LM4890
www.ti.com
SNAS138L SEPTEMBER 2001REVISED MAY 2013
LM4890 1 Watt Audio Power Amplifier
Check for Samples: LM4890
1FEATURES DESCRIPTION
The LM4890 is an audio power amplifier primarily
2 Available in Space-Saving Packages: DSBGA, designed for demanding applications in mobile
VSSOP, SOIC, and WSON phones and other portable communication device
Ultra Low Current Shutdown Mode applications. It is capable of delivering 1 watt of
BTL Output Can Drive Capacitive Loads continuous average power to an 8BTL load with
less than 1% distortion (THD+N) from a 5VDC power
Improved Pop & Click Circuitry Eliminates supply.
Noises During Turn-On and Turn-Off
Transitions Boomer audio power amplifiers were designed
specifically to provide high quality output power with a
2.2 - 5.5V Operation minimal amount of external components. The
No Output Coupling Capacitors, Snubber LM4890 does not require output coupling capacitors
Networks or Bootstrap Capacitors Required or bootstrap capacitors, and therefore is ideally suited
Thermal Shutdown Protection for mobile phone and other low voltage applications
where minimal power consumption is a primary
Unity-Gain Stable requirement.
External Gain Configuration Capability The LM4890 features a low-power consumption
shutdown mode, which is achieved by driving the
APPLICATIONS shutdown pin with logic low. Additionally, the LM4890
Mobile Phones features an internal thermal shutdown protection
PDAs mechanism.
Portable Electronic Devices The LM4890 contains advanced pop & click circuitry
which eliminates noises which would otherwise occur
KEY SPECIFICATIONS during turn-on and turn-off transitions.
PSRR at 217Hz, VDD = 5V (Fig. 1): 62dB(typ.) The LM4890 is unity-gain stable and can be
configured by external gain-setting resistors.
Power Output at 5.0V & 1% THD: 1W(typ.)
Power Output at 3.3V & 1% THD: 400mW(typ.)
Shutdown Current: 0.1μA(typ.)
1Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date. Copyright © 2001–2013, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
LM4890
SNAS138L SEPTEMBER 2001REVISED MAY 2013
www.ti.com
Connection Diagrams
Top View Top View
Figure 1. 8 Bump DSBGA Package Figure 2. 9 Bump DSBGA Package
See Package Number YPB0008 See Package Number YZR0009
Top View Top View
Figure 3. WSON Package Figure 4. Mini Small Outline (VSSOP) Package
See Package Number NGZ0010B See Package Number DGK0008A
Top View Top View
Figure 5. Small Outline (SOIC) Package Figure 6. 9 Bump DSBGA Package
See Package Number D0008A See Package Number YZR0009AAA
2Submit Documentation Feedback Copyright © 2001–2013, Texas Instruments Incorporated
Product Folder Links: LM4890
RIN
CIN
Rf
20k
20k
10k
10k
SW
250k
250k
500k
CBYPASS
1PF
15pF
20k
20k
0.39PF
Bias
Shutdown
Control
VIHVIL
Audio
Input
VDD
CS
1PF
GND
VOUT1
-
VOUT2
+
RL
8:
A2
A1
LM4890
www.ti.com
SNAS138L SEPTEMBER 2001REVISED MAY 2013
Typical Application
Figure 7. Typical Audio Amplifier Application Circuit
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
Copyright © 2001–2013, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Links: LM4890
LM4890
SNAS138L SEPTEMBER 2001REVISED MAY 2013
www.ti.com
Absolute Maximum Ratings(1)(2)
Supply Voltage(3) 6.0V
Storage Temperature 65°C to +150°C
Input Voltage 0.3V to VDD +0.3V
Power Dissipation(4) Internally Limited
ESD Susceptibility(5) 2000V
Junction Temperature 150°C
Thermal Resistance θJC (SOIC) 35°C/W
θJA (SOIC) 150°C/W
θJA (8 Bump DSBGA,(6)) 220°C/W
θJA (9 Bump DSBGA,(6)) 180°C/W
θJC (VSSOP) 56°C/W
θJA (VSSOP) 190°C/W
θJA (WSON) 220°C/W
Soldering Information See AN-1112 (SNVA009) "DSBGA Wafers Level Chip
Scale Package."
See AN-1187 (SNOA401) "Leadless Leadframe
Package (WSON)."
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for
which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical
specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the
Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication
of device performance.
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.
(3) If the product is in shutdown mode and VDD exceeds 6V (to a max of 8V VDD), then most of the excess current will flow through the ESD
protection circuits. If the source impedance limits the current to a max of 10 ma, then the part will be protected. If the part is enabled
when VDD is greater than 5.5V and less than 6.5V, no damage will occur, although operational life will be reduced. Operation above
6.5V with no current limit will result in permanent damage.
(4) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX,θJA, and the ambient temperature
TA. The maximum allowable power dissipation is PDMAX = (TJMAX–TA)/θJA or the number given in Absolute Maximum Ratings, whichever
is lower. For the LM4890, see power derating curves for additional information.
(5) Human body model, 100 pF discharged through a 1.5 kresistor.
(6) All bumps have the same thermal resistance and contribute equally when used to lower thermal resistance. All bumps must be
connected to achieve specified thermal resistance.
Operating Ratings
Temperature Range TMIN TATMAX 40°C TA85°C
Supply Voltage 2.2V VDD 5.5V
4Submit Documentation Feedback Copyright © 2001–2013, Texas Instruments Incorporated
Product Folder Links: LM4890
LM4890
www.ti.com
SNAS138L SEPTEMBER 2001REVISED MAY 2013
Electrical Characteristics VDD = 5V(1)(2)(3)
The following specifications apply for the circuit shown in Figure 7 unless otherwise specified. Limits apply for TA= 25°C.
