5,000 Watt Transient Voltage Suppressor (TVS) Protection Device

Screening in reference to MIL-PRF-19500 available

DESCRIPTION

This Transient Voltage Suppressor series M5KP5.0A - M5KP110CA provides a range of standoff voltage options from 5.0 to 110 V in unidirectional, bidirectional, RoHS compliant, and SnPb solder dipped options. Multiple advanced screening levels are available for enhanced reliability. Clamping action is almost instantaneous. As a result, they provide effective protection from ESD or EFT per IEC61000-4-2 and IEC61000-4-4, as well as transients caused by inductive switching and RFI. They also protect from secondary lightning effects per 61000-4-5 at the class levels specified below.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Available in both unidirectional and bidirectional configurations
- 3σ lot norm screening performed on standby current I_{D}
- 100% surge tested devices
- Various screening in reference to MIL-PRF-19500. Refer to HiRel Non-Hermetic Product Portfolio for more details on the screening options (See part nomenclature for all options.)
- High reliability controlled devices with wafer fabrication and assembly lot traceability
- Moisture classification is level 1 with no dry pack required per IPC/JEDEC J-STD-020B
- RoHS compliant versions are available

APPLICATIONS / BENEFITS

- \quad Selections for 5.0 to 110 volts stand-off voltage (V_{wm})
- Economical TVS series for thru-hole mounting
- This M5KPxxx series has a significantly reduced body diameter than the 5KPxxx commercial series for a smaller size footprint often required for aviation and other applications
- Pico- to nano-second response time
- Protection from transients due to inductive switching and RFI
- Compliant to IEC 61000-4-2 and IEC 61000-4-4 for ESD and EFT protection respectively
- Secondary lightning protection per IEC61000-4-5 with 42 ohms source impedance: Class 1, 2, 3, 4: M5KP5.0A to M5KP110CA
Class 5: M5KP5.0A to M5KP110CA (short distance) Class 5: M5KP5.0A to M5KP36CA (long distance)
- Secondary lightning protection per IEC61000-4-5 with 12 ohms source impedance: Class 1 \& 2: M5KP5.0A to M5KP110CA
Class 3: M5KP5.0A to M5KP78CA Class 4: M5KP5.0A to M5KP40CA
- Secondary lightning protection per IEC61000-4-5 with 2 ohms source impedance:

Class 2: M5KP5.0A to M5KP70CA
Class 3: M5KP5.0A to M5KP36CA
P600 package
(commercial plastic axial-leaded)
5KP5.0e3-5KP250CAe3

DO-13 package
(metal axial-leaded)
LC6.5A - LC170A

MSC - Lawrence
6 Lake Street,
Lawrence, MA 01841
1-800-446-1158 or
(978) 620-2600

Fax: (978) 689-0803
MSC - Ireland
Gort Road Business Park,
Ennis, Co. Clare, Ireland
Tel: +353 (0) 656840044
Fax: +353 (0) 656822298
Case 5A
(DO-204AR) Package

Class 4: M5KP5.0A to M5KP18CA

Website:
www.microsemi.com

MAXIMUM RATINGS @ $25^{\circ} \mathrm{C}$ unless otherwise noted

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_{J} and TSTG	-65 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Lead @ 0.375 inch (9.5 mm) lead length from body	$\mathrm{R}_{\text {өJı }}$	20	${ }^{\circ} \mathrm{C} / \mathrm{N}$
Thermal Resistance, Junction to Ambient ${ }^{(1)}$	$\mathrm{R}_{\text {өJA }}$	80	${ }^{\circ} \mathrm{C} / \mathrm{N}$
Peak Pulse Power Dissipation ${ }^{(2)} \quad 10 / 1000 \mu \mathrm{~S}$	P_{PP}	5000	W
Steady-State Power Dissipation @ $\mathrm{T}_{\mathrm{L}}=25^{\circ} \mathrm{C}$ 0.375 inch (9.5 mm) from body	$P_{\text {D }}$	$\begin{gathered} 6 \\ 1.56^{(1)} \end{gathered}$	W
${\mathrm{T} \text { clamping (} 0 \text { volts to } \mathrm{V}_{(B R)} \mathrm{min} \text {, theoretical) } \begin{array}{r}\text { Unidirectional } \\ \text { Bidirectional }\end{array}}_{\text {a }}$		$\begin{gathered} <100 \\ <5 \end{gathered}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{~ns} \end{aligned}$
Forward Voltage ${ }^{(3)}$	V_{F}	3.5	V
Solder Temperature @ 10 s		260	${ }^{\circ} \mathrm{C}$

Notes: 1. When mounted on FR4 PC board with $4 \mathrm{~mm}^{2}$ copper pads (1 oz) and track width 1 mm , length 25 mm .
2. With impulse repetition rate (duty factor) of 0.01% or less (also Figure 1 and 2).
3. At 100 amp peak impulse of 8.3 ms half-sine wave (unidirectional only).

