1C2M0080170P Rev. A, 05-2018
C2M0080170P
Silicon Carbide Power MOSFET
C2MTM MOSFET Technology
N-Channel Enhancement Mode
Features
• Optimized package with separate driver source pin
• 8mm of creepage distance between drain and source
• High blocking voltage with low On-resistance
• High speed switching with low capacitances
• Easy to parallel and simple to drive
• Halogen Free, RoHS compliant
Benets
• Reduce switching losses and minimize gate ringing
• Highersystemefciency
• Reduced cooling requirements
• Increased power density
• Increased system switching frequency
Applications
• 1500V Solar Inverters
• Switch Mode Power Supplies
• High voltage DC/DC Converters
• Capacitor discharge
Package
Part Number Package Marking
C2M0080170P TO-247-4 Plus C2M0080170P
V
DS
1700 V
I
D
@
25˚C
40 A
R
DS(on)
80 m
Maximum Ratings (TC=25˚Cunlessotherwisespecied)
Symbol Parameter Value Unit Test Conditions Note
VDSmax Drain - Source Voltage 1700 VVGS = 0 V, ID=100μA
VGSmax Gate - Source Voltage -10/+25 V AC(f>1Hz) Note: 1
VGSop Gate - Source Voltage -5/+20 V Static Note: 2
ID Continuous Drain Current
40
AVGS = 20 V, TC =25˚C Fig. 19
27 VGS = 20 V, TC =100˚C
ID(pulse) Pulsed Drain Current 80 APulse width tP limited by Tjmax Fig. 22
PDPower Dissipation 277 WTC=25˚C,TJ=150˚C Fig. 20
TJ , Tstg Operating Junction and Storage Temperature -55 to
+150 ˚C
TLSolder Temperature 260 ˚C 1.6mm(0.063”)fromcasefor10s
Note(1):WhenusingMOSFETBodyDiodeVGSmax = -5V/+25V
Note(2):MOSFETcanalsosafelyoperateat0/+20V
1
D
TAB
Drain
2 3 4
S S G
Drain
(Pin 1, TAB)
Power
Source
(Pin 2)
Driver
Source
(Pin 3)
Gate
(Pin 4)
2C2M0080170P Rev. A, 05-2018
Electrical Characteristics (TC=25˚Cunlessotherwisespecied)
Symbol Parameter Min. Typ. Max. Unit Test Conditions Note
V(BR)DSS Drain-SourceBreakdownVoltage 1700 V VGS = 0 V, ID=100μA
VGS(th) Gate Threshold Voltage
2.0 2.6 4 V VDS = VGS, ID = 10 mA
Fig. 11
2.0 V VDS = VGS, ID = 10 mA, TJ = 150ºC
IDSS Zero Gate Voltage Drain Current 1 100 μA VDS = 1700 V, VGS = 0 V
IGSS Gate-Source Leakage Current 250 nA VGS = 20 V, VDS = 0 V
RDS(on) Drain-Source On-State Resistance 80 125
m
VGS = 20 V, ID = 28 A Fig. 4,
5, 6
150 VGS = 20 V, ID = 28 A, TJ = 150ºC
gfs Transconductance
9.73
SVDS= 20 V, IDS= 20 A Fig. 7
10.07 VDS= 20 V, IDS= 20 A, TJ = 150ºC
Ciss Input Capacitance 2250
pF
VGS = 0 V
VDS = 1000 V
f = 1 MHz
VAC = 25 mV
Fig. 17,
18
Coss Output Capacitance 105
Crss Reverse Transfer Capacitance 4
Eoss Coss Stored Energy 65 μJ Fig. 16
EON Turn-OnSwitchingEnergy(SiCDiodeFWD) 0.3
mJ
VDS = 1200 V, VGS = -5/20 V, ID = 20A,
RG(ext)=2.5Ω,L=200μH,TJ = 150ºC,
Using SiC Diode as FWD
Fig. 26,
29b
EOFF TurnOffSwitchingEnergy(SiCDiodeFWD) 0.1
EON Turn-OnSwitchingEnergy(BodyDiodeFWD) 1.1
mJ
VDS = 1200 V, VGS = -5/20 V, ID = 20A,
RG(ext)=2.5Ω,L=200μH,TJ = 150ºC,
Using MOSFET as FWD
Fig. 26,
29a
EOFF TurnOffSwitchingEnergy(BodyDiodeFWD) 0.1
td(on) Turn-On Delay Time 25
ns
VDD = 1200 V, VGS = -5/20 V
ID = 20 A, RG(ext)=2.5Ω,
Timing relative to VDS
Inductive load
Fig. 27
trRise Time 9
td(off) Turn-Off Delay Time 34
tfFall Time 18
RG(int) Internal Gate Resistance 2f = 1 MHz, VAC = 25 mV
Qgs Gate to Source Charge 28
nC
VDS = 1200 V, VGS = -5/20 V