LM4890 Units
Parameter Test Conditions (Limits)
Typical(4) Limit(5) (6)
IDD Quiescent Power Supply Current VIN = 0V, Io= 0A, No Load 4 8 mA (max)
VIN = 0V, Io= 0A, 8Load 5 10 mA (max)
ISD Shutdown Current VSHUTDOWN = 0V 0.1 2.0 µA (max)
VSDIH Shutdown Voltage Input High 1.2 V (min)
VSDIL Shutdown Voltage Input Low 0.4 V (max)
VOS Output Offset Voltage 7 50 mV (max)
ROUT-GND Resistor Output to GND(7) 9.7 k(max)
8.5 7.0 k(min)
PoOutput Power (8) THD = 2% (max); f = 1 kHz 1.0 0.8 W
TWU Wake-up time 170 220 ms (max)
TSD Thermal Shutdown Temperature 150 °C (min)
170 190 °C (max)
THD+N Total Harmonic Distortion + Noise Po= 0.4 Wrms; f = 1kHz 0.1 %
PSRR Power Supply Rejection Ratio(8) Vripple = 200mV sine p-p 62 (f = 217Hz) 55 dB (min)
Input Terminated with 10 ohms to 66 (f = 1kHz)
ground
TSDT Shut Down Time 8 load 1.0 ms (max)
(1) All voltages are measured with respect to the ground pin, unless otherwise specified.
(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for
which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical
specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the
Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication
of device performance.
(3) For DSBGA only, shutdown current is measured in a Normal Room Environment. Exposure to direct sunlight will increase ISD by a
maximum of 2µA.
(4) Typicals are measured at 25°C and represent the parametric norm.
(5) Limits are specified to TI's AOQL (Average Outgoing Quality Level).
(6) Datasheet min/max specification limits are specified by design, test, or statistical analysis.
(7) ROUT is measured from each of the output pins to ground. This value represents the parallel combination of the 10k ohm output
resistors and the two 20k ohm resistors.
(8) PSRR is a function of system gain. Specifications apply to the circuit in Figure 7 where AV= 2. Higher system gains will reduce PSRR
value by the amount of gain increase. A system gain of 10 represents a gain increase of 14dB. PSRR will be reduced by 14dB and
applies to all operating voltages.
Electrical Characteristics VDD = 3V(1)(2)(3)
The following specifications apply for the circuit shown in Figure 7 unless otherwise specified. Limits apply for TA= 25°C.
LM4890 Units
Parameter Test Conditions (Limits)
Typical(4) Limit(5) (6)
IDD Quiescent Power Supply Current VIN = 0V, Io= 0A, No Load 3.5 7 mA (max)
VIN = 0V, Io= 0A, 8Load 4.5 9 mA (max)
ISD Shutdown Current VSHUTDOWN = 0V 0.1 2.0 µA (max)
VSDIH Shutdown Voltage Input High 1.2 V(min)
VSDIL Shutdown Voltage Input Low 0.4 V(max)
(1) All voltages are measured with respect to the ground pin, unless otherwise specified.
(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for
which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical
specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the
Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication
of device performance.
(3) For DSBGA only, shutdown current is measured in a Normal Room Environment. Exposure to direct sunlight will increase ISD by a
maximum of 2µA.
(4) Typicals are measured at 25°C and represent the parametric norm.
(5) Limits are specified to TI's AOQL (Average Outgoing Quality Level).
(6) Datasheet min/max specification limits are specified by design, test, or statistical analysis.
Copyright © 2001–2013, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links: LM4890
LM4890
SNAS138L SEPTEMBER 2001REVISED MAY 2013
www.ti.com
Electrical Characteristics VDD = 3V(1)(2)(3) (continued)
The following specifications apply for the circuit shown in Figure 7 unless otherwise specified. Limits apply for TA= 25°C.
LM4890 Units
Parameter Test Conditions (Limits)
Typical(4) Limit(5) (6)
VOS Output Offset Voltage 7 50 mV (max)
ROUT-GND Resistor Output to Gnd(7) 9.7 k(max)
8.5 7.0 k(min)
TWU Wake-up time 120 180 ms (max)
PoOutput Power (8) THD = 1% (max); f = 1kHz 0.31 0.28 W
TSD Thermal Shutdown Temperature 150 °C(min)
170 190 °C(max)
THD+N Total Harmonic Distortion + Noise Po= 0.15Wrms; f = 1kHz 0.1 %
PSRR Power Supply Rejection Ratio(8) Vripple = 200mV sine p-p 56 (f = 217Hz) 45 dB(min)
Input terminated with 10 ohms to 62 (f = 1kHz)
ground
(7) ROUT is measured from each of the output pins to ground. This value represents the parallel combination of the 10k ohm output
resistors and the two 20k ohm resistors.
(8) PSRR is a function of system gain. Specifications apply to the circuit in Figure 7 where AV= 2. Higher system gains will reduce PSRR
value by the amount of gain increase. A system gain of 10 represents a gain increase of 14dB. PSRR will be reduced by 14dB and
applies to all operating voltages.
Electrical Characteristics VDD = 2.6V(1)(2)(3)
The following specifications apply for for the circuit shown in Figure 7 unless otherwise specified. Limits apply for TA= 25°C.
