MGA-22003
2.3-2.7 GHz 3x3mm WiMAX and WiFi Power Ampli er
Data Sheet
Description
Avago Technologies MGA-22003 linear power ampli er is
designed for mobile and  xed wireless data applications
in the 2.3 to 2.7 GHz frequency range. The PA is optimized
for IEEE 802.16 WiMAX/WiBro modulation but can be used
for any high linearity applications. The PA exhibits  at gain
and good match while providing linear power e ciency
to meet stringent mask conditions. It utilizes Avago Tech-
nologies proprietary GaAs Enhancement-mode pHEMT
technology for superior performance across voltage and
temperature levels.
The MGA-22003 is packaged in a 3x3x1 mm package for
space-constrained applications.
Applications
Portable WiMAX/WiBro and WiFi applications
WiMAX/WiBro and WiFi Access points
Functional Block Diagram
Features
Advanced GaAs E-pHEMT
50 all RF ports
9dB gain step in low power mode with Idsq reduction
Integrated CMOS compatible pins for shutdown and
low power mode
3 to 5V supply
ESD protection all ports above 800V HBM
Small size: 3 x 3 x 1 mm
Stable under all loads or conditions
-40C to +85C operation
Integrated DC blocking capacitors for Input and Ouput
pins.
Speci cations (at 2.5GHz)
Gain of 35dB
PAE of 18% at SEM compliant Pout=25dBm
Meets 802.16 masks at 25 dBm Pout, 16QAM WiMAX
with 3.3V and 512mA
16QAM WiMAX EVM < -32dB (2.5%) at 25dBm
Low power Idd, 80mA at Pout=0dBm, 9dB Gain Step
Device Marking Instruction
GND
16
RFIN
1
VCC1
15
RFOUT
11
ISMN
BIAS NETWORK
OMN
GND
14 VCC2
13
GND
12
GND
10
GND
2
GND
3
BCTRL
4N/C
9
N/C
8
BSW
6PMOD
7
BSPLY
5
“22003” = Product Code
“KA = Korea ASE
“YY = Year code indicates the year of manufacture
“WW = Workweek code indicates the workweek of manufacture
“XXXXX = Last 5 digit of assembly lot number
NC
BSPLY
BSW
PAMOD
NC
RFOUT
GND
GND
16
GND
VCC2
VCC1
17
GND
GND
GND
GND
BCTRL
RFIN
5
15
1
3
6 7 8
9
10
11
12
13
14
2
4
22003
KAYYWW
XXXXX
3mm x 3mm x 1mm
Top View
2
ELECTRICAL SPECIFICATIONS
Absolute Minimum and Maximum Ratings
Table 1. Minimum and Maximum Ratings
Parameter Speci cations
CommentsDescription Pin Min. Typical Max. Unit
Supply Voltage VCC1 VCC2 3.3 5.5 V
Bias Supply BSPLY 3.3 4.2 V
Bias Control BCTRL 2.8 4.2 V
Bias ON/OFF BSW 1.8 4.2 V
Mode Control PAMODE 1.8 4.2 V
RF Input Power RFIN 15 dBm Using 16QAM 3/4
MSL MSL3
Channel Temperature 150 °C
Storage Temperature -65 150 °C
ESD Human Body Model 800 V
Man Machine Model 50 V
Table 2. Operating Range
Parameter Speci cations
CommentsDescription Pin Min. Typical Max. Unit
Supply Voltage VCC1
VCC2
3 3.3 5 V
Bias Supply BSPLY 3 3.3 3.5 V
13 mA
Bias Control BCTRL 2.75 2.8 2.85 V
.7 uA
Bias ON/OFF BSW 1.65 1.8 2.2 V
725uA
Mode Control PAMODE 1.65 1.8 2.2 V
17 25 uA
RF Output Power RFOUT 25 dBm Using 16QAM 3/4
