This is information on a product in full production.
February 2019 DS11758 Rev 5 1/131
SPC584Gx, SPC58EGx,
SPC58NGx
32-bit Power Architecture® microcontroller for automotive ASIL-D
applications
Datasheet - production data
Features
AEC-Q100 qualified
High performance e200z4 triple core:
32-bit Power Architecture technology CPU
Core frequency as high as 180 MHz
Variable Length Encoding (VLE)
Floating Point, End-to-End Error Correction
6582 KB (6144 KB code flash+ 256 KB data
flash) on-chip flash memory:
supports read during program and erase
operations, and multiple blocks allowing
EEPROM emulation
Supports read while read between the two
code Flash partitions.
608 KB on-chip general-purpose SRAM (in
addition to 160 KB core local data RAM): 64KB
in CPU_0, 64 KB in CPU_1 and 32 KB in
CPU_2
182 KB HSM dedicated flash memory (144 KB
code + 32 KB data)
Multi-channel direct memory access controller
(eDMA)
one eDMA with 64 channels
one eDMA with 32 channels
1 interrupt controller (INTC)
Comprehensive new generation ASIL-D safety
concept:
ASIL-D of ISO 26262
One CPU channel in lockstep
Logic BIST
FCCU for collection and reaction to failure
notifications
Memory BIST
Cyclic redundancy check (CRC) unit
Memory Error Management Unit (MEMU)
for collection and reporting of error events
in memories
Crossbar switch architecture for concurrent
access to peripherals, Flash, or RAM from
multiple bus masters with end-to-end ECC
Body cross triggering unit (BCTU)
Triggers ADC conversions from any eMIOS
channel
Triggers ADC conversions from up to 2
dedicated PIT_RTIs
Enhanced modular IO subsystem (eMIOS): up
to 64 timed IO channels with 16-bit counter
resolution
Enhanced analog-to-digital converter system
with:
4 independent fast 12-bit SAR analog
converters
One supervisor 12-bit SAR analog
converter
One standby 10-bit SAR analog converter
Communication interfaces:
18 LINFlexD modules
10 deserial serial peripheral interface
(DSPI) modules
8 MCAN interfaces with advanced shared
memory scheme and ISO CAN-FD support
Dual-channel FlexRay controller
Two independent Ethernet controllers
10/100Mbps compliant IEEE 802.3-2008
Low power capabilities
Versatile low power modes
Ultra low power standby with RTC
Smart Wake-up Unit for contact monitoring
eTQFP144 (20x20x1.0mm)
FPBGA292 (17 x 17 x 1.8 mm)
eLQFP176 (24 x 24 x 1.4 mm)
www.st.com
SPC584Gx, SPC58EGx, SPC58NGx
2/131 DS11758 Rev 5
Fast wakeup schemes
Dual phase-locked loops with stable clock domain for peripherals and FM modulation
domain for computational shell
Nexus development interface (NDI) per IEEEISTO 5001-2003 standard, with some
support for 2010 standard
Boot assist Flash (BAF) supports factory programming using a serial bootload through the
asynchronous CAN or LIN/UART
Junction temperature range -40 °C to 150 °C
Table 1. Device summary
Package
Part number
4 MB 6 MB
Single core Dual core Triple core Single core Dual core Triple core
eTQFP144 SPC584G80E5 SPC58EG80E5 SPC58NG80E5 SPC584G84E5 SPC58EG84E5 SPC58NG84E5
eLQFP176 SPC584G80E7 SPC58EG80E7 SPC58NG80E7 SPC584G84E7 SPC58EG84E7 SPC58NG84E7
FPBGA292 SPC584G80C3 SPC58EG80C3 SPC58NG80C3 SPC584G84C3 SPC58EG84C3 SPC58NG84C3
DS11758 Rev 5 3/131
SPC584Gx, SPC58EGx, SPC58NGx Table of contents
4
Table of contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Device feature summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 12
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Power domains and power up/down sequencing . . . . . . . . . . . . . . . . . 19
3.4 Electrostatic discharge (ESD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Electromagnetic compatibility characteristics . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Temperature profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Device consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.8 I/O pad specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8.1 I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8.2 I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.8.3 I/O pad current specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.9 Reset pad (PORST, ESR0) electrical characteristics . . . . . . . . . . . . . . . . 37
3.10 PLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.10.1 PLL0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.10.2 PLL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.11 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.11.1 Crystal oscillator 40 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.11.2 Crystal Oscillator 32 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.11.3 RC oscillator 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.11.4 Low power RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.12 ADC system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table of contents SPC584Gx, SPC58EGx, SPC58NGx
4/131 DS11758 Rev 5
3.12.1 ADC input description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.12.2 SAR ADC 12 bit electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.12.3 SAR ADC 10 bit electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.13 Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.14 LFAST pad electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.14.1 LFAST interface timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.14.2 LFAST and MSC/DSPILVDS interface electrical characteristics . . . . . . 57
3.14.3 LFAST PLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.15 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.15.1 Power management integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.15.2 Voltage regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.15.3 Voltage monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.16 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.17 AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.17.1 Debug and calibration interface timing . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.17.2 DSPI timing with CMOS pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.17.3 Ethernet timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.17.4 FlexRay timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.17.5 CAN timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.17.6 UART timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.17.7 I2C timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.1 eTQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2 eLQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3 FPBGA292 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
4.4 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
4.4.1 eTQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4.2 LQFP176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4.3 BGA292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.4.4 General notes for specifications at maximum junction temperature . . 116
5 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
DS11758 Rev 5 5/131
SPC584Gx, SPC58EGx, SPC58NGx Introduction
11
1 Introduction
1.1 Document overview
This document describes the features of the family and options available within the family
members, and highlights important electrical and physical characteristics of the device. To
ensure a complete understanding of the device functionality, refer also to the device
reference manual and errata sheet.
1.2 Description
The SPC584Gx, SPC58EGx, SPC58NGx microcontroller belongs to a family of devices
superseding the SPC56x family. SPC584Gx, SPC58EGx, SPC58NGx builds on the legacy
of the SPC5x family, while introducing new features coupled with higher throughput to
provide substantial reduction of cost per feature and significant power and performance
improvement (MIPS per mW).
1.3 Device feature summary
Table 2 lists a summary of major features for the SPC584Gx, SPC58EGx, SPC58NGx
device. The feature column represents a combination of module names and capabilities of
certain modules. A detailed description of the functionality provided by each on-chip module
is given later in this document.
Table 2. SPC584Gx, SPC58EGx, SPC58NGx features summary
Feature Description
SPC58 family 40 nm
Computing Shell 0
Number of Cores up to 2
Number of checker cores up to 1
Local RAM
16 KB Instruction
64 KB Data
Single Precision Floating Point Yes
SIMD (LSP) No
VLE Yes
Cache
8 KB Instruction
4 KB Data
Computing Shell 1
Number of Cores 1
Number of checker cores 0
Introduction SPC584Gx, SPC58EGx, SPC58NGx
6/131 DS11758 Rev 5
Local RAM
16 KB Instruction
32 KB Data
Single Precision Floating Point Yes
SIMD (LSP) Yes
VLE Yes
Cache 8 KB Instruction
Other
MPU
Core MPU: 24 per CPU
System MPU: 24 per XBAR
Semaphores Yes
CRC Channels 2 x 4
Software Watchdog Timer (SWT) 4
Core Nexus Class 3+
Event Processor
4 x SCU
4 x PMC
Run control Module Yes
System SRAM 608 KB (including 256KB of standby RAM)
Flash 6144 KB code / 256 KB data
Flash fetch accelerator 2 x 2 x 4 x 256-bit
DMA channels 96
DMA Nexus Class 3
LINFlexD 18
M_CAN supporting CAN-FD
according to ISO 11898-1 2015 8
DSPI 10
I2C 1
FlexRay 1 x Dual channel
Ethernet 2 MAC with Time stamping, AVB and VLAN support
SIPI / LFAST Interprocessor bus High Speed
System Timers
8 PIT channels
4 AUTOSAR® (STM)
RTC/API
eMIOS 2 x 32 channels
BCTU 64 channels
Interrupt controller > 710 sources
Table 2. SPC584Gx, SPC58EGx, SPC58NGx features summary (continued)
Feature Description
DS11758 Rev 5 7/131
SPC584Gx, SPC58EGx, SPC58NGx Introduction
11
ADC (SAR) 6
Temp. sensor Yes
Self Test Controller Yes
PLL Dual PLL with FM
Integrated linear voltage regulator Yes
External Power Supplies 3.3 V - 5 V
Low Power Modes
Stop Mode
Halt Mode
Smart Standby with output controller, analog and digital inputs
Standby Mode
Table 2. SPC584Gx, SPC58EGx, SPC58NGx features summary (continued)
Feature Description
Introduction SPC584Gx, SPC58EGx, SPC58NGx
8/131 DS11758 Rev 5
1.4 Block diagram
The figures below show the top-level block diagrams.
Figure 1. Block diagram
DS11758 Rev 5 9/131
SPC584Gx, SPC58EGx, SPC58NGx Introduction
11
Figure 2. Periphery allocation
Introduction SPC584Gx, SPC58EGx, SPC58NGx
10/131 DS11758 Rev 5
1.5 Features
On-chip modules within SPC584Gx, SPC58EGx, SPC58NGx include the following features:
Three main CPUs, dual issue, 32-bit CPU core complexes (e200z4), one paired in
lock-step.
Power Architecture embedded specification compliance
Instruction set enhancement allowing variable length encoding (VLE), encoding a
mix of 16-bit and 32-bit instructions, for code size footprint reduction
Single-precision floating point operations
Lightweight signal processing auxiliary processing unit (LSP APU) instruction
support for digital signal processing (DSP) on Core_2
16 KB Local instruction RAM and 64 KB local data RAM for Core_0 and Core_1,
16 KB Local instruction RAM and 32 KB local data RAM for Core_2
8 KB I-Cache and 4 KB D-Cache for Core_0 and Core_1, 8kB I-Cache for Core_2
6400 KB (6144 KB code flash + 256 KB data flash) on-chip Flash memory
Supports read during program and erase operations, and multiple blocks allowing
EEPROM emulation
Supports read while read between the two code Flash partitions.
608 KB on-chip general-purpose SRAM (+ 160 KB data RAM included in the CPUs)
182 KB HSM dedicated flash memory (144 KB code + 32 KB data)
Multi channel direct memory access controllers (eDMA paired in lock-step)
One eDMA with 64 channels
One eDMA with 32 channels
One interrupt controller (INTC) in lock-step
Dual phase-locked loops with stable clock domain for peripherals and FM modulation
domain for computational shell
Dual crossbar switch architecture for concurrent access to peripherals, Flash, or RAM
from multiple bus masters with end-to-end ECC
Hardware security module (HSM) to provide robust integrity checking of Flash memory
System integration unit lite (SIUL)
Boot assist Flash (BAF) supports factory programming using a serial bootload through
the asynchronous CAN or LIN/UART.
Hardware support for motor control and safety related applications
Enhanced modular IO subsystem (eMIOS): up to 64 (2 x 32) timed I/O channels with
16-bit counter resolution
Buffered updates
Support for shifted PWM outputs to minimize occurrence of concurrent edges
Supports configurable trigger outputs for ADC conversion for synchronization to
channel output waveforms
Shared or independent time bases
DMA transfer support available
DS11758 Rev 5 11/131
SPC584Gx, SPC58EGx, SPC58NGx Introduction
11
Body cross triggering unit (BCTU)
Triggers ADC conversions from any eMIOS channel
Triggers ADC conversions from up to 2 dedicated PIT_RTIs
One event configuration register dedicated to each timer event allows to define the
corresponding ADC channel
Synchronization with ADC to avoid collision
Enhanced analog-to-digital converter system with
Four independent fast 12-bit SAR analog converters
One supervisor 12-bit SAR analog converter
One 10-bit SAR analog converter with STDBY mode support
Ten deserial serial peripheral interface (DSPI) modules
Eighteen LIN and UART communication interface (LINFlexD) modules
LINFlexD_0 is a Master/Slave
All others are Masters
Eight modular controller area network (MCAN) modules, all supporting flexible data
rate (CAN-FD)
Dual-channel FlexRay controller
Two ethernet controllers 10/100 Mbps, compliant IEEE 802.3-2008
IEEE 1588-2008 Time stamping (internal 64-bit time stamp)
IEEE 802.1AS and IEEE 802.1Qav (AVB-Feature)
IEEE 802.1Q VLAN tag detection
IPv4 and IPv6 checksum modules
Nexus development interface (NDI) per IEEE-ISTO 5001-2003 standard, with some
support for 2010 standard.
Device and board test support per Joint Test Action Group (JTAG) (IEEE 1149.1)
Standby power domain with smart wake-up sequence
Package pinouts and signal descriptions SPC584Gx, SPC58EGx, SPC58NGx
12/131 DS11758 Rev 5
2 Package pinouts and signal descriptions
Please refer to the SPC584Gx, SPC58EGx, SPC58NGx IO_ definition document.
It includes the following sections:
1. Package pinouts
2. Pin descriptions
a) Power supply and reference voltage pins
b) System pins
c) LVDS pins
d) Generic pins
DS11758 Rev 5 13/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
13
3 Electrical characteristics
3.1 Introduction
The present document contains the target Electrical Specification for the 40 nm family 32-bit
MCU SPC584Gx, SPC58EGx, SPC58NGx products.
In the tables where the device logic provides signals with their respective timing
characteristics, the symbol “CC” (Controller Characteristics) is included in the “Symbol”
column.
In the tables where the external system must provide signals with their respective timing
characteristics to the device, the symbol “SR” (System Requirement) is included in the
“Symbol” column.
The electrical parameters shown in this document are guaranteed by various methods. To
give the customer a better understanding, the classifications listed in Table 3 are used and
the parameters are tagged accordingly in the tables where appropriate.
Table 3. Parameter classifications
Classification tag Tag description
P Those parameters are guaranteed during production testing on each individual device.
C Those parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
T Those parameters are achieved by design validation on a small sample size from typical
devices.
D Those parameters are derived mainly from simulations.
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
14/131 DS11758 Rev 5
3.2 Absolute maximum ratings
Table 4 describes the maximum ratings for the device. Absolute maximum ratings are stress
ratings only, and functional operation at the maxima is not guaranteed. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Stress beyond the listed maxima, even momentarily, may affect device reliability or cause
permanent damage to the device.
Table 4. Absolute maximum ratings
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
VDD_LV SR D
Core voltage
operating life
range(1)
–0.3 1.4 V
VDD_LV_BD SR D
Buddy device
voltage
operating life
range(2)
–0.3 1.5 V
VDD_HV_IO_MAIN
VDD_HV_IO_FLEX
VDD_HV_OSC
VDD_HV_FLA
SR D I/O supply
voltage(3) –0.3 6.0 V
VSS_HV_ADV SR D ADC ground
voltage
Reference to
digital ground –0.3 0.3 V
VDD_HV_ADV SR D ADC Supply
voltage(3)
Reference to
VSS_HV_ADV
–0.3 6.0 V
VSS_HV_ADR_S SR D
SAR ADC
ground
reference
–0.3 0.3 V
VDD_HV_ADR_S SR D
SAR ADC
voltage
reference(3)
Reference to
VSS_HV_ADR_S
–0.3 6.0 V
VSS-VSS_HV_ADR_S SR D
VSS_HV_ADR_S
differential
voltage
–0.3 0.3 V
VSS-VSS_HV_ADV SR D
VSS_HV_ADV
differential
voltage
–0.3 0.3 V
VIN SR D I/O input voltage
range(3)(4) (5)
–0.3 6.0
V
Relative to Vss –0.3
Relative to
VDD_HV_IO and
VDD_HV_ADV
——0.3
TTRIN SR D Digital Input pad
transition time(6) ——1ms
DS11758 Rev 5 15/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
16
IINJ SR T
Maximum DC
injection current
for each
analog/digital
PAD(7)
—–55mA
TSTG SR T
Maximum non-
operating
Storage
temperature
range
–55 125 °C
TPAS SR C
Maximum
nonoperating
temperature
during passive
lifetime
—–55150
(8) °C
TSTORAGE SR
Maximum
storage time,
assembled part
programmed in
ECU
No supply; storage
temperature in
range –40 °C to
60 °C
20 years
TSDR SR T
Maximum solder
temperature Pb-
free packaged(9)
——260°C
MSL SR T
Moisture
sensitivity
level(10)
——3
TXRAY dose SR T
Maximum
cumulated
XRAY dose
Typical range for
X-rays source
during
inspection:80 ÷
130 KV; 20 ÷
50 μA
—— 1grey
1. VDD_LV: allowed 1.335 V - 1.400 V for 60 seconds cumulative time at the given temperature profile. Remaining time allowed
1.260 V - 1.335 V for 10 hours cumulative time at the given temperature profile. Remaining time as defined in Section 3.3:
Operating conditions.
2. VDD_LV_BD: allowed 1.450 V - 1.500 V for 60 seconds cumulative time at the given temperature profile. Remaining time
allowed 1.375 V - 1.450 V for 10 hours cumulative time at maximum TJ= 125 °C. Remaining time as defined in Section 3.3:
Operating conditions.
3. VDD_HV: allowed 5.5 V – 6.0 V for 60 seconds cumulative time at the given temperature profile, for 10 hours cumulative
time with the device in reset at the given temperature profile. Remaining time as defined in Section 3.3: Operating
conditions.
4. The maximum input voltage on an I/O pin tracks with the associated I/O supply maximum. For the injection current
condition on a pin, the voltage will be equal to the supply plus the voltage drop across the internal ESD diode from I/O pin
to supply. The diode voltage varies greatly across process and temperature, but a value of 0.3 V can be used for nominal
calculations.
5. Relative value can be exceeded if design measures are taken to ensure injection current limitation (parameter IINJ).
Table 4. Absolute maximum ratings (continued)
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
16/131 DS11758 Rev 5
6. This limitation applies to pads with digital input buffer enabled. If the digital input buffer is disabled, there are no maximum
limits to the transition time.
7. The limits for the sum of all normal and injected currents on all pads within the same supply segment can be found in
Section 3.8.3: I/O pad current specifications.
8. 175°C are allowed for limited time. Mission profile with passive lifetime temperature >150°C have to be evaluated by ST to
confirm that are granted by product qualification.
9. Solder profile per IPC/JEDEC J-STD-020D.
10. Moisture sensitivity per JDEC test method A112.
DS11758 Rev 5 17/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
19
3.3 Operating conditions
Table 5 describes the operating conditions for the device, and for which all the specifications
in the data sheet are valid, except where explicitly noted. The device operating conditions
must not be exceeded or the functionality of the device is not guaranteed.
Table 5. Operating conditions
Symbol C Parameter Conditions
Value(1)
Unit
Min Typ Max
FSYS SR P Operating
system clock
frequency(2)
— — 180 MHz
TA_125 Grade(3) SR D Operating
Ambient
temperature
–40 125 °C
TJ_125 Grade(3) SR P Junction
temperature
under bias
TA= 125 °C –40 150 °C
TA_105 Grade(3) SR D Ambient
temperature
under bias
–40 105 °C
TJ_105 Grade(3) SR D Operating
Junction
temperature
TA= 105 °C –40 130 °C
VDD_LV SR P Core supply
voltage(4)
—1.14
(5) 1.20 1.26(6) (7) V
VDD_HV_IO_MAIN
VDD_HV_IO_FLEX
VDD_HV_FLA
VDD_HV_OSC
SR P IO supply
voltage
3.0 5.5 V
VDD_HV_ADV SR P ADC supply
voltage
3.0 5.5 V
VSS_HV_ADV-
VSS
SR D ADC ground
differential
voltage
–25 25 mV
VDD_HV_ADR_S SR P SAR ADC
reference
voltage
3.0 5.5 V
C 2.0 3.0
VDD_HV_ADR_S-
VDD_HV_ADV
SR D SAR ADC
reference
differential
voltage
——25mV
VSS_HV_ADR_S SR P SAR ADC
ground
reference
voltage
—V
SS_HV_ADV V
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
18/131 DS11758 Rev 5
VSS_HV_ADR_S-
VSS_HV_ADV
SR D VSS_HV_ADR_S
differential
voltage
–25 25 mV
VRAMP_HV SR D Slew rate on
HV power
supply
——100V/ms
VIN SR P I/O input
voltage range
—05.5V
IINJ1 SR T Injection
current (per
pin) without
performance
degradation(8)
(9) (10)
Digital pins and
analog pins
–3.0 3.0 mA
IINJ2 SR D Dynamic
Injection
current (per
pin) with
performance
degradation(10)
(11)
Digital pins and
analog pins
–10 10 mA
1. The ranges in this table are design targets and actual data may vary in the given range.
2. Maximum operating frequency is applicable to the cores and platform of the device. See the Clock Chapter in the
Microcontroller Reference Manual for more information on the clock limitations for the various IP blocks on the device.
3. In order to evaluate the actual difference between ambient and junction temperatures in the application, refer to
Section 4.4: Package thermal characteristics.
4. Core voltage as measured on device pin to guarantee published silicon performance.
5. In the range [1.14-1.08]V, the device functionality and specifications are granted and the device is expected to receive a
flag by the internal LVD100 monitors to warn that the regulator (internal or external), providing the VDD_LV supply, exited the
expected operating conditions. If the internal LVD100 monitors are disabled by the application, then an external voltage
monitor with minimum threshold of VDD_LV(min) = 1.08 V measured at the device pad, has to be implemented. Please refer
to Section 3.15.3: Voltage monitors for the list of available internal monitors and to the Reference Manual for the
configurability of the monitors.
6. Core voltage can exceed 1.26 V with the limitations provided in Section 3.2: Absolute maximum ratings, provided that
HVD134_C monitor reset is disabled.
7. 1.260 V - 1.290 V range allowed periodically for supply with sinusoidal shape and average supply value below or equal to
1.236 V at the given temperature profile.
8. Full device lifetime. I/O and analog input specifications are only valid if the injection current on adjacent pins is within these
limits. See Section 3.2: Absolute maximum ratings for maximum input current for reliability requirements.
9. The I/O pins on the device are clamped to the I/O supply rails for ESD protection. When the voltage of the input pins is
above the supply rail, current will be injected through the clamp diode to the supply rails. For external RC network
calculation, assume typical 0.3 V drop across the active diode. The diode voltage drop varies with temperature.
10. The limits for the sum of all normal and injected currents on all pads within the same supply segment can be found in
Section 3.8.3: I/O pad current specifications.