LM4890 Units
Parameter Test Conditions (Limits)
Typical(4) Limit(5) (6)
IDD Quiescent Power Supply Current VIN = 0V, Io= 0A, No Load 2.6 mA (max)
ISD Shutdown Current VSHUTDOWN = 0V 0.1 µA (max)
P0Output Power (8) THD = 1% (max); f = 1 kHz 0.2 W
Output Power (4) THD = 1% (max); f = 1 kHz 0.22 W
THD+N Total Harmonic Distortion + Noise Po= 0.1Wrms; f = 1kHz 0.08 %
PSRR Power Supply Rejection Ratio(7) Vripple = 200mV sine p-p 44 (f = 217Hz) dB
Input Terminated with 10 ohms to 44 (f = 1kHz)
ground
(1) All voltages are measured with respect to the ground pin, unless otherwise specified.
(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for
which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical
specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the
Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication
of device performance.
(3) For DSBGA only, shutdown current is measured in a Normal Room Environment. Exposure to direct sunlight will increase ISD by a
maximum of 2µA.
(4) Typicals are measured at 25°C and represent the parametric norm.
(5) Limits are specified to TI's AOQL (Average Outgoing Quality Level).
(6) Datasheet min/max specification limits are specified by design, test, or statistical analysis.
(7) PSRR is a function of system gain. Specifications apply to the circuit in Figure 7 where AV= 2. Higher system gains will reduce PSRR
value by the amount of gain increase. A system gain of 10 represents a gain increase of 14dB. PSRR will be reduced by 14dB and
applies to all operating voltages.
6Submit Documentation Feedback Copyright © 2001–2013, Texas Instruments Incorporated
Product Folder Links: LM4890
LM4890
www.ti.com
SNAS138L SEPTEMBER 2001REVISED MAY 2013
External Components Description
(See Figure 7)
Components Functional Description
1. RIN Inverting input resistance which sets the closed-loop gain in conjunction with Rf. This resistor also forms a high pass
filter with CIN at fC= 1/(2πRINCIN).
2. CIN Input coupling capacitor which blocks the DC voltage at the amplifier's input terminals. Also creates a highpass filter
with RIN at fc= 1/(2πRINCIN). Refer to the section, Proper Selection of External Components, for an explanation of how
to determine the value of CIN.
3. RfFeedback resistance which sets the closed-loop gain in conjunction with RIN.
4. CSSupply bypass capacitor which provides power supply filtering. Refer to the section, Power Supply Bypassing, for
information concerning proper placement and selection of the supply bypass capacitor, CBYPASS.
5. CBYPAS Bypass pin capacitor which provides half-supply filtering. Refer to the section, Proper Selection of External
SComponents, for information concerning proper placement and selection of CBYPASS.
Copyright © 2001–2013, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links: LM4890
LM4890
SNAS138L SEPTEMBER 2001REVISED MAY 2013
www.ti.com
Typical Performance Characteristics
THD+N vs Frequency THD+N vs Frequency
at VDD = 5V, 8RL, and PWR = 250mW, AV= 2 at VDD = 3.3V, 8RL, and PWR = 150mW, AV= 2
Figure 8. Figure 9.
THD+N vs Frequency THD+N vs Frequency
at VDD = 3V, RL= 8, PWR = 250mW, AV= 2 at VDD = 2.6V, RL= 8, PWR = 100mW, AV= 2
Figure 10. Figure 11.
THD+N vs Frequency THD+N vs Power Out
at VDD = 2.6V, RL= 4, PWR = 100mW, AV= 2 at VDD = 5V, RL= 8, 1kHz, AV= 2
Figure 12. Figure 13.
8Submit Documentation Feedback Copyright © 2001–2013, Texas Instruments Incorporated
Product Folder Links: LM4890
LM4890
www.ti.com
SNAS138L SEPTEMBER 2001REVISED MAY 2013
Typical Performance Characteristics (continued)
THD+N vs Power Out THD+N vs Power Out
at VDD = 3.3V, RL= 8, 1kHz, AV= 2 at VDD = 3V, RL= 8, 1kHz, AV= 2
Figure 14. Figure 15.
THD+N vs Power Out THD+N vs Power Out
at VDD = 2.6V, RL= 8, 1kHz, AV= 2 at VDD = 2.6V, RL= 4, 1kHz, AV= 2
Figure 16. Figure 17.
Power Supply Rejection Ratio (PSRR) at AV= 2 Power Supply Rejection Ratio (PSRR) at AV= 2
VDD = 5V, Vripple = 200mvp-p VDD = 5V, Vripple = 200mvp-p
RL= 8, RIN = 10RL= 8, RIN = Float
Figure 18. Figure 19.
Copyright © 2001–2013, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Links: LM4890
LM4890
SNAS138L SEPTEMBER 2001REVISED MAY 2013
www.ti.com
Typical Performance Characteristics (continued)
Power Supply Rejection Ratio (PSRR) at AV= 4 Power Supply Rejection Ratio (PSRR) at AV= 4
VDD = 5V, Vripple = 200mvp-p VDD = 5V, Vripple = 200mvp-p
RL= 8, RIN = 10RL= 8, RIN = Float
Figure 20. Figure 21.
Power Supply Rejection Ratio (PSRR) at AV= 2 Power Supply Rejection Ratio (PSRR) at AV= 2
VDD = 3V, Vripple = 200mvp-p, VDD = 3V, Vripple = 200mvp-p,
RL= 8, RIN = 10RL= 8, RIN = Float
Figure 22. Figure 23.