Frequency Range 2.3 2.7 GHz
Thermal Resistance, ch-b 23.4 °C/W Channel to board
Case Temperature -40 +85 °C
3
Table 3. RF Electrical Characteristics
Parameter
Performance
CommentsMin. Typical Max. Unit
Input Return Loss -10 dB
Gain Flatness 1 dB Over any 10MHz
Gain Variation (VCC) -1 1 dB 3V to 5V
High Power Mode EVM -32 -27 dB Vcc=3.3V
-34 -30 Vcc=3.6V
SEM-A @5.05MHz -30.6 -13 dBm/100kHz IBW=100kHz
SEM-B @6.5MHz -22.3 -13 dBm/MHz IBW=1MHz
SEM-C @10.5MHz -26.6 -19
SEM-D @11.5MHz -27.5 -25
SEM-E @15.5MHz -35.3 -29.5
SEM-F @20.5MHz -42.5 -37
Pout (SEM Compliant) +25 dBm 802.16e
Total DC Current 501 560 mA Pout=25dBm
464 Pout=24dBm
Gain 32 35 38 dB
Low Power Mode EVM -30 dB Pout=0dBm
Gain Step 8 10 15 dB
Total DC Current 70 mA Pout=0dBm
P1dB 31 dBm CW Single Tone
Psat 32 dBm CW Single Tone
2fo -12 -10 dBm/MHz 2.3-2.4GHz
-29 -27 2.5-2.7GHz
3fo -35 -27 dBm/MHz
Settling Time 0.2 0.5 uS
Icc leakage current 10 40 uA
Noise Power in Cell Band -142 dBm/Hz
Noise Power in GPS Band -133 dBm/Hz
Noise Power in PCS -137 dBm/Hz
WiMAX (802.16e) Electrical Speci cations
All data measured on an FR4 demo board at Vcc1 = Vcc2 = 3.3V, Tc = 25°C, 50 at all ports. Unless otherwise speci ed,
all data is taken with OFDM 16-QAM ¾ convolutional coding modulated signal per IEEE 802.16e with 10MHz BW operat-
ing over the BW of 2.3GHz to 2.7GHz.
4
Selected performance plots
Figure 1. EVM Frequency Sweep at 25C and Pout=25dBm over Vcc Figure 2. EVM Frequency Sweep at 25C and Pout=26dBm over Vcc
Figure 3. EVM Frequency Sweep at Vcc=3.3V and Pout=25dBm over Tambient Figure 4. EVM Power Sweep at Vcc=3.3V and 25C over Frequency
Figure 5. EVM Power Sweep at Vcc=3.3V and -30C over Frequency Figure 6. EVM Power Sweep at Vcc=3.3V and +85C over Frequency
EVM Frequency Sweep (Vcc=3.0 to 5.0V)
Tambient=25C and Pout=25dBm
-40
-38
-36
-34
-32
-30
-28
-26
-24
-22
-20
2300 2400 2500 2600 2700
Frequency (MHz)
EVM (dB)
3V0
3V3
3V6
4V2
5V0
EVM Frequency Sweep (Vcc=3.0 to 5.0V)
Tambient=25C and Pout=26dBm
-36.00
-34.00
-32.00
-30.00
-28.00
-26.00
-24.00
-22.00
-20.00
2300 2400 2500 2600 2700
Frequency (MHz)
EVM (dB)
EVM Frequency Sweep (Tambient=-30C to +85C)
Vcc=3.3V and Pout=25dBm
-40
-38
-36
-34
-32
-30
-28
-26
-24
-22
-20
2300 2400 2500 2600 2700
Frequency (MHz)
EVM (dB)
-30C
25C
+85C
EVM Power Sweep (Freq=2.3 to 2.7GHz)
Tambient=25C and Vcc=3.3V
-44.00
-42.00
-40.00
-38.00
-36.00
-34.00
-32.00
-30.00
-28.00
-26.00
-24.00
-22.00
-20.00
20.0 21.0 22.0 23.0 24.0 25.0 26.0
Pout (dBm)
EVM (dB)
EVM Power Sweep (Freq=2.3 to 2.7GHz)
Tambient=-30C and Vcc=3.3V
-44.00
-42.00
-40.00
-38.00
-36.00
-34.00
-32.00
-30.00
-28.00
-26.00
-24.00
-22.00
-20.00
20.0 21.0 22.0 23.0 24.0 25.0 26.0
Pout (dBm)
EVM (dB)
EVM Power Sweep (Freq=2.3 to 2.7GHz)
Tambient=+85C and Vcc=3.3V