11. Positive and negative Dynamic current injection pulses are allowed up to this limit. I/O and ADC specifications are not
granted. See the dedicated chapters for the different specification limits. See the Absolute Maximum Ratings table for
maximum input current for reliability requirements. Refer to the following pulses definitions: Pulse1 (ISO 7637-2:2011),
Pulse 2a(ISO 7637-2:2011 5.6.2), Pulse 3a (ISO 7637-2:2011 5.6.3), Pulse 3b (ISO 7637-2:2011 5.6.3).
Table 5. Operating conditions (continued)
Symbol C Parameter Conditions
Value(1)
Unit
Min Typ Max
DS11758 Rev 5 19/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
19
3.3.1 Power domains and power up/down sequencing
The following table shows the constraints and relationships for the different power domains.
Supply1 (on rows) can exceed Supply2 (on columns), only if the cell at the given row and
column is reporting ‘ok’. This limitation is valid during power-up and power-down phases, as
well as during normal device operation.
During power-up, all functional terminals are maintained in a known state as described in
the device pinout IO definition excel file.
Table 6. PRAM wait states configuration
PRAMC WS Clock Frequency (MHz)
1<
180
0<
120
Table 7. Device supply relation during power-up/power-down sequence
Supply2
VDD_LV VDD_HV_IO_
VDD_HV_IO_MAIN
VDD_HV_FLA
VDD_HV_OSC
VDD_HV_ADV VDD_HV_ADR
Supply1
VDD_HV_IO_ ok not allowed ok ok
VDD_LV(1) ok ok ok ok
VDD_HV_IO_MAIN
VDD_HV_FLA
VDD_HV_OSC
ok ok ok ok
VDD_HV_ADV ok ok not allowed ok
VDD_HV_ADR ok ok not allowed not allowed
1. VDD_LV can be higher than VDD_HV supplies only during power-up/down transient ramps, in case of external LV regulator
and if VDD_HV supply voltage level is lower than VDD_LV allowed max operating condition.
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
20/131 DS11758 Rev 5
3.4 Electrostatic discharge (ESD)
The following table describes the ESD ratings of the device.
Table 8. ESD ratings(1),(2)
Parameter C Conditions Value Unit
ESD for Human Body Model (HBM)(3) T All pins 2000 V
ESD for field induced Charged Device Model (CDM)(4) T All pins 500 V
T Corner Pins 750 V
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
2. Device failure is defined as: “If after exposure to ESD pulses, the device does not meet the device specification
requirements, which includes the complete DC parametric and functional testing at room temperature and hot temperature.
Maximum DC parametrics variation within 10% of maximum specification”.
3. This parameter tested in conformity with ANSI/ESD STM5.1-2007 Electrostatic Discharge Sensitivity Testing.
4. This parameter tested in conformity with ANSI/ESD STM5.3-1990 Charged Device Model - Component Level.
DS11758 Rev 5 21/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
21
3.5 Electromagnetic compatibility characteristics
EMC measurements at IC-level IEC standards are available from STMicroelectronics on
request.
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
22/131 DS11758 Rev 5
3.6 Temperature profile
The device is qualified in accordance to AEC-Q100 Grade1 requirements, such as HTOL
1,000 h and HTDR 1,000 hrs, TJ=15C.
DS11758 Rev 5 23/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
25
3.7 Device consumption
Table 9. Device consumption
Symbol(1) C Parameter Conditions
Value
Unit
Min Typ Max
IDD_LKG(2),(3) CC C Leakage current on the
VDD_LV supply
TJ=4C 26 mA
DT
J=2C 18
DT
J=5C 36
DT
J=9C 90
DT
J= 120 °C 160
PT
J= 150 °C 320
IDD_LV(3) CC P Dynamic current on
the VDD_LV supply,
very high consumption
profile(4)
400 mA
IDD_HV CC P Total current on the
VDD_HV supply(4)
fMAX ——85mA
IDD_LV_GW CC T Dynamic current on
the VDD_LV supply,
gateway profile(5)
310 mA
IDD_HV_GW CC T Dynamic current on
the VDD_HV supply,
gateway profile(5)
——46mA
IDD_LV_BCM CC T Dynamic current on
the VDD_LV supply,
body profile(6)
280 mA
IDD_HV_BCM CC T Dynamic current on
the VDD_HV supply,
body profile(6)
——49mA
IDD_MAIN_CORE_AC CC T Main Core dynamic
current(7)
fMAX ——50mA
IDD_CHKR_CORE_AC CC T Checker Core dynamic
operating current
fMAX ——30mA
IDD_HSM_AC CC T HSM platform dynamic
operating current(8)
fMAX/2 20 mA
IDDHALT(9) CC T Dynamic current on
the VDD_LV supply
+Total current on the
VDD_HV supply
110 180 mA
IDDSTOP(10) CC T Dynamic current on
the VDD_LV supply
+Total current on the
VDD_HV supply
21 40 mA
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
24/131 DS11758 Rev 5
IDDSTBY8 CC D Total standby mode
current on VDD_LV and
VDD_HV supply, 8 KB
RAM(11)
TJ= 25 °C 145 380 µA
CT
J= 40 °C 550
DT
J= 55 °C 820
DT
J= 120 °C 4 mA
PT
J= 150 °C 8
IDDSTBY128 CC D Total standby mode
current on VDD_LV and
VDD_HV supply,
128 KB RAM(11)
TJ= 25 °C 170 530 µA
CT
J= 40 °C 790
DT
J=5C 1.2 mA
DT
J= 120 °C 5.5
PT
J= 150 °C 11
IDDSTBY256 CC D Total standby mode
current on VDD_LV and
VDD_HV supply,
256 KB RAM(11)
TJ= 25 °C 200 680 µA
CT
J=4C 1.0 mA
DT
J=5C 1.5 mA
DT
J= 120 °C 7
PT
J= 150 °C 14
IDDSSWU1 CC D SSWU running over all
STANDBY period with
OPC/TU commands
execution and keeping
ADC off(12)
TJ=4C 1.0 3.5 mA
IDDSSWU2 CC D SSWU running over all
STANDBY period with
OPC/TU/ADC
commands execution
and keeping ADC
on(13)
TJ=4C 3.5 5.0 mA
IDD_LV_BD CC P Buddy Device
Consumption on
VDD_LV supply(14)
TJ= 150 °C 500 mA
IDD_HV_BD CC T Buddy Device
Consumption on
VDD_HV supply(14)
130 mA
1. The ranges in this table are design targets and actual data may vary in the given range.
2. The leakage considered is the sum of core logic and RAM memories. The contribution of analog modules is not considered,
and they are computed in the dynamic IDD_LV and IDD_HV parameters.
3. IDD_LKG (leakage current) and IDD_LV (dynamic current) are reported as separate parameters, to give an indication of the
consumption contributors. The tests used in validation, characterization and production are verifying that the total
consumption (leakage+dynamic) is lower or equal to the sum of the maximum values provided (IDD_LKG+IDD_LV). The
two parameters, measured separately, may exceed the maximum reported for each, depending on the operative conditions
and the software profile used.
Table 9. Device consumption (continued)
Symbol(1) C Parameter Conditions
Value
Unit
Min Typ Max
DS11758 Rev 5 25/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
25
4. Use case: 3 x e200Z4 @180 MHz with all locksteps on (main core + dma + irq), HSM @90 MHz, all IPs clock enabled,
Flash access with prefetch disabled, Flash consumption includes parallel read and program/erase, 1xSARADC in
continuous conversion, DMA continuously triggered by ADC conversion, 5xDSPI / 7xCAN / 12xLINFlex / FlexRay,
1xEMIOS running (5 channels in OPWMT mode), FIRC, SIRC, FXOSC, PLL0-1 running. The switching activity estimated
for dynamic consumption does not include I/O toggling, which is highly dependent on the application. Details of the
software configuration are available separately. The total device consumption is IDD_LV + IDD_HV + IDD_LKG for the
selected temperature.
5. Gateway use case: Two cores running at 160 MHz, no lockstep, DMA, PLL, FLASH read only 25%, 8xCAN, 1xEthernet,
HSM, 4xSARADC.
6. BCM use case: One Core running at 160 MHz, no lockstep, DMA, PLL, FLASH read only 25%, 2xCAN, HSM, 5xSARADC.
7. Dynamic consumption of one core, including the dedicated I/D-caches and I/D-MEMS contribution.
8. Dynamic consumption of the HSM module, including the dedicated memories, during the execution of Electronic Code
Book crypto algorithm on 1 block of 16 byte of shared RAM.
9. Flash in Low Power. Sysclk at 160 MHz, PLL0_PHI at 160 MHz, XTAL at 40 MHz, FIRC 16 MHz ON, RCOSC1M off.
MCAN: instances: 0, 1, 2, 3, 4, 5, 6, 7 ON (configured but no reception or transmission), Ethernet ON (configured but no
reception or transmission), ADC ON (continuously converting). All others IPs clock-gated.
10. Sysclk = RC16 MHz, RC16 MHz ON, RC1 MHz ON, PLL OFF. All possible peripherals off and clock gated. Flash in power
down mode.
11. STANDBY mode: device configured for minimum consumption, RC16 MHz off, RC1 MHz on.
12. SSWU1 mode adder: FIRC = ON, SSWU clocked at 8 MHz and running over all STANDBY period, ADC off. The total
standby consumption can be obtained by adding this parameter to the IDDSTBY parameter for the selected memory size
and temperature.
13. SSWU2 mode adder: FIRC = ON, SSWU clocked at 8 MHz and running over all STANDBY period, ADC on in continuous
conversion. The total standby consumption can be obtained by adding this parameter to the IDDSTBY parameter for the
selected memory size and temperature.
14. Worst case usage (data trace, data overlay, full Aurora utilization). If Aurora and JTAGM/LFAST not used, VDD_LV_BD
current is reduced by ~20mA.
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
26/131 DS11758 Rev 5
3.8 I/O pad specification
The following table describes the different pad type configurations.
Note: Each I/O pin on the device supports specific drive configurations. See the signal description
table in the device reference manual for the available drive configurations for each I/O pin.
PMC_DIG_VSIO register has to be configured to select the voltage level (3.3 V or 5.0 V) for
each IO segment.
Logic level is configurable in running mode while it is TTL not-configurable in STANDBY for
LP (low power) pads, so if a LP pad is used to wakeup from STANDBY, it should be
configured as TTL also in running mode in order to prevent device wrong behavior in
STANDBY.
3.8.1 I/O input DC characteristics
The following table provides input DC electrical characteristics, as described in Figure 3.
Table 10. I/O pad specification descriptions
Pad type Description
Weak configuration Provides a good compromise between transition time and low electromagnetic emission.
Medium configuration Provides transition fast enough for the serial communication channels with controlled
current to reduce electromagnetic emission.
Strong configuration Provides fast transition speed; used for fast interface.
Very strong
configuration
Provides maximum speed and controlled symmetric behavior for rise and fall transition.
Used for fast interface including Ethernet and FlexRay interfaces requiring fine control of
rising/falling edge jitter.
Differential
configuration
A few pads provide differential capability providing very fast interface together with good
EMC performances.
Input only pads These low input leakage pads are associated with the ADC channels.
Standby pads Some pads are active during Standby. Low Power Pads input buffer can only be
configured in TTL mode. When the pads are in Standby mode, the Pad-Keeper feature is
activated: if the pad status is high, the weak pull-up resistor is automatically enabled; if
the pad status is low, the weak pull-down resistor is automatically enabled.
DS11758 Rev 5 27/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
36
Figure 3. I/O input electrical characteristics
VIL
VIN
VIH
VINTERNAL
VDD
VHYS
(SIUL register)
Table 11. I/O input electrical characteristics
Symbol CParameter Conditions
Value
Unit
Min Typ Max
TTL
Vihttl SR P Input high level
TTL
—2V
DD_HV_IO
+ 0.3
V
Vilttl SR P Input low level
TTL
–0.3 0.8 V
Vhysttl CC C Input hysteresis
TTL
—0.3V
CMOS
Vihcmos SR P Input high level
CMOS
—0.65 * V
DD —V
DD_HV_IO
+ 0.3
V
Vilcmos SR P Input low level
CMOS
–0.3 0.35 * VDD V
Vhyscmos CC C Input hysteresis
CMOS
—0.10 * V
DD ——V
COMMON
ILKG CC P Pad input
leakage
INPUT-ONLY pads
TJ=15C
——200nA
ILKG CC P Pad input
leakage
MEDIUM pads
TJ=15C
——360nA
ILKG CC P Pad input
leakage
STRONG pads
TJ=15C
1,000 nA
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
28/131 DS11758 Rev 5
Note: When the device enters into standby mode, the LP pads have the input buffer switched-on.
As a consequence, if the pad input voltage VIN is VSS<VIN<VDD_HV, an additional
consumption can be measured in the VDD_HV domain. The highest consumption can be
ILKG CC P Pad input
leakage
VERY STRONG pads,
TJ=15C
1,000 nA
CP1 CC D Pad
capacitance
——10pF
Vdrift CC D Input Vil/Vih
temperature
drift
In a 1 ms period, with a
temperature variation
<30 °C
——100mV
WFI SR C Wakeup input
filtered pulse(1)
——20ns
WNFI SR C Wakeup input
not filtered
pulse(1)
400 ns
1. In the range from WFI (max) to WNFI (min), pulses can be filtered or not filtered, according to operating temperature and
voltage. Refer to the device pinout IO definition excel file for the list of pins supporting the wakeup filter feature.
Table 11. I/O input electrical characteristics (continued)
Symbol CParameter Conditions
Value
Unit
Min Typ Max
Table 12. I/O pull-up/pull-down electrical characteristics
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
IWPU CC T Weak pull-up
current
absolute value
VIN = 1.1 V(1) ——130μA
PV
IN = 0.69 *
VDD_HV_IO(2)
15
RWPU CC D Weak Pull-up
resistance
VDD_HV_IO = 5.0 V ±
10%
33 93 KΩ
RWPU CC D Weak Pull-up
resistance
VDD_HV_IO = 3.3 V ±
10%
19 62 KΩ
IWPD CC T Weak pull-
down current
absolute value
VIN = 0.69 *
VDD_HV_IO(1)
——130μA
PV
IN = 0.9 V(2) 15
RWPD CC D Weak Pull-
down
resistance
VDD_HV_IO = 5.0 V ±
10%
29 60 KΩ
RWPD CC D Weak Pull-
down
resistance
VDD_HV_IO = 3.3 V ±
10%
19 60 KΩ
1. Maximum current when forcing a change in the pin level opposite to the pull configuration.
2. Minimum current when keeping the same pin level state than the pull configuration.
DS11758 Rev 5 29/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
36
seen around mid-range (VIN ~=VDD_HV/2), 2-3mA depending on process, voltage and
temperature.
This situation may occur if the PAD is used as a ADC input channel, and VSS<VIN<VDD_HV.
The applications should ensure that LP pads are always set to VDD_HV or VSS, to avoid
the extra consumption. Please refer to the device pinout IO definition excel file to identify the
low-power pads which also have an ADC function.
3.8.2 I/O output DC characteristics
Figure 4 provides description of output DC electrical characteristics.
Figure 4. I/O output DC electrical characteristics definition
The following tables provide DC characteristics for bidirectional pads:
Table 13 provides output driver characteristics for I/O pads when in WEAK/SLOW
configuration.
Table 14 provides output driver characteristics for I/O pads when in MEDIUM
configuration.
Table 15 provides output driver characteristics for I/O pads when in STRONG/FAST
configuration.
Table 16 provides output driver characteristics for I/O pads when in VERY
STRONG/VERY FAST configuration.
Note: 10%/90% is the default condition for any parameter if not explicitly mentioned differently.
10%
Vout
VINTERNAL
VHYS
(SIUL register)
20%
80%
90%
tR10-90
tR20-80
tF10-90
tF20-80
tTR(max) = MAX(tR10-90; tF10-90)
tTR(min) = MIN(tR10-90; tF10-90)
tTR20-80(max) = MAX(tR20-80; tF20-80)
tTR20-80(min) = MIN(tR20-80; tF20-80)
tSKEW20-80 =|tR20-80-tF20-80|
tSKEW20-80
tSKEW10-90 =|tR10-90-tF10-90|
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
30/131 DS11758 Rev 5
Table 13. WEAK/SLOW I/O output characteristics
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
Vol_W CC D Output low
voltage for Weak
type PADs
Iol =0.5mA
VDD =5.0V ± 10%
VDD =3.3V ± 10%
0.1*VDD V
Voh_W CC D Output high
voltage for Weak
type PADs
Ioh=0.5mA
VDD =5.0V ± 10%
VDD =3.3V ± 10%
0.9*VDD ——V
R_W CC P Output
impedance for
Weak type PADs
VDD = 5.0 V ± 10% 380 1040 Ω
VDD = 3.3 V ± 10% 250 700
Fmax_W CC T Maximum output
frequency for
Weak type PADs
CL = 25 pF
VDD =5.0V ± 10%
VDD =3.3V ± 10%
——2MHz
CL = 50 pF
VDD =5.0V ± 10%
VDD = 3.3 V ± 10 %
——1MHz
tTR_W CC T Transition time
output pin
weak
configuration,
10%-90%
CL = 25 pF
VDD = 5.0 V + 10%
VDD = 3.3 V + 10%
25 120 ns
CL = 50 pF
VDD =5.0V ± 10%
VDD =3.3V ± 10%
50 240 ns
|tSKEW_W|CC T Difference
between rise
and fall time,
90%-10%
——25%
IDCMAX_W CC D Maximum DC
current
VDD =5.0V ± 10%
VDD =3.3V ± 10%
——0.5mA
Table 14. MEDIUM I/O output characteristics
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
Vol_M CC D Output low
voltage for
Medium type
PADs
Iol =2.0mA
VDD =5.0 V ± 10 %
VDD =3.3 V ± 10 %
0.1*VDD V
Voh_M CC D Output high
voltage for
Medium type
PADs
Ioh=2.0 mA
VDD =5.0V ± 10%
VDD =3.3V ± 10%
0.9*VDD ——V
DS11758 Rev 5 31/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
36
R_M CC P Output
impedance for
Medium type
PADs
VDD = 5.0 V ± 10% 90 260 Ω
VDD = 3.3 V ± 10% 60 170
Fmax_M CC T Maximum output
frequency for
Medium type
PADs
CL = 25 pF
VDD =5.0V ± 10%
VDD =3.3V ± 10%
——12MHz
CL = 50 pF
VDD =5.0V ± 10%
VDD =3.3V ± 10%
——6MHz
tTR_M CC T Transition time
output pin
MEDIUM
configuration,
10%-90%
CL = 25 pF
VDD =5.0V ± 10%
VDD =3.3V ± 10%
8 30 ns
CL = 50 pF
VDD =5.0V ± 10%
VDD =3.3V ± 10%
12 60 ns
|tSKEW_M|CC T Difference
between rise
and fall time,
90%-10%
——25%
IDCMAX_M CC D Maximum DC
current
VDD =5.0V ± 10%
VDD =3.3V ± 10%
——2mA
Table 14. MEDIUM I/O output characteristics (continued)
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
Table 15. STRONG/FAST I/O output characteristics
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
Vol_S CC D Output low
voltage for
Strong type
PADs
Iol =8.0mA
VDD =5.0V ± 10%
0.1*VDD V
Iol =5.5mA
VDD =3 .3 V ± 10%
0.15*VDD V
Voh_S CC D Output high
voltage for
Strong type
PADs
Ioh =8.0mA
VDD =5.0V ± 10%
0.9*VDD ——V
Ioh =5.5mA
VDD =3.3V ± 10%
0.85*VDD ——V
R_S CC P Output
impedance for
Strong type
PADs
VDD = 5.0 V ± 10% 20 65 Ω
VDD = 3.3 V ± 10% 28 90
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
32/131 DS11758 Rev 5
Fmax_S CC T Maximum output
frequency for
Strong type
PADs
CL = 25 pF
VDD=5.0 V ± 10%
——50MHz
CL = 50 pF
VDD=5.0 V ± 10%
——25MHz
CL = 25 pF
VDD =3.3V ± 10%
——25MHz
CL = 50 pF
VDD =3.3V ± 10%
12.5 MHz
tTR_S CC T Transition time
output pin
STRONG
configuration,
10%-90%
CL = 25 pF
VDD =5.0V ± 10%
3 10 ns
CL = 50 pF
VDD =5.0V ± 10%
5—16
CL = 25 pF
VDD =3.3V ± 10%
1.5 15
CL = 50 pF
VDD =3.3V ± 10%
2.5 26
IDCMAX_S CC D Maximum DC
current
VDD = 5 V ± 10% 8 mA
VDD =3.3V ± 10% 5.5
|tSKEW_S|CC T Difference
between rise
and fall time,
90%-10%
——25%
Table 15. STRONG/FAST I/O output characteristics (continued)
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
Table 16. VERY STRONG/VERY FAST I/O output characteristics
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
Vol_V CC D Output low
voltage for Very
Strong type
PADs
Iol =9.0mA
VDD =5.0 V ± 10%
0.1*VDD V
Iol =9.0mA
VDD =3.3 V ± 10%
0.15*VDD V
Voh_V CC D Output high
voltage for Very
Strong type
PADs
Ioh =9.0mA
VDD =5.0V ± 10%
0.9*VDD ——V
Ioh =9.0mA
VDD =3.3V ± 10%
0.85*VDD ——V
R_V CC P Output
impedance for
Very Strong type
PADs
VDD = 5.0 V ± 10% 20 60 Ω
VDD = 3.3 V ± 10% 18 50
DS11758 Rev 5 33/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
36
Fmax_V CC T Maximum output
frequency for
Very Strong type
PADs
CL = 25 pF
VDD =5.0V ± 10%
——50MHz
CL = 50 pF
VDD = 5.0 V ± 10%
——25MHz
CL = 25 pF
VDD =3.3V ± 10%
——50MHz
CL = 50 pF
VDD =3.3V ± 10%
——25MHz
tTR_V CC T 10–90%
threshold
transition time
output pin VERY
STRONG
configuration
CL = 25 pF
VDD =5.0V ± 10%
1—6ns
CL = 50 pF
VDD =5.0V ± 10%
3—12
CL = 25 pF
VDD =3.3V ± 10%
1.5 6
CL = 50 pF
VDD =3.3V ± 10%
3—11
tTR20-80_V CC T 20–80%
threshold
transition time
output pin VERY
STRONG
configuration
(Flexray
Standard)
CL = 25 pF
VDD =5.0V ± 10%
0.8 4.5 ns
CL = 15 pF
VDD =3.3V ± 10%
1—4.5
tTRTTL_V CC T TTL threshold
transition time
for output pin in
VERY STRONG
configuration
(Ethernet
standard)
CL = 25 pF
VDD =3.3V ± 10%
0.88 5 ns
ΣtTR20-80_V CC T Sum of
transition time
20–80% output
pin VERY
STRONG
configuration
CL = 25 pF
VDD =5.0V ± 10%
——9ns
CL = 15 pF
VDD =3.3V ± 10%
——9
|tSKEW_V|CC T Difference
between rise
and fall delay
CL = 25 pF
VDD = 5.0 V ± 10%
0—1.2ns
IDCMAX_V CC D Maximum DC
current
VDD = 5.0 V±10%
VDD =3.3V ± 10%
——9mA
Table 16. VERY STRONG/VERY FAST I/O output characteristics (continued)
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
34/131 DS11758 Rev 5
3.8.3 I/O pad current specifications
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is
associated to a VDD/VSS supply pair as described in the device pinout IO definition excel
file.