MECHANICAL and PACKAGING

- CASE: Void-free transfer molded thermosetting epoxy body meeting UL94V-0
- TERMINALS: Tin-lead or RoHS compliant annealed matte-tin plating. Solderable per MIL-STD-750, method 2026.
- MARKING: Part number
- POLARITY: Cathode indicated by band. No cathode band on bidirectional devices.
- TAPE \& REEL option: Standard per EIA-296 (add "TR" suffix to part number). Consult factory for quantities.
- WEIGHT: Approximately 1.4 grams
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS \& DEFINITIONS	
Symbol	Definition
$\alpha_{V(B R)}$	Temperature Coefficient of Breakdown Voltage: The change in breakdown voltage divided by the change in temperature that caused it expressed in $\% /{ }^{\circ} \mathrm{C}$ or $\mathrm{mV} /{ }^{\circ} \mathrm{C}$.
$\mathrm{V}_{\text {w }}$	Working Standoff Voltage: The maximum-rated value of dc or repetitive peak positive cathode-to-anode voltage that may be continuously applied over the standard operating temperature.
PPP	Peak Pulse Power. The rated random recurring peak impulse power or rated nonrepetitive peak impulse power. The impulse power is the maximum-rated value of the product of $I_{P P}$ and V_{C}.
$V_{\text {(BR) }}$	Breakdown Voltage: The voltage across the device at a specified current $\mathrm{I}_{(\mathrm{BR})}$ in the breakdown region.
ID	Standby Current: The current through the device at rated stand-off voltage.
IPP	Peak Impulse Current: The maximum rated random recurring peak impulse current or nonrepetitive peak impulse current that may be applied to a device. A random recurring or nonrepetitive transient current is usually due to an external cause, and it is assumed that its effect will have completely disappeared before the next transient arrives.
V_{c}	Clamping Voltage: The voltage across the device in a region of low differential resistance during the application of an impulse current (l l_{PP}) for a specified waveform.
$\mathrm{I}_{\text {(BR) }}$	Breakdown Current: The current used for measuring Breakdown Voltage $\mathrm{V}_{(\mathrm{BR})}$.

ELECTRICAL CHARACTERISTICS @ $25^{\circ} \mathrm{C}$

PART NUMBER (Note 2)	REVERSE STANDOFF VOLTAGE $\mathrm{V}_{\text {wm }}$ (Note 1)	BREAKDOWN VOLTAGE $\mathrm{V}_{\text {(BR) }}$ @ $\mathrm{I}_{\text {(BR) }}$		MAXIMUM CLAMPING VOLTAGE $\mathrm{V}_{\mathrm{c}} @ \mathrm{I}_{\mathrm{Pp}}$	MAXIMUM STANDBY CURRENT ID @ \mathbf{V}_{wm}	MAXIMUM PEAK PULSE CURRENT Ipp (FIG. 2)	MAXIMUM TEMPERATURE COEFFICIENT OF $\mathrm{V}_{\text {(BR) }}$ $\alpha_{V(B R)}$
	V	V	mA	V	$\mu \mathrm{A}$	A	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
M5KP5.0A	5.0	$6.40-7.00$	50	9.2	2000*	543	4.0
M5KP6.0A	6.0	6.67-7.37	50	10.3	5000	485	4.0
M5KP6.5A	6.5	7.22-7.98	50	11.2	2000	447	4.0
M5KP7.0A	7.0	7.78-8.60	50	12.0	1000	417	5.0
M5KP7.5A	7.5	8.33-9.21	5	12.9	250	388	6.0
M5KP8.0A	8.0	8.89-9.83	5	13.6	150	367	6.0
M5KP8.5A	8.5	9.44-10.4	5	14.4	50	347	7.0
M5KP9.0A	9.0	10.0-11.1	5	15.4	20	325	8.0
M5KP10A	10	11.1-12.3	5	17.0	15	294	9.0
M5KP11A	11	12.2-13.5	5	18.2	10	274	10
M5KP12A	12	13.3-14.7	5	19.9	10	251	11
M5KP13A	13	14.4-15.9	5	21.5	10	232	12
M5KP14A	14	15.6-17.2	5	23.2	10	215	13
M5KP15A	15	16.7-18.5	5	24.4	10	206	15
M5KP16A	16	17.8-19.7	5	26.0	10	192	16
M5KP17A	17	18.9-20.9	5	27.6	10	181	18
M5KP18A	18	20.0-22.1	5	29.2	10	172	19
M5KP20A	20	22.2-24.5	5	32.4	10	154	22
M5KP22A	22	24.4-26.9	5	35.5	10	141	24
M5KP24A	24	26.7-29.5	5	38.9	10	128	27
M5KP26A	26	28.9-31.9	5	42.1	10	119	29
M5KP28A	28	31.1-34.4	5	45.5	10	110	30
M5KP30A	30	33.3-36.8	5	48.4	10	103	35
M5KP33A	33	36.7-40.6	5	53.3	10	94	38
M5KP36A	36	40.0-44.2	5	58.1	10	86	40
M5KP40A	40	44.4-49.1	5	64.5	10	78	45
M5KP43A	43	47.8-52.8	5	69.4	10	72	49
M5KP45A	45	50.0-55.3	5	72.7	10	69	51
M5KP48A	48	53.3-58.9	5	77.4	10	65	55
M5KP51A	51	56.7-62.7	5	82.4	10	61	60
M5KP54A	54	60.0-66.3	5	87.1	10	57	64
M5KP58A	58	64.4-71.2	5	93.6	10	53	69
M5KP60A	60	66.7 - 73.7	5	96.8	10	52	70
M5KP64A	64	71.1-78.6	5	103.0	10	49	75
M5KP70A	70	77.8-86.0	5	113	10	44	84
M5KP75A	75	83.3-92.1	5	121	10	41	90
M5KP78A	78	86.7-95.8	5	126	10	40	94
M5KP85A	85	94.4-104.0	5	137	10	36	102
M5KP90A	90	100-111	5	146	10	34	109
M5KP100A	100	111-123	5	162	10	31	122
M5KP110A	110	122-135	5	177	10	28	132