Power Supply Rejection Ratio (PSRR) at AV= 4 Power Supply Rejection Ratio (PSRR) at AV= 4
VDD = 3V, Vripple = 200mvp-p, VDD = 3V, Vripple = 200mvp-p,
RL= 8, RIN = 10RL= 8, RIN = Float
Figure 24. Figure 25.
10 Submit Documentation Feedback Copyright © 2001–2013, Texas Instruments Incorporated
Product Folder Links: LM4890
-6 -4 -2 0 2 4 6
-80
-70
-60
-50
-40
-30
-20
-10
0
10
PSRR (dBr)
(V)VOUTDC
-80
-70
-60
-50
-40
-30
-20
-10
0
10
-3 -2 -1 0 1 2 3
PSRR (dBr)
(V)VOUTDC
-80
-70
-60
-50
-40
-30
-20
-10
0
10
-6 -4 -2 0 2 4 6
PSRR (dBr)
(V)VOUTDC
-80
-70
-60
-50
-40
-30
-20
-10
0
10
-6 -4 -2 0 2 4 6
PSRR (dBr)
(V)VOUTDC
LM4890
www.ti.com
SNAS138L SEPTEMBER 2001REVISED MAY 2013
Typical Performance Characteristics (continued)
Power Supply Rejection Ratio (PSRR) at AV= 2 Power Supply Rejection Ratio (PSRR) at AV= 2
VDD = 3.3V, Vripple = 200mvp-p, VDD = 2.6V, Vripple = 200mvp-p,
RL= 8, RIN = 10RL= 8, RIN = 10
Figure 26. Figure 27.
PSRR vs DC Output Voltage PSRR vs DC Output Voltage
VDD = 5V, AV= 2 VDD = 5V, AV= 4
Figure 28. Figure 29.
PSRR vs DC Output Voltage PSRR vs DC Output Voltage
VDD = 5V, AV= 10 VDD = 3V, AV= 2
Figure 30. Figure 31.
Copyright © 2001–2013, Texas Instruments Incorporated Submit Documentation Feedback 11
Product Folder Links: LM4890
(dBr)
-85 -80 -75 -70 -65 -60 -55 -50 -45 -40
(dBr)
-80 -70 -60 -50 -40
-60
-50
-40
-30
-20
-10
0
1
0
-3 -2 -1 0 1 2 3
PSRR (dBr)
(V)VOUTDC
LM4890
SNAS138L SEPTEMBER 2001REVISED MAY 2013
www.ti.com
Typical Performance Characteristics (continued)
PSRR vs DC Output Voltage PSRR vs DC Output Voltage
VDD = 3V, AV= 4 VDD = 3V, AV= 10
Figure 32. Figure 33.
PSRR Distribution VDD = 5V PSRR Distribution VDD = 3V
217Hz, 200mvp-p, 217Hz, 200mvp-p,
-30, +25, and +80°C -30, +25, and +80°C
Figure 34. Figure 35.
Power Supply Rejection Ration vs Power Supply Rejection Ration vs
Bypass Capacitor Size Bypass Capacitor Size
VDD = 5V, Input Grounded = 10, Output Load = 8VDD = 3V, Input Grounded = 10, Output Load = 8
Figure 36. Top Trace = No Cap, Next Trace Down = f Figure 37. Top Trace = No Cap, Next Trace Down = f
Next Trace Down = f, Bottom Trace = 4.7µf Next Trace Down = f, Bottom Trace = 4.7µf
12 Submit Documentation Feedback Copyright © 2001–2013, Texas Instruments Incorporated
Product Folder Links: LM4890
020 40 60 80 100 120 140 160
AMBIENT TEMPERATURE (°C)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
POWER DISSIPATON (W)
480mm2
120mm2
0mm2
NOTE 13
LM4890
www.ti.com
SNAS138L SEPTEMBER 2001REVISED MAY 2013
Typical Performance Characteristics (continued)
LM4890 vs LM4877 Power Supply Rejection Ratio LM4890 vs LM4877 Power Supply Rejection Ratio
VDD = 5V, Input Grounded = 10VDD = 3V, Input Grounded = 10
Output Load = 8, 200mV Ripple Output Load = 8, 200mV Ripple
Figure 38. LM4890 = Bottom Trace Figure 39. LM4890 = Bottom Trace
LM4877 = Top Trace LM4877 = Top Trace
Power Derating Curves (PDMAX = 670mW) Power Derating - 8 bump DSBGA (PDMAX = 670mW)
Note: (PDMAX = 670mW for 5V, 8) Note: (PDMAX = 670mW for 5V, 8)
Figure 40. Ambient Temperature in Degrees C Figure 41. Ambient Temperature in Degrees C
Power Derating - 9 bump DSBGA (PDMAX = 670mW) Power Derating - 10 Pin LD Pkg (PDMAX = 670mW)
Note: (PDMAX = 670mW for 5V, 8)Note: (PDMAX = 670mW for 5V, 8)
Figure 42. Ambient Temperature in Degrees C Figure 43. Ambient Temperature in Degrees C
Copyright © 2001–2013, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: LM4890
LM4890
SNAS138L SEPTEMBER 2001REVISED MAY 2013
www.ti.com
Typical Performance Characteristics (continued)
Power Output vs Supply Voltage Power Output vs Temperature
Figure 44. Figure 45.
Power Dissipation vs Output Power Power Dissipation vs Output Power
VDD = 5V, 1kHz, 8, THD 1.0% VDD = 3.3V, 1kHz, 8, THD 1.0%
Figure 46. Figure 47.
Power Dissipation vs Output Power Output Power
VDD = 2.6V, 1kHz vs Load Resistance
Figure 48. Figure 49.
