7:0] SW_IN_
SET_86
SW_OUT_
SET_86
SW_IN_86 SW_OUT_86 0x00 R/W
0x1AD LUT86_FILTER [7:0] HPF_86 LPF_86 0x00 R/W
0x1AE LUT87_SW [7:0] SW_IN_
SET_87
SW_OUT_
SET_87
SW_IN_87 SW_OUT_87 0x00 R/W
0x1AF LUT87_FILTER [7:0] HPF_87 LPF_87 0x00 R/W
0x1B0 LUT88_SW [7:0] SW_IN_
SET_88
SW_OUT_
SET_88
SW_IN_88 SW_OUT_88 0x00 R/W
0x1B1 LUT88_FILTER [7:0] HPF_88 LPF_88 0x00 R/W
0x1B2 LUT89_SW [7:0] SW_IN_
SET_89
SW_OUT_
SET_89
SW_IN_89 SW_OUT_89 0x00 R/W
0x1B3
LUT89_FILTER
[7:0]
HPF_89
LPF_89
0x00
R/W
0x1B4 LUT90_SW [7:0] SW_IN_
SET_90
SW_OUT_
SET_90
SW_IN_90 SW_OUT_90 0x00 R/W
0x1B5 LUT90_FILTER [7:0] HPF_90 LPF_90 0x00 R/W
0x1B6 LUT91_SW [7:0] SW_IN_
SET_91
SW_OUT_
SET_91
SW_IN_91 SW_OUT_91 0x00 R/W
0x1B7 LUT91_FILTER [7:0] HPF_91 LPF_91 0x00 R/W
0x1B8 LUT92_SW [7:0] SW_IN_
SET_92
SW_OUT_
SET_92
SW_IN_92 SW_OUT_92 0x00 R/W
0x1B9 LUT92_FILTER [7:0] HPF_92 LPF_92 0x00 R/W
0x1BA LUT93_SW [7:0] SW_IN_
SET_93
SW_OUT_
SET_93
SW_IN_93 SW_OUT_93 0x00 R/W
0x1BB
LUT93_FILTER
[7:0]
HPF_93
LPF_93
0x00
R/W
0x1BC LUT94_SW [7:0] SW_IN_
SET_94
SW_OUT_
SET_94
SW_IN_94 SW_OUT_94 0x00 R/W
0x1BD LUT94_FILTER [7:0] HPF_94 LPF_94 0x00 R/W
0x1BE LUT95_SW [7:0] SW_IN_
SET_95
SW_OUT_
SET_95
SW_IN_95 SW_OUT_95 0x00 R/W
0x1BF LUT95_FILTER [7:0] HPF_95 LPF_95 0x00 R/W
0x1C0 LUT96_SW [7:0] SW_IN_
SET_96
SW_OUT_
SET_96
SW_IN_96 SW_OUT_96 0x00 R/W
0x1C1 LUT96_FILTER [7:0] HPF_96 LPF_96 0x00 R/W
0x1C2 LUT97_SW [7:0]
SW_IN_
SET_97
SW_OUT_
SET_97
SW_IN_97 SW_OUT_97 0x00 R/W
0x1C3
LUT97_FILTER
[7:0]
HPF_97
LPF_97
0x00
R/W
0x1C4 LUT98_SW [7:0] SW_IN_
SET_98
SW_OUT_
SET_98
SW_IN_98 SW_OUT_98 0x00 R/W
0x1C5 LUT98_FILTER [7:0] HPF_98 LPF_98 0x00 R/W
0x1C6 LUT99_SW [7:0] SW_IN_
SET_99
SW_OUT_
SET_99
SW_IN_99 SW_OUT_99 0x00 R/W
0x1C7 LUT99_FILTER [7:0] HPF_99 LPF_99 0x00 R/W
0x1C8 LUT100_SW [7:0] SW_IN_
SET_100
SW_OUT_
SET_100
SW_IN_100 SW_OUT_100 0x00 R/W
0x1C9 LUT100_FILTER [7:0] HPF_100 LPF_100 0x00 R/W
0x1CA LUT101_SW [7:0] SW_IN_
SET_101
SW_OUT_
SET_101
SW_IN_101 SW_OUT_101 0x00 R/W
0x1CB LUT101_FILTER [7:0] HPF_101 LPF_101 0x00 R/W
Data Sheet ADMV8818
Rev. 0 | Page 25 of 36
Reg Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset R/W
0x1CC LUT102_SW [7:0] SW_IN_
SET_102
SW_OUT_
