MGA-22003 2.3-2.7 GHz 3x3mm WiMAX and WiFi Power Amplifier Data Sheet Description Features Avago Technologies MGA-22003 linear power amplifier is designed for mobile and fixed wireless data applications in the 2.3 to 2.7 GHz frequency range. The PA is optimized for IEEE 802.16 WiMAX/WiBro modulation but can be used for any high linearity applications. The PA exhibits flat gain and good match while providing linear power efficiency to meet stringent mask conditions. It utilizes Avago Technologies proprietary GaAs Enhancement-mode pHEMT technology for superior performance across voltage and temperature levels. Advanced GaAs E-pHEMT The MGA-22003 is packaged in a 3x3x1 mm package for space-constrained applications. Stable under all loads or conditions Applications Portable WiMAX/WiBro and WiFi applications 50 all RF ports 9dB gain step in low power mode with Idsq reduction Integrated CMOS compatible pins for shutdown and low power mode 3 to 5V supply ESD protection all ports above 800V HBM Small size: 3 x 3 x 1 mm -40C to +85C operation Integrated DC blocking capacitors for Input and Ouput pins. WiMAX/WiBro and WiFi Access points Specifications (at 2.5GHz) Functional Block Diagram PAE of 18% at SEM compliant Pout=25dBm Meets 802.16 masks at 25 dBm Pout, 16QAM WiMAX with 3.3V and 512mA ISMN GND 3 RFOUT 11 GND 10 BIAS NETWORK BCTRL 4 N/C 9 BSPLY 5 BSW 6 PMOD 7 Device Marking Instruction 22003 KAYYWW XXXXX RFIN 1 GND 2 GND 3 BCTRL 4 N/C 8 3mm x 3mm x 1mm VCC2 OMN Low power Idd, 80mA at Pout=0dBm, 9dB Gain Step 16 15 14 13 17 GND 5 6 7 8 NC GND 2 16QAM WiMAX EVM < -32dB (2.5%) at 25dBm GND GND 12 PAMOD RFIN 1 VCC1 VCC2 13 BSW GND 14 GND VCC1 15 BSPLY GND 16 Gain of 35dB 12 GND 11 RFOUT 10 GND 9 NC Top View "22003" = Product Code "KA" = Korea ASE "YY" = Year code indicates the year of manufacture "WW" = Workweek code indicates the workweek of manufacture "XXXXX" = Last 5 digit of assembly lot number ELECTRICAL SPECIFICATIONS Absolute Minimum and Maximum Ratings Table 1. Minimum and Maximum Ratings Parameter Description Specifications Pin Min. Typical Max. Unit Supply Voltage VCC1 VCC2 3.3 5.5 V Bias Supply BSPLY 3.3 4.2 V Bias Control BCTRL 2.8 4.2 V Bias ON/OFF BSW 1.8 4.2 V Mode Control PAMODE 1.8 4.2 V RF Input Power RFIN 15 dBm MSL MSL3 Channel Temperature 150 C 150 C Human Body Model 800 V Man Machine Model 50 V Storage Temperature ESD -65 Comments Using 16QAM 3/4 Table 2. Operating Range Parameter Specifications Description Pin Min. Typical Max. Unit Supply Voltage VCC1 VCC2 3 3.3 5 V Bias Supply BSPLY 3 3.3 3.5 13 Bias Control BCTRL 2.75 Bias ON/OFF BSW 1.65 2.8 RF Output Power Frequency Range PAMODE 1.65 2.85 Case Temperature 2 uA 2.2 V 7 25 uA 1.8 2.2 V 17 25 uA 25 dBm 2.3 2.7 23.4 -40 V 1.8 RFOUT Thermal