14 Submit Documentation Feedback Copyright © 2001–2013, Texas Instruments Incorporated
Product Folder Links: LM4890
LM4890
www.ti.com
SNAS138L SEPTEMBER 2001REVISED MAY 2013
Typical Performance Characteristics (continued)
Supply Current Clipping (Dropout) Voltage
vs Ambient Temperature vs Supply Voltage
Figure 50. Figure 51.
Max Die Temp Max Die Temp
at PDMAX (9 bump DSBGA) at PDMAX (8 bump DSBGA)
Figure 52. Figure 53.
Supply Current
Output Offset Voltage vs Shutdown Voltage
Figure 54. Figure 55.
Copyright © 2001–2013, Texas Instruments Incorporated Submit Documentation Feedback 15
Product Folder Links: LM4890
30
100 10K 1M 100M
FREQUENCY (Hz)
-20
-5
15
GAIN (dB)
10M
100K
1K
25
20
5
0
-15
10
-10
-90
0
-180
PHASE (°)
30
100 10K 1M 100M
FREQUENCY (Hz)
-20
-5
15
GAIN (dB)
10M100K
1K
25
20
5
0
-15
10
-10
-90
0
-180
PHASE (°)
0 31 2
0
1
2
3
SUPPLY CURRENT (MA)
SHUTDOWN VOLTAGE (V)
ON
OFF
4
0
4
1
2
3
0 31 2
Supply Current (mA)
Shutdown Voltage (V)
ON
OFF
LM4890
SNAS138L SEPTEMBER 2001REVISED MAY 2013
www.ti.com
Typical Performance Characteristics (continued)
Shutdown Hysterisis Voltage Shutdown Hysterisis Voltage
VDD = 5V VDD = 3V
Figure 56. Figure 57.
Open Loop Frequency Response Open Loop Frequency Response
VDD = 5V, No Load VDD = 3V, No Load
Figure 58. Figure 59.
Gain / Phase Response, AV= 2 Gain / Phase Response, AV= 4
VDD = 5V, 8Load, CLOAD = 500pF VDD = 5V, 8Load, CLOAD = 500pF
Figure 60. Figure 61.
16 Submit Documentation Feedback Copyright © 2001–2013, Texas Instruments Incorporated
Product Folder Links: LM4890
0500 1000 1500 2000
0
20
40
60
80
100
120
CAPACITANCE (pF)
PHASE (°)
50 deg Stability Limit
0500 1000 1500 2000
0
20
40
60
80
100
120
50 deg Stability Limit
PHASE (°)
CAPACITANCE (pF)
LM4890
www.ti.com
SNAS138L SEPTEMBER 2001REVISED MAY 2013
Typical Performance Characteristics (continued)
Phase Margin vs CLOAD, AV= 2 Phase Margin vs CLOAD, AV= 4
VDD = 5V, 8Load VDD = 5V, 8Load
Capacitance to gnd on each output Capacitance to gnd on each output
Figure 62. Figure 63.
Phase Margin and Limits
vs Application Variables, RIN = 22K
Figure 64.
Copyright © 2001–2013, Texas Instruments Incorporated Submit Documentation Feedback 17
Product Folder Links: LM4890
LM4890
SNAS138L SEPTEMBER 2001REVISED MAY 2013
www.ti.com
Typical Performance Characteristics (continued)
Frequency Response
Wake Up Time (TWU) vs Input Capacitor Size
Figure 65. Figure 66.
Noise Floor
Figure 67.
18 Submit Documentation Feedback Copyright © 2001–2013, Texas Instruments Incorporated
Product Folder Links: LM4890
LM4890
www.ti.com
SNAS138L SEPTEMBER 2001REVISED MAY 2013
APPLICATION INFORMATION
BRIDGED CONFIGURATION EXPLANATION
As shown in Figure 7, the LM4890 has two operational amplifiers internally, allowing for a few different amplifier
configurations. The first amplifier's gain is externally configurable, while the second amplifier is internally fixed in
a unity-gain, inverting configuration. The closed-loop gain of the first amplifier is set by selecting the ratio of Rfto
RIN while the second amplifier's gain is fixed by the two internal 20kresistors. Figure 7 shows that the output of
amplifier one serves as the input to amplifier two which results in both amplifiers producing signals identical in
magnitude, but out of phase by 180°. Consequently, the differential gain for the IC is
AVD= 2 *(Rf/RIN)
By driving the load differentially through outputs Vo1 and Vo2, an amplifier configuration commonly referred to as
“bridged mode” is established. Bridged mode operation is different from the classical single-ended amplifier
configuration where one side of the load is connected to ground.
A bridge amplifier design has a few distinct advantages over the single-ended configuration, as it provides
differential drive to the load, thus doubling output swing for a specified supply voltage. Four times the output
power is possible as compared to a single-ended amplifier under the same conditions. This increase in attainable
output power assumes that the amplifier is not current limited or clipped. In order to choose an amplifier's closed-
loop gain without causing excessive clipping, please refer to the Audio Power Amplifier Design section.
A bridge configuration, such as the one used in the LM4890, also creates a second advantage over single-ended
amplifiers. Since the differential outputs, Vo1 and Vo2, are biased at half-supply, no net DC voltage exists across
the load. This eliminates the need for an output coupling capacitor which is required in a single supply, single-
ended amplifier configuration. Without an output coupling capacitor, the half-supply bias across the load would
result in both increased internal IC power dissipation and also possible loudspeaker damage.