SET_102
SW_IN_102 SW_OUT_102 0x00 R/W
0x1CD LUT102_FILTER [7:0] HPF_102 LPF_102 0x00 R/W
0x1CE LUT103_SW [7:0] SW_IN_
SET_103
SW_OUT_
SET_103
SW_IN_103 SW_OUT_103 0x00 R/W
0x1CF LUT103_FILTER [7:0] HPF_103 LPF_103 0x00 R/W
0x1D0 LUT104_SW [7:0] SW_IN_
SET_104
SW_OUT_
SET_104
SW_IN_104 SW_OUT_104 0x00 R/W
0x1D1 LUT104_FILTER [7:0] HPF_104 LPF_104 0x00 R/W
0x1D2 LUT105_SW [7:0] SW_IN_
SET_105
SW_OUT_
SET_105
SW_IN_105 SW_OUT_105 0x00 R/W
0x1D3 LUT105_FILTER [7:0] HPF_105 LPF_105 0x00 R/W
0x1D4 LUT106_SW [7:0] SW_IN_
SET_106
SW_OUT_
SET_106
SW_IN_106 SW_OUT_106 0x00 R/W
0x1D5 LUT106_FILTER [7:0] HPF_106 LPF_106 0x00 R/W
0x1D6 LUT107_SW [7:0] SW_IN_
SET_107
SW_OUT_
SET_107
SW_IN_107 SW_OUT_107 0x00 R/W
0x1D7 LUT107_FILTER [7:0] HPF_107 LPF_107 0x00 R/W
0x1D8 LUT108_SW [7:0] SW_IN_
SET_108
SW_OUT_
SET_108
SW_IN_108 SW_OUT_108 0x00 R/W
0x1D9
LUT108_FILTER
[7:0]
HPF_108
LPF_108
0x00
R/W
0x1DA LUT109_SW [7:0] SW_IN_
SET_109
SW_OUT_
SET_109
SW_IN_109 SW_OUT_109 0x00 R/W
0x1DB LUT109_FILTER [7:0] HPF_109 LPF_109 0x00 R/W
0x1DC LUT110_SW [7:0] SW_IN_
SET_110
SW_OUT_
SET_110
SW_IN_110 SW_OUT_110 0x00 R/W
0x1DD LUT110_FILTER [7:0] HPF_110 LPF_110 0x00 R/W
0x1DE LUT111_SW [7:0] SW_IN_
SET_111
SW_OUT_
SET_111
SW_IN_111 SW_OUT_111 0x00 R/W
0x1DF LUT111_FILTER [7:0] HPF_111 LPF_111 0x00 R/W
0x1E0 LUT112_SW [7:0] SW_IN_
SET_112
SW_OUT_
SET_112
SW_IN_112 SW_OUT_112 0x00 R/W
0x1E1
LUT112_FILTER
[7:0]
HPF_112
LPF_112
0x00
R/W
0x1E2 LUT113_SW [7:0] SW_IN_
SET_113
SW_OUT_
SET_113
SW_IN_113 SW_OUT_113 0x00 R/W
0x1E3 LUT113_FILTER [7:0] HPF_113 LPF_113 0x00 R/W
0x1E4 LUT114_SW [7:0] SW_IN_
SET_114
SW_OUT_
SET_114
SW_IN_114 SW_OUT_114 0x00 R/W
0x1E5 LUT114_FILTER [7:0] HPF_114 LPF_114 0x00 R/W
0x1E6 LUT115_SW [7:0] SW_IN_
SET_115
SW_OUT_
SET_115
SW_IN_115 SW_OUT_115 0x00 R/W
0x1E7 LUT115_FILTER [7:0] HPF_115 LPF_115 0x00 R/W
0x1E8 LUT116_SW [7:0] SW_IN_
SET_116
SW_OUT_
SET_116
SW_IN_116 SW_OUT_116 0x00 R/W
0x1E9
LUT116_FILTER
[7:0]
HPF_116
LPF_116
0x00
R/W
0x1EA LUT117_SW [7:0] SW_IN_
SET_117
SW_OUT_
SET_117
SW_IN_117 SW_OUT_117 0x00 R/W
0x1EB LUT117_FILTER [7:0] HPF_117 LPF_117 0x00 R/W
0x1EC LUT118_SW [7:0] SW_IN_
SET_118
SW_OUT_
SET_118
SW_IN_118 SW_OUT_118 0x00 R/W