-44.00
-42.00
-40.00
-38.00
-36.00
-34.00
-32.00
-30.00
-28.00
-26.00
-24.00
-22.00
-20.00
20.0 21.0 22.0 23.0 24.0 25.0 26.0
Pout (dBm)
EVM (dB)
3V0
3V3
3V6
4V2
5V0
2.3GHz
2.4GHz
2.5GHz
2.6GHz
2.7GHz
2.3GHz
2.4GHz
2.5GHz
2.6GHz
2.7GHz2.3GHz
2.4GHz
2.5GHz
2.6GHz
2.7GHz
5
Gain Frequency Sweep (Vcc=3.0 to 5.0V)
Tambient=25C and Pout=25dBm
32
33
34
35
36
37
38
39
40
2300 2400 2500 2600 2700
Frequency (MHz)
Gain (dB)
Gain Frequency Sweep (Tambient=-30C to +85C)
Vcc=3.3V and Pout=25dBm
32
33
34
35
36
37
38
39
40
2300 2400 2500 2600 2700
Frequency (MHz)
Gain (dB)
Gain Power Sweep (Freq=2.3 to 2.7GHz)
Tambient=25C and Vcc=3.3V
32.00
33.00
34.00
35.00
36.00
37.00
38.00
39.00
40.00
20.0 21.0 22.0 23.0 24.0 25.0 26.0
Pout (dBm)
Gain (dB)
Gain Power Sweep (Freq=2.3 to 2.7GHz)
Tambient=-30C and Vcc=3.3V
32.00
33.00
34.00
35.00
36.00
37.00
38.00
39.00
40.00
20.0 21.0 22.0 23.0 24.0 25.0 26.0
Pout (dBm)
Gain (dB)
Gain Power Sweep (Freq=2.3 to 2.7GHz)
Tambient=+85C and Vcc=3.3V
32.00
33.00
34.00
35.00
36.00
37.00
38.00
39.00
40.00
20.0 21.0 22.0 23.0 24.0 25.0 26.0
Pout (dBm)
Gain (dB)
0.4
0.42
0.44
0.46
0.48
0.5
0.52
0.54
0.56
0.58
0.6
2300 2400 2500 2600 2700
Frequency (MHz)
Itotal (A)
3V0
3V3
3V6
4V2
5V0 -30C
25C
+85C
2.3GHz
2.4GHz
2.5GHz
2.6GHz
2.7GHz
2.3GHz
2.4GHz
2.5GHz
2.6GHz
2.7GHz
2.3GHz
2.4GHz
2.5GHz
2.6GHz
2.7GHz
3V0
3V3
3V6
4V2
5V0
Total Current Frequency Sweep (Vcc=3.0 to 5.0V)
Tambient=25C and Pout=25dBm
Figure 7. Gain Frequency Sweep at 25C and Pout=25dBm over Vcc Figure 8. Gain Frequency Sweep at Vcc=3.3V and Pout=25dBm over Tambient
Figure 9. Gain Power Sweep at Vcc=3.3V and 25C over Pout Figure 10. Gain Power Sweep at Vcc=3.3V and -30C over Pout
Figure 11. Gain Power Sweep at Vcc=3.3V and -+85C over Pout Figure 12. Total Current Frequency Sweep at 25C and Pout=25dBm over Vcc
6
Figure 13. Total Current Frequency Sweep at 3.3V and Pout=25dBm over
Tambient
Figure 14. Total Current Power Sweep at 3.3V and 25C over Frequency
Figure 15. Total Current Power Sweep at 3.3V and -30C over Frequency Figure 16. Total Current Power Sweep at 3.3V and +85C over Frequency
Total Current Frequency Sweep (Tambient=-30C to +85C)
Vcc=3.3V and Pout=25dBm
0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
2300 2400 2500 2600 2700
Frequency (MHz)
Itotal (A)
Total Current Power Sweep (Freq=2.3 to 2.7GHz)
Tambient=25C and Vcc=3.3V
0.30
0.34
0.38
0.42
0.46
0.50
0.54
0.58
0.62
20.0 21.0 22.0 23.0 24.0 25.0 26.0
Pout (dBm)
Itotal (A)
Total Current Power Sweep (Freq=2.3 to 2.7GHz)
Tambient=-30C and Vcc=3.3V
0.30
0.34
0.38
0.42
0.46
0.50
0.54
0.58
0.62
20.0 21.0 22.0 23.0 24.0 25.0 26.0
Pout (dBm)
Itotal (A)
Total Current Power Sweep (Freq=2.3 to 2.7GHz)
Tambient=+85C and Vcc=3.3V
0.300
0.340
0.380
0.420