Resistance, ch-b V mA .7 Mode Control Comments GHz C/W +85 Using 16QAM 3/4 C Channel to board WiMAX (802.16e) Electrical Specifications All data measured on an FR4 demo board at Vcc1 = Vcc2 = 3.3V, Tc = 25C, 50 at all ports. Unless otherwise specified, all data is taken with OFDM 16-QAM 3/4 convolutional coding modulated signal per IEEE 802.16e with 10MHz BW operating over the BW of 2.3GHz to 2.7GHz. Table 3. RF Electrical Characteristics Performance Parameter Min. Typical Max. Unit Comments Input Return Loss -10 dB Gain Flatness 1 dB Over any 10MHz Gain Variation (VCC) High Power Mode -1 EVM 1 dB 3V to 5V -32 -27 dB Vcc=3.3V -34 -30 Vcc=3.6V SEM-A @5.05MHz -30.6 -13 dBm/100kHz IBW=100kHz SEM-B @6.5MHz -22.3 -13 dBm/MHz IBW=1MHz SEM-C @10.5MHz -26.6 -19 SEM-D @11.5MHz -27.5 -25 SEM-E @15.5MHz -35.3 -29.5 SEM-F @20.5MHz -42.5 -37 dBm 802.16e Pout (SEM Compliant) +25 Total DC Current 501 560 mA 464 Gain Low Power Mode 32 35 -30 - dB 8 10 15 dB EVM Gain Step Total DC Current Pout=25dBm Pout=24dBm 38 dB Pout=0dBm 70 mA Pout=0dBm P1dB 31 dBm CW Single Tone Psat 32 dBm CW Single Tone 2fo -12 -10 dBm/MHz 2.3-2.4GHz -29 -27 -35 -27 3fo Settling Time 0.2 0.5 2.5-2.7GHz dBm/MHz uS Icc leakage current 10 Noise Power in Cell Band -142 dBm/Hz Noise Power in GPS Band -133 dBm/Hz Noise Power in PCS -137 dBm/Hz 3 40 uA -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 2300 EVM Frequency Sweep (Vcc=3.0 to 5.0V) Tambient=25C and Pout=25dBm 3V0 3V3 3V6 4V2 -20.00 5V0 2400 2500 Frequency (MHz) 2600 -26.00 -28.00 -30.00 -36.00 2300 2700 EVM Frequency Sweep (Tambient=-30C to +85C) Vcc=3.3V and Pout=25dBm -30C 25C +85C 2400 2500 Frequency (MHz) 2600 2700 2.7GHz EVM (dB) 2.5GHz 2.6GHz 21.0 22.0 23.0 24.0 Pout (dBm) 25.0 2500 Frequency (MHz) 2600 2700 26.0 -20.00 -22.00 -24.00 -26.00 -28.00 -30.00 -32.00 -34.00 -36.00 -38.00 -40.00 -42.00 -44.00 20.0 EVM Power Sweep (Freq=2.3 to 2.7GHz) Tambient=25C and Vcc=3.3V 2.3GHz 2.4GHz 21.0 2.5GHz 2.6GHz 22.0 2.7GHz 23.0 24.0 Pout (dBm) 25.0 26.0 Figure 4. EVM Power Sweep at Vcc=3.3V and 25C over Frequency EVM Power Sweep (Freq=2.3 to 2.7GHz) Tambient=-30C and Vcc=3.3V 2.3GHz 2.4GHz 2400 Figure 2. EVM Frequency Sweep at 25C and Pout=26dBm over Vcc EVM (dB) EVM (dB) EVM (dB) 5V0 -34.00 Figure 5. EVM Power Sweep at Vcc=3.3V and -30C over Frequency 4 3V6 4V2 -32.00 Figure 3. EVM Frequency Sweep at Vcc=3.3V and Pout=25dBm over Tambient -20.00 -22.00 -24.00 -26.00 -28.00 -30.00 -32.00 -34.00 -36.00 -38.00 -40.00 -42.00 -44.00 20.0 3V0 3V3 -24.00 Figure 1. EVM Frequency Sweep at 25C and Pout=25dBm over Vcc -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 2300 EVM Frequency Sweep (Vcc=3.0 to 5.0V) Tambient=25C and Pout=26dBm -22.00 EVM (dB) EVM (dB) Selected performance plots -20.00 -22.00 -24.00 -26.00 -28.00 -30.00 -32.00 -34.00 -36.00 -38.00 -40.00 -42.00 -44.00 20.0 EVM Power Sweep (Freq=2.3 to 2.7GHz) Tambient=+85C and Vcc=3.3V 2.3GHz 2.4GHz 21.0 2.5GHz 2.6GHz 22.0 2.7GHz 23.0 24.0 Pout (dBm) 25.0 Figure 6. EVM Power Sweep at Vcc=3.3V and +85C over Frequency 26.0 Gain Frequency Sweep (Vcc=3.0 to 5.0V) Tambient=25C and Pout=25dBm 40 3V6 4V2 40 5V0 39 38 38 37 37 Gain (dB) Gain (dB) 39 3V0 3V3 36 35 33 33 2500 Frequency (MHz) 2600 40.00 Gain Power Sweep (Freq=2.3 to 2.7GHz) Tambient=25C and Vcc=3.3V 2.3GHz 2.4GHz 2.5GHz 2.6GHz 40.00 2.7GHz 39.00 38.00 38.00 37.00 37.00 36.00 35.00 33.00 33.00 22.0 23.0 24.0 Pout (dBm) 25.0 39.00 32.00 20.0 26.0 Figure 9. Gain Power Sweep at Vcc=3.3V and 25C over Pout 40.00 2.5GHz 2.6GHz 2.7GHz 37.00 Itotal (A) Gain (dB) 38.00 36.00 35.00 34.00 33.00 32.00 20.0 21.0 22.0 23.0 24.0 Pout (dBm) 2700 Gain Power Sweep (Freq=2.3 to 2.7GHz) Tambient=-30C and Vcc=3.3V 2.3GHz 2.4GHz 2.5GHz 2.6GHz 2.7GHz 21.0 22.0 23.0 24.0 Pout (dBm) 25.0 26.0 Figure 10. Gain Power Sweep at Vcc=3.3V and -30C over Pout Gain Power Sweep (Freq=2.3 to 2.7GHz) Tambient=+85C and Vcc=3.3V 2.3GHz 2.4GHz 2600 35.00 34.00 21.0 2500 Frequency (MHz) 36.00 34.00 32.00 20.0 2400 Figure 8. Gain Frequency Sweep at Vcc=3.3V and Pout=25dBm over Tambient Gain (dB) Gain (dB) 39.00 32 2300 2700 Figure 7. Gain Frequency Sweep at 25C and Pout=25dBm over Vcc 25.0 Figure 11. Gain Power Sweep at Vcc=3.3V and -+85C over Pout 5 35 34 2400 -30C 25C +85C 36 34 32 2300 Gain Frequency Sweep (Tambient=-30C to +85C) Vcc=3.3V and Pout=25dBm 26.0 0.6 0.58 0.56 0.54 0.52 0.5 0.48 0.46 0.44 0.42 0.4 2300 Total Current Frequency Sweep (Vcc=3.0 to 5.0V) Tambient=25C and Pout=25dBm 3V0 3V3 2400 2500 Frequency (MHz) 3V6 4V2 2600 5V0 2700 Figure 12. Total Current Frequency Sweep at 25C and Pout=25dBm over Vcc 0.60 0.58 0.56 0.54 0.52 0.50 0.48 0.46 0.44 0.42 0.40 2300 0.62 -30C 25C +85C 0.58 2400 2500 Frequency (MHz) 2600 0.46 0.42 0.30 20.0 2700 2.3GHz 2.4GHz 2.5GHz 2.6GHz 0.620 2.7GHz 0.580 0.540 0.50 0.500 0.46 0.42 0.34 0.340 23.0 24.0 Pout (dBm) 25.0 26.0 23.0 24.0 Pout (dBm) 25.0 26.0 Total Current Power Sweep (Freq=2.3 to 2.7GHz) Tambient=+85C and Vcc=3.3V 2.3GHz 2.4GHz 2.5GHz 2.6GHz 2.7GHz 0.420 0.380 22.0 22.0 0.460 0.38 21.0 21.0 Figure 14. Total Current Power Sweep at 3.3V and 25C over Frequency Total Current Power Sweep (Freq=2.3 to 2.7GHz) Tambient=-30C and Vcc=3.3V Figure 15. Total Current Power Sweep at 3.3V and -30C over Frequency 6 2.7GHz 0.50 0.54 0.30 20.0 2.5GHz 2.6GHz 0.34 Itotal (A) Itotal (A) 0.58 2.3GHz 2.4GHz 0.38 Figure 13. Total Current Frequency Sweep at 3.3V and Pout=25dBm over Tambient 0.62 Total Current Power Sweep (Freq=2.3 to 2.7GHz) Tambient=25C and Vcc=3.3V 0.54 Itotal (A) Itotal (A) Total Current