0x1ED LUT118_FILTER [7:0] HPF_118 LPF_118 0x00 R/W
0x1EE LUT119_SW [7:0] SW_IN_
SET_119
SW_OUT_
SET_119
SW_IN_119 SW_OUT_119 0x00 R/W
0x1EF LUT119_FILTER [7:0] HPF_119 LPF_119 0x00 R/W
0x1F0 LUT120_SW [7:0]
SW_IN_
SET_120
SW_OUT_
SET_120
SW_IN_120 SW_OUT_120 0x00 R/W
0x1F1
LUT120_FILTER
[7:0]
HPF_120
LPF_120
0x00
R/W
0x1F2 LUT121_SW [7:0] SW_IN_
SET_121
SW_OUT_
SET_121
SW_IN_121 SW_OUT_121 0x00 R/W
0x1F3 LUT121_FILTER [7:0] HPF_121 LPF_121 0x00 R/W
0x1F4 LUT122_SW [7:0] SW_IN_
SET_122
SW_OUT_
SET_122
SW_IN_122 SW_OUT_122 0x00 R/W
0x1F5 LUT122_FILTER [7:0] HPF_122 LPF_122 0x00 R/W
0x1F6 LUT123_SW [7:0] SW_IN_
SET_123
SW_OUT_
SET_123
SW_IN_123 SW_OUT_123 0x00 R/W
0x1F7 LUT123_FILTER [7:0] HPF_123 LPF_123 0x00 R/W
0x1F8 LUT124_SW [7:0] SW_IN_
SET_124
SW_OUT_
SET_124
SW_IN_124 SW_OUT_124 0x00 R/W
0x1F9 LUT124_FILTER [7:0] HPF_124 LPF_124 0x00 R/W
ADMV8818 Data Sheet
Rev. 0 | Page 26 of 36
Reg Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset R/W
0x1FA LUT125_SW [7:0] SW_IN_
SET_125
SW_OUT_
SET_125
SW_IN_125 SW_OUT_125 0x00 R/W
0x1FB LUT125_FILTER [7:0] HPF_125 LPF_125 0x00 R/W
0x1FC LUT126_SW [7:0] SW_IN_
SET_126
SW_OUT_
SET_126
SW_IN_126 SW_OUT_126 0x00 R/W
0x1FD LUT126_FILTER [7:0] HPF_126 LPF_126 0x00 R/W
0x1FE LUT127_SW [7:0] SW_IN_
SET_127
SW_OUT_
SET_127
SW_IN_127 SW_OUT_127 0x00 R/W
0x1FF LUT127_FILTER [7:0] HPF_127 LPF_127 0x00 R/W
Data Sheet ADMV8818
Rev. 0 | Page 27 of 36
REGISTER DETAILS
Note that the LUT1_SW to LUT127_FILTER bit fields functionality (Register 0x102 to Register 0x1FF) is identical to LUT0_SW and
LUT0_FILTER bit fields functionality (Register 0x100 and Register 0x101). See Table 6 for the register address information.
Address: 0x000, Reset: 0x00, Name: ADI_SPI_CONFIG_A
Soft Reset Soft Reset
LSB First LSB First
Endian Endian
SDO Active SDO Active
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7] SOFTRESET_ (R/W) [0] SOFTRESET (R/W)
[6] LSB_FIR ST_ (R/W) [1] LSB_FIR ST (R /W)
[5] ENDIAN_ (R/W) [2] ENDIAN (R/W )
[4] SDOACTIVE_ (R/W) [3] SDOACTIVE (R/W)
Table 7. Bit Descriptions for ADI_SPI_CONFIG_A
Bits Bit Name Description Reset Access
7 SOFTRESET_ Soft Reset. 0x0 R/W
0: reset asserted.