Table 17 provides I/O consumption figures.
In order to ensure device reliability, the average current of the I/O on a single segment
should remain below the IRMSSEG maximum value.
In order to ensure device functionality, the sum of the dynamic and static current of the I/O
on a single segment should remain below the IDYNSEG maximum value.
Pad mapping on each segment can be optimized using the pad usage information provided
on the I/O Signal Description table.
Table 17. I/O consumption
Symbol(1) C Parameter Conditions
Value
Unit
Min Typ Max
Average consumption(2)
IRMSSEG SR D Sum of all the DC I/O current
within a supply segment
——80mA
IRMS_W CC D RMS I/O current for WEAK
configuration
CL=25pF, 2MHz,
VDD =5.0V ± 10%
——1.1mA
CL=50pF, 1MHz,
VDD =5.0V ± 10%
——1.1
CL=25pF, 2MHz,
VDD =3.3V ± 10%
——1.0
CL=25pF, 1MHz,
VDD = 3.3 V ± 10%
——1.0
IRMS_M CC D RMS I/O current for MEDIUM
configuration
CL= 25 pF, 12 MHz,
VDD = 5.0 V ± 10%
——5.5mA
CL=50pF, 6MHz,
VDD = 5.0 V ± 10%
——5.5
CL= 25 pF, 12 MHz,
VDD = 3.3 V ± 10%
——4.2
CL=25pF, 6MHz,
VDD = 3.3 V ± 10%
——4.2
IRMS_S CC D RMS I/O current for STRONG
configuration
CL= 25 pF, 50 MHz,
VDD = 5.0 V ± 10%
——21mA
CL= 50 pF, 25 MHz,
VDD = 5.0 V ± 10%
——21
CL= 25 pF, 25 MHz,
VDD = 3.3 V ± 10%
——10
CL= 25 pF, 12.5 MHz,
VDD = 3.3 V ± 10%
——10
DS11758 Rev 5 35/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
36
IRMS_V CC D RMS I/O current for VERY
STRONG configuration
CL= 25 pF, 50 MHz,
VDD = 5.0 V ± 10%
——23mA
CL= 50 pF, 25 MHz,
VDD = 5.0 V ± 10%
——23
CL= 25 pF, 50 MHz,
VDD = 3.3 V ± 10%
——16
CL= 25 pF, 25 MHz,
VDD = 3.3 V ± 10%
——16
Dynamic consumption(3)
IDYN_SEG SR D Sum of all the dynamic and DC
I/O current within a supply
segment
VDD = 5.0 V ± 10% 195 mA
VDD = 3.3 V ± 10% 150
IDYN_W CC D Dynamic I/O current for WEAK
configuration
CL=25pF, V
DD =5.0V ±
10%
16.7 mA
CL=50pF, V
DD =5.0V ±
10%
16.8
CL=25pF, V
DD =3.3V ±
10%
12.9
CL=50pF, V
DD =3.3V ±
10%
12.9
IDYN_M CC D Dynamic I/O current for
MEDIUM configuration
CL=25pF, V
DD =5.0V ±
10%
18.2 mA
CL=50pF, V
DD =5.0V ±
10%
18.4
CL=25pF, V
DD =3.3V ±
10%
14.3
CL=50pF, V
DD =3.3V ±
10%
16.4
IDYN_S CC D Dynamic I/O current for
STRONG configuration
CL=25pF, V
DD =5.0V ±
10%
——57mA
CL=50pF, V
DD =5.0V ±
10%
63.5
CL=25pF, V
DD =3.3V ±
10%
——31
CL=50pF, V
DD =3.3V ±
10%
33.5
Table 17. I/O consumption
Symbol(1)
(continued) C Parameter Conditions
Value
Unit
Min Typ Max
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
36/131 DS11758 Rev 5
IDYN_V CC D Dynamic I/O current for VERY
STRONG configuration
CL=25pF, V
DD =5.0V ±
10%
——62mA
CL=50pF, V
DD =5.0V ±
10%
——70
CL=25pF, V
DD =3.3V ±
10%
——52
CL=50pF, V
DD =3.3V ±
10%
——55
1. I/O current consumption specifications for the 4.5 V VDD_HV_IO 5.5 V range are valid for VSIO_[VSIO_xx] = 1, and
VSIO[VSIO_xx] = 0 for 3.0 V VDD_HV_IO 3.6 V.
2. Average consumption in one pad toggling cycle.
3. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition. When possible (timed
output) it is recommended to delay transition between pads by few cycles to reduce noise and consumption.
Table 17. I/O consumption
Symbol(1)
(continued) C Parameter Conditions
Value
Unit
Min Typ Max
DS11758 Rev 5 37/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
39
3.9 Reset pad (PORST, ESR0) electrical characteristics
The device implements dedicated bidirectional reset pins as below specified. PORST pin
does not require active control. It is possible to implement an external pull-up to ensure
correct reset exit sequence. Recommended value is 4.7 KΩ.
Figure 5. Startup Reset requirements
Figure 6 describes device behavior depending on supply signal on PORST:
1. PORST low pulse has too low amplitude: it is filtered by input buffer hysteresis. Device
remains in current state.
2. PORST low pulse has too short duration: it is filtered by low pass filter. Device remains
in current state.
3. PORST low pulse is generating a reset:
a) PORST low but initially filtered during at least WFRST. Device remains initially in
current state.
b) PORST potentially filtered until WNFRST. Device state is unknown. It may either
be reset or remains in current state depending on extra condition (temperature,
voltage, device).
c) PORST asserted for longer than WNFRST. Device is under reset.
VIL
VDD
VDDMIN
PORST
VIH
device start-up phase
VDD_POR
PORST driven low device reset
forced by external circuitry
PORST undriven
device reset by by internal power-on reset
internal power-on reset
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
38/131 DS11758 Rev 5
Figure 6. Noise filtering on reset signal
VIL
VIH
VDD
filtered by
hysteresis filtered by
lowpass filter
WFRST WNFRST
filtered by
lowpass filter
WFRST
unknown reset
state device under hardware reset
internal
reset
1 2 3a 3b 3c
VHYS
VPORST, VESR0
Table 18. Reset PAD electrical characteristics
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
VIHRES SR P Input high level
TTL
VDD_HV =5.0V ± 10%
VDD_HV =3.3V ±10%
2—V
DD_HV_IO
+0.3
V
VILRES SR P Input low level
TTL
VDD_HV = 5.0 V ± 10% -0.3 0.8 V
VDD_HV = 3.3 V ± 10% -0.3 0.6
VHYSRES CC C Input hysteresis
TTL
VDD_HV =5.0V ± 10% 0.3 V
VDD_HV =3.3V ± 10% 0.2
VDD_POR CC D Minimum supply
for strong pull-
down activation
VDD_HV = 5.0 V ± 10% 1.6 V
VDD_HV = 3.3 V ± 10% 1.05
DS11758 Rev 5 39/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
39
IOL_R CC P Strong pull-down
current (1)
VDD_HV =5.0V ± 10% 12 mA
VDD_HV =3.3V ± 10% 8
IWPU CC P Weak pull-up
current absolute
value
VIN =1.1V
(2)
VDD_HV =5.0V ± 10%
130 μA
PV
IN =1.1V
VDD_HV =3.3V ± 10%
——70
PV
IN = 0.69 *
VDD_HV_IO(3)
VDD_HV =5.0V ± 10%
15
PV
IN =0.69 * V
DD_HV_IO
VDD_HV =3.3V ± 10%
15
IWPD CC P Weak pull-down
current absolute
value
VIN = 0.69 *
VDD_HV_IO(2)
VDD_HV =5.0V ± 10%
130 μA
PV
IN = 0.69 *
VDD_HV_IO(2)
VDD_HV =3.3V ± 10%
——80
PV
IN =0.9V
VDD_HV =5.0V ± 10%
15
PV
IN =0.9V
VDD_HVDD_HV =3.3V
± 10%
15
WFRST CC P Input filtered
pulse
VDD_HV = 5.0 V ± 10% 500 ns
PV
DD_HV = 3.3 V ± 10% 600
WNFRST CC P Input not filtered
pulse
VDD_HV =5.0V ± 10% 2000 ns
PV
DD_HV =3.3V ± 10% 3000
1. Iol_r applies to PORST: Strong Pull-down is active on PHASE0 for PORST. A dedicated Reset Pad for ESR0, with the
specifications reported in this table, is implemented. Refer to the device pinout IO definition excel file for details regarding
pin usage.
2. Maximum current when forcing a change in the pin level opposite to the pull configuration.
3. Minimum current when keeping the same pin level state than the pull configuration.
Table 18. Reset PAD electrical characteristics (continued)
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
Table 19. Reset Pad state during power-up and reset
PAD POWER-UP State RESET state DEFAULT state(1) STANDBY state
PORST Strong pull-down Weak pull-down Weak pull-down Weak pull-up
ESR0 Strong pull-down Strong pull-down Weak pull-up Weak pull-up
1. Before SW Configuration. Please refer to the Device Reference Manual, Reset Generation Module (MC_RGM) Functional
Description chapter for the details of the power-up phases.
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
40/131 DS11758 Rev 5
3.10 PLLs
Two phase-locked loop (PLL) modules are implemented to generate system and auxiliary
clocks on the device.
Figure 7 depicts the integration of the two PLLs. Please, refer to device Reference Manual
for more detailed schematic.
Figure 7. PLLs integration
3.10.1 PLL0
PLL0
PLL1
IRCOSC
XOSC
PLL1_PHI
PLL0_PHI1
PLL0_PHI
Table 20. PLL0 electrical characteristics
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
fPLL0IN SR PLL0 input clock(1) —844MHz
ΔPLL0IN SR PLL0 input clock duty
cycle(1) —4060%
fINFIN SR
PLL0 PFD (Phase
Frequency Detector) input
clock frequency
—820MHz
fPLL0VCO CC P PLL0 VCO frequency 600 1400 MHz
fPLL0PHI0 CC D PLL0 output frequency 4.762 FSYS(2) MHz
fPLL0PHI1 CC D PLL0 output clock PHI1 20 175(3) MHz
tPLL0LOCK CC P PLL0 lock time 100 µs
PLL0PHI0SPJ|(4) CC D
PLL0_PHI0 single period
jitter
fPLL0IN = 20 MHz
(resonator)
fPLL0PHI0 = 400 MHz,
6-sigma pk-pk 200 ps
DS11758 Rev 5 41/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
42
PLL0PHI1SPJ|(4) CC T
PLL0_PHI1 single period
jitter
fPLL0IN = 20 MHz
(resonator)
fPLL0PHI1 = 40 MHz,
6-sigma pk-pk 300(5) ps
ΔPLL0LTJ(4) CC T
PLL0 output long term
jitter(5)
fPLL0IN = 20 MHz
(resonator), VCO
frequency = 800 MHz
10 periods
accumulated jitter
(80 MHz equivalent
frequency), 6-sigma
pk-pk
±250 ps
16 periods
accumulated jitter
(50 MHz equivalent
frequency), 6-sigma
pk-pk
±300 ps
long term jitter
(< 1 MHz equivalent
frequency), 6-sigma
pk-pk)
±500 ps
IPLL0 CC T PLL0 consumption FINE LOCK state 6 mA
1. PLL0IN clock retrieved directly from either internal RCOSC or external FXOSC clock. Input characteristics are granted
when using internal RCOSC or external oscillator is used in functional mode.
2. Please refer to for the maximum operating frequency.
3. If the PLL0_PHI1 is used as an input for PLL1, then the PLL0_PHI1 frequency shall obey the maximum input frequency
limit set for PLL1 (87.5 MHz, according to Table 21).
4. Jitter values reported in this table refer to the internal jitter, and do not include the contribution of the divider and the path to
the output CLKOUT pin.
5. VDD_LV noise due to application in the range VDD_LV = 1.20 V±5%, with frequency below PLL bandwidth (40 kHz) will be
filtered.
Table 20. PLL0 electrical characteristics (continued)
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
42/131 DS11758 Rev 5
3.10.2 PLL1
PLL1 is a frequency modulated PLL with Spread Spectrum Clock Generation (SSCG)
support.
Table 21. PLL1 electrical characteristics
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
fPLL1IN SR PLL1 input clock(1) 37.5 87.5 MHz
ΔPLL1IN SR PLL1 input clock duty
cycle(1) —3565%
fINFIN SR
PLL1 PFD (Phase
Frequency Detector)
input clock frequency
37.5 87.5 MHz
fPLL1VCO CC P PLL1 VCO frequency 600 1400 MHz
fPLL1PHI0 CC D PLL1 output clock PHI0 4.762 FSYS(2) MHz
tPLL1LOCK CC P PLL1 lock time 50 µs
fPLL1MOD CC T PLL1 modulation
frequency 250 kHz
PLL1MOD|CCT
PLL1 modulation depth
(when enabled)
Center spread(3) 0.25 2 %
Down spread 0.5 4 %
PLL1PHI0SPJ|
(4) CC T PLL1_PHI0 single period
peak to peak jitter
fPLL1PHI0 =
200 MHz, 6-sigma ——500
(5) ps
IPLL1 CC T PLL1 consumption FINE LOCK state 5 mA
1. PLL1IN clock retrieved directly from either internal PLL0 or external FXOSC clock. Input characteristics are granted when
using internal PPL0 or external oscillator is used in functional mode.
2. Please refer to Section 3.3: Operating conditions for the maximum operating frequency.
3. The device maximum operating frequency FSYS (max) includes the frequency modulation. If center modulation is selected,
the FSYS must be below the maximum by MD (Modulation Depth Percentage), such that FSYS(max)=FSYS(1+MD%).
Please refer to the Reference Manual for the PLL programming details.
4. Jitter values reported in this table refer to the internal jitter, and do not include the contribution of the divider and the path to
the output CLKOUT pin.
5. 1.25 V±5%, application noise below 40 kHz at VDD_LV pin - no frequency modulation.
DS11758 Rev 5 43/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
46
3.11 Oscillators
3.11.1 Crystal oscillator 40 MHz
Table 22. External 40 MHz oscillator electrical specifications
Symbol C Parameter Conditions
Value
Unit
Min Max
fXTAL CC D Crystal Frequency
Range(1)
—4
(2) 8MHz
>8 20
>20 40
tcst CC T Crystal start-up time (3),(4) TJ= 150 °C 5 ms
trec CC D Crystal recovery time(5) ——0.5ms
VIHEXT CC D EXTAL input high
voltage(6) (External
Reference)
VREF = 0.29 * VDD_HV_IO_JTAG VREF +
0.75
—V
VILEXT CC D EXTAL input low
voltage(6) (External
Reference)
VREF = 0.29 * VDD_HV_IO_JTAG —V
REF -
0.75
V
CS_EXTAL CC D Total on-chip stray
capacitance on EXTAL
pin(7)
—37pF
CS_XTAL CC D Total on-chip stray
capacitance on XTAL
pin(7)
—37pF
gmCC P Oscillator
Transconductance
fXTAL = 4 8MHz
freq_sel[2:0] = 000
3.9 13.6 mA/V
Df
XTAL = 5 - 10 MHz
freq_sel[2:0] = 001
517.5
Df
XTAL = 10 15 MHz
freq_sel[2:0] = 010
8.6 29.3
Pf
XTAL = 15 - 20 MHz
freq_sel[2:0] = 011
14.4 48
Df
XTAL = 20 - 25 MHz
freq_sel[2:0] = 100
21.2 69
Df
XTAL = 25 30 MHz
freq_sel[2:0] = 101
27 86
Df
XTAL = 30 - 35 MHz
freq_sel[2:0] = 110
33.5 115
Pf
XTAL = 35 - 40 MHz
freq_sel[2:0] = 111
33.5 115
VEXTAL CC D Oscillation Amplitude on
the EXTAL pin after
startup(8)
TJ = –40 °C to 150 °C 0.5 1.8 V
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
44/131 DS11758 Rev 5
3.11.2 Crystal Oscillator 32 kHz
VHYS CC D Comparator Hysteresis TJ= –40 °C to 150 °C 0.1 1.0 V
IXTAL CC D XTAL current(8),(9) TJ = –40 °C to 150 °C 14 mA
1. The range is selectable by UTEST miscellaneous DCF client XOSC_FREQ_SEL.
2. The XTAL frequency, if used to feed the PPL0 (or PLL1), shall obey the minimum input frequency limit set for PLL0 (or
PLL1).
3. This value is determined by the crystal manufacturer and board design, and it can potentially be higher than the maximum
provided.
4. Proper PC board layout procedures must be followed to achieve specifications.
5. Crystal recovery time is the time for the oscillator to settle to the correct frequency after adjustment of the integrated load
capacitor value.
6. Applies to an external clock input and not to crystal mode.
7. See crystal manufacturer’s specification for recommended load capacitor (CL) values.The external oscillator requires
external load capacitors when operating from 8 MHz to 16 MHz. Account for on-chip stray capacitance (CS_EXTAL/CS_XTAL)
and PCB capacitance when selecting a load capacitor value. When operating at 20 MHz/40 MHz, the integrated load
capacitor value is selected via S/W to match the crystal manufacturer’s specification, while accounting for on-chip and PCB
capacitance.
8. Amplitude on the EXTAL pin after startup is determined by the ALC block, that is the Automatic Level Control Circuit. The
function of the ALC is to provide high drive current during oscillator startup, but reduce current after oscillation in order to
reduce power, distortion, and RFI, and to avoid over driving the crystal. The operating point of the ALC is dependent on the
crystal value and loading conditions.
9. IXTAL is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded. This is the maximum
current during startup of the oscillator.
Table 22. External 40 MHz oscillator electrical specifications (continued)
Symbol C Parameter Conditions
Value
Unit
Min Max
Table 23. 32 kHz External Slow Oscillator electrical specifications
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
fsxosc SR T Slow external
crystal oscillator
frequency
32768 Hz
gmsxosc CC P Slow external
crystal oscillator
transconductance
—9.532µA/V
Vsxosc CC T Oscillation
Amplitude
—0.51.7V
Isxoosc CC D Oscillator
consumption
——9µA
Tsxosc CC T Start up time 2 s
DS11758 Rev 5 45/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
46
3.11.3 RC oscillator 16 MHz
Table 24. Internal RC oscillator electrical specifications
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
fTar g et CC D IRC target frequency 16 MHz
δfvar_noT CC P IRC frequency variation
without temperature
compensation
T < 150 °C –5 5 %
δfvar_T CC T IRC frequency variation
with temperature
compensation
T < 150 °C –3 3 %
δfvar_SW T IRC software trimming
accuracy
Trimming
temperature
–0.5 +0.3 0.5 %
Tstart_noT CC T Startup time to reach within
fvar_noT
Factory
trimming
already
applied
—— 5 µs
Tstart_T CC T Startup time to reach within
fvar_T
Factory
trimming
already
applied
——120µs
IFIRC CC T Current consumption on HV
power supply(1)
After Tstart_T ——600µA
1. The consumption reported considers the sum of the RC oscillator 16 MHz IP, and the core logic clocked by the IP during
Standby mode.
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
46/131 DS11758 Rev 5
3.11.4 Low power RC oscillator
Table 25. 1024 kHz internal RC oscillator electrical characteristics
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
Fsirc CC T Slow Internal
RC oscillator
frequency
1024 kHz
δfvar_T CC P Frequency
variation across
temperature
–40 °C < T <
150 °C
–9 +9 %
δfvar_V CC P Frequency
variation across
voltage
–40 °C < T <
150 °C
–5 +5 %
Isirc CC T Slow Internal
RC oscillator
current
T = 55 °C 6 µA
Tsirc CC T Start up time,
after switching
ON the internal
regulator.
——12µS
DS11758 Rev 5 47/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
54
3.12 ADC system
3.12.1 ADC input description
Figure 8 shows the input equivalent circuit for SARn and SARB channels.
Figure 8. Input equivalent circuit (Fast SARn and SARB channels)
RSW1
CP2 CS
VDD
Sampling
INTERNAL CIRCUIT SCHEME
RSW1: Channel Selection Switch Impedance
RAD: Sampling Switch Impedance
CP: Pin Capacitance (two contributions, CP1 and CP2)
CS: Sampling Capacitance
RCMSW: Common mode switch
RCMRL: Common mode resistive ladder
VCM : Common mode voltage (~0.5 VDD)
CP1
RAD
Channel
Selection
Common mode
switch
Common mode
resistive ladder
The above figure can be used as approximation circuitry for external filtering definition.
VCM
RCMSW
RCMRL
Table 26. ADC pin specification(1)
Symbol C Parameter Conditions
Value
Unit
Min Max
R20KΩCC D Internal voltage reference source
impedance.
—1630KΩ
ILKG CC Input leakage current, two ADC
channels on input-only pin.
See IO chapter Table 11: I/O input electrical
characteristics, parameter ILKG
IINJ1,2 SR Injection current on analog input
preserving functionality at full or
degraded performances.
See Operating Conditions chapter Table 5 :
Operating conditions, IINJ1 and IINJ2 parameter.
CHV_ADC SR D VDD_HV_ADV external capacitance. See Power Management chapter Table 34: External
components integration, CADC parameter.
CP1 CC D Pad capacitance See IO chapter Table 11: I/O input electrical
characteristics, parameter CP1
CP2 CC D Internal routing capacitance SARB channels 2 pF
SARn 10bit channels 0.5
SARn 12bit channels 1
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
48/131 DS11758 Rev 5
3.12.2 SAR ADC 12 bit electrical specification
The SARn ADCs are 12-bit Successive Approximation Register analog-to-digital converters
with full capacitive DAC. The SARn architecture allows input channel multiplexing.