NOTES:

1. Transient voltage suppressors are normally selected with reverse "stand-off voltage" (Vwm) which should be equal to or greater than the dc or continuous peak operating voltage level.
2. For the bidirectional M5KP5.0CA double the Io maximum standby current to $4000 \mu \mathrm{~A}$.

GRAPHS

FIGURE 1
Peak Pulse Power Rating Curve

Test waveform parameters: $\mathrm{tr}=10 \mu \mathrm{~s}, \mathrm{tp}=1000 \mu \mathrm{~s}$
FIGURE 2
Pulse Waveform for $10 / 1000 \mu$ s Exponential Surge

GRAPHS (continued)

FIGURE 3
Typical Junction Capacitance

Dim	Dimensions			
	Inch		Millimeters	
	Min	Max	Min	Max
LL	0.750	-	19.05	-
BL	0.365	0.385	9.27	9.78
BD	0.235	0.255	5.97	6.48
LD	0.047	0.053	1.194	1.346

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Microsemi:
MA5KP12CAe3 MXL5KP9.0Ae3 M5KP54Ae3 MXL5KP54CAe3 MX5KP6.0A MA5KP54CAe3 MX5KP100A MXL5KP40A MXL5KP60CAe3 MA5KP10CAe3 MX5KP5.0CA MA5KP8.5A M5KP51A MA5KP64CA M5KP6.0Ae3 MXL5KP8.0CA M5KP10CAe3 MX5KP26A MA5KP51A MA5KP100A M5KP7.5Ae3 MA5KP90CA MX5KP45CAe3 MA5KP12Ae3 MXL5KP36CA MA5KP12CA MX5KP11CA MX5KP9.0A MA5KP48Ae3 MX5KP64CA MXL5KP75CAe3 MXL5KP13CAe3 MXL5KP33Ae3 M5KP60A M5KP36A MX5KP78CAe3 M5KP45CAe3 M5KP7.5CAe3 MXL5KP48CAe3 M5KP85CA MX5KP51A MA5KP16CAe3 MXL5KP26CAe3 M5KP8.0Ae3 MX5KP70CAe3 M5KP75CA MA5KP5.0CA M5KP6.5Ae3 M5KP22CAe3 MXL5KP85CAe3 MX5KP18A MA5KP85A MXL5KP8.5Ae3 MXL5KP8.0Ae3 MA5KP78A MX5KP12Ae3 MX5KP90CA MXL5KP70CA M5KP75Ae3 M5KP26CAe3 MX5KP6.5A MXL5KP10CA MA5KP11CA MX5KP9.0Ae3 M5KP22A M5KP8.0A MA5KP75CA MXL5KP60A M5KP7.0Ae3 MX5KP100CA M5KP18A MA5KP9.0Ae3 MA5KP78CA MXL5KP40Ae3 MX5KP8.0Ae3 MA5KP8.5Ae3 MXL5KP64A MXL5KP24CA M5KP110A M5KP64CAe3 MXL5KP110Ae3 MXL5KP45CAe3
MXL5KP15CA M5KP60CAe3 MA5KP75CAe3 MX5KP20Ae3 MA5KP11CAe3 MA5KP75Ae3 M5KP20CAe3 M5KP6.5A MA5KP16Ae3 MXL5KP58Ae3 M5KP13CA MX5KP85CAe3 MX5KP7.5CAe3 MXL5KP22A MXL5KP24Ae3 MXL5KP6.5Ae3 MX5KP22A M5KP10Ae3