ID = 20 A
Per IEC60747-8-4 pg 21
Fig. 12Qgd Gate to Drain Charge 33
QgTotal Gate Charge 120
Reverse Diode Characteristics
Symbol Parameter Typ. Max. Unit Test Conditions Note
VSD Diode Forward Voltage
4.1 V VGS = - 5 V, ISD = 10 A Fig. 8,
9, 10
3.6 VVGS = - 5 V, ISD = 10 A, TJ = 150 °C
ISContinuous Diode Forward Current 28 ATC =25˚C,VGS = - 5 V Note 1
trr Reverse Recover time 36 ns
VGS = - 5 V, ISD = 20 A, VR = 1200 V
dif/dt = 2600 A/µs, TJ = 150 °C Note 1
Qrr Reverse Recovery Charge 1 µC
Irrm Peak Reverse Recovery Current 38 A
Thermal Characteristics
Symbol Parameter Typ. Max. Unit Test Conditions Note
RθJC Thermal Resistance from Junction to Case 0.37 0.45
°C/W Fig. 21
RθJA Thermal Resistance From Junction to Ambient 40
3C2M0080170P Rev. A, 05-2018
0
20
40
60
80
100
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
J
= 150 °C
tp = < 200 µs
V
GS
= 10V
V
GS
= 18V
V
GS
= 16V
V
GS
= 14V
V
GS
= 12V
V
GS
= 20V
0
20
40
60
80
100
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
J
= -55 °C
tp = < 200 µs
V
GS
= 10V
V
GS
= 18V V
GS
= 16V V
GS
= 14V
V
GS
= 12V
V
GS
= 20V
0
20
40
60
80
100
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
J
= 25 °C
tp = < 200 µs
V
GS
= 10V
V
GS
= 18V V
GS
= 16V V
GS
= 14V
V
GS
= 12V
V
GS
= 20V
Figure 2. Output Characteristics TJ = 25 ºC
Typical Performance
Figure 5. On-Resistance vs. Drain Current
For Various Temperatures
Figure 1. Output Characteristics TJ = -55 ºC
Figure 3.
Output Characteristics TJ = 150 ºC
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-50 -25 025 50 75 100 125 150
On Resistance, R
DS On
(P.U.)
Junction Temperature, T
J
C)
I
DS
= 28 A
V
GS
= 20 V
0
40
80
120
160
200
240
280
320
010 20 30 40 50 60 70 80 90
On Resistance, R
DS On
(mOhms)
Drain-Source Current, I
DS
(A)
Conditions:
V
GS
= 20 V
t
p
< 200 µs
T
J
= 150 °C
T
J
= -55 °C
T
J
= 25 °C
Figure 4. Normalized On-Resistance vs. Temperature
0
20
40
60
80
100
120
140
160
180
200
-50 -25 025 50 75 100 125 150
On Resistance, R
DS On
(mOhms)
Junction Temperature, T
J
C)
Conditions:
I
DS
= 28 A
t
p
< 200 µs
V
GS
= 18 V
V
GS
= 16 V
V
GS
= 14 V
V
GS
= 20 V
V
GS
= 12 V
Figure 6. On-Resistance vs. Temperature
For Various Gate Voltage
4C2M0080170P Rev. A, 05-2018
Typical Performance
Figure8.BodyDiodeCharacteristicat-55ºC
Figure9.BodyDiodeCharacteristicat25ºC
0
10
20
30
40
50
60
70
80
90
100
0246810 12 14 16 18 20
Drain-Source Current, I
DS
(A)
Gate-Source Voltage, V
GS
(V)
Conditions:
VDS = 20 V
tp < 200 µs
TJ= 150 °C
TJ= -55 °C
TJ= 25 °C
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
-7 -6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= -55°C
t
p
< 200 µs
V
GS
= -2 V
V
GS
= -5 V
V
GS
= 0 V
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
-7 -6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= 25°C
t
p
< 200 µs
V
GS
= -2 V
V
GS
= -5 V
V
GS
= 0 V
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
-7 -6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= 150°C
t
p
< 200 µs
V
GS
= -2 V
V
GS
= -5 V V
GS
= 0 V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-50 -25 025 50 75 100 125 150
Threshold Voltage, V
th
(V)
Junction Temperature T
J
C)
Conditons
V
GS
= V