CSCC D SAR ADC sampling capacitance SARn 12bit 5 pF
SARn 10bit 2
RSWn CC D Analog switches resistance SARB channels 0 1.8 kΩ
SARn 10bit channels 0 0.8
SARn 12bit channels 0 1.8
RAD CC D ADC input analog switches
resistance
SARn 12bit 0.8 kΩ
SARn 10bit 3.2
RCMSW CC D Common mode switch resistance sum of the two
resistances
—9kΩ
RCMRL CC D Common mode resistive ladder kΩ
RSAFEPD(2) CC D Discharge resistance for ADC
input-only pins (strong pull-down
for safety)
VDD_HV_IO = 5.0 V ± 10% 300 Ω
VDD_HV_IO = 3.3 V ± 10% 500 Ω
ABGAP CC D ADC digital bandgap accuracy -1.5 +1.5 %
1. All specifications in this table valid for the full input voltage range for the analog inputs.
2. It enables discharge of up to 100 nF from 5 V every 300 ms. Please refer to the device pinout IO definition excel file for the
pads supporting it.
Table 26. ADC pin specification(1) (continued)
Symbol C Parameter Conditions
Value
Unit
Min Max
Table 27. SARn ADC electrical specification(1)
Symbol C Parameter Conditions
Value
Unit
Min Max
fADCK SR P Clock frequency Standard frequency mode 7.5 13.33 MHz
T High frequency mode >13.33 16.0
tADCINIT SR ADC initialization time 1.5 µs
tADCBIASINIT SR ADC BIAS
initialization time
—5µs
tADCPRECH SR T ADC decharge time Fast SAR 1/fADCK —µs
Slow SAR (SARDAC_B) 2/fADCK
ΔVPRECH SR D Decharge voltage
precision
TJ<15C 0 0.25 V
R20KΩCC D Internal voltage
reference source
impedance
—1630KΩ
DS11758 Rev 5 49/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
54
ΔVINTREF CC P Internal reference
voltage precision
Applies to all internal
reference points
(VSS_HV_ADR,
1/3 * VDD_HV_ADR,
2/3 * VDD_HV_ADR,
VDD_HV_ADR)
0.20 0.20 V
tADCSAMPLE SR P ADC sample time(2) Fast SAR – 12-bit
configuration
6/fADCK —µs
D Fast SAR – 10-bit
configuration mode 1(3)
(Standard frequency mode
only)
6/fADCK
Fast SAR – 10-bit
configuration mode 2(4)
(Standard frequency mode
only)
5/fADCK
Fast SAR – 10-bit
configuration mode 3(5)
(High frequency mode only)
6/fADCK
Slow SAR (SARADC_B) –
12-bit configuration
12/fADCK
Slow SAR (SARADC_B) –
10-bit configuration mode
1(3)
(Standard frequency mode
only)
12/fADCK
Slow SAR (SARADC_B) –
10-bit configuration mode
2(4)
(Standard frequency mode
only)
10/fADCK
Slow SAR (SARADC_B) –
10-bit configuration mode
3(5)
(High frequency mode only)
12/fADCK
Conversion of BIAS test
channels through 20 kΩ
input.
40/fADCK
tADCEVAL SR P ADC evaluation time 12-bit configuration 12/fADCK —µs
D 10-bit configuration 10/fADCK
IADCREFH(6),(7) CC T ADC high reference
current
Run mode
(average across all codes)
—7µA
Power Down mode 1
Table 27. SARn ADC electrical specification(1) (continued)
Symbol C Parameter Conditions
Value
Unit
Min Max
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
50/131 DS11758 Rev 5
IADCREFL(7) CC D ADC low reference
current
Run mode
VDD_HV_ADR_S 5.5 V
—15µA
Power Down mode
VDD_HV_ADR_S 5.5 V
—1
IADV_S(7) CC P VDD_HV_ADV power
supply current
Run mode 4.0 mA
D Power Down mode 0.04
TUE12 CC T Total unadjusted error
in 12-bit
configuration(8)
TJ<15C,
VDD_HV_ADV >3V,
VDD_HV_ADR_S >3V
–4 4 LSB
(12b)
PT
J<15C,
VDD_HV_ADV >3V,
VDD_HV_ADR_S >3V
–6 6
TT
J<15C,
VDD_HV_ADV >3V,
3V>V
DD_HV_ADR_S >2V
–6 6
D High frequency mode,
TJ<15C,
VDD_HV_ADV >3V,
VDD_HV_ADR_S >3V
–12 12
TUE10 CC D Total unadjusted error
in 10-bit
configuration(8)
Mode 1, TJ<15C,
VDD_HV_ADV >3V
VDD_HV_ADR_S >3V
–1.5 1.5 LSB
(10b)
D Mode 1, TJ<15C,
VDD_HV_ADV >3V,
3V>V
DD_HV_ADR_S >2V
–2.0 2.0
C Mode 2, TJ<15C,
VDD_HV_ADV >3V
VDD_HV_ADR_S >3V
–3.0 3.0
C Mode 3, TJ<15C,
VDD_HV_ADV >3V
VDD_HV_ADR_S >3V
–4.0 4.0
Table 27. SARn ADC electrical specification(1) (continued)
Symbol C Parameter Conditions
Value
Unit
Min Max
DS11758 Rev 5 51/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
54
ΔTUE12 CC D TUE degradation due
to VDD_HV_ADR offset
with respect to
VDD_HV_ADV
VIN < VDD_HV_ADV
VDD_HV_ADR VDD_HV_ADV
[0:25 mV]
–1 1 LSB
(12b)
VIN < VDD_HV_ADV
VDD_HV_ADR VDD_HV_ADV
[25:50 mV]
–2 2
VIN < VDD_HV_ADV
VDD_HV_ADR VDD_HV_ADV
[50:75 mV]
–4 4
VIN < VDD_HV_ADV
VDD_HV_ADR VDD_HV_ADV
[75:100 mV]
–6 6
VDD_HV_ADV < VIN <
VDD_HV_ADR
VDD_HV_ADR VDD_HV_ADV
[0:25 mV]
–2.5 2.5
VDD_HV_ADV < VIN <
VDD_HV_ADR
VDD_HV_ADR VDD_HV_ADV
[25:50 mV]
–4 4
VDD_HV_ADV < VIN <
VDD_HV_ADR
VDD_HV_ADR VDD_HV_ADV
[50:75 mV]
–7 7
VDD_HV_ADV < VIN <
VDD_HV_ADR
VDD_HV_ADR VDD_HV_ADV
[75:100 mV]
–12 12
DNL(8) CC P Differential non-
linearity
Standard frequency mode,
VDD_HV_ADV > 4 V
VDD_HV_ADR_S > 4 V
–1 2 LSB
(12b)
T High frequency mode,
VDD_HV_ADV > 4 V
VDD_HV_ADR_S > 4 V
–1 2
1. Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings
only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device
reliability or cause permanent damage to the device.
2. Minimum ADC sample times are dependent on adequate charge transfer from the external driving circuit to the internal
sample capacitor. The time constant of the entire circuit must allow the sampling capacitor to charge within 1/2 LSB within
the sampling window. Please refer to Figure 8 for models of the internal ADC circuit, and the values to use in external RC
sizing and calculating the sampling window duration.
3. Mode1: 6 sampling cycles + 10 conversion cycles at 13.33 MHz.
4. Mode2: 5 sampling cycles + 10 conversion cycles at 13.33 MHz.
5. Mode3: 6 sampling cycles + 10 conversion cycles at 16 MHz.
Table 27. SARn ADC electrical specification(1) (continued)
Symbol C Parameter Conditions
Value
Unit
Min Max
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
52/131 DS11758 Rev 5
3.12.3 SAR ADC 10 bit electrical specification
The ADC comparators are 10-bit Successive Approximation Register analog-to-digital
converters with full capacitive DAC. The SARn architecture allows input channel
multiplexing.
6. IADCREFH and IADCREFL are independent from ADC clock frequency. It depends on conversion rate: consumption is driven
by the transfer of charge between internal capacitances during the conversion.
7. Current parameter values are for a single ADC.
8. TUE and DNL are granted with injection current within the range defined in Table 26, for parameters classified as T and D.
Table 28. ADC-Comparator electrical specification(1)
Symbol C Parameter Conditions
Value
Unit
Min Max
fADCK SR P Clock frequency Standard frequency mode 7.5 13.33 MHz
T High frequency mode >13.33 16.0
tADCINIT SR ADC initialization time 1.5 µs
tADCBIASINIT SR ADC BIAS initialization
time
—5µs
tADCINITSBY SR ADC initialization time
in standby
Standby Mode 8 µs
tADCPRECH SR T ADC precharge time 1/fADCK —µs
ΔVPRECH SR D Precharge voltage
precision
TJ< 150 °C 0 0.25 V
tADCSAMPLE SR P ADC sample time(2) 10-bit ADC mode 5/fADCK —µs
ADC comparator mode 2/fADCK —µs
tADCEVAL SR P ADC evaluation time 10-bit ADC mode 10/fADCK —µs
D ADC comparator mode 2/fADCK
IADCREFH(3),(4) CC T ADC high reference
current
Run mode
(average across all codes)
—7µA
Power Down mode 1
ADC comparator mode 19.5
IADCREFL(5) CC D ADC low reference
current
Run mode
VDD_HV_ADR_S 5.5 V
—15µA
Power Down mode
VDD_HV_ADR_S 5.5 V
—1
ADC comparator mode 20.5
IADV_S(5) CC P VDD_HV_ADV power
supply current
Run mode 4 mA
D Power Down mode 0.04
DS11758 Rev 5 53/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
54
TUE10 CC T Total unadjusted error
in 10-bit configuration(6)
TJ< 150 °C,
VDD_HV_ADV >3V,
VDD_HV_ADR_S >3V
–2 2 LSB
(10b)
PT
J< 150 °C,
VDD_HV_ADV >3V,
VDD_HV_ADR_S >3V
–3 3
TT
J< 150 °C,
VDD_HV_ADV >3V,
3V>V
DD_HV_ADR_S >2V
–3 3
D High frequency mode,
TJ< 150 °C,
VDD_HV_ADV >3V,
VDD_HV_ADR_S >3V
–3 3
ΔTUE10 CC D TUE degradation due
to VDD_HV_ADR offset
with respect to
VDD_HV_ADV
VIN < VDD_HV_ADV
VDD_HV_ADR VDD_HV_ADV
[0:25 mV]
–1.0 1.0 LSB
(10b)
VIN < VDD_HV_ADV
VDD_HV_ADR VDD_HV_ADV
[25:50 mV]
–2.0 2.0
VIN < VDD_HV_ADV
VDD_HV_ADR VDD_HV_ADV
[50:75 mV]
–3.5 3.5
VIN < VDD_HV_ADV
VDD_HV_ADR VDD_HV_ADV
[75:100 mV]
–6.0 6.0
VDD_HV_ADV < VIN <
VDD_HV_ADR
VDD_HV_ADR VDD_HV_ADV
[0:25 mV]
–2.5 2.5
VDD_HV_ADV < VIN <
VDD_HV_ADR
VDD_HV_ADR VDD_HV_ADV
[25:50 mV]
–4.0 4.0
VDD_HV_ADV < VIN <
VDD_HV_ADR
VDD_HV_ADR VDD_HV_ADV
[50:75 mV]
–7.0 7.0
VDD_HV_ADV < VIN <
VDD_HV_ADR
VDD_HV_ADR VDD_HV_ADV
[75:100 mV]
–12.0 12.0
Table 28. ADC-Comparator electrical specification(1) (continued)
Symbol C Parameter Conditions
Value
Unit
Min Max
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
54/131 DS11758 Rev 5
DNL(6) CC P Differential non-linearity
std. mode
Standard frequency mode,
VDD_HV_ADV > 4 V
VDD_HV_ADR_S > 4 V
–1 2 LSB
(10b)
T High frequency mode,
VDD_HV_ADV > 4 V
VDD_HV_ADR_S > 4 V
–1 2
1. Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings
only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device
reliability or cause permanent damage to the device.
2. Minimum ADC sample times are dependent on adequate charge transfer from the external driving circuit to the internal
sample capacitor. The time constant of the entire circuit must allow the sampling capacitor to charge within 1/2 LSB within
the sampling window. Please refer to Figure 8 for models of the internal ADC circuit, and the values to use in external RC
sizing and calculating the sampling window duration.
3. IADCREFH and IADCREFL are independent from ADC clock frequency. It depends on conversion rate: consumption is driven
by the transfer of charge between internal capacitances during the conversion.
4. Current parameter values are for a single ADC.
5. All channels of all SAR-ADC12bit and SAR-ADC10bit are impacted with same degradation, independently from the ADC
and the channel subject to current injection.
6. TUE and DNL are granted with injection current within the range defined in Table 26, for parameters classified as T and D.
Table 28. ADC-Comparator electrical specification(1) (continued)
Symbol C Parameter Conditions
Value
Unit
Min Max
DS11758 Rev 5 55/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
55
3.13 Temperature Sensor
The following table describes the temperature sensor electrical characteristics.
Table 29. Temperature sensor electrical characteristics
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
CC Temperature monitoring range –40 150 °C
TSENS CC T Sensitivity 5.18 mV/°C
TACC CC P Accuracy TJ < 150 °C–3—3°C
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
56/131 DS11758 Rev 5
3.14 LFAST pad electrical characteristics
The LFAST(LVDS Fast Asynchronous Serial Transmission) pad electrical characteristics
apply to high-speed debug serial interfaces on the device.
3.14.1 LFAST interface timing diagrams
Figure 9. LFAST and MSC/DSPI LVDS timing definition
Signal excursions above this level NOT allowed
Max. common mode input at RX
Signal excursions below this level NOT allowed
Min. common mode input at RX
Data Bit Period
Minimum Data Bit Time
Opening =
0.55 * T (LFAST)0.50 * T
(MSC/DSPI)
Max Differential Voltage =
285 mV (LFAST)
400 mV (MSC/DSPI)
Min Differential
Voltage =
100 mV (LFAST)
(MSC/DSPI)
1743 mV
1600 mV
VOS = 1.2 V +/- 10%
TX common mode
VICOM
150 mV
0V
1743 mV
“No-Go”
T = 1 /FDATA
VOD|
VOD|
ΔPEREYE ΔPEREYE
PAD_N
PAD_P
DS11758 Rev 5 57/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
61
Figure 10. Power-down exit time
Figure 11. Rise/fall time
3.14.2 LFAST and MSC/DSPILVDS interface electrical characteristics
The following table contains the electrical characteristics for the LFAST interface.
Data Valid
pad_p/pad_n
lfast_pwr_down
Differential TX
Data Lines
H
L
tPD2NM_TX
Differential TX
Data Lines
pad_p/pad_n
tTR
tTR
|ΔVOD(min)|
|ΔVOD(min)|
VIH
VIL
Table 30. LVDS pad startup and receiver electrical characteristics(1),(2)
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
STARTUP(3),(4)
tSTRT_BIAS CC T Bias current reference startup
time(5) ——0.54μs
tPD2NM_TX CC T Transmitter startup time (power
down to normal mode)(6) ——0.42.75μs
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
58/131 DS11758 Rev 5
tSM2NM_TX CC T Transmitter startup time (sleep
mode to normal mode)(7)
Not applicable to the
MSC/DSPI LVDS pad —0.40.6µs
tPD2NM_RX CC T Receiver startup time (power
down to normal mode)(8) 20 40 ns
tPD2SM_RX CC T Receiver startup time (power
down to sleep mode)(9)
Not applicable to the
MSC/DSPI LVDS pad —2050ns
ILVDS_BIAS CC D LVDS bias current consumption Tx or Rx enabled 0.95 mA
TRANSMISSION LINE CHARACTERISTICS (PCB Track)
Z0SR D Transmission line characteristic
impedance —47.55052.5Ω
ZDIFF SR D Transmission line differential
impedance 95 100 105 Ω
RECEIVER
VICOM SR T Common mode voltage 0.15
(10) —1.6
(11) V
|ΔVI| SR T Differential input voltage(12) —100mV
VHYS CC T Input hysteresis 25 mV
RIN CC D Terminating resistance VDD_HV_IO =
5.0 V ± 10%
-40 °C<T
J<150°C
80 150
Ω
VDD_HV_IO =
3.3 V ± 10%
-40 °C<T
J< 150 °C
80 175
CIN CC D Differential input capacitance(13) 3.5 6.0 pF
ILVDS_RX CC C Receiver DC current
consumption Enabled 1.6 mA
IPIN_RX CC D Maximum consumption on
receiver input pin
ΔVI =400mV,
RIN =80Ω—— 5mA
1. The LVDS pad startup and receiver electrical characteristics in this table apply to both the LFAST & High-speed Debug
(HSD) LVDS pad.
2. All LVDS pad electrical characteristics are valid from -40 °C to 150 °C.
3. All startup times are defined after a 2 peripheral bridge clock delay from writing to the corresponding enable bit in the LVDS
control registers (LCR) of the LFAST and High-speed Debug modules. The value of the LCR bits for the LFAST/HSD
modules don’t take effect until the corresponding SIUL2 MSCR ODC bits are set to LFAST LVDS mode. Startup times for
MSC/DSPI LVDS are defined after 2 peripheral bridge clock delay after selecting MSC/DSPI LVDS in the corresponding
SIUL2 MSCR ODC field.
4. Startup times are valid for the maximum external loads CL defined in both the LFAST/HSD and MSC/DSPI transmitter
electrical characteristic tables.
5. Bias startup time is defined as the time taken by the current reference block to reach the settling bias current after being en-
abled.
6. Total transmitter startup time from power down to normal mode is tSTRT_BIAS + tPD2NM_TX + 2 peripheral bridge clock peri-
ods.
7. Total transmitter startup time from sleep mode to normal mode is tSM2NM_TX + 2 peripheral bridge clock periods. Bias block
remains enabled in sleep mode.
Table 30. LVDS pad startup and receiver electrical characteristics(1),(2) (continued)
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
DS11758 Rev 5 59/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
61
8. Total receiver startup time from power down to normal mode is tSTRT_BIAS + tPD2NM_RX + 2 peripheral bridge clock periods.
9. Total receiver startup time from power down to sleep mode is tPD2SM_RX + 2 peripheral bridge clock periods. Bias block re-
mains enabled in sleep mode.
10. Absolute min = 0.15 V – (285 mV/2) = 0 V
11. Absolute max = 1.6 V + (285 mV/2) = 1.743 V
12. Value valid for LFAST mode. The LXRXOP[0] bit in the LFAST LVDS Control Register (LCR) must be set to one to ensure
proper LFAST receive timing.
13. Total internal capacitance including receiver and termination, co-bonded GPIO pads, and package contributions. For bare
die devices, subtract the package value given in Figure 12.
Table 31. LFAST transmitter electrical characteristics(1),(2),(3)
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
fDATA SR D Data rate 320 Mbps
VOS CC P Common mode voltage 1.08 1.32 V
|ΔVOD|CCP Differential output voltage swing
(terminated)(4),(5) 110 285 mV
tTR CC T
Rise time from -|ΔVOD(min)| to
+|ΔVOD(min)|. Fall time from
+|ΔVOD(min)| to -|ΔVOD(min)|
0.26 1.25 ns
CLSR D External lumped differential load
capacitance4
VDD_HV_IO = 4.5 V 6.0
pF
VDD_HV_IO = 3.0 V 4.0
ILVDS_TX CC C Transmitter DC current consumption Enabled 3.6 mA
IPIN_TX CC D Transmitter DC current sourced through
output pin 1.1 2.85 mA
1. This table is applicable to LFAST LVDS pads used in LFAST configuration (SIUL2_MSCR_IO_n.ODC=101).
2. The LFAST and High-Speed Debug LFAST pad electrical characteristics are based on worst case internal capacitance
values shown in Figure 12.
3. All LFAST and High-Speed Debug LVDS pad electrical characteristics are valid from -40 °C to 150 °C.
4. Valid for maximum data rate fDATA. Value given is the capacitance on each terminal of the differential pair, as shown in
Figure 12.
5. Valid for maximum external load CL.
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
60/131 DS11758 Rev 5
Figure 12. LVDS pad external load diagram
3.14.3 LFAST PLL electrical characteristics
The following table contains the electrical characteristics for the LFAST PLL.
1pF
1pF
2.5pF
2.5pF
C
L
C
L
100 Ω
terminator
Die Package PCB
GPIO Driver
LVDS Driver
GPIO Driver
Table 32. LFAST PLL electrical characteristics(1)
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
fRF_REF SR D PLL reference clock frequency (CLKIN) 10(2) —30MHz
ERRREF CC D PLL reference clock frequency error -1 1 %
DCREF CC D PLL reference clock duty cycle (CLKIN) 30 70 %
PN CC D Integrated phase noise (single side
band) fRF_REF = 20 MHz -58 dBc
fVCO CC P PLL VCO frequency 312 320(3) MHz
tLOCK CC D PLL phase lock 150(4) µs
DS11758 Rev 5 61/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
61
ΔPERREF SR
T
Input reference clock jitter (peak to peak)
Single period,
fRF_REF =20MHz ——350ps
TLong term,
fRF_REF =20MHz -500 500 ps
ΔPEREYE CC T Output Eye Jitter (peak to peak)(5) ——400ps
1. The specifications in this table apply to both the interprocessor bus and debug LFAST interfaces.
2. If the input frequency is lower than 20 MHz, it is required to set a input division factor of 1.
3. The 320 MHz frequency is achieved with a 20 MHz reference clock.
4. The total lock time is the sum of the coarse lock time plus the programmable lock delay time 2 clock cycles of the peripheral
bridge clock that is connected to the PLL on the device (to set the PLL enable bit).
5. Measured at the transmitter output across a 100 Ω termination resistor on a device evaluation board. See Figure 12.
Table 32. LFAST PLL electrical characteristics(1) (continued)
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
62/131 DS11758 Rev 5
3.15 Power management
The power management module monitors the different power supplies as well as it
generates the required internal supplies. The device can operate in the following
configurations:
3.15.1 Power management integration
Use the integration schemes provided below to ensure the proper device function,
according to the selected regulator configuration.
The internal regulators are supplied by VDD_HV_IO_MAIN supply and are used to generate
VDD_LV supply.
Place capacitances on the board as near as possible to the associated pins and limit the
serial inductance of the board to less than 5 nH.