1: reset not asserted.
6 LSB_FIRST_ LSB First. 0x0 R/W
0: LSB first.
1: MSB first.
5 ENDIAN_ Endian. 0x0 R/W
0: Little Endian.
1: Big Endian.
4 SDOACTIVE_ SDO Active. 0x0 R/W
0: SDO inactive.
1: SDO active.
3 SDOACTIVE SDO Active. 0x0 R/W
0: SDO inactive.
1: SDO active.
2 ENDIAN Endian. 0x0 R/W
0: Little Endian.
1: Big Endian.
1 LSB_FIRST LSB First. 0x0 R/W
0: LSB first.
1: MSB first.
0 SOFTRESET Soft Reset. 0x0 R/W
0: Reset asserted.
1: Reset not asserted.
ADMV8818 Data Sheet
Rev. 0 | Page 28 of 36
Address: 0x001, Reset: 0x00, Name: ADI_SPI_CONFIG_B
Single Instruction Master Slave Transfer
CS Stall
Master Slave Readback
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7] SINGLE_INSTRUCTION (R/W) [0] MASTER_SLAVE_TRANSFER (R/W)
[6] CSB_STALL (R/W) [4:1] RESER VED
[5] MASTER_SLAVE_RB (R/W)
Table 8. Bit Descriptions for ADI_SPI_CONFIG_B
Bits
Bit Name
Description
Reset
Access
7 SINGLE_INSTRUCTION Single Instruction. 0x0 R/W
0: enable streaming.
1: disable streaming (regardless of CS).
6 CSB_STALL CS Stall. 0x0 R/W
5 MASTER_SLAVE_RB Master Slave Readback. 0x0 R/W
[4:1] RESERVED Reserved. 0x0 R
0 MASTER_SLAVE_TRANSFER Master Slave Transfer. 0x0 R/W
Address: 0x003, Reset: 0x01, Name: CHIPTYPE
Chip Type, Read Only
0
1
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CHIPTYPE (R)
Table 9. Bit Descriptions for CHIPTYPE
Bits Bit Name Description Reset Access
[7:0] CHIPTYPE Chip Type, Read Only. 0x1 R
Address: 0x004, Reset: 0x18, Name: PRODUCT_ID_L
Product_ID_L, Lower 8 Bits
0
0
1
0
2
0
3
1
4
1
5
0
6
0
7
0
[7:0] PRODUCT_ID_L (R)
Table 10. Bit Descriptions for PRODUCT_ID_L
Bits Bit Name Description Reset Access
[7:0] PRODUCT_ID_L Product_ID_L, Lower 8 Bits. 0x18 R
Address: 0x005, Reset: 0x88, Name: PRODUCT_ID_H
Product_ID_H, Higher 8 Bits
0
0
1
0
2
0
3
1
4
0
5
0
6
0
7
1
[7:0] PRODUCT_ID_H (R)
Table 11. Bit Descriptions for PRODUCT_ID_H
Bits Bit Name Description Reset Access
[7:0] PRODUCT_ID_H Product_ID_H, Higher 8 Bits. 0x88 R
Data Sheet ADMV8818
Rev. 0 | Page 29 of 36
Address: 0x010, Reset: 0x00, Name: FAST_LATCH_POINTER
Fast Latch Load Fast Latch Pointer
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7] FAST_LATCH_LOAD (R/W) [6:0] FAST_LATCH_POINTER (R/W)
Table 12. Bit Descriptions for FAST_LATCH_POINTER
Bits Bit Name Description Reset Access
7 FAST_LATCH_LOAD Fast Latch Load. Loads the pointer location into the internal state machine for fast
latch mode. The FAST_LATCH_LOAD bit self resets to zero.