Frequency Sweep (Tambient=-30C to +85C) Vcc=3.3V and Pout=25dBm 0.300 20.0 21.0 22.0 23.0 24.0 Pout (dBm) 25.0 26.0 Figure 16. Total Current Power Sweep at 3.3V and +85C over Frequency 20 10 Pout (dBm/MHz) 30 Spec 2.5GHz 2.6GHz 2.7GHz 0 -20 -30 -50 -5.00 5.00 freq_offset (MHz) 15.00 -60 -25.00 25.00 30 Spec 2.5GHz 2.6GHz 2.7GHz 0 -20 -30 -20 -30 -40 -50 15.00 -60 -25.00 25.00 Figure 19. SEM Frequency Sweep at Vcc=4.2V and 25C (2dB Post-PA loss assumed) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout=25dBm, Freq=2.6GHz and Tambient=25C 30 Spec 3V0 3V3 3V6 4V2 5V0 20 10 0 -10 Spec 3V0 3V3 3V6 4V2 5V0 0 -20 -30 -40 -50 -50 15.00 25.00 Figure 21. SEM at Vcc=3.3V, 25C and 2.6GHz over Vcc (2dB Post-PA loss assumed) 25.00 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout=25dBm, Freq=2.7GHz and Tambient=25C -10 -40 -5.00 5.00 freq_offset (MHz) 15.00 10 -30 -15.00 -5.00 5.00 freq_offset (MHz) 20 -20 -60 -25.00 -15.00 Figure 20.SEM at Vcc=3.3V, 25C and 2.5GHz over Vcc (2dB Post-PA loss assumed) Pout (dBm/MHz) 30 Spec 3V0 3V3 3V6 4V2 5V0 -10 -50 -5.00 5.00 freq_offset (MHz) 25.00 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout=25dBm, Freq=2.5GHz and Tambient=25C 0 -40 -15.00 15.00 10 -10 -60 -25.00 -5.00 5.00 freq_offset (MHz) 20 Pout (dBm/MHz) 10 -15.00 Figure 18. SEM Frequency Sweep at Vcc=3.6V and 25C (2dB Post-PA loss assumed) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout=25dBm, Vcc=4.2V and Tambient=25C 20 Pout (dBm/MHz) -30 -50 30 Pout (dBm/MHz) -20 -40 Figure 17. SEM Frequency Sweep at Vcc=3.3V and 25C (2dB Post-PA loss assumed) 7 0 -10 -40 -15.00 Spec 2.5GHz 2.6GHz 2.7GHz 10 -10 -60 -25.00 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout=25dBm, Vcc=3.6V and Tambient=25C 20 Pout (dBm/MHz) 30 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout=25dBm, Vcc=3.3V and Tambient=25C -60 -25.00 -15.00 -5.00 5.00 freq_offset (MHz) 15.00 25.00 Figure 22. SEM at Vcc=3.3V, 25C and 2.7GHz over Vcc (2dB Post-PA loss assumed) 20 10 Pout (dBm/MHz) 30 Spec 25dBm 24dBm 23dBm 22dBm 21dBm 0 -10 -30 -50 -5.00 5.00 freq_offset (MHz) 15.00 -60 -25.00 25.00 -10 10 -20 -30 0 -10 -30 -40 -50 -50 -15.00 -5.00 5.00 freq_offset (MHz) 15.00 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=2.6GHz and Tambient=25C 30 Spec 25dBm 24dBm 23dBm 22dBm 21dBm 20 10 0 -10 0 -20 -30 -40 -50 -50 15.00 25.00 Figure 27. SEM at Vcc=3.3V, 25C and 2.6GHz over Vcc (2dB Post-PA loss assumed) 25.00 Spec 25dBm 24dBm 23dBm 22dBm 21dBm -10 -40 -5.00 5.00 freq_offset (MHz) 15.00 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=2.7GHz and Tambient=25C 10 -30 -15.00 -5.00 5.00 freq_offset (MHz) 20 -20 -60 -25.00 -15.00 Figure 26.SEM at Vcc=3.3V, 25C and 2.5GHz over Vcc (2dB Post-PA loss assumed) Pout (dBm/MHz) 30 -60 -25.00 25.00 Figure 25. SEM at Vcc=3.3V, -30C and 2.7GHz over Vcc (2dB Post-PA loss assumed) 25.00 -20 -40 -60 -25.00 15.00 Spec 25dBm 24dBm 23dBm 22dBm 21dBm 20 Pout (dBm/MHz) 0 -5.00 5.00 freq_offset (MHz) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=2.5GHz and Tambient=25C 30 Spec 25dBm 24dBm 23dBm 22dBm 21dBm 10 -15.00 Figure 24. SEM at Vcc=3.3V, -30C and 2.6GHz over Vcc (2dB Post-PA loss assumed) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=2.7GHz and Tambient=-30C 20 Pout (dBm/MHz) -30 -50 30 Pout (dBm/MHz) -20 -40 Figure 23. SEM at Vcc=3.3V, -30C and 2.5GHz over Vcc (2dB Post-PA loss assumed) 8 0 -10 -40 -15.00 Spec 25dBm 24dBm 23dBm 22dBm 21dBm 10 -20 -60 -25.00 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=2.6GHz and Tambient=-30C 20 Pout (dBm/MHz) 30 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=2.5GHz and Tambient=-30C -60 -25.00 -15.00 -5.00 5.00 freq_offset (MHz) 15.00 25.00 Figure 28. SEM at Vcc=3.3V, 25C and 2.7GHz over Vcc (2dB Post-PA loss assumed) 20 10 Pout (dBm/MHz) 30 Spec 25dBm 24dBm 23dBm 22dBm 21dBm 0 -10 -30 -30 -50 -50 30 -5.00 5.00 freq_offset (MHz) 15.00 25.00 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=2.7GHz and Tambient=85C Spec 25dBm 24dBm 23dBm 22dBm 21dBm 20 10 Pout (dBm/MHz) -20 -40 Figure 29. SEM at Vcc=3.3V, +85C and 2.5GHz over Vcc (2dB Post-PA loss assumed) 0 -10 -20 -30 -40 -50 -60 -25.00 -15.00 -5.00 5.00 freq_offset (MHz) 15.00 25.00 Figure 31. SEM at Vcc=3.3V, +85C and 2.7GHz over Vcc (2dB Post-PA loss assumed) 9 0 -10 -40 -15.00 Spec 25dBm 24dBm 23dBm 22dBm 21dBm 10 -20 -60 -25.00 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=2.6GHz and Tambient=85C 20 Pout (dBm/MHz) 30 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=2.5GHz and Tambient=85C -60 -25.00 -15.00 -5.00 5.00 freq_offset (MHz) 15.00 25.00 Figure 30. SEM at Vcc=3.3V, +85C and 2.6GHz over Vcc (2dB Post-PA loss assumed) Evaluation Board Description Table 4. Evaluation Board Pin Description Recommended turn on sequence Top Pin No. Function Bottom Pin No. Function 1 VCC2 2 VCC2_S Apply VCC1 and VCC2 3.3V 3 B_SPLY 4 GND Apply BSPLY 3.3V 5 VCC1 6 GND Apply BCTRL 2.8V 7 NC 8 GND Apply BSW 1.8V 9 PAMOD 10 GND For HPM Apply PAMOD 1.8V for LPM Apply PAMOD 0V 11 NC 12 GND Apply RF In, not to exceed 15dBm 13 NC 14 B_SW 15 B_CTRL 16 GND 17 NC 18 GND 19 NC 20 GND Typical Test Conditions: Pin HPM LPM VCC1,2 3.3V 3.3V Supply Voltage PAMOD 1.8V 0V Low Power Mode B_SPLY 3.3V 3.3V Bias Voltage B_CTRL 2.8V 2.8V Bias Control B_SW 1.8V 1.8V PA Enable Notes: VCC1, VCC2 and B_SPLY can be tied together to reduce supply voltages, but B_CTRL needs to be a regulated voltage which is optimized for 2.8V. Demoboard Top Pins 10 Demoboard Bottom Pins Application Circuit MGA-22003 Vdd1 