EXPOSED-DAP PACKAGE PCB MOUNTING CONSIDERATIONS FOR THE LM4890LD
The LM4890LD's exposed-DAP (die attach paddle) package (LD) provides a low thermal resistance between the
die and the PCB to which the part is mounted and soldered. The LM4890LD package should have its DAP
soldered to the grounded copper pad (heatsink) under the LM4890LD (the NC pins, no connect, and ground pins
should also be directly connected to this copper pad-heatsink area). The area of the copper pad (heatsink) can
be determined from the LD Power Derating graph. If the multiple layer copper heatsink areas are used, then
these inner layer or backside copper heatsink areas should be connected to each other with 4 (2 x 2) vias. The
diameter for these vias should be between 0.013 inches and 0.02 inches with a 0.050inch pitch-spacing. Ensure
efficient thermal conductivity by plating through and solder-filling the vias. Further detailed information concerning
PCB layout, fabrication, and mounting an WSON package is available from TI's Package Engineering Group
under application note AN1187.
POWER DISSIPATION
Power dissipation is a major concern when designing a successful amplifier, whether the amplifier is bridged or
single-ended. A direct consequence of the increased power delivered to the load by a bridge amplifier is an
increase in internal power dissipation. Since the LM4890 has two operational amplifiers in one package, the
maximum internal power dissipation is 4 times that of a single-ended amplifier. The maximum power dissipation
for a given application can be derived from the power dissipation graphs or from Equation 1.
PDMAX = 4*(VDD)2/(2π2RL) (1)
It is critical that the maximum junction temperature TJMAX of 150°C is not exceeded. TJMAX can be determined
from the power derating curves by using PDMAX and the PC board foil area. By adding additional copper foil, the
thermal resistance of the application can be reduced, resulting in higher PDMAX. Additional copper foil can be
added to any of the leads connected to the LM4890. Refer to the Application Information on the LM4890
reference design board for an example of good heat sinking. If TJMAX still exceeds 150°C, then additional
changes must be made. These changes can include reduced supply voltage, higher load impedance, or reduced
ambient temperature. Internal power dissipation is a function of output power. Refer to the Typical Performance
Characteristics curves for power dissipation information for different output powers and output loading.
Copyright © 2001–2013, Texas Instruments Incorporated Submit Documentation Feedback 19
Product Folder Links: LM4890
LM4890
SNAS138L SEPTEMBER 2001REVISED MAY 2013
www.ti.com
POWER SUPPLY BYPASSING
As with any amplifier, proper supply bypassing is critical for low noise performance and high power supply
rejection. The capacitor location on both the bypass and power supply pins should be as close to the device as
possible. Typical applications employ a 5V regulator with 10 µF tantalum or electrolytic capacitor and a ceramic
bypass capacitor which aid in supply stability. This does not eliminate the need for bypassing the supply nodes of
the LM4890. The selection of a bypass capacitor, especially CBYPASS, is dependent upon PSRR requirements,
click and pop performance (as explained in the section, Proper Selection of External Components), system cost,
and size constraints.
SHUTDOWN FUNCTION
In order to reduce power consumption while not in use, the LM4890 contains a shutdown pin to externally turn off
the amplifier's bias circuitry. This shutdown feature turns the amplifier off when a logic low is placed on the
shutdown pin. By switching the shutdown pin to ground, the LM4890 supply current draw will be minimized in idle
mode. While the device will be disabled with shutdown pin voltages less than 0.5VDC, the idle current may be
greater than the typical value of 0.1µA. (Idle current is measured with the shutdown pin grounded).
In many applications, a microcontroller or microprocessor output is used to control the shutdown circuitry to
provide a quick, smooth transition into shutdown. Another solution is to use a single-pole, single-throw switch in
conjunction with an external pull-up resistor. When the switch is closed, the shutdown pin is connected to ground
and disables the amplifier. If the switch is open, then the external pull-up resistor will enable the LM4890. This
scheme ensures that the shutdown pin will not float thus preventing unwanted state changes.
SHUTDOWN OUTPUT IMPEDANCE
For Rf= 20k ohms:
ZOUT1 (between Out1 and GND) = 10k||50k||Rf= 6k
ZOUT2 (between Out2 and GND) = 10k||(40k+(10k||Rf)) = 8.3k
ZOUT1-2 (between Out1 and Out2) = 40k||(10k+(10k||Rf)) = 11.7k
The -3dB roll off for these measurements is 600kHz
PROPER SELECTION OF EXTERNAL COMPONENTS
Proper selection of external components in applications using integrated power amplifiers is critical to optimize
device and system performance. While the LM4890 is tolerant of external component combinations,
consideration to component values must be used to maximize overall system quality.
The LM4890 is unity-gain stable which gives the designer maximum system flexibility. The LM4890 should be
used in low gain configurations to minimize THD+N values, and maximize the signal to noise ratio. Low gain
configurations require large input signals to obtain a given output power. Input signals equal to or greater than
1Vrms are available from sources such as audio codecs. Please refer to the section, Audio Power Amplifier
Design, for a more complete explanation of proper gain selection.
Besides gain, one of the major considerations is the closed-loop bandwidth of the amplifier. To a large extent, the
bandwidth is dictated by the choice of external components shown in Figure 7. The input coupling capacitor, CIN,
forms a first order high pass filter which limits low frequency response. This value should be chosen based on
needed frequency response for a few distinct reasons.
Selection Of Input Capacitor Size
Large input capacitors are both expensive and space hungry for portable designs. Clearly, a certain sized
capacitor is needed to couple in low frequencies without severe attenuation. But in many cases the speakers
used in portable systems, whether internal or external, have little ability to reproduce signals below 100Hz to
150Hz. Thus, using a large input capacitor may not increase actual system performance.