0x0 R/W
[6:0] FAST_LATCH_POINTER Fast Latch Pointer. Determines the pointer location within the fast latch lookup table. 0x0 R/W
Address: 0x011, Reset: 0x7F, Name: FAST_LATCH_STOP
Fast Latch Stop Index
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
0
[7] RESERVED [6:0] FAST_LATCH_STOP (R/W)
Table 13. Bit Descriptions for FAST_LATCH_STOP
Bits Bit Name Description Reset Access
7 RESERVED Reserved. 0x0 R
[6:0] FAST_LATCH_STOP Fast Latch Stop Index. Sets the stop index within the fast latch lookup table. 0x7F R/W
Address: 0x012, Reset: 0x00, Name: FAST_LATCH_START
Fast Latch Start Index
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7] RESERVED [6:0] FAST_LATCH_START (R/W)
Table 14. Bit Descriptions for FAST_LATCH_START
Bits Bit Name Description Reset Access
7 RESERVED Reserved. 0x0 R
[6:0] FAST_LATCH_START Fast Latch Start Index. Sets the start index within the fast latch lookup table. Note that,
when exiting and then re-entering fast latch mode (SFL pin), the internal state machine
resumes where it left off and not at the start index. If a new start index is programmed, it
may be necessary to sequence through a number of states from the point at which the
state machine left off. This action is necessary for a positive incremental direction. For a
negative decremental direction, this action is necessary for the stop index.
0x0 R/W
Address: 0x013, Reset: 0x00, Name: FAST_LATCH_DIRECTION
Fast Latch Direction
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:1] RESER VED [0] FAST_LATCH_DIRECTION (R/W)
Table 15. Bit Descriptions for FAST_LATCH_DIRECTION
Bits Bit Name Description Reset Access
[7:1] RESERVED Reserved. 0x0 R
0 FAST_LATCH_DIRECTION Fast Latch Direction. Determines which direction to sequence within the fast latch
lookup table.
0x0 R/W
0: increment.
1: decrement.
ADMV8818 Data Sheet
Rev. 0 | Page 30 of 36
Address: 0x014, Reset: 0x00, Name: FAST_LATCH_STATE
Fast Latch State
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7] RESERVED [6:0] FAST_LATCH_STATE (R)
Table 16. Bit Descriptions for FAST_LATCH_STATE
Bits Bit Name Description Reset Access
7 RESERVED Reserved. 0x0 R
[6:0] FAST_LATCH_STATE Fast Latch State. Reads back the internal state machine pointer. 0x0 R
Address: 0x020, Reset: 0x00, Name: WR0_SW
Write Group 0: RF Input Switch Set Write Group 0: RF Output S witch Position
Write Group 0: RF Output S witch Set Write Group 0: RF Input Switch Position
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7] SW_IN_SET_WR0 (R/W) [2:0] SW_OUT_WR0 (R/W)
[6] SW_OUT_SET_WR 0 (R/W) [5:3] SW_IN_WR0 (R/W)
Table 17. Bit Descriptions for WR0_SW
Bits Bit Name Description Reset Access
7 SW_IN_SET_WR0 Write Group 0: RF Input Switch Set. Sets the switch position to be as defined in Bits[5:3]. 0x0 R/W
6 SW_OUT_SET_WR0 Write Group 0: RF Output Switch Set. Sets the switch position to be as defined in Bits[2:0]. 0x0 R/W
[5:3] SW_IN_WR0 Write Group 0: RF Input Switch Position. Defines the RF input switch position, as well as
which filter band is adjusted by the corresponding HPF state bits.
0x0 R/W
000: bypass.
001: Band 1.
010: Band 2.
011: Band 3.
100: Band 4.
[2:0] SW_OUT_WR0 Write Group 0: RF Output Switch Position. Defines the RF output switch position, as well
as which filter band is adjusted by the corresponding LPF state bits.
0x0 R/W
000: bypass.
001: Band 1.
010: Band 2.
011: Band 3.
100: Band 4.