It is recommended to use the internal regulators only to supply the device itself.
Table 33. Power management regulators
Device External
regulator
Internal
SMPS
regulator
Internal
linear
regulator
external
ballast
Internal
linear
regulator
internal
ballast
Auxiliary
regulator
Clamp
regulator
Internal
standby
regulator(1)
SPC584Gx
SPC58EGx
SPC58NGx
—— X X XX
(2)
1. Standby regulator is automatically activated when the device enters standby mode. Standby mode is not supported if the
device operates in External regulator mode. Emulation Device calibration and trace features are not supported in standby
mode.
2. Emulation Device calibration and trace features are not supported in standby mode.
DS11758 Rev 5 63/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
70
Figure 13. Internal regulator with external ballast mode
%&75/
9''B/9
966
&/9Q
&$'&
966B+9B$'9 9''B+9B$'9
9''B+9B,2
966
&+9Q
&%9
9''B+9B,2
966
9''B+9B)/$
&)/$
(;75(*B6(/
966
$X[5HJ
&ODPS5HJ
4(;7
9''B+9
&(
0DLQ5HJ
&%
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
64/131 DS11758 Rev 5
Figure 14. Standby regulator with external ballast mode
%&75/
9''B/9
966
&
/9Q
&
$'&
966B+9B$'9 9''B+9B$'9
9''B+9B,2
966
&
+9Q
&
%9
9''B+9B,2
966
9''B+9B)/$
&
)/$
(;75(*B6(/
966
4
(;7
9''B+9
&
(
6WDQGE\UHJ
&
%
Table 34. External components integration
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
Common Components
CESR D Internal voltage regulator stability
external capacitance.(2) (3)
—2×2.2 µF
RESR D Stability capacitor equivalent
serial resistance
Total resistance including
board track
——50mΩ
CLVn SR D Internal voltage regulator
decoupling external
capacitance(2) (4) (5)
Each VDD_LV/VSS pair 47 nF
DS11758 Rev 5 65/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
70
RLVn SR D Stability capacitor equivalent
serial resistance
——50mΩ
CBV SR D Bulk capacitance for HV supply(2) ——4.7µF
CHVn SR D Decoupling capacitance for
ballast and IOs(2)
on all VDD_HV_IO/VSS and
VDD_HV_ADR/VSS pairs
—100nF
CFLA SR D Decoupling capacitance for Flash
supply(6)
——10nF
CADC SR D ADC supply external
capacitance(2)
VDD_HV_ADV/VSS_HV_ADV
pair.
—2.2µF
Internal Linear Regulator with External Ballast Mode
QEXT SR D Recommended external NPN
transistors
NJD2873T4, BCP68, 2SCR574D
VQSR D External NPN transistor collector
voltage
—2.0V
DD_
HV_IO
_MAIN
V
CBSR D Internal voltage regulator stability
external capacitance on ballast
base(5) (7)
——2.2µF
RBSR D Stability capacitor equivalent
serial resistance
Total resistance including
board track
——50mΩ
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TJ = –40 / 150 °C, unless otherwise specified.
2. Recommended X7R or X5R ceramic –50% / +35% variation across process, temperature, voltage and after aging.
3. CE capacitance is required both in internal and external regulator mode.
4. For noise filtering, add a high frequency bypass capacitance of 10 nF.
5. For applications it is recommended to implement at least 5 CLV capacitances.
6. Recommended X7R capacitors. For noise filtering, add a high frequency bypass capacitance of 100 nF.
7. CB capacitance is required if only the external ballast is implemented.
Table 34. External components integration (continued)
Symbol C Parameter Conditions(1) Value
Unit
Min Typ Max
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
66/131 DS11758 Rev 5
3.15.2 Voltage regulators
Table 35. Linear regulator specifications
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
VMREG CC P Main regulator output voltage Power-up, before
trimming, no load
1.12 1.20 1.28 V
CC P After trimming,
maximum load
1.08 1.18 1.23
IDDMREG CC T Main regulator current provided to
VDD_LV domain
The maximum current required by
the device (IDD_LV) may exceed
the maximum current which can
be provided by the internal linear
regulator. In this case, the internal
regulator mode cannot be used.
——700mA
IDDCLAMP CC D Main regulator rush current
sinked from VDD_HV_IO_MAIN
domain during VDD_LV domain
loading
Power-up condition 400 mA
ΔIDDMREG CC T Main regulator output current
variation
20 µs observation
window
-100 100 mA
IMREGINT CC D Main regulator current
consumption
IMREG = max 22 mA
DI
MREG = 0 mA
Table 36. Auxiliary regulator specifications
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
VAUX CC P Aux regulator output voltage After trimming, internal
regulator mode
1.08 1.18 1.21 V
CC P After trimming, external
regulator mode
1.03 1.12 1.16
IDDAUX CC T Aux regulator current provided to
VDD_LV domain
——250mA
ΔIDDAUX CC T Aux regulator current variation 20 µs observation
window
—100 100 mA
IAUXINT CC D Aux regulator current
consumption
IMREG = max 1.1 mA
DI
MREG = 0 mA 1.1
DS11758 Rev 5 67/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
70
3.15.3 Voltage monitors
The monitors and their associated levels for the device are given in Ta bl e 3 9 . Figure 15
illustrates the workings of voltage monitoring threshold.
Table 37. Clamp regulator specifications
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
VCLAMP CC P Clamp regulator output voltage After trimming, internal
regulator mode
1.17 1.21 1.32 V
CC P After trimming, external
regulator mode
1.24 1.28 1.39
ΔIDDCLAMP CC T Clamp regulator current variation 20 µs observation
window
—100 100 mA
ICLAMPINT CC D Clamp regulator current
consumption
IMREG = 0 mA 0.7 mA
Table 38. Standby regulator specifications
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
VSBY CC P Standby regulator output voltage After trimming,
maximum load
1.02 1.06 1.26 V
IDDSBY CC T Standby regulator current
provided to VDD_LV domain
——50mA
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
68/131 DS11758 Rev 5
Figure 15. Voltage monitor threshold definition
VDD_xxx
HVD TRIGGER
TVMFILTER
VLVD
TVMFILTER
VHVD
LVD TRIGGER
TVMFILTER
TVMFILTER
(INTERNAL)
(INTERNAL)
Table 39. Voltage monitor electrical characteristics
Symbol C Supply/Parameter Conditions
Value(1)
Unit
Min Typ Max
PowerOn Reset HV
VPOR200_C CC P VDD_HV_IO_MAIN 1.80 2.18 2.40 V
Minimum Voltage Detectors HV
VMVD270_C CC P VDD_HV_IO_MAIN 2.71 2.76 2.80 V
VMVD270_F CC P VDD_HV_FLA 2.71 2.76 2.80 V
VMVD270_SBY CC P VDD_HV_IO_MAIN (in Standby) 2.71 2.76 2.80 V
Low Voltage Detectors HV
VLVD290_C CC P VDD_HV_IO_MAIN 2.89 2.94 2.99 V
VLVD290_F CC P VDD_HV_FLA 2.89 2.94 2.99 V
VLVD290_AD CC P VDD_HV_ADV (ADCSD pad) 2.89 2.94 2.99 V
VLVD290_AS CC P VDD_HV_ADV (ADCSAR pad) 2.89 2.94 2.99 V
VLVD290_IJ CC P VDD_HV_IO_JTAG 2.89 2.94 2.99 V
DS11758 Rev 5 69/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
70
VLVD290_IF CC P VDD_HV_IO_FLEX 2.89 2.94 2.99 V
VLVD400_AD CC P VDD_HV_ADV (ADCSD pad) 4.15 4.23 4.31 V
VLVD400_AS CC P VDD_HV_ADV (ADCSAR pad) 4.15 4.23 4.31 V
VLVD400_IM CC P VDD_HV_IO_MAIN 4.15 4.23 4.31 V
VLVD400_IJ CC P VDD_HV_IO_JTAG 4.15 4.23 4.31 V
VLVD400_IF CC P VDD_HV_IO_FLEX 4.15 4.23 4.31 V
High Voltage Detectors HV
VHVD400_C CC P VDD_HV_IO_MAIN 3.68 3.75 3.82 V
VHVD400_IJ CC P VDD_HV_IO_JTAG 3.68 3.75 3.82 V
VHVD400_IF CC P VDD_HV_IO_FLEX 3.68 3.75 3.82 V
Upper Voltage Detectors HV
VUVD600_C CC P VDD_HV_IO_MAIN 5.72 5.82 5.92 V
VUVD600_F CC P VDD_HV_FLA 5.72 5.82 5.92 V
VUVD600_IJ CC P VDD_HV_IO_JTAG 5.72 5.82 5.92 V
VUVD600_IF CC P VDD_HV_IO_FLEX 5.72 5.82 5.92 V
PowerOn Reset LV
VPOR031_C CC P VDD_LV 0.29 0.60 0.97 V
Minimum Voltage Detectors LV
VMVD082_C CC P VDD_LV 0.85 0.88 0.91 V
VMVD082_B CC P VDD_LV_BD 0.85 0.88 0.91 V
VMVD094_C CC P VDD_LV 0.98 1.00 1.02 V
VMVD094_FA CC P VDD_LV (Flash) 1.00 1.02 1.04 V
VMVD094_FB CC P VDD_LV (Flash) 1.00 1.02 1.04 V
Low Voltage Detectors LV
VLVD100_C CC P VDD_LV 1.06 1.08 1.11 V
VLVD100_SB CC P VDD_LV (In Standby) 0.99 1.01 1.03 V
VLVD100_F CC P VDD_LV (Flash) 1.08 1.10 1.12 V
High Voltage Detectors LV
VHVD134_C CC P VDD_LV 1.28 1.31 1.33 V
Upper Voltage Detectors LV
VUVD140_C CC P VDD_LV 1.34 1.37 1.39 V
VUVD140_F CC P VDD_LV (Flash) 1.34 1.37 1.39 V
Table 39. Voltage monitor electrical characteristics (continued)
Symbol C Supply/Parameter Conditions
Value(1)
Unit
Min Typ Max
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
70/131 DS11758 Rev 5
Common
TVMFILTER CC D Voltage monitor filter(2) —525μs
1. The values reported are Trimmed values, where applicable.
2. See Figure 15. Transitions shorter than minimum are filtered. Transitions longer than maximum are not filtered, and will be
delayed by TVMFILTER time. Transitions between minimum and maximum can be filtered or not filtered, according to
temperature, process and voltage variations.
Table 39. Voltage monitor electrical characteristics (continued)
Symbol C Supply/Parameter Conditions
Value(1)
Unit
Min Typ Max
DS11758 Rev 5 71/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
74
3.16 Flash memory
The following table shows the Wait State configuration.
The following table shows the Program/Erase Characteristics.
Table 40. Wait State configuration
APC RWSC Frequency range (MHz)
000(1)
1. STD pipelined.
0f<30
1f<
60
2f<
90
3f<
120
4f<
150
5f<
180
100(2)
2. No pipeline.
0f<30
1f<
60
2f<
90
3f<
120
4f<
150
5f<
180
001(3)
3. Pipeline with 1 Tck address anticipation.
255<f<80
3 55<f<120
4 55<f<160
5 55<f<180
Table 41. Flash memory program and erase specifications
Symbol Characteristics(1)(2)
Value
Unit
Typ(3) C
Initial max
Typical
end of
life(4)
Lifetime
max(5)
C
25 °C
(6)
All
temp
(7)
C< 1 K
cycles
< 250
K
cycles
tdwprogram
Double Word (64 bits)
program time EEPROM
(partitions 2, 3, 4) [Packaged
part]
55 C 130 140 500 C µs
tpprogram Page (256 bits) program time 76 C 240 255 1000 C µs
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
72/131 DS11758 Rev 5
tpprogrameep
Page (256 bits) program time
EEPROM (partitions 2, 3, 4)
[Packaged part]
90 C 300 315 1000 C µs
tqprogram
Quad Page (1024 bits)
program time 220 C 840 1200 P 850 2000 C µs
tqprogrameep
Quad Page (1024 bits)
program time EEPROM
(partitions 2, 3, 4) [Packaged
part]
306 C 1200 1800 P 1270 2000 C µs
t16kpperase
16 KB block pre-program and
erase time 190 C 450 500 P 250 1000 C ms
t32kpperase
32 KB block pre-program and
erase time 250 C 520 600 P 310 1200 C ms
t64kpperase
64 KB block pre-program and
erase time 360 C 700 750 P 420 1600 C ms
t256kpperase
256 KB block pre-program
and erase time 1050 C 1800 2400 P 1600 4000 C ms
t16kprogram 16 KB block program time 25 C 45 50 P 40 1000 C ms
t32kprogram 32 KB block program time 50 C 90 100 P 75 1200 C ms
t64kprogram 64 KB block program time 102 C 175 200 P 150 1600 C ms
t256kprogram 256 KB block program time 410 C 700 850 P 590 4000 C ms
t64kprogrameep
Program 64 KB Data Flash -
EEPROM (partition 2,3)
[Packaged part]
120 C 200 300 P 330 1750 C ms
t64keraseeep
Erase 64 KB Data Flash -
EEPROM (partition 2,3)
[Packaged part]
530 C 910 1150 P 1040 3600 C ms
tprr Program rate(8) 1.7 C 2.8 3.40 C 2.4 C s/MB
terr Erase rate(8) 4.8 C 7.2 9.6 C 6.4 C s/MB
tprfm Program rate Factory Mode(8) 1.12 C 1.4 1.6 C C s/MB
terfm Erase rate Factory Mode(8) 4.0 C 5.2 5.8 C C s/MB
tffprogram Full flash programming time(9) 12.0 C 17.8 22.0 P 15.4 C s
tfferase Full flash erasing time(9) 25.0 C 40.0 50.0 P 40.0 C s
tESRT
Erase suspend request
rate(10) 200 T µs
Table 41. Flash memory program and erase specifications (continued)
Symbol Characteristics(1)(2)
Value
Unit
Typ(3) C
Initial max
Typical
end of
life(4)
Lifetime
max(5)
C
25 °C
(6)
All
temp
(7)
C< 1 K
cycles
< 250
K
cycles
DS11758 Rev 5 73/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
74
All the Flash operations require the presence of the system clock for internal
synchronization. About 50 synchronization cycles are needed: this means that the timings of
the previous table can be longer if a low frequency system clock is used.
tPSRT
Program suspend request
rate(10) 30 T µs
tAMRT
Array Integrity Check - Margin
Read suspend request rate 15 T µs
tPSUS Program suspend latency(11) —— 12 Tµs
tESUS Erase suspend latency(11) —— 22 Tµs
tAIC0S
Array Integrity Check (6.0 MB,
sequential)(12) 40 T ms
tAIC256KS
Array Integrity Check (256 KB,
sequential)(12) 1.5 T ms
tAIC0P
Array Integrity Check (6.0 MB,
proprietary)(12) 4.0 T s
tMR0S
Margin Read (6.0 MB,
sequential)(12) 120 T ms
tMR256KS
Margin Read (256 KB,
sequential)(12) 4.0 T ms
1. Characteristics are valid both for Data Flash and Code Flash, unless specified in the characteristics column.
2. Actual hardware operation times; this does not include software overhead.
3. Typical program and erase times assume nominal supply values and operation at 25 °C.
4. Typical End of Life program and erase times represent the median performance and assume nominal supply values.
Typical End of Life program and erase values may be used for throughput calculations. These values are characteristic, but
not tested.
5. Lifetime maximum program & erase times apply across the voltages and temperatures and occur after the specified
number of program/erase cycles. These maximum values are characterized but not tested or guaranteed.
6. Initial factory condition: < 100 program/erase cycles, 25 °C typical junction temperature and nominal (± 5%) supply
voltages.
7. Initial maximum “All temp” program and erase times provide guidance for time-out limits used in the factory and apply for
less than or equal to 100 program or erase cycles, –40 °C < TJ < 150 °C junction temperature and nominal (± 5%) supply
voltages.
8. Rate computed based on 256 KB sectors.
9. Only code sectors, not including EEPROM.
10. Time between suspend resume and next suspend. Value stated actually represents Min value specification.
11. Timings guaranteed by design.
12. AIC is done using system clock, thus all timing is dependant on system frequency and number of wait states. Timing in the
table is calculated at max frequency.
Table 41. Flash memory program and erase specifications (continued)
Symbol Characteristics(1)(2)
Value
Unit
Typ(3) C
Initial max
Typical
end of
life(4)
Lifetime
max(5)
C
25 °C
(6)
All
temp
(7)
C< 1 K
cycles
< 250
K
cycles
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
74/131 DS11758 Rev 5
Table 42. Flash memory Life Specification
Symbol Characteristics(1) (2) Value
Unit
Min C Typ C
NCER16K 16 KB CODE Flash endurance 10 100 Kcycles
NCER32K 32 KB CODE Flash endurance 10 100 Kcycles
NCER64K 64 KB CODE Flash endurance 10 100 Kcycles
NCER256K
256 KB CODE Flash endurance 1 100 Kcycles
256 KB CODE Flash endurance(3) 10 100 Kcycles
NDER64K 64 KB DATA EEPROM Flash endurance 250 Kcycles
tDR1k Minimum data retention Blocks with 0 - 1,000 P/E cycles 25 Years
tDR10k
Minimum data retention Blocks with 1,001 - 10,000 P/E
cycles 20 Years
tDR100k
Minimum data retention Blocks with 10,001 - 100,000 P/E
cycles 15 Years
tDR250k
Minimum data retention Blocks with 100,001 - 250,000 P/E
cycles 10 Years
1. Program and erase cycles supported across specified temperature specs.
2. It is recommended that the application enables the core cache memory.
3. 10K cycles on 4-256 KB blocks is not intended for production. Reduced reliability and degraded erase time are possible.
DS11758 Rev 5 75/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
103
3.17 AC Specifications
All AC timing specifications are valid up to 150 °C, except where explicitly noted.
3.17.1 Debug and calibration interface timing
3.17.1.1 JTAG interface timing
Table 43. JTAG pin AC electrical characteristics
# Symbol(1),(2) C Characteristic
Value
Unit
Min Max
1t
JCYC CC D TCK cycle time 100 ns
2t
JDC CC T TCK clock pulse width 40 60 %
3t
TCKRISE CC D TCK rise and fall times (40%–70%) 3 ns
4t
TMSS, tTDIS CC D TMS, TDI data setup time 5 ns
5t
TMSH, tTDIH CC D TMS, TDI data hold time 5 ns
6t
TDOV CC D TCK low to TDO data valid 15(3) ns
7t
TDOI CC D TCK low to TDO data invalid 0 ns
8t
TDOHZ CC D TCK low to TDO high impedance 15 ns
9t
JCMPPW CC D JCOMP assertion time 100 ns
10 tJCMPS CC D JCOMP setup time to TCK low 40 ns
11 tBSDV CC D TCK falling edge to output valid 600(4) ns
12 tBSDVZ CC D TCK falling edge to output valid out of high impedance 600 ns
13 tBSDHZ CC D TCK falling edge to output high impedance 600 ns
14 tBSDST CC D Boundary scan input valid to TCK rising edge 15 ns
15 tBSDHT CC D TCK rising edge to boundary scan input invalid 15 ns
1. These specifications apply to JTAG boundary scan only. See Ta b l e 4 4 for functional specifications.
2. JTAG timing specified at VDD_HV_IO_JTAG = 4.0 to 5.5 V and max. loading per pad type as specified in the I/O section of the
datasheet.
3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
76/131 DS11758 Rev 5
Figure 16. JTAG test clock input timing
Figure 17. JTAG test access port timing
TCK
1
2
2
3
3
TCK
4
5
6
78
TMS, TDI
TDO
DS11758 Rev 5 77/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
103
Figure 18. JTAG JCOMP timing
TCK
JCOMP
9
10
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
78/131 DS11758 Rev 5
Figure 19. JTAG boundary scan timing
3.17.1.2 Nexus interface timing
TCK
Output
Signals
Input
Signals
Output
Signals
11
12
13
14
15
Table 44. Nexus debug port timing(1)
# Symbol C Characteristic
Value
Unit
Min Max
7t
EVTIPW CC D EVTI pulse width 4 tCYC(2)
8t
EVTOPW CC D EVTO pulse width 40 ns
9t
TCYC CC D TCK cycle time 2(3),(4) —t
CYC(2)
9t
TCYC CC D Absolute minimum TCK cycle time(5) (TDO sampled on posedge
of TCK)
40(6) —ns
Absolute minimum TCK cycle time(7) (TDO sampled on negedge
of TCK)
20(6)
11 tNTDIS CC D TDI data setup time 5 ns
DS11758 Rev 5 79/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
103
Figure 20. Nexus output timing
12 tNTDIH CC D TDI data hold time 5 ns
13 tNTMSS CC D TMS data setup time 5 ns
14 tNTMSH CC D TMS data hold time 5 ns
15 CC D TDO propagation delay from falling edge of TCK(8) —16 ns
16 CC D TDO hold time with respect to TCK falling edge (minimum TDO
propagation delay)
2.25 ns
1. Nexus timing specified at VDD_HV_IO_JTAG = 3.0 V to 5.5 V, and maximum loading per pad type as specified in the I/O
section of the data sheet.
2. tCYC is system clock period.
3. Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that is less
than the maximum functional capability of the design (system frequency / 4) depending on the actual peripheral frequency
being used. To ensure proper operation TCK frequency should be set to the peripheral frequency divided by a number
greater than or equal to that specified here.
4. This is a functionally allowable feature. However, it may be limited by the maximum frequency specified by the Absolute
minimum TCK period specification.
5. This value is TDO propagation time 36 ns + 4 ns setup time to sampling edge.
6. This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the
design (system frequency / 4) depending on the actual system frequency being used.
7. This value is TDO propagation time 16n s + 4 ns setup time to sampling edge.
8. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
Table 44. Nexus debug port timing(1) (continued)
# Symbol C Characteristic
Value
Unit
Min Max
1
2
4
6
MCKO
MDO
MSEO
EVTO
Output Data Valid
3
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
80/131 DS11758 Rev 5
Figure 21. Nexus event trigger and test clock timings
Figure 22. Nexus TDI, TMS, TDO timing
TCK
9
EVTI
EVTO
TCK
97
8
EVTI
EVTO
8
7
TCK
11
12
15
TMS, TDI
TDO
13
14
16
DS11758 Rev 5 81/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
103
3.17.1.3 External interrupt timing (IRQ pin)
Figure 23. External interrupt timing
Figure 24. External interrupt timing
3.17.2 DSPI timing with CMOS pads
DSPI channel frequency support is shown in Table 46. Timing specifications are shown in
tables below.