0.460
0.500
0.540
0.580
0.620
20.0 21.0 22.0 23.0 24.0 25.0 26.0
Pout (dBm)
Itotal (A)
2.3GHz
2.4GHz
2.5GHz
2.6GHz
2.7GHz
-30C
25C
+85C
2.3GHz
2.4GHz
2.5GHz
2.6GHz
2.7GHz2.3GHz
2.4GHz
2.5GHz
2.6GHz
2.7GHz
7
Figure 17. SEM Frequency Sweep at Vcc=3.3V and 25C (2dB Post-PA loss assumed) Figure 18. SEM Frequency Sweep at Vcc=3.6V and 25C (2dB Post-PA loss assumed)
Figure 19. SEM Frequency Sweep at Vcc=4.2V and 25C (2dB Post-PA loss assumed) Figure 20.SEM at Vcc=3.3V, 25C and 2.5GHz over Vcc (2dB Post-PA loss assumed)
Figure 21. SEM at Vcc=3.3V, 25C and 2.6GHz over Vcc (2dB Post-PA loss assumed) Figure 22. SEM at Vcc=3.3V, 25C and 2.7GHz over Vcc (2dB Post-PA loss assumed)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Pout=25dBm, Vcc=3.3V and Tambient=25C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset (MHz)
Pout (dBm/MHz)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Pout=25dBm, Vcc=3.6V and Tambient=25C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset (MHz)
Pout (dBm/MHz)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Pout=25dBm, Vcc=4.2V and Tambient=25C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset (MHz)
Pout (dBm/MHz)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Pout=25dBm, Freq=2.5GHz and Tambient=25C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset (MHz)
Pout (dBm/MHz)
Spec
3V0
3V3
3V6
4V2
5V0
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Pout=25dBm, Freq=2.6GHz and Tambient=25C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset (MHz)
Pout (dBm/MHz)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Pout=25dBm, Freq=2.7GHz and Tambient=25C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset (MHz)
Pout (dBm/MHz)
Spec
2.5GHz
2.6GHz
2.7GHz
Spec
2.5GHz
2.6GHz
2.7GHz
Spec
2.5GHz
2.6GHz
2.7GHz
Spec
3V0
3V3
3V6
4V2
5V0
Spec
3V0
3V3
3V6
4V2
5V0
8
Figure 23. SEM at Vcc=3.3V, -30C and 2.5GHz over Vcc (2dB Post-PA loss assumed) Figure 24. SEM at Vcc=3.3V, -30C and 2.6GHz over Vcc (2dB Post-PA loss assumed)
Figure 25. SEM at Vcc=3.3V, -30C and 2.7GHz over Vcc (2dB Post-PA loss assumed) Figure 26.SEM at Vcc=3.3V, 25C and 2.5GHz over Vcc (2dB Post-PA loss assumed)
Figure 27. SEM at Vcc=3.3V, 25C and 2.6GHz over Vcc (2dB Post-PA loss assumed) Figure 28. SEM at Vcc=3.3V, 25C and 2.7GHz over Vcc (2dB Post-PA loss assumed)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=2.5GHz and Tambient=-30C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset (MHz)
Pout (dBm/MHz)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=2.6GHz and Tambient=-30C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset (MHz)
Pout (dBm/MHz)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=2.7GHz and Tambient=-30C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset (MHz)