DS
I
DS
= 5 mA
Figure10.BodyDiodeCharacteristicat150ºC
-5
0
5
10
15
20
25
025 50 75 100 125 150
Gate-Source Voltage, VGS (V)
Gate Charge, QG(nC)
Conditions:
I
DS
= 20 A
I
GS
= 50 mA
V
DS
= 1200 V
T
J
= 25 °C
Figure 7. Transfer Characteristic for
Various Junction Temperatures
Figure 11. Threshold Voltage vs. Temperature Figure 12. Gate Charge Characteristics
5C2M0080170P Rev. A, 05-2018
Typical Performance
Figure 15. 3rd Quadrant Characteristic at 150 ºC
Figure 13. 3rd Quadrant Characteristic at -55 ºC
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
-6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= -55 °C
t
p
< 200 µs
V
GS
= 10 V
V
GS
= 5 V
V
GS
= 15 V
V
GS
= 0 V
V
GS
= 20 V
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
-6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= 25 °C
t
p
< 200 µs
V
GS
= 10 V
V
GS
= 5 V
V
GS
= 15 V
V
GS
= 0 V
V
GS
= 20 V
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
-6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= 150 °C
t
p
< 200 µs
V
GS
= 10 V
V
GS
= 5 V
V
GS
= 15 V
V
GS
= 0 V
V
GS
= 20 V
Figure 14. 3rd Quadrant Characteristic at 25 ºC
0
10
20
30
40
50
60
70
0200 400 600 800 1000 1200
Stored Energy, E
OSS
(µJ)
Drain to Source Voltage, V
DS
(V)
Figure 16. Output Capacitor Stored Energy
Figure 17. Capacitances vs. Drain-Source
Voltage(0-200V)
1
10
100
1000
10000
050 100 150 200
Capacitance (pF)
Drain-Source Voltage, V
DS
(V)
C
iss
C
oss
Conditions:
T
J
= 25 °C
V
AC
= 25 mV
f = 1 MHz
C
rss
1
10
100
1000
10000
0100 200 300 400 500 600 700 800 900
Capacitance (pF)
Drain-Source Voltage, V
DS
(V)
C
iss
C
oss
Conditions:
T
J
= 25 °C
V
AC
= 25 mV
f = 1 MHz
C
rss
Figure 18. Capacitances vs. Drain-Source
Voltage(0-1000V)
6C2M0080170P Rev. A, 05-2018
100E-6
1E-3
10E-3
100E-3
1
1E-6 10E-6 100E-6 1E-3 10E-3 100E-3 1
Junction To Case Impedance, ZthJC (oC/W)
Time, tp(s)
0.5
0.3
0.1
0.05
0.02
0.01
SinglePulse
Typical Performance
0
5
10
15
20
25
30
35
40
45
-55 -30 -5 20 45 70 95 120 145
Drain-Source Continous Current, IDS (DC) (A)
Case Temperature, TCC)
Conditions:
T
J
≤ 150 °C
0
50
100
150
200
250
300
-55 -30 -5 20 45 70 95 120 145
Maximum Dissipated Power, Ptot (W)
Case Temperature, TCC)
Conditions:
T
J
≤ 150 °C
0.01
0.10
1.00
10.00
100.00
0.1 110 100 1000
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
100 µs
1 ms
10 µs
Conditions:
T
C
= 25 °C
D = 0,
Parameter: t
p
100 ms
Limited by R
DS On
Figure 22. Safe Operating Area
Figure 21. Transient Thermal Impedance
(Junction-Case)
0.0
0.2
0.4
0.6
0.8
010 20 30 40 50
Switching Loss (mJ)
Drain to Source Current, I
DS
(A)
EOff
EOn
ETotal
Conditions:
TJ= 25 °C
VDD = 900 V
RG(ext) = 2.5
VGS = -5V/+20 V
FWD = C2M0080170P
L = 200 μH
Figure 23. Clamped Inductive Switching Energy vs.
Drain Current (VDD=900V)
Figure 24. Clamped Inductive Switching Energy vs.
Drain Current (VDD=1200V)
0.0
0.3
0.6
0.9
1.2
1.5
010 20 30 40 50
Switching Loss (uJ)
Drain to Source Current, I
DS
(A)
E
Off
E
On
E
Total
Conditions:
T
J
= 25 °C
V
DD
= 1200 V
R
G(ext)
= 2.5
V
GS
= -5V/+20 V
FWD = C2M0080170P
L = 200 μH
Figure 19. Continuous Drain Current Derating vs.
Case Temperature
Figure 20. Maximum Power Dissipation Derating vs.
