Rev. 1.1 / November 2008 41
HY5PG1G431C(L)FP
HY5PG1G831C(L)FP
ps = - 1193 ps and tLZ (DQ), max (derated) = 450 ps + 272 ps = + 722 ps. (Caution on the min/max
usage!)
41. When the device is operated with input clock jitter, this parameter needs to be derated by the actual
tJIT (per) of the input clock. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR2-667 SDRAM has tJIT (per), min = - 72 ps and tJIT (per),
max = + 93 ps, then tRPRE, m i n (derated) = tRPRE, min + tJIT (per), min = 0.9 x tCK (avg) - 72 ps = +
2178 ps and tRPRE, max (derated) = tRPRE, max + tJIT (per), max = 1.1 x tCK (avg) + 93 ps = + 2843
ps. (Caution on the min/max usage!)
42. When the device is operated with input clock jitter, this parameter needs to be derated by the actual
tJIT (duty) of the input clock. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR2-667 SDRAM has tJIT (duty), min = - 72 ps and tJIT (duty),
max = + 93 ps, then tRPST, min (derated) = tRP ST, min + tJIT (dut y), min = 0.4 x tCK ( a vg) - 72 ps = +
928 ps and tRPST, max (derated) = tRPST, max + tJIT (duty), max = 0.6 x tCK (avg) + 93 ps = + 1592 ps.
(Caution on the min/max usage!)
43. When the device is operated with input clock jitter, this parameter needs to be derated by {-
tJIT (duty), max - tERR(6-10per),max} and {- tJIT (duty), min - tERR(6-10per),min} of the actual input
clock.(output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per),min = - 272 ps, tERR(6-
10per), max = + 293 ps, tJIT (duty), min = - 106 ps and tJIT (duty), max = + 94 ps, then tAOF, min (der-
ated) = tAOF, min + {- tJIT (dut y), max - tERR(6-10p er),max} = - 450 ps + {- 94 ps - 293 ps} = - 837 ps
and tAOF, max (derated) = tAOF, max + {- tJIT (duty), min - tERR(6-10per),min} = 1050 ps + {106 ps +
272 ps} = + 1428 ps. (Caution on the min/max usage!)
44. For tAOFD of DDR2-400/533, the 1/2 clock of tCK in the 2.5 x tCK assumes a tCH, input clock HIGH
pulse width of 0.5 relative to tCK. tAOF, min and tAOF, max should each be derated by the same amount
as the actual amount of tCH off set present at the DRAM input with re spect to 0. 5. F or e xample, if an input
clock has a worst case tCH of 0.45, the tAOF, min should be derated by subtracting 0.05 x tCK from it,
whereas if an input clock has a worst case tCH of 0.55, the tAOF, max should be derated by adding 0.05 x
tCK to it. Therefore, we have;
tAOF, min (derated) = tAC, min - [0.5 - Min(0.5, tCH, min)] x tCK
tAOF, max (derated) = tAC, max + 0.6 + [Max(0.5, tCH, max) - 0.5] x tCK
or
tAOF, min (derated) = Min (tAC, min, tAC, min - [0.5 - tCH, min] x tCK)
tAOF, max (derated) = 0.6 + Max (tAC, max, tAC, max + [tCH, max - 0.5] x tCK)
where tCH, min and tCH, max are the minimum and maximum of tCH actually measured at the DRAM
input balls.
45. Fo r tAOFD of DDR2-667/800, the 1/2 clock of nCK in the 2.5 x nCK assumes a tCH (avg), aver age input
clock HIGH pulse width of 0.5 relative to tCK (avg). tAOF, min and tAOF, max should each be derated by
the same amount a s t he act ual amo unt of tCH (a vg) offset present at the DRAM input w ith r espec t t o 0.5.
For example, if an input clock has a worst case tCH (avg) of 0.48, the tAOF, min should be derated by sub-
tracting 0.02 x tCK (avg) from it, whereas if an input clock has a worst case tCH (avg) of 0.52, the