Vdd2 47uF 10uF 10uF 0.1uF 100pF VCC2 VCC2 1313 GND GND1414 RF In VCC1 VCC1 1515 GND GND1616 100pF 11 RF RF In In GND GND1212 22 GND GND RFRF OutOut 11 11 33 GND GND GND GND 1010 RF Out BCTRL 100pF NCNC9 9 88NC NC 100pF 77PAMOD PAMOD 100pF 66BSW BSW 0.1uF 55BSPLY BSPLY 44 BCTRL BCTRL 100pF BSPLY BSW PAMOD Using 3.3V or 5V Supply and connecting Vcc1, Vcc2, BSLPY and BCTRL Vbat R1 R2 Vcc1 Vcc2 BSPLY 3.3V Example : VBCTRL = 2.85V = BCTRL Given : R2 R1 + R2 10M R1 + 10M *VBATT *3.3V 5.0V Example : VBCTRL = 2.85V VBAT = 3.3V R2 = 10M R1 Notes: BCTRL regulates the device current, thus R1 and R2 should have good tolerance rating. If available, a voltage regulator is the preferred method of bias. In this example we set R2 at 10MOhm and solve for R1 with simple voltage divider equation. Use high resistance values to limit leakage current. VBCTRL = 2.85V = Given : R2 R1 + R2 10M R1 + 10M =? R1 = 1.58M R1 = 7.54M R2 = 10M R2 = 10M 11 *VBATT *5.0V VBCTRL = 2.85V VBAT = 5.0V R2 = 10M R1 =? Flexible BCTRL Optimization BCTRL voltage on MGA-22003 directly controls the bias current of the device. If the user requires lower current or perhaps higher power than the typical operation, then this can be accomplished by a simple BCTRL change. A more sophisticated use might include BCTRL as part of a closed loop system where software dynamically adjusts BCTRL depending on the output power required. Low Current Operation: 400mA at 25dBm Pout with BCTRL = 1.8V and VCC = 3.3V Table 5. Low Current Biasing Optimal settings for BCTRL (2.3G - 2.7G) Idd [mA] Example 1 is very typical of mobile device application where ~400mA of current consumption is required. With the above settings at full power of 25dBm, IDD drops from 500mA to 418mA with some trade-off in EVM but still meeting SEM. Idd Frequency Sweep (BCTRL = 1.4 to 2.5V) Tambient = 25C and Pout = 25dBm and Vbat = 3.3 0.480 0.460 0.440 0.420 0.400 0.380 0.360 0.340 0.320 1V4 1V6 0.300 2300.00 2400.00 1V8 2V0 2V2 2V5 2500.00 2600.00 Frequency [MHz] 2700.00 Table 6. Typical Biasing Typical settings for BCTRL (2.3G - 2.7G) VCC = BSPLY = 3.3V VCC = BSPLY = 3.3V Pout BCTRL Idd EVM Pout BCTRL Idd EVM 25dBm 1.8V 418mA -27.9dB 25dBm 2.8V 501mA -32dB 24dBm 1.7V 367mA -27.6dB 24dBm 2.8V 464mA -33dB 23dBm 1.7V 330mA -27.0dB 23dBm 2.8V 435mA -35dB Idsq x 94mA x Idsq x 240mA x Hi Power Operation: 26dBm Pout with BCTRL = 2V and VCC = 5V 3V3 3V6 4V2 5V0 -22.00 -24.00 EVM [dB] Example 2 is more typical of CPE applications where current consumption is less important and higher power is required. With BCTRL at 2V and VCC at 5V MGA-22003 is able to achieve higher than 26dBm Pout and still meet SEM. Generally as VCC increases SEM improves. -20.00 EVM Frequency Sweep (Vcc = 3.0 to 5.0V) Tambient = 25C and