20 Submit Documentation Feedback Copyright © 2001–2013, Texas Instruments Incorporated
Product Folder Links: LM4890
LM4890
www.ti.com
SNAS138L SEPTEMBER 2001REVISED MAY 2013
In addition to system cost and size, click and pop performance is effected by the size of the input coupling
capacitor, CIN. A larger input coupling capacitor requires more charge to reach its quiescent DC voltage
(nominally 1/2 VDD). This charge comes from the output via the feedback and is apt to create pops upon device
enable. Thus, by minimizing the capacitor size based on necessary low frequency response, turn-on pops can be
minimized.
Besides minimizing the input capacitor size, careful consideration should be paid to the bypass capacitor value.
Bypass capacitor, CBYPASS, is the most critical component to minimize turn-on pops since it determines how fast
the LM4890 turns on. The slower the LM4890's outputs ramp to their quiescent DC voltage (nominally 1/2VDD),
the smaller the turn-on pop. Choosing CBYPASS equal to 1.0µF along with a small value of CIN, (in the range of
0.1µF to 0.39µF), should produce a virtually clickless and popless shutdown function. While the device will
function properly, (no oscillations or motorboating), with CBYPASS equal to 0.1µF, the device will be much more
susceptible to turn-on clicks and pops. Thus, a value of CBYPASS equal to 1.0µF is recommended in all but the
most cost sensitive designs.
AUDIO POWER AMPLIFIER DESIGN
A 1W/8Audio Amplifier
Given:
Power Output 1 Wrms
Load Impedance 8
Input Level 1 Vrms
Input Impedance 20 k
Bandwidth 100 Hz–20 kHz ± 0.25 dB
A designer must first determine the minimum supply rail to obtain the specified output power. By extrapolating
from the Output Power vs Supply Voltage graphs in the Typical Performance Characteristics section, the supply
rail can be easily found. A second way to determine the minimum supply rail is to calculate the required Vopeak
using Equation 2 and add the output voltage. Using this method, the minimum supply voltage would be (Vopeak +
(VODTOP + VODBOT)), where VODBOT and VODTOP are extrapolated from the Dropout Voltage vs Supply Voltage curve in
theTypical Performance Characteristics.
(2)
5V is a standard voltage which in most applications is chosen for the supply rail. Extra supply voltage creates
headroom that allows the LM4890 to reproduce peaks in excess of 1W without producing audible distortion. At
this time, the designer must make sure that the power supply choice along with the output impedance does not
violate the conditions explained in the POWER DISSIPATION section.
Once the power dissipation equations have been addressed, the required differential gain can be determined
from Equation 3.
(3)
Rf/RIN = AVD/2 (4)
From Equation 3, the minimum AVD is 2.83; use AVD = 3.
Since the desired input impedance is 20 k, and with an AVD gain of 3, a ratio of 1.5:1 of Rfto RIN results in an
allocation of RIN = 20 kand Rf= 30 k. The final design step is to address the bandwidth requirements which
must be stated as a pair of 3 dB frequency points. Five times away from a 3 dB point is 0.17 dB down from
passband response which is better than the required ±0.25 dB specified.
fL= 100Hz/5 = 20Hz
fH= 20kHz * 5 = 100kHz
As stated in the External Components Description section, RIN in conjunction with CIN create a highpass filter.
CIN 1/(2π*20 k*20Hz) = 0.397µF; use 0.39µF
Copyright © 2001–2013, Texas Instruments Incorporated Submit Documentation Feedback 21
Product Folder Links: LM4890
LM4890
SNAS138L SEPTEMBER 2001REVISED MAY 2013
www.ti.com
The high frequency pole is determined by the product of the desired frequency pole, fH, and the differential gain,
AVD. With a AVD = 3 and fH= 100kHz, the resulting GBWP = 300kHz which is much smaller than the LM4890
GBWP of 2.5MHz. This calculation shows that if a designer has a need to design an amplifier with a higher
differential gain, the LM4890 can still be used without running into bandwidth limitations.
Figure 68. HIGHER GAIN AUDIO AMPLIFIER
The LM4890 is unity-gain stable and requires no external components besides gain-setting resistors, an input
coupling capacitor, and proper supply bypassing in the typical application. However, if a closed-loop differential
gain of greater than 10 is required, a feedback capacitor (C4) may be needed as shown in Figure 68 to
bandwidth limit the amplifier. This feedback capacitor creates a low pass filter that eliminates possible high
frequency oscillations. Care should be taken when calculating the -3dB frequency in that an incorrect
combination of R3and C4will cause rolloff before 20kHz. A typical combination of feedback resistor and
capacitor that will not produce audio band high frequency rolloff is R3= 20kand C4= 25pf. These components
result in a -3dB point of approximately 320 kHz.