Address: 0x021, Reset: 0x00, Name: WR0_FILTER
Write Group 0: HPF State Write Group 0: LPF State
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:4] HPF_WR0 (R /W) [3:0] LPF_W R0 (R/W)
Table 18. Bit Descriptions for WR0_FILTER
Bits Bit Name Description Reset Access
[7:4] HPF_WR0 Write Group 0: HPF State. The selected band is determined by the WR0_SW register, Bits[5:3]. 0x0 R/W
[3:0] LPF_WR0 Write Group 0: LPF State. The selected band is determined by the WR0_SW register, Bits[2:0]. 0x0 R/W
Data Sheet ADMV8818
Rev. 0 | Page 31 of 36
Address: 0x022, Reset: 0x00, Name: WR1_SW
Write Group 1: RF Input Switch Set Write Group 1: RF Output S witch Position
Write Group 1: RF Output S witch Set Write Group 1: RF Input Switch Position
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7] SW_IN_SET_WR1 (R/W) [2:0] SW_OUT_WR1 (R/W)
[6] SW_OUT_SET_WR 1 (R/W) [5:3] SW_IN_WR1 (R/W)
Table 19. Bit Descriptions for WR1_SW
Bits Bit Name Description Reset Access
7 SW_IN_SET_WR1 Write Group 1: RF Input Switch Set. Sets the switch position to be as defined in Bits[5:3]. 0x0 R/W
6 SW_OUT_SET_WR1 Write Group 1: RF Output Switch Set. Sets the switch position to be as defined in Bits[2:0]. 0x0 R/W
[5:3] SW_IN_WR1 Write Group 1: RF Input Switch Position. Defines the RF input switch position, as well as
which filter band is adjusted by the corresponding HPF state bits.
0x0 R/W
000: Bypass.
001: Band 1.
010: Band 2.
011: Band 3.
100: Band 4.
[2:0] SW_OUT_WR1 Write Group 1: RF Output Switch Position. Defines the RF output switch position, as well
as which filter band is adjusted by the corresponding LPF state bits.
0x0 R/W
000: bypass.
001: Band 1.
010: Band 2.
011: Band 3.
100: Band 4.
Address: 0x023, Reset: 0x00, Name: WR1_FILTER
Write Group 1: HPF State Write Group 1: LPF State
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:4] HPF_WR1 (R /W) [3:0] L P F _ WR 1 (R /W)
Table 20. Bit Descriptions for WR1_FILTER
Bits Bit Name Description Reset Access
[7:4] HPF_WR1 Write Group 1: HPF State. The selected band is determined by the WR1_SW register, Bits[5:3]. 0x0 R/W
[3:0] LPF_WR1 Write Group 1: LPF State. The selected band is determined by the WR1_SW register, Bits[2:0]. 0x0 R/W
ADMV8818 Data Sheet
Rev. 0 | Page 32 of 36
Address: 0x024, Reset: 0x00, Name: WR2_SW
Write Group 2: RF Input Switch Set Write Group 2: RF Output S witch Position
Write Group 2: RF Output S witch Set Write Group 2: RF Input Switch Position
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7] SW_IN_SET_WR2 (R/W) [2:0] SW_OUT_WR2 (R/W)
[6] SW_OUT_SET_WR 2 (R/W) [5:3] SW_IN_WR2 (R/W)
Table 21. Bit Descriptions for WR2_SW
Bits Bit Name Description Reset Access
7 SW_IN_SET_WR2 Write Group 2: RF Input Switch Set. Sets the switch position to be as defined in Bits[5:3]. 0x0 R/W
6 SW_OUT_SET_WR2 Write Group 2: RF Output Switch Set. Sets the switch position to be as defined in Bits[2:0]. 0x0 R/W
[5:3] SW_IN_WR2 Write Group 2: RF Input Switch Position. Defines the RF input switch position, as well as
which filter band is adjusted by the corresponding HPF state bits.
0x0 R/W
000: bypass.
001: Band 1.
010: Band 2.
011: Band 3.
100: Band 4.
[2:0] SW_OUT_WR2 Write Group 2: RF Output Switch Position. Defines the RF output switch position, as well
as which filter band is adjusted by the corresponding LPF state bits.
0x0 R/W
000: bypass.
001: Band 1.
010: Band 2.
011: Band 3.
100: Band 4.
