Rugged Power MOSFETs IRF150R, IRF151R, IRF152R, IRF153R Avalanche Energy Rated N-Channel Power MOSFETs 33A and 40A, 60V-100V fos(on) = 0.0552 and 0.080 Features: li Single puise avalanche energy rated @ SOA is power-dissipation limited @ Nanosecond switching speeds @ Linear transfer characteristics @ High input impedance The IRF150R, IRF151R, IRF152R and !RF153R are ad- vanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. These are n-channel en- hancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and driv- ers for high-power bipolar switching transistors requiring high speed and Sow gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AE metal package. Absolute Maximum Ratings File Number 2002 N-CHANNEL ENHANCEMENT MODE Do s 92c8-42658 TERMINAL DIAGRAM TERMINAL DESIGNATION DRAIN SOURCE wa O ( GATE 92Cs- 3780! JEDEC TO - 204 AE Parameter IRFISOR | IRF1ISiR | IRF152A | IRFI5S3R Units Vos Drain - Source Voltage 100 60 100 60 Vv Voar Drain - Gate Voitage (Ras = 20 KQ) @ 100 60 100 60 v lo @ Tc = 25C Continuous Drain Current 40 4G 33 33 A lo @ Te = 100C Continuous Drain Current 25 25 20 20 A lom Pulsed Drain Current @ 160 160 132 132 A Ves Gate - Source Voltage +20 Vv Po @ Te = 25C Max. Power Dissipation 150 (See Fig. 14) Ww Linear Derating Factor 1.2 (See Fig. 14) w/c Ens Single Pulse Avalanche Energy Rating @ 150 mj Tos Storage Temperature Range ~55 to 150 C Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s) CElectrical Characteristics @ Tc = 25C (Unless Otherwise Specified) Rugged Power MOSFETs IRF150R, IRF151R, IRF152R, IRF153R P t Type Min. | Typ. | Max. | Units Test Conditions BVoss Drain - Source Breakdown Voltage IRF150R _ = IRF152R| 100 - - Vv Ves = OV IRF151R = IRF153R 60 - _ Vv Ip = 250nA Vestn ___ Gate Threshold Voltage ALL 2.0 = 4.0 Vv Vos = Ves, lo = 250 A lass Gate-Source Leakage Forward ALL _ = 100 nA Ves = 20V lass Gate-Source Leakage Reverse ALL _ ~ -100 nA Ves = -20V loss Zero Gate Voltage Drain Current - = 250 BA Vos = Max. Rating, Ves = OV ALL = -__| 1000 | pA | Vos = Max, Rating x 0.8, Vas = OV, Te = 125C loom On-State Drain Current @ IRF150R inFIsiR| 40 | = A Vos > Into X Rosion) max. Vas = 10V IRFI52R | 44 _ _ A IRF153R Rosen Static Drain-Source On-State IRF150R , _ 0.045 ; 0.055 Q Resistance @ RESE Ves = 10V, Ip = 20A IRF153R - 0.06 0.08 n Qta Forward Transconductance @ ALL 9.0 W = S(O) _ | Vos > lorem X Rosionmax, 1p = 20A ae put Capacitance ALL = 2000 = PF | Vos = OV, Vos = 25V, f= 1,0 MHz oss, utput Capacitance - ALL _ 1000 _ pF See Fig. 10 Crs Reverse Transfer Capacitance ALL = 350 = pr taton Turn-On Delay Time ALL = = 35 ns Vpo = 24V, lo = 20A, Zo = 4.72 t Rise Time ALL = = 100 ns See Fig. 17 tarorn Turn-Off Delay Time ALL 125 ns {MOSFET switching times are essentially tr Fall Time ALL _ ~ 100 ns independent of operating temperature.) Q, Total Gate Charge ALL _ 83 120 nc Ves = 10V, Ib = 50A, Vos = 0.8V Max. Rating. _(Gate-Source Plus Gate-Drain) See Fig. 18 for test circuit. (Gate charge is Qe Gate-Source Charge ALL 27 _ nc essentially independent of operating Qga Gate-Drain (Miller) Charge ALL 36 - nc temperature.) bo internal Drain inductance ALL _ 5.0 _ nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to | internal device p source and gate pins inductances and center of die. to Ls internal Source inductance ALL - 12.5 _ nH Measured from the -source pin, 6 mm s Ls (0.25 in.) from header and source s bonding pad. orcs azeas Thermal Resistance RinJC _ Junction-to-Case ALL 0.83 | C/W RinCS__ Case-to-Sink ALL _ G1 = C/W_| Mounting surface flat, smooth, and greased. RinJA Junction-to-Ambient ALL = _ 30 C/W _| Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current IRFISOR{ _ 40 A Modified MOSFET symbol (Body Diode) IRF151R showing the integral IRF152R 33 reverse P-N junction rectifier. ~ IRF153R | - A lon Pulse Source Current IRF1ISOR| _ 160 A 6 (Body Diode) @ IRF15iR : IRF152R ace eres iRFisgR| ~ | ~ | 2 | A Vso Diode Forward Voltage @ IRFISOR| __ _ , = = = IREISIR 2.5 V Te = 25C, Is = 40A, Vas = OV IRF152R = = = IRF153R _- _ 23 Vv Te = 28C, Is = 33A, Vas = OV te Reverse Recovery Time ALL _ 600 _ ns Ty = 150C, le = 40A, di-/dt = 100A/us Ona Reverse Recovered Charge ALL = 3.3 _ uC Ts = 150C, Ir = 40A, dle/dt = 100A/us ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controiled by Ls + Lo. Ts = 25C to 150C. @ Pulse Test: Pulse width < 300us, Duty Cycle < 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5). @ Voo = 10V, starting Ts = 25C, L = 170uH, Ros = 500, lpeax = 40A. See figures 15, 16.Rugged Power MOSFETs IRF150R, IRF151R, IRF152R, IRF153R 50 80 us PULSE TEST 40 30 20 Ip, DRAIN CURRENT (AMPERES) 9 10 20 30 40 Vos. ORAIN-TO-SOUACE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics 80 us PULSE TEST tp, DRAIN CURRENT (AMPERES) av 0 o4 08 12 16 Vos, ORAIN-TO-SOURCE VJLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics S w o a THERMAL IMPEDANCE (PER UNIT) nN o a Zehaclt/Rypyc. NORMALIZED EFFECTIVE TRANSIENT 0.01 10-8 2 5 10-4 2 10-3 50 2.0 SINGLE PULSE {TRANSIENT THERMAL IMPEDANCE) 1p, DRAIN CURRENT {AMPE RES) 10-2 1p, ORAIN CURRENT (AMPERES) 1000 500 200 100 50 20 80 ws PULSE > Iptond * Ros(on) max. Ty= | Ty= 2600 yF 1 2 3 4 $s 6 7 8 Vos. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 2 Typical Transfer Characteristics OPERATION IN THIS AREA IS LIMITED BY Roston) IRF150R, 1A tAF152A, 3R Te = 25C Ty = 190C MAX. Rinse 0.83 K/W SINGLE PULSE oc IRF151R, 3A (AF I50R, 2A 2 5 10 20 $0 100 200 00 Vs. QRAIN-T0-SOURCE VOLTAGE (VOLTS) Fig. 4 Maximum Safe Operating Area na 1 DUTY FACTOR, 0 it 2. PER UNIT BASE = Rinyc = 083 DEG. CW 3. Tym - Te = Pom Zinc). 5 wl 2 5 ipl Sn ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse DurationRugged Power MOSFETs Fe BV pss, DRAIN TO SOURCE BREAKOOWN VOLTAGE (NORMALIZED) Ty + -55C Ots. TRANSCONDUCTANCE (SIEMENS) Vos > '!Dion) * Ros(an) max. bo to Q0 us PULSE TEST 10 20 30 Ip, ORAIN CURRENT (AMPERES) 40 50 ig. 6 Typical Transconductance Vs. Drain Current 125 118 108 0.95 08s ADs ton. DRAIN TO SOURCE ON RESISTANCE 075 -40 0 40 80 Ty, JUNCTION TEMPERATURE 19C) 120 160 Fig. 8 Breakdown Voltage Vs. Temperature Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS) (NORMALIZED) IRF150R, IRF151R, IRF152R, IRF153R Ty = 1509C Ipg. REVERSE DRAIN CURRENT (AMPERES) 1 2 3 Vgp. SOURCE TO GRAIN VOLTAGE (VOLTS) Fig. 7 -- Typical Source-Drain Diode Forward Voltage 22 Vgs = lv Ig = 144 06 02 -40 0 40 80 Ty, JUNCTION TEMPERATURE (C) 120 Fig. 9 Normalized On-Resistance Vs. Temperature 4000 20 Ves=0 i f= 1 MHz 3200 . a Cigg = Coy + Coy, Cig SHORTED z Vos = 20V a 15 Crs ood = Vos * 50V = j L : 2400 Cons = Cay + s x Vos = 80V, IRFISOR, 1628 z ~ Cas + Cog s 5 3 10 Qo < > S 1600 a oo & _ oa < 600 3 > Ig* FOR TEST CIRCUIT FIGURE 18 0 10 20 x 40 50 0 28 $6 ay 12 140 Qy, TOTAL GATE CHARGE {nC) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 6-15Rugged Power MOSFETs IRF150R, IRF151R, IRF152R, IRF153R ao T T T T T 2 Roston) MEASURED WITH CURRENT PULSE OF z 2.0 us DURATION, INITIAL Ty = 25C. (HEATING = r EFFECT OF 2.0 us PULSE IS MINIMAL.) Ss <= 0.14 nn = = Vgg = 10V Q o ao 4 3 0.10 2 z = } Qa 5 0.06 4 z Va Laan faaaeersF Vig = 20V 0.02 0 40 80 120 160 Ip, DRAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current N\ \ 140 \ \ 100 N 120 80 A 60 Pp, POWER DISSIPATION (WATTS) 40 . \ \ 0 20 40 60 80 100 Tc, CASE TEMPERATURE (C) 120 440 Fig. 14 Power Vs. Temperature Derating Curve ADJUST Ry TO OBTAIN SPECIFIED Ip Vos D.U.T. | GENERATOR 2 SOUACE IMPEDANCE Fig. 17 Switching Time Test Circuit 40 IAF 150R, 151R, 24 IRF 152A, 153R Ip. DRAIN CURRENT (AMPERES) 0 25 50 15 100 125 150 Tc. CASE TEMPERATURE (C) Fig. 13 -- Maximum Drain Current Vs. Case Temperature VARY tp TO OBTAIN REQUIRED PEAK |, Vggtt0V { Fe our R6s 92C$- 42659 Fig. 15 Unclamped Energy Test Circult BVocs peel Vos i L MM) Yoo \ - 47 ooW _~__ wee 92C5- 42660 Fig. 16 - Unclamped Energy Waveforms Was CURRENT. ASOLATEG REGULATOR SUPPLY: SAME TYPE AS DLT O Qut 12 T Battery ! O-Yos 'G 'p CURRENT = CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 18 Gate Charge Test Circuit