Table 45. External interrupt timing
Characteristic Symbol Min Max Unit
IRQ Pulse Width Low tIPWL 3—t
cyc
IRQ Pulse Width High tIPWH 3—t
cyc
IRQ Edge to Edge Time(1) tICYC 6—t
cyc
1. Applies when IRQ pins are configured for rising edge or falling edge events, but not both.
IRQ
12
3
D_CLKOUT
IRQ
4
12
3
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
82/131 DS11758 Rev 5
3.17.2.1 DSPI master mode full duplex timing with CMOS pads
3.17.2.1.1 DSPI CMOS master mode classic timing
Table 46. DSPI channel frequency support(1)
DSPI use mode
Max usable
frequency
(MHz)(2),(3)
CMOS (Master
mode)
Full duplex Classic timing (Table 47) DSPI_0, DSPI_3,
DSPI_5, DSPI_7
12
DSPI_8 5
DSPI_1, DSPI_2,
DSPI_4, DSPI_6,
DSPI_9
17
Full duplex Modified timing (Ta b l e 4 8) DSPI_0, DSPI_3,
DSPI_5, DSPI_7
12
DSPI_8 5
DSPI_1, DSPI_2,
DSPI_4, DSPI_6,
DSPI_9
30
Output only mode (SCK/SOUT/PCS) (Ta ble 4 7 and
Table 48)
—30
Output only mode TSB mode (SCK/SOUT/PCS) 30
CMOS (Slave mode Full duplex) (Table 49)—16
1. Each DSPI module can be configured to use different pins for the interface. Please see the device pinout IO definition excel
file for the available combinations. It is not possible to reach the maximum performance with every possible combination of
pins.
2. Maximum usable frequency can be achieved if used with fastest configuration of the highest drive pads.
3. Maximum usable frequency does not take into account external device propagation delay.
Table 47. DSPI CMOS master classic timing (full duplex and output only)
MTFE = 0, CPHA = 0 or 1(1)
# Symbol C Characteristic
Condition Value(2)
Unit
Pad drive(3) Load (CL)Min Max
1t
SCK CC D SCK cycle time SCK drive strength
Very strong 25 pF 59.0 ns
Strong 50 pF 80.0
Medium 50 pF 200.0
DS11758 Rev 5 83/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
103
2t
CSC CC D PCS to SCK
delay
SCK and PCS drive strength
Very strong 25 pF (N(4) × tSYS(5))–
16
—ns
Strong 50 pF (N(4) × tSYS(5))–
16
Medium 50 pF (N(4) × tSYS(5))–
16
PCS medium
and SCK
strong
PCS = 50 pF
SCK = 50 pF
(N(4) × tSYS(5))–
29
3t
ASC CC D After SCK delay SCK and PCS drive strength
Very strong PCS = 0 pF
SCK = 50 pF
(M(6) × tSYS(5))–
35
—ns
Strong PCS = 0 pF
SCK = 50 pF
(M(6) × tSYS(5))–
35
Medium PCS = 0 pF
SCK = 50 pF
(M(6) × tSYS(5))–
35
PCS medium
and SCK
strong
PCS = 0 pF
SCK = 50 pF
(M(6) × tSYS(5))–
35
4t
SDC CC D SCK duty
cycle(7)
SCK drive strength
Very strong 0 pF 1/2tSCK –2 1/2tSCK +2 ns
Strong 0 pF 1/2tSCK –2 1/2tSCK +2
Medium 0 pF 1/2tSCK –5 1/2tSCK +5
PCS strobe timing
5t
PCS
C
CC D PCSx to PCSS
time(8)
PCS and PCSS drive strength
Strong 25 pF 16.0 ns
6t
PAS
C
CC D PCSS to PCSx
time(8)
PCS and PCSS drive strength
Strong 25 pF 16.0 ns
SIN setup time
7t
SUI CC D SIN setup time to
SCK(9)
SCK drive strength
Very strong 25 pF 25.0 ns
Strong 50 pF 31.0
Medium 50 pF 52.0
Table 47. DSPI CMOS master classic timing (full duplex and output only)
MTFE = 0, CPHA = 0 or 1(1) (continued)
# Symbol C Characteristic
Condition Value(2)
Unit
Pad drive(3) Load (CL)Min Max
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
84/131 DS11758 Rev 5
SIN hold time
8t
HI CC D SIN hold time
from SCK(9)
SCK drive strength
Very strong 0 pF –1.0 ns
Strong 0 pF 1.0
Medium 0 pF –1.0
SOUT data valid time (after SCK edge)
9t
SUO CC D SOUT data valid
time from
SCK(10)
SOUT and SCK drive strength
Very strong 25 pF 7.0 ns
Strong 50 pF 8.0
Medium 50 pF 16.0
SOUT data hold time (after SCK edge)
10 tHO CC D SOUT data hold
time after
SCK(10)
SOUT and SCK drive strength
Very strong 25 pF –7.7 ns
Strong 50 pF –11.0
Medium 50 pF –15.0
1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.
2. All timing values for output signals in this table are measured to 50% of the output voltage.
3. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may
cause incorrect operation.
4. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable
using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous
SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same
edge of DSPI_CLKn).
5. tSYS is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min
tSYS =10ns).
6. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable
using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK
clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge
of DSPI_CLKn).
7. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide
ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
8. PCSx and PCSS using same pad configuration.
9. Input timing assumes an input slew rate of 1 ns (10% 90%) and uses TTL voltage thresholds.
10. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same
value.
Table 47. DSPI CMOS master classic timing (full duplex and output only)
MTFE = 0, CPHA = 0 or 1(1) (continued)
# Symbol C Characteristic
Condition Value(2)
Unit
Pad drive(3) Load (CL)Min Max
DS11758 Rev 5 85/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
103
Figure 25. DSPI CMOS master mode classic timing, CPHA = 0
Figure 26. DSPI CMOS master mode classic timing, CPHA = 1
Data Last Data
First Data
First Data Data Last Data
SIN
SOUT
PCSx
SCK Output
SCK Output
(CPOL = 0)
(CPOL = 1)
tSCK
tSDC
tSDC
tCSC tASC
tSUI tHI
tSUO tHO
'DWD /DVW'DWD
)LUVW'DWD
6,1
6287 /DVW'DWD
'DWD
)LUVW'DWD
6&.2XWSXW
6&.2XWSXW
3&6[
&32/ 
&32/
W
68,
W
+,
W
682
W
+2
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
86/131 DS11758 Rev 5
Figure 27. DSPI PCS strobe (PCSS) timing (master mode)
3.17.2.1.2 DSPI CMOS master mode modified timing
PCSx
PCSS
tPCSC tPASC
Table 48. DSPI CMOS master modified timing (full duplex and output only)
MTFE = 1, CPHA = 0 or 1(1)
# Symbol C Characteristic
Condition Value(2)
Unit
Pad drive(3) Load (CL)Min Max
1t
SCK CC D SCK cycle time SCK drive strength
Very strong 25 pF 33.0 ns
Strong 50 pF 80.0
Medium 50 pF 200.0
2t
CSC CC D PCS to SCK
delay
SCK and PCS drive
strength
Very strong 25 pF (N(4) × tSYS(5))–16 ns
Strong 50 pF (N(4) × tSYS(5))–16
Medium 50 pF (N(4) × tSYS(5))–16
PCS
medium and
SCK strong
PCS = 50 pF
SCK = 50 pF
(N(4) × tSYS(5))–29
3t
ASC CC D After SCK delay SCK and PCS drive
strength
Very strong PCS = 0 pF
SCK = 50 pF
(M(6) × tSYS(5))–35 ns
Strong PCS = 0 pF
SCK = 50 pF
(M(6) × tSYS(5))–35
Medium PCS = 0 pF
SCK = 50 pF
(M(6) × tSYS(5))–35
PCS
medium and
SCK strong
PCS = 0 pF
SCK = 50 pF
(M(6) × tSYS(5))–35
4t
SDC CC D SCK duty cycle(7) SCK drive strength
Very strong 0 pF 1/2tSCK –2 1/2tSCK +2 ns
Strong 0 pF 1/2tSCK –2 1/2tSCK +2
Medium 0 pF 1/2tSCK –5 1/2tSCK +5
DS11758 Rev 5 87/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
103
PCS strobe timing
5t
PCSC CC D PCSx to PCSS
time(8)
PCS and PCSS drive
strength
Strong 25 pF 16.0 ns
6t
PASC CC D PCSS to PCSx
time(8)
PCS and PCSS drive
strength
Strong 25 pF 16.0 ns
SIN setup time
7t
SUI CC D SIN setup time to
SCK
CPHA = 0(9)
SCK drive strength
Very strong 25 pF 25 (P(10) ×t
SYS(5))— ns
Strong 50 pF 31 (P(10) ×t
SYS(5))—
Medium 50 pF 52
(P(10) ×t
SYS(5))
SIN setup time to
SCK
CPHA = 1(9)
SCK drive strength
Very strong 25 pF 25.0 ns
Strong 50 pF 31.0
Medium 50 pF 52.0
SIN hold time
8t
HI CC D SIN hold time
from SCK
CPHA = 09
SCK drive strength
Very strong 0 pF –1 + (P(9) ×t
SYS(4))— ns
Strong 0pF 1+(P
(9) ×t
SYS(4))—
Medium 0 pF –1 + (P(9) ×t
SYS(4))—
SIN hold time
from SCK
CPHA = 19
SCK drive strength
Very strong 0 pF –1.0 ns
Strong 0 pF –1.0
Medium 0 pF –1.0
Table 48. DSPI CMOS master modified timing (full duplex and output only)
MTFE = 1, CPHA = 0 or 1(1) (continued)
# Symbol C Characteristic
Condition Value(2)
Unit
Pad drive(3) Load (CL)Min Max
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
88/131 DS11758 Rev 5
SOUT data valid time (after SCK edge)
9t
SUO CC D SOUT data valid
time from SCK
CPHA = 0(10)
SOUT and SCK drive
strength
Very strong 25 pF 7.0 + tSYS(5) ns
Strong 50 pF 8.0 + tSYS(5)
Medium 50 pF 16.0 + tSYS(5)
SOUT data valid
time from SCK
CPHA = 1(10)
SOUT and SCK drive
strength
Very strong 25 pF 7.0 ns
Strong 50 pF 8.0
Medium 50 pF 16.0
SOUT data hold time (after SCK edge)
10 tHO CC D SOUT data hold
time after SCK
CPHA = 0(11)
SOUT and SCK drive
strength
Very strong 25 pF –7.7 + tSYS(5) —ns
Strong 50 pF –11.0 + tSYS(5)
Medium 50 pF –15.0 + tSYS(5)
SOUT data hold
time after SCK
CPHA = 1(11)
SOUT and SCK drive
strength
Very strong 25 pF –7.7 ns
Strong 50 pF –11.0
Medium 50 pF –15.0
1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.
2. All timing values for output signals in this table are measured to 50% of the output voltage.
3. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may
cause incorrect operation.
4. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable
using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous
SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same
edge of DSPI_CLKn).
5. tSYS is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min
tSYS =10ns).
6. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable
using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK
clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge
of DSPI_CLKn).
7. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide
ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
8. PCSx and PCSS using same pad configuration.
9. Input timing assumes an input slew rate of 1 ns (10% 90%) and uses TTL voltage thresholds.
Table 48. DSPI CMOS master modified timing (full duplex and output only)
MTFE = 1, CPHA = 0 or 1(1) (continued)
# Symbol C Characteristic
Condition Value(2)
Unit
Pad drive(3) Load (CL)Min Max
DS11758 Rev 5 89/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
103
Figure 28. DSPI CMOS master mode modified timing, CPHA = 0
Figure 29. DSPI CMOS master mode modified timing, CPHA = 1
10. P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using DSPI_
MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is automatically set to 1.
11. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same
value.
Data Last Data
First Data
First Data Data Last Data
SIN
SOUT
PCSx
SCK Output
SCK Output
(CPOL = 0)
(CPOL = 1)
tSCK
tSDC
tSDC
tCSC tASC
tSUI tHI
tSUO tHO
Data Last Data
First Data
SIN
SOUT Last Data
Data
First Data
SCK Output
SCK Output
PCSx
(CPOL = 0)
(CPOL = 1)
tSUI tHI
tSUO tHO
tHI
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
90/131 DS11758 Rev 5
Figure 30. DSPI PCS strobe (PCSS) timing (master mode)
3.17.2.2 Slave mode timing
PCSx
PCSS
tPCSC tPASC
Table 49. DSPI CMOS slave timing — full duplex — normal and modified transfer formats
(MTFE = 0/1)
# Symbol C Characteristic
Condition
Min Max Unit
Pad Drive Load
1t
SCK CC D SCK Cycle Time(1) —— 62 ns
2t
CSC SR D SS to SCK Delay(1) —— 16 ns
3t
ASC SR D SCK to SS Delay(1) —— 16 ns
4t
SDC CC D SCK Duty Cycle(1) —— 30 ns
5t
ACC D Slave Access Time(1) (2) (3)
(SS active to SOUT driven)
Very
strong
25 pF 50 ns
Strong 50 pF 50 ns
Medium 50 pF 60 ns
6t
DIS CC D Slave SOUT Disable Time(1)
(2) (3)
(SS inactive to SOUT High-
Z or invalid)
Very
strong
25 pF 5 ns
Strong 50 pF 5 ns
Medium 50 pF 10 ns
9t
SUI CC D Data Setup Time for
Inputs(1)
—— 10 ns
10 tHI CC D Data Hold Time for Inputs(1) —— 10 ns
11 tSUO CC D SOUT Valid Time(1) (2) (3)
(after SCK edge)
Very
strong
25 pF 30 ns
Strong 50 pF 30 ns
Medium 50 pF 50 ns
12 tHO CC D SOUT Hold Time(1) (2) (3)
(after SCK edge)
Very
strong
25 pF 2.5 ns
Strong 50 pF 2.5 ns
Medium 50 pF 2.5 ns
1. Input timing assumes an input slew rate of 1 ns (10% - 90%) and uses TTL voltage thresholds.
2. All timing values for output signals in this table, are measured to 50% of the output voltage.
3. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.
DS11758 Rev 5 91/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
103
Figure 31. DSPI slave mode modified transfer format timing (MFTE = 0/1) CPHA = 0
Figure 32. DSPI slave mode modified transfer format timing (MFTE = 0/1) CPHA = 1
3.17.3 Ethernet timing
The Ethernet provides both MII and RMII interfaces. The MII and RMII signals can be
configured for either CMOS or TTL signal levels compatible with devices operating at either
5.0 V or 3.3 V. Please check the device pinout details to review the packages supporting MII
and RMII.
Last Data
First Data
Data
Data
SIN
SOUT
SS
SCK Input
First Data Last Data
SCK Input
(CPOL = 0)
(CPOL = 1)
tSCK
tAtDIS
tSDC
tSDC
tCSC
tASC
tSUI tHI
tSUO tHO
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL = 0)
(CPOL = 1)
tAtDIS
tSUI tHI
tSUO
tHO
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
92/131 DS11758 Rev 5
3.17.3.1 MII receive signal timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)
The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%.
There is no minimum frequency requirement. The system clock frequency must be at least
equal to or greater than the RX_CLK frequency.
Figure 33. MII receive signal timing diagram
3.17.3.2 MII transmit signal timing (TXD[3:0], TX_EN, TX_ER, TX_CLK)
The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%.
There is no minimum frequency requirement. The system clock frequency must be at least
equal to or greater than the TX_CLK frequency.
The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from
either the rising or falling edge of TX_CLK, and the timing is the same in either case. This
option allows the use of non-compliant MII PHYs.
Refer to the Microcontroller Reference Manual’s Ethernet chapter for details of this option
and how to enable it.
Table 50. MII receive signal timing(1)
Symbol C Characteristic
Value
Unit
Min Max
M1 CC D RXD[3:0], RX_DV, RX_ER to RX_CLK setup 5 ns
M2 CC D RX_CLK to RXD[3:0], RX_DV, RX_ER hold 5 ns
M3 CC D RX_CLK pulse width high 35% 65% RX_CLK period
M4 CC D RX_CLK pulse width low 35% 65% RX_CLK period
1. All timing specifications are referenced from RX_CLK = 1.4 V to the valid input levels, 0.8 V and 2.0 V.
M1 M2
RX_CLK (input)
RXD[3:0] (inputs)
RX_DV
RX_ER
M3
M4
DS11758 Rev 5 93/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
103
Figure 34. MII transmit signal timing diagram
3.17.3.3 MII async inputs signal timing (CRS and COL)
Figure 35. MII async inputs timing diagram
Table 51. MII transmit signal timing(1)
Symbol C Characteristic
Value(2)
Unit
Min Max
M5 CC D TX_CLK to TXD[3:0], TX_EN, TX_ER invalid 5 ns
M6 CC D TX_CLK to TXD[3:0], TX_EN, TX_ER valid 25 ns
M7 CC D TX_CLK pulse width high 35% 65% TX_CLK period
M8 CC D TX_CLK pulse width low 35% 65% TX_CLK period
1. All timing specifications are referenced from TX_CLK = 1.4 V to the valid output levels, 0.8 V and 2.0 V.
2. Output parameters are valid for CL= 25 pF, where CL is the external load to the device. The internal package capacitance
is accounted for, and does not need to be subtracted from the 25 pF value
M6
TX_CLK (input)
TXD[3:0] (outputs)
TX_EN
TX_ER
M5
M7
M8
Table 52. MII async inputs signal timing
Symbol C Characteristic
Value
Unit
Min Max
M9 CC D CRS, COL minimum pulse width 1.5 TX_CLK period
CRS, COL
M9
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
94/131 DS11758 Rev 5
3.17.3.4 MII and RMII serial management channel timing (MDIO and MDC)
The Ethernet functions correctly with a maximum MDC frequency of 2.5 MHz.
Figure 36. MII serial management channel timing diagram
3.17.3.5 MII and RMII serial management channel timing (MDIO and MDC)
The Ethernet functions correctly with a maximum MDC frequency of 2.5 MHz.
M11
MDC (output)
MDIO (output)
M12 M13
MDIO (input)
M10
M14 M15
Table 53. MII serial management channel timing(1)
Symbol C Characteristic
Value
Unit
Min Max
M10 CC D MDC falling edge to MDIO output invalid
(minimum propagation delay)
0— ns
M11 CC D MDC falling edge to MDIO output valid (max
prop delay)
—25 ns
M12 CC D MDIO (input) to MDC rising edge setup 10 ns
M13 CC D MDIO (input) to MDC rising edge hold 0 ns
M14 CC D MDC pulse width high 40% 60% MDC period
M15 CC D MDC pulse width low 40% 60% MDC period
1. All timing specifications are referenced from MDC = 1.4 V (TTL levels) to the valid input and output levels, 0.8 V and 2.0 V
(TTL levels). For 5 V operation, timing is referenced from MDC = 50% to 2.2 V/3.5 V input and output levels.
DS11758 Rev 5 95/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
103
Figure 37. MII serial management channel timing diagram
3.17.3.6 RMII receive signal timing (RXD[1:0], CRS_DV)
The receiver functions correctly up to a REF_CLK maximum frequency of 50 MHz +1%.
There is no minimum frequency requirement. The system clock frequency must be at least
equal to or greater than the RX_CLK frequency, which is half that of the REF_CLK
frequency.
Table 54. RMII serial management channel timing(1)
Symbol C Characteristic
Value
Unit
Min Max
M10 CC D MDC falling edge to MDIO output invalid
(minimum propagation delay)
0— ns
M11 CC D MDC falling edge to MDIO output valid (max
prop delay)
—25 ns
M12 CC D MDIO (input) to MDC rising edge setup 10 ns
M13 CC D MDIO (input) to MDC rising edge hold 0 ns
M14 CC D MDC pulse width high 40% 60% MDC period
M15 CC D MDC pulse width low 40% 60% MDC period
1. All timing specifications are referenced from MDC = 1.4 V (TTL levels) to the valid input and output levels, 0.8 V and 2.0 V
(TTL levels). For 5 V operation, timing is referenced from MDC = 50% to 2.2 V/3.5 V input and output levels.
M11
MDC (output)
MDIO (output)
M12 M13
MDIO (input)
M10
M14 M15
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
96/131 DS11758 Rev 5
Figure 38. RMII receive signal timing diagram
3.17.3.7 RMII transmit signal timing (TXD[1:0], TX_EN)
The transmitter functions correctly up to a REF_CLK maximum frequency of 50 MHz + 1%.
There is no minimum frequency requirement. The system clock frequency must be at least
equal to or greater than the TX_CLK frequency, which is half that of the REF_CLK
frequency.
The transmit outputs (TXD[1:0], TX_EN) can be programmed to transition from either the
rising or falling edge of REF_CLK, and the timing is the same in either case. This option
allows the use of non-compliant RMII PHYs.
Table 55. RMII receive signal timing(1)
Symbol C Characteristic
Value
Unit
Min Max
R1 CC D RXD[1:0], CRS_DV to REF_CLK setup 4 ns
R2 CC D REF_CLK to RXD[1:0], CRS_DV hold 2 ns
R3 CC D REF_CLK pulse width high 35% 65% REF_CLK period
R4 CC D REF_CLK pulse width low 35% 65% REF_CLK period
1. All timing specifications are referenced from REF_CLK = 1.4 V to the valid input levels, 0.8 V and 2.0 V.
R1 R2
REF_CLK (input)
RXD[1:0] (inputs)
CRS_DV
R3
R4
Table 56. RMII transmit signal timing(1)
Symbol C Characteristic
Value
Unit
Min Max
R5 CC D REF_CLK to TXD[1:0], TX_EN invalid 2 ns
R6 CC D REF_CLK to TXD[1:0], TX_EN valid 14 ns
R7 CC D REF_CLK pulse width high 35% 65% REF_CLK period
R8 CC D REF_CLK pulse width low 35% 65% REF_CLK period
1. All timing specifications are referenced from REF_CLK = 1.4 V to the valid output levels, 0.8 V and 2.0 V
DS11758 Rev 5 97/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
103
Figure 39. RMII transmit signal timing diagram
3.17.4 FlexRay timing
This section provides the FlexRay Interface timing characteristics for the input and output
signals.
These are recommended numbers as per the FlexRay EPL v3.0 specification, and subject
to change per the final timing analysis of the device.