Pout (dBm/MHz)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=2.5GHz and Tambient=25C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset (MHz)
Pout (dBm/MHz)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=2.6GHz and Tambient=25C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset (MHz)
Pout (dBm/MHz)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=2.7GHz and Tambient=25C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset (MHz)
Pout (dBm/MHz)
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
9
Figure 29. SEM at Vcc=3.3V, +85C and 2.5GHz over Vcc (2dB Post-PA loss assumed) Figure 30. SEM at Vcc=3.3V, +85C and 2.6GHz over Vcc (2dB Post-PA loss assumed)
Figure 31. SEM at Vcc=3.3V, +85C and 2.7GHz over Vcc (2dB Post-PA loss assumed)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=2.5GHz and Tambient=85C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset (MHz)
Pout (dBm/MHz)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=2.6GHz and Tambient=85C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset (MHz)
Pout (dBm/MHz)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=2.7GHz and Tambient=85C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset (MHz)
Pout (dBm/MHz)
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
10
Table 4. Evaluation Board Pin Description
Top Pin No. Function
1 VCC2
3 B_SPLY
5 VCC1
7 NC
9 PAMOD
11 NC
13 NC
15 B_CTRL
17 NC
19 NC
Bottom Pin No. Function
2 VCC2_S
4 GND
6 GND
8 GND
10 GND
12 GND
14 B_SW
16 GND
18 GND
20 GND
Recommended turn on sequence
 Apply VCC1 and VCC2 3.3V
 Apply BSPLY 3.3V
 Apply BCTRL 2.8V
 Apply BSW 1.8V
 For HPM Apply PAMOD 1.8V for LPM Apply PAMOD 0V
 Apply RF In, not to exceed 15dBm
Typical Test Conditions:
Pin HPM LPM
VCC1,2 3.3V 3.3V Supply Voltage
PAMOD 1.8V 0V Low Power Mode
B_SPLY 3.3V 3.3V Bias Voltage
B_CTRL 2.8V 2.8V Bias Control
B_SW 1.8V 1.8V PA Enable
Notes: VCC1, VCC2 and B_SPLY can be tied together to reduce supply
voltages, but B_CTRL needs to be a regulated voltage which is optimized
for 2.8V.
Evaluation Board Description
Demoboard Top Pins Demoboard Bottom Pins
11
Application Circuit MGA-22003
1 RF In
2 GND
3 GND
4 BCTRL
GND 12
RF Out 11
GND 10
NC 9
BCTRL
RF In
RF Out
100pF
GND 16
VCC1 15
GND 14
VCC2 13
5 BSPLY
6 BSW
7 PAMOD
8 NC
100pF
BSPLY BSW PAMOD
Vdd1
100pF
Vdd2
100pF
100pF0.1uF
100pF
0.1uF
10uF
47uF
10uF
1 RF In
2 GND
3 GND
4 BCTRL
GND 12
RF Out 11
GND 10
NC 9
RF Out
GND 16
VCC1 15
GND 14
VCC2 13
5 BSPLY
6 BSW
7 PAMOD
8 NC
Using 3.3V or 5V Supply and connecting Vcc1, Vcc2, BSLPY and BCTRL
Notes: BCTRL regulates the device current, thus R1 and R2 should have
good tolerance rating. If available, a voltage regulator is the preferred
method of bias.
In this example we set R2 at 10MOhm and solve for R1 with simple voltage
divider equation. Use high resistance values to limit leakage current.
Vbat
Vcc1 Vcc2 BSPLY
R1
R2
BCTRL
3.3V Example :
R2
VBCTRL = *VBATT
R1 + R2
10M
2.85V = *3.3V
R1 + 10M
R1 = 1.58M
R2 = 10M
Given :
VBCTRL = 2.85V
VBAT = 3.3V
R2 = 10M
R1 = ?
5.0V Example :
R2
VBCTRL = *VBATT
R1 + R2
10M
2.85V = *5.0V
R1 + 10M
R1 = 7.54M
R2 = 10M
Given :
VBCTRL = 2.85V
VBAT = 5.0V
R2 = 10M
R1 = ?
12
Flexible BCTRL Optimization
BCTRL voltage on MGA-22003 directly controls the bias current of the device. If the user requires lower current or
perhaps higher power than the typical operation, then this can be accomplished by a simple BCTRL change. A more
sophisticated use might include BCTRL as part of a closed loop system where software dynamically adjusts BCTRL
depending on the output power required.
Low Current Operation: 400mA at 25dBm Pout with
BCTRL = 1.8V and VCC = 3.3V
Example 1 is very typical of mobile device application
where ~400mA of current consumption is required. With
the above settings at full power of 25dBm, IDD drops from
500mA to 418mA with some trade-o in EVM but still
meeting SEM.
Table 5. Low Current Biasing
Optimal settings for BCTRL (2.3G - 2.7G)
VCC = BSPLY = 3.3V
Pout BCTRL Idd EVM
25dBm 1.8V 418mA -27.9dB
24dBm 1.7V 367mA -27.6dB
23dBm 1.7V 330mA -27.0dB
Idsq x 94mA x
Table 6. Typical Biasing
Typical settings for BCTRL (2.3G - 2.7G)
VCC = BSPLY = 3.3V
Pout BCTRL Idd EVM
25dBm 2.8V 501mA -32dB
24dBm 2.8V 464mA -33dB
23dBm 2.8V 435mA -35dB
Idsq x 240mA x
Hi Power Operation: 26dBm Pout with
BCTRL = 2V and VCC = 5V
Example 2 is more typical of CPE applications where cur-
rent consumption is less important and higher power is
required. With BCTRL at 2V and VCC at 5V MGA-22003 is
able to achieve higher than 26dBm Pout and still meet
SEM. Generally as VCC increases SEM improves.
EVM Frequency Sweep (Vcc = 3.0 to 5.0V)
Tambient = 25C and Pout = 26dBm
-36.00
-34.00
-32.00
-30.00
-28.00
-26.00
-24.00
-22.00
-20.00
2300 2400 2500 2600 2700
Frequency [MHz]
EVM [dB]
3V3
3V6
4V2
5V0
Idd Frequency Sweep (BCTRL = 1.4 to 2.5V)
Tambient = 25C and Pout = 25dBm and Vbat = 3.3
0.300
0.320
0.340
0.360
0.380
0.400
0.420
0.440
0.460
0.480
2300.00 2400.00 2500.00 2600.00 2700.00
Frequency [MHz]
Idd [mA]
1V4 1V6 1V8 2V0 2V2 2V5
13
Land Pattern
Figure 32. Recommended footprint Figure 33. Recommended soldermask opening
3.00±0.10
1.50±0.10
Top view through package
3.00±0.10
1.50±0.10
0.55±0.10
0.30±0.10
0.60±0.10
0.20±0.10
0.10±0.10
NCBCTRL 94
BSPLY
5
BSW
PAMOD
67
NC
8
RFOUT
15
RFIN
GND
GND
1
3
2
16
GND
VCC2
VCC1
17
14
GND
13
GND12
10
11
GND
GND
3.00±0.10
3.00±0.10
0.30±0.10
1.50±0.10
0.15±0.10
1.50±0.10
Top view through package
0.30±0.10
0.20±0.10
0.60±0.10
NC
94
5678
RFOUT
15
GND
GND
1
3
2
16
GND
VCC2
VCC1
17
14
GND
13
GND
12
10
11
GND
GND
BCTRL
RFIN
BSPLY
BSW
PAMOD
NC
Figure 34. Package dimensions
Notes:
1. All units are in millimeters
2. package is symmetrical
3.00±0.10
Top view through package
3.00±0.10
0.65±0.10
0.40±0.10
1.60±0.10
0.55±0.10
0.10±0.10
NCBCTRL94
5678
RFOUT
15
RFIN
GND
GND
1
3
2
16
GND
VCC2
VCC1
17
14
GND
13
GND12
10
11
GND
GND
BSPLY
BSW
PAMOD
NC
14
Note
1. All dimensions are in millimeters.
2. Dimensions are inclusive of plating.
3. Dimensions are exclusive of mold  ash and metal burr.
Package Dimensions
Ordering Information
Part Number No. of Devices Container
MGA-22003-BLK 100 Antistatic Bag
MGA-22003-TR1 3000 7" Reel
MGA-22003-TR2 7000 13" Reel
Pin 1 Dot
By Marking
3.00 ± 0.10
3.00 ± 0.10
22003
KAYYWW
XXXX
0.64 TYPICAL
1.00 ± 0.10
TOP VIEW SIDE VIEW
Device Orientation
USER FEED DIRECTION
TOP VIEW END VIEW
USER
FEED
DIRECTION COVER TAPE
CARRIER
TAPE
REEL
AVAGO
22003
YYWW
XXXX
AVAGO
22003
YYWW
XXXX
AVAGO
22003
YYWW
XXXX
15
Tape and Reel Information
Reel Dimensions
3.40±0.10
1.70±0.10
3.40±0.10
0.30±0.05
12.00±0.30
5.50±0.05
4.00±0.102.00±0.05
1.75±0.10
8.00±0.10 ø1.50MIN
ø1.50 +0.10
0.00
B
A
N
C
W3
W2
W1
ø13.0
+0.50
0.20
120°
2.00
10.50
Size
A
B 1.5min.
C
D 20.2min.
N
W1
W2
12mm
W3
330 +2.0
2.0
13.0
+0.5
0.2
100 +3.0
0.0
12.4
+3.0
0.0
16.4
+2.0
2.0
13.65 +1.75
0.75
Tape Dimensions
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved.
AV02-1959EN - September 6, 2012
Handling and Storage
Typical SMT Re ow Pro le for Maximum Temperature = 260+0/-5°C
Pro le Feature Sn-Pb Solder Pb-Free Solder
Average ramp-up rate (TL to TP) 3°C/sec max 3°C/sec max
Preheat
Temperature Min (Tsmin)
Temperature Max (Tsmax)
Time (mon to max) (ts)
100°C
150°C
60-120 sec
100°C
150°C
60-180 sec
Tsmax to TL
– Ramp-up Rate 3°C/sec max
Time maintained above:
– Temperature (TL)
– Time (TL)
183°C
60-150 sec
217°C
60-150 sec
Peak temperature (Tp) 240 +0/-5°C 260 +0/-5°C
Time within 5°C of actual Peak Temperature (tp) 10-30 sec 10-30 sec
Ramp-down Rate 6°C/sec max 6°C/sec max
Time 25°C to Peak Temperature 6 min max 8 min max
TIME
TEMPERATURE
tp
t 25°C TO PEAK
ts
PREHEAT
TL
TP
Tsmax
Tsmin
tL
CRITICAL ZONE
TL TO TP
RAMP UP
RAMP DOWN
25