Pout = 26dBm -26.00 -28.00 -30.00 -32.00 -34.00 -36.00 2300 12 2400 2500 Frequency [MHz] 2600 2700 Land Pattern 11 RFOUT 4 5 6 7 8 NC BCTRL PAMOD 3 BSW GND 17 GND 10 GND 9 NC 0.300.10 0.100.10 RFIN 1 GND 2 GND 3 BCTRL 4 5 6 7 8 Figure 32. Recommended footprint Figure 33. Recommended soldermask opening VCC2 GND VCC1 GND 3.000.10 1.500.10 BCTRL 4 BSPLY 0.150.10 5 6 7 11 RFOUT 10 GND 9 NC 8 Top view through package Figure 34. Package dimensions 13 0.300.10 0.600.10 3 GND 0.200.10 GND 17 GND 12 0.300.10 2 13 NC GND 14 PAMOD 1 BSW 3.000.10 1.500.10 RFIN 15 0.550.10 GND 11 RFOUT 10 GND 9 NC Top view through package Top view through package 16 VCC2 17 GND 12 Notes: 1. All units are in millimeters 2. package is symmetrical 0.400.10 0.100.10 2 NC GND 13 PAMOD GND 14 BSW 12 15 BSPLY 1 3.000.10 RFIN 0.600.10 16 0.650.10 13 0.200.10 14 0.550.10 15 1.600.10 BSPLY 3.000.10 1.500.10 16 GND GND 1.500.10 VCC1 3.000.10 VCC2 GND VCC1 GND 3.000.10 Package Dimensions 1.00 0.10 3.00 0.10 Pin 1 Dot By Marking 22003 KAYYWW XXXX 3.00 0.10 0.64 TYPICAL TOP VIEW SIDE VIEW Note 1. All dimensions are in millimeters. 2. Dimensions are inclusive of plating. 3. Dimensions are exclusive of mold flash and metal burr. Ordering Information Part Number No. of Devices Container MGA-22003-BLK 100 Antistatic Bag MGA-22003-TR1 3000 7" Reel MGA-22003-TR2 7000 13" Reel Device Orientation REEL USER FEED DIRECTION CARRIER TAPE USER FEED DIRECTION 14 AVAGO 22003 YYWW XXXX AVAGO 22003 YYWW XXXX TOP VIEW COVER TAPE AVAGO 22003 YYWW XXXX END VIEW Tape and Reel Information Reel Dimensions W3 W2 B Size 12mm A 330 +2.0 2.0 B 1.5min. C 13.0 +0.5 0.2 D 20.2min. N 100 +3.0 0.0 W1 12.4 +3.0 0.0 W2 16.4 +2.0 2.0 A N C W3 13.65 +1.75 0.75 120 3.0 + 0 0.50 .20 10.50 W1 o1 2.00 2.000.05 4.000.10 + 0 0.10 .00 1.700.10 3.400.10 15 8.000.10 o1.50MIN 12.000.30 .50 5.500.05 o1 3.400.10 0.300.05 1.750.10 Tape Dimensions Handling and Storage tp TP CRITICAL ZONE TL TO TP RAMP UP TEMPERATURE TL tL Tsmax Tsmin ts PREHEAT RAMP DOWN 25 t 25C TO PEAK TIME Typical SMT Reflow Profile for Maximum Temperature = 260+0/-5C Profile Feature Sn-Pb Solder Pb-Free Solder Average ramp-up rate (TL to TP) 3C/sec max 3C/sec max Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (mon to max) (ts) 100C 150C 60-120 sec 100C 150C 60-180 sec Tsmax to TL - Ramp-up Rate Time maintained above: - Temperature (TL) - Time (TL) 3C/sec max 183C 60-150 sec 217C 60-150 sec Peak temperature (Tp) 240 +0/-5C 260 +0/-5C Time within 5C of actual Peak Temperature (tp) 10-30 sec 10-30 sec Ramp-down Rate 6C/sec max 6C/sec max Time 25C to Peak Temperature 6 min max 8 min max For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright (c) 2005-2012 Avago Technologies. All rights reserved. AV02-1959EN - September 6, 2012