Case Temperature
7C2M0080170P Rev. A, 05-2018
Typical Performance
0.0
0.3
0.6
0.9
1.2
1.5
1.8
0 5 10 15 20 25
Switching Loss (mJ)
External Gate Resistor RG(ext) (Ohms)
E
Off
E
On
E
Total
Conditions:
T
J
= 25 °C
V
DD
= 1200 V
I
DS
= 20 A
V
GS
= -5V/+20 V
FWD = C2M0080170P
L = 200 μH
0
20
40
60
80
100
0 5 10 15 20 25
Switching Times (ns)
External Gate Resistor RG(ext) (Ohms)
t
d(off)
Conditions:
T
J
= 25 °C
V
DD
= 1200 V
I
DS
= 20 A
V
GS
= -5V/+20 V
FWD = C2M0080170P
L = 200 μH
t
r
t
f
t
d(on)
0.0
0.3
0.6
0.9
1.2
1.5
025 50 75 100 125 150 175
Switching Loss (mJ)
Junction Temperature, T
J
C)
E
On
E
Total
Conditions:
I
DS
= 20 A
V
DD
= 1200 V
R
G(ext)
= 2.5
V
GS
= -5V/+20 V
FWD = C3M0080170P
(---)FWD = C3D10170H
L = 200 μH
E
Total
E
On
E
Off
Figure 26. Clamped Inductive Switching Energy vs.
Temperature
Figure 27. Switching Times vs. RG(ext)
Figure 25. Clamped Inductive Switching Energy vs. RG(ext)
Figure28.SwitchingTimesDenition
8C2M0080170P Rev. A, 05-2018
Test Circuit Schematic
Figure 29a. Clamped Inductive Switching Test Circuit using
MOSFET intristic body diode
Figure 29b. Clamped Inductive Switching Test Circuit using
SiC Schottky diode
9C2M0080170P Rev. A, 05-2018
Package Dimensions
Package TO-247-4L Plus
BASE METAL
SECTION "F-F", "G-G" AND "H-H"
SCALE: NONE
E2
E
E3 E4
E1
TITLE:
SHEET
COMPANY ASE Weihai
1 OF 3
ASE
Advanced
Semiconductor
Engineering Weihai, Inc.
PACKAGE
OUTLINE
ISSUE
DATE
DWG NO.
TO-247 Plus 4 LD
98W0004TO005
May.20, 2016
A
NOTE ;
1. ALL METAL SURFACES: TIN PLATED,EXCEPT AREA OF CUT
2. DIMENSIONING & TOLERANCEING CONFIRM TO
ASME Y14.5M-1994.
3. ALL DIMENSIONS ARE IN MILLIMETERS.
ANGLES ARE IN DEGREES.
MIN
MILLIMETERS
SYM MAX
A
A1
A2
b'
b
b1
b2
b3
b4
c'
c
D
D1
D2
E
E1
E2
E3
E4
e
N
L
L1
Q
T
W
X
4.83 5.21
2.29 2.54
1.91 2.16
1.07 1.28
1.07 1.33
2.39 2.94
2.39 2.84
1.07 1.60
1.07 1.50
0.55 0.65
0.55 0.68
23.30 23.60
16.25 17.65
0.95 1.25
15.75 16.13
13.10 14.15
3.68 5.10
1.00 1.90
12.38 13.43
2.54 BSC
4
17.31 17.82
3.97 4.37
5.49 6.00
17.5° REF.
3.5 ° REF.
4 ° REF.
e1 5.08 BSC
2.692.39
b5
b6 2.39 2.64
L2 2.35 2.65
TITLE:
SHEET
COMPANY ASE Weihai
2 OF 3
ASEAdvanced
Semiconductor
Engineering Weihai, Inc.
PACKAGE
OUTLINE ISSUE
DATE
DWG NO.
TO-247 Plus 4LD
98W0004TO005
A
May.20, 2016
1010 C2M0080170P Rev. A, 05-2018
Copyright © 2018 Cree, Inc. All rights reserved.
The information in this document is subject to change without notice.
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.cree.com/power
• RoHSCompliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the
threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive
2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree repre-
sentative or from the Product Documentation sections of www.cree.com.
• REAChCompliance
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency
(ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree
representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh
Article 67) is also available upon request.
• This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human
body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not
limitedtoequipmentusedintheoperationofnuclearfacilities,life-supportmachines,cardiacdebrillatorsorsimilaremergency
medicalequipment,aircraftnavigationorcommunicationorcontrolsystems,airtrafccontrolsystems.
Notes
Related Links
• C2M PSPICE Models: http://wolfspeed.com/power/tools-and-support
• SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support
• SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support