22 Submit Documentation Feedback Copyright © 2001–2013, Texas Instruments Incorporated
Product Folder Links: LM4890
LM4890
www.ti.com
SNAS138L SEPTEMBER 2001REVISED MAY 2013
Figure 69. DIFFERENTIAL AMPLIFIER CONFIGURATION FOR LM4890
Figure 70. REFERENCE DESIGN BOARD and LAYOUT - DSBGA
Copyright © 2001–2013, Texas Instruments Incorporated Submit Documentation Feedback 23
Product Folder Links: LM4890
LM4890
SNAS138L SEPTEMBER 2001REVISED MAY 2013
www.ti.com
LM4890 DSBGA BOARD ARTWORK
Silk Screen Top Layer
Bottom Layer Inner Layer VDD
Inner Layer Ground
24 Submit Documentation Feedback Copyright © 2001–2013, Texas Instruments Incorporated
Product Folder Links: LM4890
LM4890
www.ti.com
SNAS138L SEPTEMBER 2001REVISED MAY 2013
Figure 71. REFERENCE DESIGN BOARD and PCB LAYOUT GUIDELINES - VSSOP and SOIC Boards
LM4890 SOIC DEMO BOARD ARTWORK
Figure 72. Silk Screen
Figure 73. Top Layer
Copyright © 2001–2013, Texas Instruments Incorporated Submit Documentation Feedback 25
Product Folder Links: LM4890
LM4890
SNAS138L SEPTEMBER 2001REVISED MAY 2013
www.ti.com
Figure 74. Bottom Layer
LM4890 VSSOP DEMO BOARD ARTWORK
Figure 75. Silk Screen
Figure 76. Top Layer
Figure 77. Bottom Layer
Table 1. Mono LM4890 Reference Design Boards
26 Submit Documentation Feedback Copyright © 2001–2013, Texas Instruments Incorporated
Product Folder Links: LM4890
LM4890
www.ti.com
SNAS138L SEPTEMBER 2001REVISED MAY 2013
Table 1. Mono LM4890 Reference Design Boards
Bill of Material for all 3 Demo Boards (continued)
Bill of Material for all 3 Demo Boards
Item Part Number Part Description Qty Ref Designator
1 551011208-001 LM4890 Mono Reference Design Board 1
10 482911183-001 LM4890 Audio AMP 1 U1
20 151911207-001 Tant Cap 1uF 16V 10 1 C1
21 151911207-002 Cer Cap 0.39uF 50V Z5U 20% 1210 1 C2
25 152911207-001 Tant Cap 1uF 16V 10 1 C3
30 472911207-001 Res 20K Ohm 1/10W 5 3 R1, R2, R3
35 210007039-002 Jumper Header Vertical Mount 2X1 0.100 2 J1, J2
PCB LAYOUT GUIDELINES
This section provides practical guidelines for mixed signal PCB layout that involves various digital/analog power
and ground traces. Designers should note that these are only "rule-of-thumb" recommendations and the actual
results will depend heavily on the final layout.
GENERAL MIXED SIGNAL LAYOUT RECOMMENDATIONS
Power and Ground Circuits
For 2 layer mixed signal design, it is important to isolate the digital power and ground trace paths from the
analog power and ground trace paths. Star trace routing techniques (bringing individual traces back to a central
point rather than daisy chaining traces together in a serial manner) can have a major impact on low level signal
performance. Star trace routing refers to using individual traces to feed power and ground to each circuit or even
device. This technique will require a greater amount of design time but will not increase the final price of the
board. The only extra parts required will be some jumpers.
Single-Point Power / Ground Connections
The analog power traces should be connected to the digital traces through a single point (link). A "Pi-filter" can
be helpful in minimizing High Frequency noise coupling between the analog and digital sections. It is further
recommended to put digital and analog power traces over the corresponding digital and analog ground traces to
minimize noise coupling.
Placement of Digital and Analog Components
All digital components and high-speed digital signals traces should be located as far away as possible from
analog components and circuit traces.
Avoiding Typical Design / Layout Problems
Avoid ground loops or running digital and analog traces parallel to each other (side-by-side) on the same PCB
layer. When traces must cross over each other do it at 90 degrees. Running digital and analog traces at 90
degrees to each other from the top to the bottom side as much as possible will minimize capacitive noise
coupling and cross talk.
Copyright © 2001–2013, Texas Instruments Incorporated Submit Documentation Feedback 27
Product Folder Links: LM4890
LM4890
SNAS138L SEPTEMBER 2001REVISED MAY 2013
www.ti.com
REVISION HISTORY
Changes from Revision K (May 2013) to Revision L Page
Changed layout of National Data Sheet to TI format .......................................................................................................... 27
28 Submit Documentation Feedback Copyright © 2001–2013, Texas Instruments Incorporated
Product Folder Links: LM4890
PACKAGE OPTION ADDENDUM
www.ti.com 9-Aug-2013
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LM4890LDX/NOPB ACTIVE WSON NGZ 10 4500 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 85 L4890
LM4890M/NOPB ACTIVE SOIC D 8 95 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 LM48
90M
LM4890MM/NOPB ACTIVE VSSOP DGK 8 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 G90
LM4890MMX/NOPB ACTIVE VSSOP DGK 8 3500 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 G90
LM4890MX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 LM48
90M
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
PACKAGE OPTION ADDENDUM
www.ti.com 9-Aug-2013
Addendum-Page 2
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
LM4890LDX/NOPB WSON NGZ 10 4500 330.0 12.4 4.3 3.3 1.0 8.0 12.0 Q1
LM4890MM/NOPB VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM4890MMX/NOPB VSSOP DGK 8 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1
LM4890MX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 12-Aug-2013
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
LM4890LDX/NOPB WSON NGZ 10 4500 367.0 367.0 35.0
LM4890MM/NOPB VSSOP DGK 8 1000 210.0 185.0 35.0
LM4890MMX/NOPB VSSOP DGK 8 3500 367.0 367.0 35.0
LM4890MX/NOPB SOIC D 8 2500 367.0 367.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 12-Aug-2013
Pack Materials-Page 2
MECHANICAL DATA
NGZ0010B
www.ti.com
LDA10B (Rev B)
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated