VCC VB
VS
HO
LOCOM
HIN
LIN
LIN
HIN
up to 600 V
TO
LOAD
VCC
Typical Connection
HALF-BRIDGE DRIVER
Features
Floating channel designed for bootstrap operation
Fully operational to +600 V
Tolerant to negative transient voltage, dV/dt
immune
Gate drive supply range from 10 V to 20 V
Undervoltage lockout for both channels
3.3 V, 5 V, and 15 V input logic compatible
Cross-conduction prevention logic
Matched propagation delay for both channels
Outputs in phase with inputs
Logic and power ground +/- 5 V offset.
Internal 540 ns deadtime
Lower di/dt gate driver for better
noise immunity
DS No.PD60266 Rev A
IRS2308(S)PbF
www.irf.com 1
(Refer to L ead Assignments for correct pin configuration). This diagram shows electrical connections only.
Please refer to our Application Notes and DesignTips for proper circuit board layout.
Description
The IRS2308/IRS23084 are high volt-
age, high speed power MOSFET and
IGBT drivers with dependent high and
low side referenced output channels.
Proprietary HVIC and latch immune
CMOS technologies enable ruggedized
monolithic construction. The logic input
is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high
pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used
to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 V.
Packages
8-Lead SOIC
IRS2308S 8-Lead PDIP
IRS2308
Part Input
logic
Cross-
conduction
prevention
logic
Deadtime
(ns) Ground Pins Ton/Toff
(ns)
2106 COM
21064 HIN/LIN no none VSS/COM 220/200
2108 Internal 540 COM
21084 HIN/LIN yes Programmable 540 - 5000 VSS/COM 220/200
2109 Internal 540 COM
21094 IN/SD yes Programmable 540 - 5000 VSS/COM 750/200
Feature Comparison
2304 HIN/LIN yes Internal 100 COM 160/140
2308 HIN/LIN yes Internal 540 COM 220/200
IRS2308(S)PbF
www.irf.com 2
Symbol Definition Min. Max. Units
VBHigh side floating absolute voltage -0.3 625
VSHigh side floating supply offset voltage VB - 25 VB + 0.3
VHO High side floating output voltage VS - 0.3 VB + 0.3
VCC Low side and logic fixed supply voltage -0.3 25
VLO Low side output voltage -0.3 VCC + 0.3
VIN Logic input voltage (HIN & LIN ) VSS - 0.3 VCC + 0.3
dVS/dt Allowable offset supply voltage transient 50 V/ns
PDPackage power dissipation @ TA +25 °C(8 lead PDIP) 1.0
(8 lead SOIC) 0.625
RthJA Thermal resistance, junction to ambient (8 lead PDIP) 125
(8 lead SOIC) 200
TJJunction temperature 150
TSStorage temperature -50 150
TLLead temperature (soldering, 10 seconds) 300
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
V
°C
°C/W
W
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset rating are tested with all supplies biased at a 15 V differential.
VB High side floating supply absolute voltage VS + 10 VS + 20
VS
High side floating supply offset voltage Note 1 600
VHO High side floating output voltage VSVB
VCC Low side and logic fixed supply voltage 10 20
VLO Low side output voltage 0 VCC
VIN Logic input voltage COM VCC
TAAmbient temperature -40 125
V
Symbol Definition Min. Max. Units
°C
www.irf.com 3
IRS2308(S)PbF
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, VSS = COM, DT= VSS and TA = 25 °C unless otherwise specified. The VIL, V IH, and IIN param-
eter s are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO, and Ron
parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol Definition Min. Typ. Max. Units Test Conditions
VIH Logic “1” input voltage for HIN & LIN 2.5
VIL Logic “0” input voltage for HIN & LIN 0.8
VOH High level output voltage, VBIAS - VO 0.05 0.2
VOL Low level output voltage, VO 0.02 0.1
ILK Offset supply leakage current 50 VB = VS = 600 V
IQBS Quiescent VBS supply current 20 60 150
IQCC Quiescent VCC supply current 0.4 1.0 1.6 mA
IIN+ Logic “1” input bias current 5 2 0 HIN = 5 V, LIN = 5 V
IIN- Logic “0” input bias current 1 2 HIN = 0 V, LIN = 0 V
VCCUV+ VCC and VBS supply undervoltage positive going 8.0 8.9 9.8
VBSUV+ threshold
VCCUV- VCC and VBS supply undervoltage negative going 7.4 8.2 9.0
VBSUV- threshold
VCCUVH Hysteresis 0.3 0.7
VBSUVH
IO+ Output high short circuit pulsed curren 200 290 — VO = 0 V,
PW10 µs
IO- Output low short circuit pulsed current 420 600 VO = 15 V,
PW10 µs
V
µA
µA
V
mA
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 °C, DT = VSS unless otherwise specified.
Symbol Definition Min. Typ. Max. Units Test Conditions
ton Turn-on propagation delay 220 300 VS = 0 V
toff Turn-off propagation delay 200 280 VS = 0 V or 600 V
MT Delay matching | ton - toff |—046
trTurn-on rise time 100 220
tfTurn-off fall time 35 80
DT Deadtime: LO turn-off to HO turn-on(DTLO-HO) & 400 540 680
HO turn-off to LO turn-on (DTHO-LO)
MDT Deadtime matching = | DTLO-HO - DTHO-LO |—060
ns VS = 0 V
VCC = 10 V to 20 V
IO = 2 mA
VIN = 0 V or 5 V
IRS2308(S)PbF
www.irf.com 4
Functional Block Diagram
IR2308
LIN
UV
DETECT
DELAY COM
LO
VCC
HIN
DT
VSS
VS
HO
VB
PULSE
FILTER
HV
LEVEL
SHIFTER
R
R
S
Q
UV
DETECT
DEADTIME &
SHOOT-THROUGH
PREVENTION
PULSE
GENERATOR
VSS/COM
LEVEL
SHIFT
VSS/COM
LEVEL
SHIFT
www.irf.com 5
IRS2308(S)PbF
Lead Definitions
Symbol Description
HIN Logic input for high side gate driver output (HO), in phase
LIN Logic input for low side gate driver output (LO), in phase
VBHigh side floating supply
HO High side gate driver output
VSHigh side floating supply return
VCC Low side and logic fixed supply
LO Low side gate driver output
COM Low side return
Lead Assignments
8 Lead PDIP 8 Lead SOIC
IRS2308PbF IRS2308SPbF
1
2
3
4
8
7
6
5
VCC
HIN
LIN
COM
VB
HO
VS
LO
1
2
3
4
8
7
6
5
VCC
HIN
LIN
COM
VB
HO
VS
LO
IRS2308(S)PbF
www.irf.com 6
Figure 1. Input/Output Timing Diagram Figure 2. Switching Time Waveform Definitions
Figure 3. Deadtime Waveform Definitions
HO
LO
HIN
LIN
LIN
HIN
50% 50%
tr
ton tf
toff
HO
LO
90% 90%
10% 10%
HIN
LIN
HO
90%
10%
LO 90%
10%
DTLO-HO
DTLO-HO
MDT= - DT
HO-LO
DTHO-LO
50
%50
%
www.irf.com 7
IRS2308(S)PbF
0
100
200
300
400
500
-50-250 255075100125
Temperature(
o
C)
Turn-on D elay Time (ns
Figure 4A. Turn-On Time
vs. Temperat ure
0
100
200
300
400
500
10 12 14 16 18 20
V
BIAS
Supply Vol tage (V)
Turn-on Delay Time (ns
Figure 4B. Turn-On Time
vs. Supply Volta ge
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature(
o
C)
T urn-Off Time (ns
)
Figure 5A. Turn-Off Propagation Delay
vs. Temperature
0
100
200
300
400
500
10 12 14 16 18 20
V
BIAS
Supply Voltage (V)
Turn-Off Tim e (ns
)
Figure 5 B. Turn-Off P ropagation Delay vs.
Supply Voltage
Max. Typ.
Max.
Typ.
Max.
Typ.
Max.
Typ.
Figure 4A. T urn-On Time
vs. Temperature Figure 4B. T urn-On Time
vs. Supply V oltage
Temperature (oC) VBIAS Supply Voltage (V)
Turn-On Delay Time (ns)
Turn-On Delay Time (ns)
Figure 5A. T urn-Off Propagation Delay
vs. Temperature Figure 5B. T urn-Off Propagation Delay
vs. Supply V oltage
Turn-Off Time (ns)
Turn-Off Time (ns)
Temperature (oC) VBIAS Supply Voltage (V)
IRS2308(S)PbF
www.irf.com 8
Turn-On Rise Time (ns)
Temperature (oC)
Turn-Off Fall Time (ns)
VBIAS Supply Voltage (V)
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (oC)
Figure 6A . Turn-On Rise Time
vs.Tem perature
0
100
200
300
400
500
10 12 14 16 18 20
VBIAS Supply Voltage (V)
T u rn -O n R ise Tim e ( ns)
Figure 6B. Turn-On Rise Time
vs. Supply Volta g e
0
50
100
150
200
-50 -25 0 25 50 75 100 125
Temperature(oC)
Figure 7A . Turn-Off Fall Time
vs. Tem perature
0
50
100
150
200
10 12 14 16 18 20
Input Voltage (V)
T u rn -O ff F a l l Time
Figure 7B. Turn-Off Fall Time
vs. Input volta g e
Figure 6B. T urn-On Rise Time
vs. Supply V oltage
Figure 6A. T urn-On Rise Time
vs. Temperature
Figure 7B. T urn-Off Fall Time
vs. Supply V oltage
Figure 7A. T urn-Off Fall Time
vs. Temperature
Max.
Typ.
Typ.
Max.
Turn-On Rise Time (ns)
Turn-Off Fall Time (ns)
Max.
Typ.
Max.
Typ.
www.irf.com 9
IRS2308(S)PbF
200
400
600
800
1000
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
D eadtim e ( ns
)
Figure 8A. Deadtime vs. Temperature
200
400
600
800
1000
10 12 14 16 18 20
V
BIAS
Supply Voltage (V)
D eaduime
(ns)
Figure 8B. Deadtime vs Supply Voltage
1
2
3
4
5
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Input Voltage (V)
Figure 9A. Logic "1" Input Voltage
vs. Temperature
1
2
3
4
5
10 12 14 16 18 20
V
BIAS
Supply Voltage (V)
Inp u t Vo ltag e (V )
Figure 9B. Logic "1" Input Voltage
vs. Supply Voltage
Max.
Min.Min.
Typ.
Max.
Typ.
Min.
Min.
Deadtime (ns)
Deadtime (ns)
Temperature (oC) VBIAS Supply Voltage (V)
Figure 8A. Deadtime vs. Temperature Figure 8A. Deadtime vs. Supply V oltage
Input Voltage (V)
Input Voltage (V)
VBIAS Supply Voltage (V)
Figure 9A. Logic “1” Input V oltage
vs. Temperature Figure 9B. Logic “1” Input V oltage
vs. Supply V oltage
Temperature (oC)
IRS2308(S)PbF
www.irf.com 10
0
1
2
3
4
-50-250 255075100125
Temperatre (
o
C)
Inp u t Vo ltag e ( V )
Figure 10A . Logic "0 " Input Voltage
vs. Temperature
0
1
2
3
4
10 12 14 16 18 20
V
BIAS
Sup p l y Voltag e (V)
Inp u t Vo ltag e ( V )
Figure 10B. Logic "0" Input Voltage
vs. Supply Voltage
0.0
0.1
0.2
0.3
0.4
0.5
10 12 14 16 18 20
V
BAIS
Supp ly Voltage (V)
H igh Level Output Voltage ( V)
Figure 11B. High Lovel Output Voltage
vs. Supply Voltage
0.0
0.1
0.2
0.3
0.4
0.5
-50 -25 0 25 50 75 100 125
T emperature (
o
C)
H igh Level Output Voltage ( V)
Figure 11A. High Lev el O utput Voltage
vs. Temperature
Max.
Max.
Typ.
Max.
Typ.
Max.
Figure 10A. Logic “0” Input V oltage
vs. Temperature
Input Voltage (V)
High Level Output Voltage (V)
Figure 11A. High Level Output V oltage
vs. Temperature
Input Voltage (V)
High Level Output Voltage (V)
Temperature (oC) VBIAS Supply Voltage (V)
VBIAS Supply Voltage (V)
Temperature (oC)
Figure 10A. Logic “0” Input V oltage
vs. Supply V oltage
Figure 11A. High Level Output V oltage
vs. Supply V oltage
www.irf.com 11
IRS2308(S)PbF
0.0
0.1
0.2
0.3
0.4
0.5
-50 -25 0 25 50 75 100 125
Temperature (oC)
Low Le vel Output Voltage (V)
Figure 12A. Lo w Level Output Voltage
vs.Temperature
0
0.1
0.2
0.3
0.4
0.5
10 12 14 16 18 20
V
BIAS
Supply Vol tage (V)
Low Le vel Output Voltage ( V)
Figure 12B. Low Level Output Voltage
vs. Supply Voltage
0
60
120
180
240
300
-50-25 0 25 50 75100125
Temperature (
o
C)
Offset Supply Leakage Cur ren t (
µA)
Figure 13A. Offset Supply Leakage
Current vs. Temperature
0
60
120
180
240
300
0 100 200 300 400 500 600
V
B
Boost Voltage (V)
Offset Supply Leakage currentt( ((µ
Figure 1 3B. Offset Supply Leakage
Current vs. Supply Voltage
Max. Max.
Max. Typ.
Max.
Typ.
Low Level Output Voltage (V)
Offset Supply Leakage Current (µA)
Offset Supply Leakage CurrentA)
Temperature (oC) VBIAS Supply Voltage (V)
VB Boost Voltage (V)
Temperature (oC)
Low Level Output Voltage (V)
Figure 12A. Low Level Output V oltage
vs. Temperature Figure 12B. Low Level Output V oltage
vs. Supply V oltage
Offset Supply Leakage Current (µA)
Figure 13A. Offset Supply Leakage Current
vs. Temperature Figure 13A. Offset Supply Leakage Current
vs. Supply V oltage
IRS2308(S)PbF
www.irf.com 12
0
60
120
180
240
300
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
V
BS
Supply Current (
µΑ)
Figure 14A. V
BS
S upply Current
vs. Temperature
0
60
120
180
240
300
10 12 14 16 18 20
V
BS
Supply Voltage (V)
V
BS
Supp ly C ur r en t (
µΑ)
Figure 14B. V
BS
Suppl y Current
vs. S upply Voltage
0.0
0.6
1.2
1.8
2.4
3.0
-50 -25 0 25 50 75 100 125
T emperature (
o
C)
V
CC
Su pp ly Curren t (m
Α)
Figure 15A. V
CC
S upply Current
vs. Temperature
0
0.6
1.2
1.8
2.4
3
10 12 14 16 18 20
V
CC
Supply Vol tage (V)
V
CC
Supply C ur r e nt ( m
Α)
Figure 15B . V
CC
S upply Current
vs. Supply Voltage
Max.
Typ.
Max.
Typ.
Max.
Typ.
Max.
Typ.
Min. Min.
Min. Min.
Figure 14A. VBS Supply Current
vs. Temperature
VBS Supply Current A)
Temperature (oC)
Temperature (oC)
VBS Supply Voltage (V)
VCC Supply Voltage (V)
VBS Supply Current A)
Figure 14B. VBS Supply Current
vs. Supply V oltage
VCC Supply Current (mA)
VCC Supply Current (mA)
Figure 15A. VCC Supply Current
vs. Temperature Figure 14B. VCC Supply Current
vs. Supply V oltage
www.irf.com 13
IRS2308(S)PbF
0
10
20
30
40
50
-50 -25 0 25 50 75 100 125
Logic "1" Input C ur r en t (
µA)
Figure 1 6A. Logi c " 1 " Input Cu rrent
vs. Temperature
Temperature (
o
C)
0
10
20
30
40
50
10 12 14 16 18 20
VCC Supp l y Voltage (V)
Logic "1" Input C ur r en t (
µΑ)
Figure 16B. Logic "1" Input Current
v s. Suppl y Volta ge
0
1
2
3
4
5
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Logic "0" Input C ur r en t (
µΑ)
Figure 17A. Logic "0" Input Current
vs. Temperature
0
1
2
3
4
5
10 12 14 16 18 20
VCC
Su pply Voltage (V)
Logic "0" Input C ur r en t (
µΑ)
Figure 17B. Logic "0" Input Current
v s. Suppl y Volta ge
Max.
Typ.
Max.
Typ.
Max.
Typ.
Max.
Typ.
Figure 16A. Logic “1” Input Current
vs. Temperature
Logic “1” Input Current A)
Temperature (oC) VCC Supply Voltage (V)
Logic “1” Input Current A)
Logic “0” Input Current A)
Logic “0” Input Current A)
Temperature (oC) VCC Supply Voltage (V)
Figure 16B. Logic “1” Input Current
vs. Supply V oltage
Figure 17A. Logic “0” Input Current
vs. Temperature Figure 17B. Logic “0” Input Current
vs. Supply V oltage
IRS2308(S)PbF
www.irf.com 14
7
8
9
10
11
12
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
V
CC
U VLO Threshold ( +) ( V
)
Figure 18. V
CC
Undervol ta ge Threshold (+)
vs. Temperature
6
7
8
9
10
11
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
V
CC
U VLO Thres hold (-) (v
)
Figure 19. V
CC
Undervol ta ge Threshold (-)
vs. Temperature
7
8
9
10
11
12
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
V
BS
U VLO Thres hold (+) (v
)
Figure 20. V
BS
Undervol ta ge Threshold (+)
vs. Temperature
6
7
8
9
10
11
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
V
BS
UVLO Thres hold (-) (V
Figure 21. V
BS
Undervoltage Threshold (-)
vs. Temperature
Max.
Typ.
Min.
Typ.
Max.
Min.
Max.
Typ.
Max.
Typ.
Min. Min.
Vcc UVLO Threshold (+) (V)
Temperature (oC)
Temperature (oC)
Vcc UVLO Threshold (-) (V)
Temperature (oC)
Temperature (oC)
VBS UVLO Threshold (+) (V)
VBS UVLO Threshold (-) (V)
Figure 18. Vcc Undervoltage Threshold (+)
vs. Temperature Figure 19. Vcc Undervoltage Threshold (-)
vs. Temperature
Figure 20. VBS Undervoltage Threshold (+)
vs. Temperature Figure 21. VBS Undervoltage Threshold (-)
vs. Temperature
www.irf.com 15
IRS2308(S)PbF
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Output Sourc e C urr ent (m
Α)
Figure 22A. Output Source Current
vs. Temperature
0
100
200
300
400
500
10 12 14 16 18 20
V
BIAS
Su pp l y Voltage (V)
Output Sourc e C urr ent (m
Α)
Figure 22B. Output Source C urren t
v s. S upply Voltage
0
200
400
600
800
1000
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Output Sink C urr ent ( m
Α)
Figure 23A. Output Sink Current
vs.Temperature
0
200
400
600
800
1000
10 12 14 16 18 20
V
BIAS
Supply Voltage (V)
Output Sink C urr ent ( m
Α)
Figure 23B. Output Sink C urrent
v s. Supply Voltage
Max.
Typ.
Max.
Typ.
Max.
Typ.
Max.
Typ.
Output Source Current (mA)
Temperature (oC) VBIAS Supply Voltage (V)
Temperature (oC)
Figure 22B. Output Source Current
vs. Supply V oltage
Figure 22A. Output Source Current
vs. Temperature
Output Source Current (mA)
Output Sink Current (mA)
Output Sink Current (mA)
VBIAS Supply Voltage (V)
Figure 23B. Output Sink Current
vs. Supply V oltage
Figure 23A. Output Sink Current
vs. Temperature
IRS2308(S)PbF
www.irf.com 16
-10
-8
-6
-4
-2
0
10 12 14 16 18 20
VBS F louting Supply Voltage (V)
VS Offset Supply Voltage (V)
Figure 24 . Maxi mum VS Negative Offset
vs. Supply Voltage
Typ.
VS Offset Supply Voltage (V)
VBS Floating Supply Voltage (V)
Figure 24. Maximum VS Negative Offset
vs. Supply V oltage
www.irf.com 17
IRS2308(S)PbF
20
40
60
80
100
120
140
1 10 100 1000
Frequency (kH z)
Temperature (oC)
140 V
70 V
0 V
Figure 25. IRS 2308 v s. Frequency (IRFB C 20),
Rgate=33, VCC=15 V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (kHz )
Temperature (oC)
Figure 26. IRS 2308 v s. Frequency (IRFB C 30),
Rgate=22, VCC=1 5 V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (kHz)
Temperature (oC)
Figure 27. IRS 2308 v s. Frequency (IRFB C4 0),
Rgate=15, VCC=15 V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (kHz)
Temperature (oC)
Figure 28. IRS2308 v s. Frequency (IRFPE50),
Rgate=10, V CC=15 V
140 V
70 V
0 V
140 V
70 V
0 V
140 V
70 V
0 V
IRS2308(S)PbF
www.irf.com 18
20
40
60
80
100
120
140
1 10 100 1000
Frequency (kHz)
Temperature (oC)
Figure 29. IRS2308S vs. Frequency (IRFB C20),
Rgate=33, V CC=15 V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (kHz)
Temperature (oC)
Figure 30. IRS2308S v s. Frequency (IRFBC30),
Rgate=22, VCC=15 V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (kHz)
Tempr e ture (oC)
Figure 32. IRS2308S v s. Frequency (IRFPE50),
Rgate=10, V CC=15 V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (kHz)
Temperature (oC)
Figure 31. IRS2308S v s. Frequency (IRFB C 40),
Rgate=15, V CC=15 V
140 V
70 V
0 V
140 V
70 V
0 V
140 V 70 V 0 V140 V 70 V
0 V
www.irf.com 19
IRS2308(S)PbF
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
01-6027
01-0021 11 (MS-012AA)
8-Lead SOIC
87
5
65
D B
E
A
e
6X
H
0.25 [.010] A
6
4312
4. OUT LINE CONFORMS T O JEDEC OUTLINE MS-012AA .
NOTES:
1. DIMENSIONING & TOLERANCING PE R ASME Y14.5M-1994.
2. CONTROLLING DIMENS ION: MILLIME TER
3. DIMENSIONS ARE SHOWN IN MI LLIMETE RS [INCHES].
7
K x 45°
8X L 8X c
y
FOOTPRINT
8X 0.72 [.028]
6.46 [.255]
3X 1.27 [.050] 8X 1.78 [.070]
5 DIMENS ION DOES NOT INCLUDE MOLD PROTRUSIONS.
6 DIMENS ION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUS IONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF L EAD FOR SOLDER ING TO
A SUBSTRATE.
MOLD PROTRUS IONS NOT TO EXCEED 0.15 [.006].
0.25 [.010] CAB
e1 A
A1
8X b
C
0.10 [.004]
e1
D
E
y
b
A
A1
H
K
L
.189
.1497
.013
.050 BASIC
.0532
.0040
.2284
.0099
.016
.1968
.1574
.020
.0688
.0098
.2440
.0196
.050
4.80
3.80
0.33
1.35
0.10
5.80
0.25
0.40
1.27 BASIC
5.00
4.00
0.51
1.75
0.25
6.20
0.50
1.27
MIN MAX MILLIMETERSINCHES MIN MAX
DIM
e
c .0075 .0098 0.19 0.25
.025 BAS I C 0.635 BA SIC
Case outlines
IRS2308(S)PbF
www.irf.com 20
CARRIER TAPE DIMENSION FOR 8SOICN
Code Min Max Min Max
A 7.90 8.10 0.311 0.318
B 3.90 4.10 0.153 0.161
C 11.70 12.30 0.46 0.484
D 5.45 5.55 0.214 0.218
E 6.30 6.50 0.248 0.255
F 5.10 5.30 0.200 0.208
G1.50n/a0.059n/a
H 1.50 1.60 0.059 0.062
Metric Imperial
REEL DIMENSIONS FOR 8SOICN
Code Min Max Min Max
A 329.60 330.25 12.976 13.001
B 20.95 21.45 0.824 0.844
C 12.80 13.20 0.503 0.519
D 1.95 2.45 0.767 0.096
E 98.00 102.00 3.858 4.015
F n/a 18.40 n/a 0.724
G 14.50 17.10 0.570 0.673
H 12.40 14.40 0.488 0.566
Metric Imperial
E
F
A
C
D
G
A
BH
N
OT E : CO NTROLLING
D
IMENSION IN MM
LOADED TAPE FEED DIRECTION
A
H
F
E
G
D
B
C
Tape & Reel
8-Lead SOIC
www.irf.com 21
IRS2308(S)PbF
8-Lead PDIP IRS2308PbF
8-Lead SOIC IRS2308SPbF
8-Lead SOIC Tape & Reel IRS2308STRPbF
ORDER INFORMATION
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
LEADFREE PART MARKING INFORMATION
Lead Free Released
Non-Lead Free
Released
Part number
Date code
IRxxxxxx
YWW?
?XXXX
Pin 1
Identifier
IR logo
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
P
?MARKING CODE
S
The SOIC-8 is MSL2 qualified.
This product has been designed and qualified for the industrial level.
Qualification standards can be found at www.irf.com <http://www.irf.com/>
Data and specifications subject to change without notice. 6/16/2006