Address: 0x025, Reset: 0x00, Name: WR2_FILTER
Write Group 2: HPF State Write Group 2: LPF State
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:4] HPF_WR2 (R /W) [3:0] L P F _ WR 2 (R /W)
Table 22. Bit Descriptions for WR2_FILTER
Bits Bit Name Description Reset Access
[7:4] HPF_WR2 Write Group 2: HPF State. The selected band is determined by the WR2_SW register, Bits[5:3]. 0x0 R/W
[3:0] LPF_WR2 Write Group 2: LPF State. The selected band is determined by the WR2_SW register, Bits[2:0]. 0x0 R/W
Data Sheet ADMV8818
Rev. 0 | Page 33 of 36
Address: 0x026, Reset: 0x00, Name: WR3_SW
Write Group 3: RF Input Switch Set Write Group 3: RF Output S witch Position
Write Group 3: RF Output S witch Set Write Group 3: RF Input Switch Position
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7] SW_IN_SET_WR3 (R/W) [2:0] SW_OUT_WR3 (R/W)
[6] SW_OUT_SET_WR 3 (R/W) [5:3] SW_IN_WR3 (R/W)
Table 23. Bit Descriptions for WR3_SW
Bits Bit Name Description Reset Access
7 SW_IN_SET_WR3 Write Group 3: RF Input Switch Set. Sets the switch position to be as defined in Bits[5:3]. 0x0 R/W
6 SW_OUT_SET_WR3 Write Group 3: RF Output Switch Set. Sets the switch position to be as defined in Bits[2:0]. 0x0 R/W
[5:3] SW_IN_WR3 Write Group 3: RF Input Switch Position. Defines the RF input switch position, as well as
which filter band is adjusted by the corresponding HPF state bits.
0x0 R/W
000: bypass.
001: Band 1.
010: Band 2.
011: Band 3.
100: Band 4.
[2:0] SW_OUT_WR3 Write Group 3: RF Output Switch Position. Defines the RF output switch position, as well
as which filter band is adjusted by the corresponding LPF state bits.
0x0 R/W
000: bypass.
001: Band 1.
010: Band 2.
011: Band 3.
100: Band 4.
Address: 0x027, Reset: 0x00, Name: WR3_FILTER
Write Group 3: HPF State Write Group 3: LPF State
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:4] HPF_WR3 (R /W) [3:0] L P F _ WR 3 (R /W)
Table 24. Bit Descriptions for WR3_FILTER
Bits Bit Name Description Reset Access
[7:4] HPF_WR3 Write Group 3: HPF State. The selected band is determined by the WR3_SW register, Bits[5:3]. 0x0 R/W
[3:0] LPF_WR3 Write Group 3: LPF State. The selected band is determined by the WR3_SW register, Bits[2:0]. 0x0 R/W
ADMV8818 Data Sheet
Rev. 0 | Page 34 of 36
Address: 0x028, Reset: 0x00, Name: WR4_SW
Write Group 4: RF Input Switch Set Write Group 4: RF Output S witch Position
Write Group 4: RF Output S witch Set Write Group 4: RF Input Switch Position
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7] SW_IN_SET_WR4 (R/W) [2:0] SW_OUT_WR4 (R/W)
[6] SW_OUT_SET_WR 4 (R/W) [5:3] SW_IN_WR4 (R/W)
Table 25. Bit Descriptions for WR4_SW
Bits Bit Name Description Reset Access
7 SW_IN_SET_WR4 Write Group 4: RF Input Switch Set. Sets the switch position to be as defined in Bits[5:3]. 0x0 R/W
6 SW_OUT_SET_WR4 Write Group 4: RF Output Switch Set. Sets the switch position to be as defined in Bits[2:0]. 0x0 R/W
[5:3] SW_IN_WR4 Write Group 4: RF Input Switch Position. Defines the RF input switch position, as well as
which filter band is adjusted by the corresponding HPF state bits.
0x0 R/W
000: bypass.
001: Band 1.
010: Band 2.
011: Band 3.
100: Band 4.
[2:0] SW_OUT_WR4 Write Group 4: RF Output Switch Position. Defines the RF output switch position, as well
as which filter band is adjusted by the corresponding LPF state bits.
0x0 R/W
000: bypass.
001: Band 1.