3.17.4.1 TxEN
Figure 40. TxEN signal
R6
REF_CLK (input)
TXD[1:0] (outputs)
TX_EN
R5
R7
R8
dCCTxENRISE
dCCTxENFALL
TxEN
80 %
20 %
Table 57. TxEN output characteristics(1) (2)
Symbol C Characteristic
Value
Unit
Min Max
dCCTxENRISE25 CC D Rise time of TxEN signal at CC 9 ns
dCCTxENFALL25 CC D Fall time of TxEN signal at CC 9 ns
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
98/131 DS11758 Rev 5
Figure 41. TxEN signal propagation delays
dCCTxEN01 CC D Sum of delay between Clk to Q of the last FF and the final
output buffer, rising edge
—25ns
dCCTxEN10 CC D Sum of delay between Clk to Q of the last FF and the final
output buffer, falling edge
—25ns
1. TxEN pin load maximum 25 pF.
2. Pad configured as VERY STRONG.
Table 57. TxEN output characteristics(1) (2) (continued)
Symbol C Characteristic
Value
Unit
Min Max
dCCTxEN10 dCCTxEN01
TxEN
PE_Clk
DS11758 Rev 5 99/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
103
3.17.4.2 TxD
Figure 42. TxD signal
dCCTxD50%
TxD
dCCTxDFALL dCCTxDRISE
20 %
50 %
80 %
Table 58. TxD output characteristics(1),(2),(3)
Symbol C Characteristic
Value
Unit
Min Max
dCCTxAsym CC D Asymmetry of sending CC at 25 pF load
(= dCCTxD50% 100 ns)
–2.45 2.45 ns
dCCTxDRISE25+dCCTxDFALL25 CC D Sum of Rise and Fall time of TxD signal at the
output pin(4)
—9
(5) ns
D—9
(6)
dCCTxD01 CC D Sum of delay between Clk to Q of the last FF
and the final output buffer, rising edge
—25ns
dCCTxD10 CC D Sum of delay between Clk to Q of the last FF
and the final output buffer, falling edge
—25ns
1. TxD pin load maximum 25 pF.
2. Specifications valid according to FlexRay EPL 3.0.1 standard with 20%–80% levels and a 10 pF load at the end of a
50 Ohm, 1 ns stripline. Please refer to the Very Strong I/O pad specifications.
3. Pad configured as VERY STRONG.
4. Sum of transition time simulation is performed according to Electrical Physical Layer Specification 3.0.1 and the entire
temperature range of the device has been taken into account.
5. VDD_HV_IO = 5.0 V ± 10%, Transmission line Z = 50 ohms, tdelay = 1 ns, CL = 10 pF.
6. VDD_HV_IO = 3.3 V ± 10%, Transmission line Z = 50 ohms, tdelay = 0.6 ns, CL = 10 pF.
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
100/131 DS11758 Rev 5
Figure 43. TxD Signal propagation delays
3.17.4.3 RxD
3.17.5 CAN timing
The following table describes the CAN timing.
dCCTxD10 dCCTxD01
TxD
PE_Clk*
* FlexRay Protocol Engine Clock
Table 59. RxD input characteristics
Symbol C Characteristic
Value
Unit
Min Max
C_CCRxD CC D Input capacitance on RxD pin 7 pF
uCCLogic_1 CC D Threshold for detecting logic high 35 70 %
uCCLogic_0 CC D Threshold for detecting logic low 30 65 %
dCCRxD01 CC D Sum of delay from actual input to the D input of the
first FF, rising edge
—10ns
dCCRxD10 CC D Sum of delay from actual input to the D input of the
first FF, falling edge
—10ns
dCCRxAsymAccept15 CC D Acceptance of asymmetry at receiving CC with
15 pF load
–31.5 44 ns
dCCRxAsymAccept25 CC D Acceptance of asymmetry at receiving CC with
25 pF load
–30.5 43 ns
DS11758 Rev 5 101/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
103
3.17.6 UART timing
UART channel frequency support is shown in the following table.
3.17.7 I2C timing
The I2C AC timing specifications are provided in the following tables.
Table 60. CAN timing
Symbol C Parameter Condition
Value
Unit
Min Typ Max
tP(RX:TX) CC D CAN
controller
propagation
delay time
standard
pads
Medium type pads 25pF load 70 ns
CC D Medium type pads 50pF load 80
CC D STRONG, VERY STRONG type pads
25pF load
——60
CC D STRONG, VERY STRONG type pads
50pF load
——65
tPLP(RX:TX) CC D CAN
controller
propagation
delay time
low power
pads
Medium type pads 25pF load 90 ns
CC D Medium type pads 50pF load 100
CC D STRONG, VERY STRONG type pads
25pF load
——80
CC D STRONG, VERY STRONG type pads
50pF load
——85
Table 61. UART frequency support
LINFlexD clock
frequency LIN_CLK
(MHz)
Oversampling rate Voting scheme Max usable frequency
(Mbaud)
80 16 3:1 majority voting 5
810
6 Limited voting on one
sample with configurable
sampling point
13.33
516
420
100 16 3:1 majority voting 6.25
8 12.5
6 Limited voting on one
sample with configurable
sampling point
16.67
520
425
Electrical characteristics SPC584Gx, SPC58EGx, SPC58NGx
102/131 DS11758 Rev 5
Table 62. I2C input timing specifications SCL and SDA(1)
No. Symbol C Parameter
Value
Unit
Min Max
1 CC D Start condition hold time 2 PER_CLK
Cycle(2)
2 CC D Clock low time 8 PER_CLK Cycle
3 CC D Bus free time between Start and Stop condition 4.7 µs
4 CC D Data hold time 0.0 ns
5 CC D Clock high time 4 PER_CLK Cycle
6 CC D Data setup time 0.0 ns
7 CC D Start condition setup time (for repeated start condition only) 2 PER_CLK Cycle
8 CC D Stop condition setup time 2 PER_CLK Cycle
1. I2C input timing is valid for Automotive and TTL inputs levels, hysteresis enabled, and an input edge rate no slower than
1ns (10% 90%).
2. PER_CLK is the SoC peripheral clock, which drives the I2C BIU and module clock inputs. See the Clocking chapter in the
device reference manual for more detail.
Table 63. I2C output timing specifications SCL and SDA(1),(2),(3),(4)
No. Symbol C Parameter
Value
Unit
Min Max
1 CC D Start condition hold time 6 PER_CLK
Cycle(5)
2 CC D Clock low time 10 PER_CLK Cycle
3 CC D Bus free time between Start and Stop condition 4.7 µs
4 CC D Data hold time 7 PER_CLK Cycle
5 CC D Clock high time 10 PER_CLK Cycle
6 CC D Data setup time 2 PER_CLK Cycle
7 CC D Start condition setup time (for repeated start condition only) 20 PER_CLK Cycle
8 CC D Stop condition setup time 10 PER_CLK Cycle
1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.
2. Output parameters are valid for CL = 25 pF, where CL is the external load to the device (lumped). The internal package
capacitance is accounted for, and does not need to be subtracted from the 25 pF value.
3. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may
cause incorrect operation.
4. Programming the IBFD register (I2C bus Frequency Divider) with the maximum frequency results in the minimum output
timings listed. The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period.
The actual position is affected by the pre-scale and division values programmed in the IBC field of the IBFD register.
5. PER_CLK is the SoC peripheral clock, which drives the I2C BIU and module clock inputs. See the Clocking chapter in the
device reference manual for more detail.
DS11758 Rev 5 103/131
SPC584Gx, SPC58EGx, SPC58NGx Electrical characteristics
103
Figure 44. I2C input/output timing
SCL
SDA
1
2
4
5
6
73
8
Package information SPC584Gx, SPC58EGx, SPC58NGx
104/131 DS11758 Rev 5
4 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
The following table lists the case numbers for SPC584Gx, SPC58EGx, SPC58NGx.
Table 64. Package case numbers
Package Type Device Type Package reference
eTQFP144 Production 7386636
eLQFP176 Production 8153717
FPBGA292 Production 8537045
DS11758 Rev 5 105/131
SPC584Gx, SPC58EGx, SPC58NGx Package information
114
4.1 eTQFP144 package information
Figure 45. eTQFP144 package outline 1/2
PACKAGE MECHANICAL DRAWINGS
Package information SPC584Gx, SPC58EGx, SPC58NGx
106/131 DS11758 Rev 5
Figure 46. eTQFP144 package outline 2/2
PACKAGE MECHANICAL DRAWINGS
DS11758 Rev 5 107/131
SPC584Gx, SPC58EGx, SPC58NGx Package information
114
Table 65. eTQFP144 package mechanical data
Symbol
Dimensions
Min Typ Max
Degrees
θ 3.5°
θ1
θ2 10° 12° 14°
θ3 10° 12° 14°
Millimeters
A(1)
1. The optional exposed pad is generally coincident with the top or bottom side of the package and not
allowed to protrude beyond that surface.
1.20
A1(2)
2. A1 is defined as the distance from the seating plane to the lowest point on the package body.
0.05 0.15
A210.95 1.00 1.05
b(3),(4)
3. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead
width to exceed the maximum “b” dimension by more than 0.08 mm. Dambar cannot be located on the
lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm
and 0.5 mm pitch packages.
4. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
0.17 0.22 0.27
b140.17 0.20 0.23
c40.09 0.20
c140.09 0.16
D(5) 22.00 BSC
D1(6),(7) 20.00 BSC
D2(8) 8.96
D3(9) 7.30
e 0.50 BSC
E522.00 BSC
E16 720.00 BSC
E28 8.96
E397.30
L 0.45 0.60 0.75
L1 1.00 REF
N(10) 144
R1 0.08
R2 0.08 0.20
S0.20
Package information SPC584Gx, SPC58EGx, SPC58NGx
108/131 DS11758 Rev 5
5. To be determined at seating datum plane C.
6. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
7. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is
“0.25 mm”
8. Dimensions D2 and E2 show the maximum exposed metal area on the package surface where the
exposed pad is located (if present). It includes all metal protrusions from exposed pad itself. Type of
exposed pad is variable depending on leadframe pad design (T1, T2, T3), as shown in the figure below.
End user should verify D2 and E2 dimensions according to specific device application.
9. Dimensions D3 and E3 show the minimum solderable area, defined as the portion of exposed pad which is
guaranteed to be free from resin flashes/bleeds, bordered by internal edge of inner groove.
10. “N” is the max number of terminal positions for the specified body size.
Table 66. eTQFP144 package tolerance of form and position
Symbol(1) (2) (3)
1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
2. All Dimensions are in millimeters.
3. For Symbols, Recommended Values and Tolerances see Table below:
Dimensions
aaa 0.20
bbb 0.20
ccc 0.08
ddd 0.08
DS11758 Rev 5 109/131
SPC584Gx, SPC58EGx, SPC58NGx Package information
114
4.2 eLQFP176 package information
Figure 47. eLQFP176 package outline 1/2
PACKAGE MECHANICAL DRAWINGS
Package information SPC584Gx, SPC58EGx, SPC58NGx
110/131 DS11758 Rev 5
Figure 48. eLQFP176 package outline 2/2
DS11758 Rev 5 111/131
SPC584Gx, SPC58EGx, SPC58NGx Package information
114
Table 67. eLQFP176 package mechanical data
Symbol
Dimensions
Min Typ Max
Degrees
θ 3.5°
θ1
θ2 10° 12° 14°
θ3 10° 12° 14°
Millimeters
A(1)
1. The optional exposed pad is generally coincident with the top or bottom side of the package and not
allowed to protrude beyond that surface.
1.60
A1(2)
2. A1 is defined as the distance from the seating plane to the lowest point on the package body.
0.05 0.15
A211.35 1.40 1.45
b(3),(4)
3. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead
width to exceed the maximum “b” dimension by more than 0.08 mm. Dambar cannot be located on the
lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm
and 0.5 mm pitch packages.
4. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
0.17 0.22 0.27
b140.17 0.20 0.23
c40.09 0.20
c140.09 0.16
D(5) 26.00 BSC
D1(6),(7) 24.00 BSC
D2(8) 8.97
D3(9) 7.30
e 0.50 BSC
E526.00 BSC
E16 724.00 BSC
E28 8.97
E397.30
L 0.45 0.60 0.75
L1 1.00 REF
N(10) 176
R1 0.08
R2 0.08 0.20
S0.20
Package information SPC584Gx, SPC58EGx, SPC58NGx
112/131 DS11758 Rev 5
5. To be determined at seating datum plane C.
6. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
7. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is
“0.25 mm”
8. Dimensions D2 and E2 show the maximum exposed metal area on the package surface where the
exposed pad is located (if present). It includes all metal protrusions from exposed pad itself. Type of
exposed pad is variable depending on leadframe pad design (T1, T2, T3), as shown in the figure below.
End user should verify D2 and E2 dimensions according to specific device application.
9. Dimensions D3 and E3 show the minimum solderable area, defined as the portion of exposed pad which is
guaranteed to be free from resin flashes/bleeds, bordered by internal edge of inner groove.
10. “N” is the max number of terminal positions for the specified body size.
Table 68. eTQFP176 package tolerance of form and position
Symbol(1) (2) (3)
1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
2. All Dimensions are in millimeters.
3. For Symbols, Recommended Values and Tolerances see Table below:
Dimensions
aaa 0.20
bbb 0.20
ccc 0.08
ddd 0.08
DS11758 Rev 5 113/131
SPC584Gx, SPC58EGx, SPC58NGx Package information
114
4.3 FPBGA292 package information
Figure 49. FPBGA292 package outline
PACKAGE MECHANICAL DRAWINGS
Package information SPC584Gx, SPC58EGx, SPC58NGx
114/131 DS11758 Rev 5
Table 69. FPBGA292 package mechanical data
REF.
Dimensions
Millimeters
Min Typ Max
A(1) ––1.8
A1 0.35
A2 0.53
A4 0.80
D 16.85 17.00 17.15
D1 15.20
E 16.85 17.00 17.15
E1 15.20
e 0.80
b(2) 0.50 0.55 0.60
Z 0.90
aaa 0.15
bbb 0.10
ddd 0.12
eee(3) 0.15
fff(4) 0.08
1. FPBGA stands for Fine Pitch Plastic Ball Grid Array.
Fine pitch: e < 1.00mm pitch.
Low Profile: The total profile height (Dim A) is measured from the seating plane to the top of the
component.
The maximum total package height is calculated by the following methodology:
Amax = A1(TYP) + A2(TYP) + A4(TYP) + (A1)2 + (A2)2 + (A4)2 (tolerance values)
2. The typical ball diameter before mounting is 0.55mm.
3. The tolerance of position that controls the location of the pattern of balls with respect to datums A and B.
For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true
position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball
must lie within this tolerance zone.
4. The tolerance of position that controls the location of the balls within the matrix with respect to each other.
For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position
as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each
tolerance zone fff in the array is contained entirely in the respective zone eee above. The axis of each ball
must lie simultaneously in both tolerance zones.
DS11758 Rev 5 115/131
SPC584Gx, SPC58EGx, SPC58NGx Package thermal characteristics
118
4.4 Package thermal characteristics
The following tables describe the thermal characteristics of the device. The parameters in
this chapter have been evaluated by considering the device consumption configuration
reported in the Section 3.7: Device consumption
4.4.1 eTQFP144
4.4.2 LQFP176
Table 70. Thermal characteristics for 144 exposed pad eTQFP package(1)
Symbol C Parameter Conditions Value Unit
RθJA CC D Junction-to-Ambient, Natural Convection(2) Four layer board (2s2p) 21.4 °C/W
RθJMA CC D Junction-to-Moving-Air, Ambient(2) at 200 ft./min., four layer
board (2s2p)
15.7 °C/W
RθJB CC D Junction-to-board(3) —8.5°C/W
RθJCtop CC D Junction-to-case top(4) —5.4°C/W
RθJCbottom CC D Junction-to-case bottom(5) —1°C/W
ΨJT CC D Junction-to-package top(6) Natural convection 1 °C/W
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
3. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured
on the top surface of the board near the package.
4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
5. Thermal resistance between the die and the exposed pad ground on the bottom of the package based on simulation
without any interface resistance.
6. Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2.
Table 71. Thermal characteristics for 176 exposed pad LQFP package(1)
Symbol C Parameter Conditions Value Unit
RθJA CC D Junction-to-Ambient, Natural Convection(2) Four layer board (2s2p) 20.9 °C/W
RθJMA CC D Junction-to-Moving-Air, Ambient(2) at 200 ft./min., four layer
board (2s2p)
15.3 °C/W
RθJB CC D Junction-to-board(3) —9°C/W
RθJCtop CC D Junction-to-case top(4) 7.3 °C/W
RθJCbottom CC D Junction-to-case bottom(5) —1°C/W
ΨJT CC D Junction-to-package top(6) Natural convection 1 °C/W
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
3. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured
on the top surface of the board near the package.
Package thermal characteristics SPC584Gx, SPC58EGx, SPC58NGx
116/131 DS11758 Rev 5
4.4.3 BGA292
4.4.4 General notes for specifications at maximum junction temperature
An estimation of the chip junction temperature, TJ, can be obtained from the equation:
Equation 1
TJ = TA + (RθJA * PD)
where:
TA = ambient temperature for the package (°C)
RθJA = junction-to-ambient thermal resistance (°C/W)
PD = power dissipation in the package (W)
The thermal resistance values used are based on the JEDEC JESD51 series of standards
to provide consistent values for estimations and comparisons. The differences between the
values determined for the single-layer (1s) board compared to a four-layer board that has
two signal layers, a power and a ground plane (2s2p), demonstrate that the effective
thermal resistance is not a constant. The thermal resistance depends on the:
Construction of the application board (number of planes)
Effective size of the board which cools the component
Quality of the thermal and electrical connections to the planes
Power dissipated by adjacent components
4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
5. Thermal resistance between the die and the exposed pad ground on the bottom of the package based on simulation
without any interface resistance.
6. Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2.
Table 72. Thermal characteristics for 292-pin BGA(1)
Symbol C Parameter Conditions Value Unit
RθJA CC D Junction-to-Ambient, Natural Convection (2) Four layer board (2s2p) 21.9 °C/W
RθJMA CC D Junction-to-Moving-Air, Ambient(2) at 200 ft./min., four layer
board (2s2p)
NA °C/W
RθJB CC D Junction-to-board(3) —10.3°C/W
RθJC CC D Junction-to-case(4) —6.7°C/W
ΨJT CC D Junction-to-package top(5) Natural convection 1 °C/W
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
2. Per JEDEC JESD51-6 with the board (JESD51-9) horizontal.
3. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured
on the top surface of the board near the package.
4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
5. Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2.
DS11758 Rev 5 117/131
SPC584Gx, SPC58EGx, SPC58NGx Package thermal characteristics
118
Connect all the ground and power balls to the respective planes with one via per ball. Using
fewer vias to connect the package to the planes reduces the thermal performance. Thinner
planes also reduce the thermal performance. When the clearance between the vias leaves
the planes virtually disconnected, the thermal performance is also greatly reduced.
As a general rule, the value obtained on a single-layer board is within the normal range for
the tightly packed printed circuit board. The value obtained on a board with the internal
planes is usually within the normal range if the application board has:
One oz. (35 micron nominal thickness) internal planes
Components are well separated
Overall power dissipation on the board is less than 0.02 W/cm2
The thermal performance of any component depends on the power dissipation of the
surrounding components. In addition, the ambient temperature varies widely within the
application. For many natural convection and especially closed box applications, the board
temperature at the perimeter (edge) of the package is approximately the same as the local
air temperature near the device. Specifying the local ambient conditions explicitly as the
board temperature provides a more precise description of the local ambient conditions that
determine the temperature of the device.
At a known board temperature, the junction temperature is estimated using the following
equation:
Equation 2
TJ = TB + (RθJB * PD)
where:
TB = board temperature for the package perimeter (°C)
RθJB = junction-to-board thermal resistance (°C/W) per JESD51-8
PD = power dissipation in the package (W)
When the heat loss from the package case to the air does not factor into the calculation, the
junction temperature is predictable if the application board is similar to the thermal test
condition, with the component soldered to a board with internal planes.
The thermal resistance is expressed as the sum of a junction-to-case thermal resistance
plus a case-to-ambient thermal resistance:
Equation 3
RθJA = RθJC + RθCA
where:
RθJA = junction-to-ambient thermal resistance (°C/W)
RθJC = junction-to-case thermal resistance (°C/W)
RθCA = case to ambient thermal resistance (°C/W)
RθJC is device related and is not affected by other factors. The thermal environment can be
controlled to change the case-to-ambient thermal resistance, RθCA. For example, change
the air flow around the device, add a heat sink, change the mounting arrangement on the
printed circuit board, or change the thermal dissipation on the printed circuit board
surrounding the device. This description is most useful for packages with heat sinks where
90% of the heat flow is through the case to heat sink to ambient. For most packages, a
better model is required.
Package thermal characteristics SPC584Gx, SPC58EGx, SPC58NGx
118/131 DS11758 Rev 5
A more accurate two-resistor thermal model can be constructed from the junction-to-board
thermal resistance and the junction-to-case thermal resistance. The junction-to-case
thermal resistance describes when using a heat sink or where a substantial amount of heat
is dissipated from the top of the package. The junction-to-board thermal resistance
describes the thermal performance when most of the heat is conducted to the printed circuit
board. This model can be used to generate simple estimations and for computational fluid
dynamics (CFD) thermal models. More accurate compact Flotherm models can be
generated upon request.
To determine the junction temperature of the device in the application on a prototype board,
use the thermal characterization parameter (ΨJT) to determine the junction temperature by
measuring the temperature at the top center of the package case using the following
equation:
Equation 4
TJ = TT + (ΨJT x PD)
where:
TT = thermocouple temperature on top of the package (°C)
ΨJT = thermal characterization parameter (°C/W)
PD = power dissipation in the package (W)
The thermal characterization parameter is measured in compliance with the JESD51-2
specification using a 40-gauge type T thermocouple epoxied to the top center of the
package case. Position the thermocouple so that the thermocouple junction rests on the
package. Place a small amount of epoxy on the thermocouple junction and approximately 1
mm of wire extending from the junction. Place the thermocouple wire flat against the
package case to avoid measurement errors caused by the cooling effects of the
thermocouple wire.