010: Band 2.
011: Band 3.
100: Band 4.
Address: 0x029, Reset: 0x00, Name: WR4_FILTER
Write Group 4: HPF State Write Group 4: LPF State
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:4] HPF_WR4 (R /W) [3:0] L P F _ WR 4 (R /W)
Table 26. Bit Descriptions for WR4_FILTER
Bits Bit Name Description Reset Access
[7:4] HPF_WR4 Write Group 4: HPF State. The selected band is determined by the WR4_SW register, Bits[5:3]. 0x0 R/W
[3:0] LPF_WR4 Write Group 4: LPF State. The selected band is determined by the WR4_SW register, Bits[2:0]. 0x0 R/W
Data Sheet ADMV8818
Rev. 0 | Page 35 of 36
Address: 0x100, Reset: 0x00, Name: LUT0_SW
LUT 000: RF Input Switch Set LUT 000: RF Output Switch Position
LUT 000: RF Output Switch Set LUT 000: RF Input Switch Position
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7] SW_IN_SET_0 (R/W) [2:0] SW_OUT_0 (R/W)
[6] SW_OUT_SET_0 (R/W) [5:3] SW_IN_0 (R/W)
Table 27. Bit Descriptions for LUT0_SW
Bits Bit Name Description Reset Access
7 SW_IN_SET_0 LUT 000: RF Input Switch Set. Sets the switch position to be as defined in Bits[5:3]. 0x0 R/W
6 SW_OUT_SET_0 LUT 000: RF Output Switch Set. Sets the switch position to be as defined in Bits[2:0]. 0x0 R/W
[5:3] SW_IN_0 LUT 000: RF Input Switch Position. Defines the RF input switch position, as well as which filter
band is adjusted by the corresponding HPF state bits.
0x0 R/W
000: bypass.
001: Band 1.
010: Band 2.
011: Band 3.
100: Band 4.
[2:0] SW_OUT_0 LUT 000: RF Output Switch Position. Defines the RF output switch position, as well as which
filter band is adjusted by the corresponding LPF state bits.
0x0 R/W
000: bypass.
001: Band 1.
010: Band 2.
011: Band 3.
100: Band 4.
Address: 0x101, Reset: 0x00, Name: LUT0_FILTER
LUT 000: HPF State LUT 000: LPF State
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:4] HPF_0 (R /W) [3:0] L P F _ 0 (R/W)
Table 28. Bit Descriptions for LUT0_FILTER
Bits Bit Name Description Reset Access
[7:4] HPF_0 LUT 000: HPF State. The selected band is determined by the LUT0_SW register, Bits[5:3]. 0x0 R/W
[3:0] LPF_0 LUT 000: LPF State. The selected band is determined by the LUT0_SW register, Bits[2:0]. 0x0 R/W
ADMV8818 Data Sheet
Rev. 0 | Page 36 of 36
OUTLINE DIMENSIONS
05-11-2020-B
PKG-006422
9.15
9.00 SQ
8.85
TOP VIEW
SIDE VIEW
1.03
0.97
0.91
BOTTOM VIEW
1
14
15
28
29
42
43 56
0.50
BSC
0.53
REF
0.10
REF
1.25 REF
6.50 REF
SQ
0.28
0.25
0.22
0.28
0.25 SQ
0.22
0.68
0.65
0.62
3.181
3.151 SQ
3.121
PIN 1
INDICATOR
SEATING
PLANE
PIN 1
INDICATOR
AREA
FO R PROPER CONNECT IO N OF
THE EXPOSED PADS, REFER TO
THE PI N CONFIGURATION AND
FUNCTI ON DESCRIPT IO NS
SECTI ON OF T HIS DATA SHEE T.
0.478
0.438
0.398
Figure 38. 56-Terminal Land Grid Array [LGA]
9 mm × 9 mm Body and 0.97 mm Package Height
(CC-56-3)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
ADMV8818SCCZ-EP −55°C to +105°C 56-Terminal Land Grid Array [LGA] CC-56-3
ADMV8818-EVALZ Evaluation Board
1 Z = RoHS Compliant Part.
©2020 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D25603-12/20(0)