When board temperature is perfectly defined below the device, it is possible to use the
thermal characterization parameter (ΨJPB) to determine the junction temperature by
measuring the temperature at the bottom center of the package case (exposed pad) using
the following equation:
Equation 5
TJ = TB + (ΨJPB x PD)
where:
TT = thermocouple temperature on bottom of the package (°C)
ΨJT = thermal characterization parameter (°C/W)
PD = power dissipation in the package (W)
DS11758 Rev 5 119/131
SPC584Gx, SPC58EGx, SPC58NGx Ordering information
121
5 Ordering information
Figure 50. Ordering information scheme
MemoryCore Product Package
84
NGC3
Example code:
Product identifier
Q
SPC58 EH
Frequency
0
Silicon
Y
Packing
Custom Security
version
revision
Y=Tray
X = Tape and Reel (pin1 top right)
0 = 1st version
1 = 2nd version
0 = No security and no ASIL-D
C = Security HW (HSM)
S = Safety (ASIL-D)
H = ASIL-D + Security HW (HSM)
0 = 8x ISO CAN FD, FlexRay
E = Ethernet 0
T = Ethernet 0 and 1
X = Extended feature (a)
E = 120 MHz at 105 oC
F = 160 MHz at 105 oC
G = 180 MHz at 105 oC
N = 120 MHz at 125 oC
P = 160 MHz at 125 oC
Q = 180 MHz at 125 oC
E7 = eLQFP176
E5 = eTQFP144
C3 = FPBGA292
84 = 6 MB
80 = 4 MB
G = SPC58NGx family
N = Triple computing e200z4 core
(CPU_2 + CPU_1 + CPU_0)
4 = Single computing e200z4 core
(CPU_2)
E = Dual computing e200z4 core
(CPU_2 + CPU_0)
SPC58 = Power Architecture in 40 nm
a: 2nd checker core, additional RAM, Microsecond channel, SENT bus.
Available extended features are described in a customer specific addendum.
Ordering information SPC584Gx, SPC58EGx, SPC58NGx
120/131 DS11758 Rev 5
Table 73. Code Flash options
SPC58xG84 (6M) SPC58xG80 (4M) Partition Start address End address
16 16 0 0x00FC0000 0x00FC3FFF
16 16 0 0x00FC4000 0x00FC7FFF
16 16 1 0x00FC8000 0x00FCBFFF
16 16 1 0x00FCC000 0x00FCFFFF
32 32 0 0x00FD0000 0x00FD7FFF
32 32 1 0x00FD8000 0x00FDFFFF
64 64 0 0x00FE0000 0x00FEFFFF
64 64 0 0x00FF0000 0x00FFFFFF
128 128 0 0x01000000 0x0101FFFF
128 128 1 0x01020000 0x0103FFFF
256 256 0 0x01040000 0x0107FFFF
256 256 0 0x01080000 0x010BFFFF
256 256 0 0x010C0000 0x010FFFFF
256 256 0 0x01100000 0x0113FFFF
256 256 0 0x01140000 0x0117FFFF
256 256 0 0x01180000 0x011BFFFF
256 256 0 0x011C0000 0x011FFFFF
256 256 1 0x01200000 0x0123FFFF
256 256 1 0x01240000 0x0127FFFF
256 256 1 0x01280000 0x012BFFFF
256 256 1 0x012C0000 0x012FFFFF
256 256 1 0x01300000 0x0133FFFF
256 256 1 0x01340000 0x0137FFFF
256 256 1 0x01380000 0x013BFFFF
256 NA 5 0x013C0000 0x013FFFFF
256 NA 5 0x01400000 0x0143FFFF
256 NA 5 0x01440000 0x0147FFFF
256 NA 5 0x01480000 0x014BFFFF
256 NA 5 0x014C0000 0x014FFFFF
256 NA 5 0x01500000 0x0153FFFF
256 NA 5 0x01540000 0x0157FFFF
256 NA 5 0x01580000 0x015BFFFF
DS11758 Rev 5 121/131
SPC584Gx, SPC58EGx, SPC58NGx Ordering information
121
Table 74. RAM options(1)
SPC58EGx
SPC58NGx SPC584G84 SPC584G80
Type Start address End address
768 640 512
128 128 128 PRAMC_0 0x40060000 0x4007FFFF
96 96 96 PRAMC_1 0x40080000 0x40097FFF
64 64 NA PRAMC_1 0x40098000 0x400A7FFF
8 8 8 PRAMC_2 (STBY) 0x400A8000 0x400A9FFF
120 120 120 PRAMC_2 (STBY) 0x400AA000 0x400C7FFF
128 128 128 PRAMC_2 (STBY) 0x400C8000 0x400E7FFF
64 64 NA PRAMC_3 0x400E8000 0x400F7FFF
64 NA NA D-MEM CPU_0 0x50800000 0x5080FFFF
64 NA NA D-MEM CPU_1 0x51800000 0x5180FFFF
32 32 32 D-MEM CPU_2 0x52800000 0x52807FFF
1. RAM size is the sum of TCM and SRAM.
Revision history SPC584Gx, SPC58EGx, SPC58NGx
122/131 DS11758 Rev 5
6 Revision history
Table 75. Document revision history
Date Revision Changes
28-Jul-2016 1 Initial release.
09-Sep-2016 2
Changed Microsoft Excel® workbook attached to this document (was
SPC584Gx_SPC58EGx_SPC58NGx_IO_Definition_v1.xlsx dated
July 26, 2016).
For details, refer to the sheet Revision History of the attached file
“SPC584Gx_SPC58EGx_SPC58NGx_IO_Definition_v2.xlsx”.
Updated Section 3.12: ADC system
For ADC12 bit, “FAST SAR” updated to “Fast SAR” and “Slow SAR”
updated to “Slow SAR (SARADC_B)”
For ADC10 bit, instance of “Slow SAR” removed and “FAST SAR”
replaced with “–”.
DS11758 Rev 5 123/131
SPC584Gx, SPC58EGx, SPC58NGx Revision history
130
06-Jul-2017 3
Following are the changes for this release of the document:
Updated the cover page.
Section 3.1: Introduction:
Removed text “The IPs and...for the details”.
Removed the two notes.
Updated the Table 2: SPC584Gx, SPC58EGx, SPC58NGx features
summary
Updated the Figure 1: Block diagram
Table 3: Parameter classifications:
Updated the description of classification tag “T”.
Section 3.2: Absolute maximum ratings:
Added text “Exposure to absolute ... reliability”
Added text “even momentarily”
Table 4: Absolute maximum ratings:
For parameter “IINJ”, text “DC” removed from description.
Updated values in conditions column.
Added parameter TTRIN.
For parameter “TSTG”, maximum value updated from “175” to “125”
Added new parameter “TPAS
For parameter “IINJ”, description updated from “maximum...PAD” to
“maximum DC...pad”
Table 5: Operating conditions:
For parameter “VDD_LV”, changed the classification from “D” to “P”
Renamed the “Wait State configuration” table to “PRAM wait state
configuration”
Footnote “1.260 V - 1.290 V range .. temperature profile” updated
to Text “... average supply value below or equal to 1.236 V ...”
For parameter “IINJ1” description, text “DC” removed.
Added note “In the range [1.14-1.08]V, the device....” to parameter
VDD_LV.
Added parameter IINJ2
Removed note “Core voltage as ....”
Removed parameter “VRAMP_LV”.
Updated the table footnote “Positive and negative Dynamic
current....”
Table 6: PRAM wait states configuration: Added this table.
Table 9: Device consumption:
Updated the table and it’s values.
Table 12: I/O pull-up/pull-down electrical characteristics:
Added note “When the device enters into standby mode... an ADC
function.”
Table 75. Document revision history (continued)
Date Revision Changes
Revision history SPC584Gx, SPC58EGx, SPC58NGx
124/131 DS11758 Rev 5
06-Jul-2017 3 (cont’)
Table 13: WEAK/SLOW I/O output characteristics:
Added “10%-90% in description of parameter “tTR_W”.
For parameter “Fmax_W”, updated condition “25 pF load” to
“CL=25pF”
For parameter “tTR_S”, changed min value (25 pF load) from “4” to
“3”
Changed min value (50 pF load) from “6” to “5”
For parameter “|tSKEW_W|”, changed max value from “30” to “25”.
Table 14: MEDIUM I/O output characteristics:
Added “10%-90% in description of parameter “tTR_M”.
For parameter “|tSKEW_W|”, changed max value from “30” to “25”.
Table 15: STRONG/FAST I/O output characteristics:
Added “10%-90% in description of parameter “tTR_S”.
Parameter “IDCMAX_S” updated:
Condition added “VDD=5V+10%
Condition added “VDD=3.3V+10%
Max value updated to 5.5mA
For parameter “|tSKEW_W|”, changed max value from “30” to “25”.
Table 17: I/O consumption:
Updated all the max values of parameters IDYN_W and IDYN_M
Section 3.8: I/O pad specification:
Replaced all occurences of “50 pF load” with “CL=50pF”.
Removed note “The external ballast....”
Section 3.8.2: I/O output DC characteristics:
Added note “10%/90% is the....”
“WEAK” to “WEAK/SLOW”
“STRONG” to “STRONG/FAST”
“VERY STRONG” to “VERY STRONG / VERY FAST”
Table 19: Reset Pad state during power-up and reset:
Added this table.
Section 3.11: Oscillators:
Removed figure “Test circuit”
Table 20: PLL0 electrical characteristics:
For parameter “IPLL0”, classification changed from “C” to “T”.
Footnote “Jitter values...measurement” added for parameters:
PLL0PHI0SPJ|
PLL0PHI1SPJ|
ΔPLL0LTJ
Table 21: PLL1 electrical characteristics:
For parameter “IPLL1”, classification changed from “C” to “T”.
Footnote “Jitter values...measurement” added for parameter
PLL1PHI0SPJ|”
Table 75. Document revision history (continued)
Date Revision Changes
DS11758 Rev 5 125/131
SPC584Gx, SPC58EGx, SPC58NGx Revision history
130
06-Jul-2017 3 (cont’)
Table 22: External 40 MHz oscillator electrical specifications:
Classification for parameters “CS_EXTAL” and “CS_EXTAL” changed
from “T” to “D”.
Updated classification, conditions, min and max values for
parameter “gm”.
Footnote “Ixatl is the oscillator...Test circuit is shown in Figure 8”
modified to “Ixatl is the oscillator...startup of the oscillator”.
Minimum value of parameter “VIHEXT” updated from “VREF+0.6” to
“VREF+0.75”
Maximum value of parameter “VILEXT” updated from “VREF-0.6” to
“VREF-0.75”
Parameter “gm”, value “D” updated to “P” for “fXTAL < 8 MHz”, and
“D” for others.
Footnote “This parameter is...100% tested” updated to “Applies to
an...to crystal mode”. Also added to parameter “VILEXT”.
For parameters “VIHEXT” and “VILEXT”, Condition “–” updated to
“VREF = 0.29 * VDD_HV_IO_JTAG
Parameter “gm”, value “D” updated to “P” for “fXTAL < 8 MHz”, and
“D” for others.
Footnote “This parameter is...100% tested” updated to “Applies to
an...to crystal mode”. Also added to parameter “VILEXT”.
For parameters “VIHEXT” and “VILEXT”, Condition “–” updated to
“VREF = 0.29 * VDD_HV_IO_JTAG
Updated parameters CS_EXTAL and CS_XTAL.
Renamed the section “RC oscillator 1024 kHz” to Section 3.11.4: Low
power RC oscillator
Table 23: 32 kHz External Slow Oscillator electrical specifications:
For parameter “gmsxosc”, changed the classification to “P”.
Table 24: Internal RC oscillator electrical specifications:
For parameter “IFIRC”, replaced max value of 300 with 600.
Added footnote to the description.
For parameter IFIRC, changed the max value to 600 and added
Min, Typ and Max value of ”δfvar_SW” updated from “-1”, “-”, “1” to “-
0.5”, “+0.3” and “0.5” respectively.
Table 25: 1024 kHz internal RC oscillator electrical characteristics:
For parameter “δfvar_T”, and “δfvar_V “changed the classification to
“P”.
For parameter “δfvar_V”, minimum and maximum value updated
from “-0.05” and “+0.05” to “-5” and “+5”
Table 26: ADC pin specification:
–For I
LKG
, changed condition “C” to “—”.
Added parameter “IINJ1
For parameter CP2, updated the max value to “1”.
Table 75. Document revision history (continued)
Date Revision Changes
Revision history SPC584Gx, SPC58EGx, SPC58NGx
126/131 DS11758 Rev 5
06-Jul-2017 3 (cont’)
Table 27: SARn ADC electrical specification:
Classification for parameter “IADCREFH” changed from “C” to “T”.
Removed parameter “TUEINJ2
For parameter fADCK (High frequency mode), changed min value
from “7.5” to “> 13.33”.
Deleted footnote “Values are subject to change (possibly improved
to ±2 LSB) after characterization”
Table 28: ADC-Comparator electrical specification:
Classification for parameter “IADCREFH” changed from “C” to “T”
Removed table footnote “Values are subject to change (possibly
improved to ±2 LSB) after characterization”
Removed parameter “TUEINJ2
Updated Figure 8: Input equivalent circuit (Fast SARn and SARB
channels)
Table 29: Temperature sensor electrical characteristics:
For “temperature monitoring range”, classification removed (was C)
Min and Max value of parameter “ΔPERREF” for condition “Long
period” updated from “TBD” to “-500” and “+500” respectively.
Table 31: LFAST transmitter electrical characteristics,,:
Footnote “The transition time is measured from...” removed.
Updated Figure 26: DSPI CMOS master mode classic timing,
CPHA = 1
Table 30: LVDS pad startup and receiver electrical characteristics,:
For parameter ILVDS_BIAS, changed the characteristics to “C”
Table 32: LFAST PLL electrical characteristics:
Min and Max value of parameter “ERRREF” updated from “TBD” to
“-1” and “+1” respectively
Max value of parameter “PN” updated from “TBD” to “-58”
Frequency of parameter “ΔPERREF” updated from “10MHz” to
“20MHz”.
Max value of parameter “ΔPERREF” for condition “Single period”
updated from “TBD” to “350”
Table 33: Power management regulators:
Removed text “In parts packaged with LQFP176, the auxiliary and
clamp regulators cannot be enabled” from note 2.
Removed “SMPS regulator mode” from note 2.
Table 34: External components integration:
For PMOS, replaced “STT4P3LLH6” with “PMPB100XPEA”
For NMOS, replaced “STT6N3LLH6” with “PMPB55XNEA”
Added table footnote to typ value of CS2.
Removed table footnote “External components number.......”
Table 75. Document revision history (continued)
Date Revision Changes
DS11758 Rev 5 127/131
SPC584Gx, SPC58EGx, SPC58NGx Revision history
130
06-Jul-2017 3 (cont’)
Table 35: Linear regulator specifications:
Classification of parameter “IDDMREG” changed from “P” to “T”.
Classification of parameter “IDDMREG” changed from “T” to “P”.
Added “After trimming, external regulator mode”
Table 36: Auxiliary regulator specifications:
Classification of parameter “IDDAUX” changed from “P” to “T”.
Classification of parameter “IDDAUX” changed from “T” to “P”.
Added “After trimming, external regulator mode”
Table 38: Standby regulator specifications:
Classification of parameter “IDDSBY” changed from “P” to “T”.
Classification of parameter “IDDSBY” changed from “T” to “P”.
Table 39: Voltage monitor electrical characteristics:
–For V
POR031_C, changed the max value from 0.85 to 0.97.
–For T
VMFILTER, replaced T with D.
Min value of “VPOR200_C” updated from “1.96” to “1.80”
Max value of “VPOR031_C” updated from “.85” “0.97”
Changed the min value of parameter VPOR200_C from “1.96” to
“1.80”
Changed the max value of parameter VPOR031_C from “0.85” to
“0.97”
Changed the condition of parameter TVMFILTER from “T” to “D”
Figure 15: Voltage monitor threshold definition: Updated the figure.
Updated Table 40: Wait State configuration
Table 44: Nexus debug port timing: Classification of parameters
“tEVTIPW” and “tEVTOPW” changed from “P” to “D”.
Table 46: DSPI channel frequency support:
Added column to show slower and faster frequencies.
Table 47: DSPI CMOS master classic timing (full duplex and output
only) MTFE = 0, CPHA = 0 or 1:
Changed the Min value of tSCK (very strong) from 33 to 59.
Updated Section 3.16: Flash memory
Added Section 3.17.5: CAN timing
Updated Figure 47: eLQFP176 package outline 1/2
Table 70: Thermal characteristics for 144 exposed pad eTQFP
package:
Updated the values.
Table 71: Thermal characteristics for 176 exposed pad LQFP
package
and Table 72: Thermal characteristics for 292-pin BGA: Updated the
tables and its values.
Updated Figure 50: Ordering information scheme
Added Table 73: Code Flash options
Added Table 74: RAM options
Changed Microsoft Excel® workbook attached to this document.
For details, refer to the sheet Revision History of the attached file
“SPC584Gx_SPC58EGx_SPC58NGx_IO_Definition_v4.xlsx”.
Table 75. Document revision history (continued)
Date Revision Changes
Revision history SPC584Gx, SPC58EGx, SPC58NGx
128/131 DS11758 Rev 5
08-Feb-2018 4
Table 1: Introduction
Table 2: SPC584Gx, SPC58EGx, SPC58NGx features summary:
Added “Flash Overlay RAM: 2x16KB
Section 2: Package pinouts and signal descriptions:
Added “pad characteristics” to heading.
Section 3.1: Introduction:
Reformated note from introduction
Section 3.3: Operating conditions:
Replaced reference to IO_definition excel file by "the device pin out
IO definition excel file"
Section Table 9.: Device consumption:
Updated the following parameters:
–I
DD_LKG for all conditions.
–I
DDSTBY8 for all conditions.
–I
DDSTBY128 for all conditions.
IDDSTBY256 for all conditions.“IDD_LV”: added Footnote “IDD_LKG and
IDD_LV are reported as...”
Section 3.8: I/O pad specification:
Replaced all references to the IO_definitions excel file by “the device
pinout IO definition excel file”.
Reformated note from introduction.
Table 16: VERY STRONG/VERY FAST I/O output characteristics
“tTR20-80” replaced by “tTR20-8_V”
“tTRTTL” replaced by “tTRTTL_V”
–“ΣtTR20-80” replaced by “ΣtTR20-80_V
Table 10: I/O pad specification descriptions: Removed latest
sentence at Standby pads description.
Table 15: STRONG/FAST I/O output characteristics: updated values
for tTR_S for condition CL = 25 pF and CL = 50 pF
Section 3.9: Reset pad (PORST, ESR0) electrical characteristics:
Table 18: Reset PAD electrical characteristics: replaced reference to
IO_definition excel file by "Refer to the device pin out IO definition
excel file"
Section 3.10: PLLs:
Table 20: PLL0 electrical characteristics:
Added “fINFIN
changed “C” by “—” in column “C”
PLL0PHI0SPJ|: changed “T” by “D” and added pk-pk to Conditions
value
PLL0PHI1SPJ|: added pk-pk to Conditions value
PLL0PHI0SPJ|: changed “T” by “D” and added pk-pk to Conditions
value
PLL0PHI1SPJ|: added pk-pk to Conditions value
Table 75. Document revision history (continued)
Date Revision Changes
DS11758 Rev 5 129/131
SPC584Gx, SPC58EGx, SPC58NGx Revision history
130
08-Feb-2018 4(cont’)
Table 21: PLL1 electrical characteristics:
Added “fINFIN
changed “C” by “—” in column “C”
Section 3.12: ADC system:
Table 26: ADC pin specification: updated Max value for CS
For parameter CP2, updated the max value from “1” to “2”.
Added electrical specification for R20KΩ symbol.
Changed Max value = 1 by 2 for Cp2 SARB channels
Table 27: SARn ADC electrical specification: added symbols
tADCINIT and tADCBIASINIT
column “C” splitted and added “D” for IADV_S
Table 28: ADC-Comparator electrical specification:
Added new parameter “tADCINITSBY”.
Set min = 5/fADCK µs for 10-bit ADC mode, min = 2/fADCK for ADC
comparator mode, at symbol tADCSAMPLE.
Column “C” splitted and added “D” for IADV_S
Section 3.14: LFAST pad electrical characteristics:
Introduction paragraph:
1st sentence: hidden text “both the SIPI and”
all 2nd sentence hidden: “The same LVDS.. tables”
Section 3.14.2: LFAST and MSC/DSPILVDS interface electrical
characteristics:
title completed with “and MSC/DSPI”
Section 3.15: Power management:
Figure 15: Voltage monitor threshold definition:
right blue line adjusted on the top figure
Section 3.15.1: Power management integration:
added sentence “It is recommended...device itself” for all devices
Table 35: Linear regulator specifications:
updated values for symbol “ΔIDDMREG”
Min: added -100
Max added 100:
Section 3.17: AC Specifications
Table 57: TxEN output characteristics:
added table footnote “ Pad configured as VERY STRONG.”
Table 58: TxD output characteristics,,:
changed note 3 to apply to the whole table
Table 60: CAN timing: added columns for “CC” and “D”
Section 4: Package information:
Table 69: FPBGA292 package mechanical data: updated Amax
formula in table footnote 2.
Section 4.4: Package thermal characteristics:
Reformated note from introduction
Section 5: Ordering information:
Chapter title heading changed to heading 1.
Figure 50: Ordering information scheme: updated for Packing
Table 75. Document revision history (continued)
Date Revision Changes
Revision history SPC584Gx, SPC58EGx, SPC58NGx
130/131 DS11758 Rev 5
04-Feb-2019 5
Table 4: Absolute maximum ratings
Added a cross ref to footnote starting with “VDD_HV: allowed 5.5 V –
6.0 V for 60 seconds...” to all VDD_HV* parameters having
max=6.0V. The same to VIN parameter.
Section 3.5: Electromagnetic compatibility characteristicsUpdated
section from Electromagnetic emission characteristics to
Electromagnetic compatibility characteristics.
Table 9: Device consumption
Updated IDDSTBY8, IDDSTBY128, IDDSTBY256 max values and “C”
column at TJ=40°.
Section 4.1: eTQFP144 package information
Updated mechanical drawings and mechanical data.
Section 4.2: eLQFP176 package information
Updated mechanical drawings and mechanical data.
Table 50: Ordering information scheme
Updated Security and Custom Version option lists.
Table 74: RAM options
Updated PRAMC_1_64K and PRAMC_2_128K start address.
PRAMC_2_120K and D-MEM CPU_2 end address.
Table 75. Document revision history (continued)
Date Revision Changes
DS11758 Rev 5 131/131
SPC584Gx, SPC58EGx, SPC58NGx
131
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics – All rights reserved