Standard Power MOSFETs File Number 1562 IRFF110, IRFF111, IRFF112, IRFF113 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode N-CHANNEL ENHANCEMENT MODE Power Field-Effect Transistors 0 3.0A and 3.5A, 60V-100V ros(on) = 0.6 Q and 0.8.9 Features: a SOA is power-dissipation limited @ Nanosecond switching speeds @ Linear transfer characteristics & High input impedance s Majority carrier device scs-as7e1 TERMINAL DIAGRAM The IRFF110, IRFF111, |RFF112 and IRFF113 are n-channel TERMINAL DESIGNATION enhancement-mode silicon-gate power field-effect transistors designed for applications such as switching GATE regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors DRAIN requiring high speed and low gate-drive power. These types SOURCE { CASE) can be operated directly from integrated circuits. The IRFF-types are supplied in the JEDEC TO-205AF (LOW-PROFILE TO-39) metal package. 92CS-37555 JEDEC TO-205AF Absolute Maximum Ratings Parameter IRFF 110 (RFFV14 IRFFV12 IRFFI13 Units Vos Drain - Source Voltage 100 60 100 60 Vv }Ys_ VDGR Drain - Gate Voltage (Rgg = 20KQ) 100 60 100 60 v Ip @ Tc = 25C Continuous Drain Current 3.5 3.5 3.0 3.0 A pm Pulsed Drain Current @ 14 14 12 12 A Vos Gate - Source Voltage 420 v Pp @Tc = 25C Max. Power Dissipation 16 (See Fig. 14} Ww Linear Derating Factor 0.12 (See Fig. 14) wee Lm Inductive Current, Clamped (See Fig. 15 and 16) L = 100uH A 14 ! 14 | 12 | 12 Ty Operating Junction and -6 to 150 C Tstg Storage Temperature Range Lead Temperature 300 (0.063 in. (1.6mm)} from case for 10s} C 3-249Standard Power MOSFETs IRFF110, IRFF111, (|RFF112, IRFF113 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BYpss_Drain - Source Breakdown Voitage (AFFV10 a inFe112 | 100 7 7 v Ves = OV RFF = IRFFINa 60 - - Ip = 250uA Vasith) Gate Threshold Voltage ALL 2.0 - 4.0 v Vos = Vas. ip = 250uA lgss Gate-Source Leakage Forward ALL =_ = 100 nA Ves = 20V ggg _ Gate-Source Leakage Reverse ALL - {-100 nA Vgs = -20V loss Zero Gate Voltage Drain Current ALL ~ _ 250 BA Vos = Max. Rating, Vag = OV ~_ _ 1000 uA Vos = Max. Rating x 0.8, Vgg = OV, Tc = 125C t On-State Drai IRFF110 Dion) n-State Drain Current @ neete 35 _ _ A Vos? 'piom * Rosion) max.: Yes = 10 IRFF112 3.0 _ _ A IRFF113 - Roston) Static Orain-Source On-State IRFF110 _ Resistance @) IRFFAVN1 0.5 | 06 a IRFFIN2 Vos = 10V, Ip = 1.54 IRFFI13 | 06 | 08 a Ofs Forward Transconductance @ ALL 1.0 1.5 - S$ (ut Vps> 'pion) * Rosion) max. 'p = 1-54 Cigs Input Capacitance ALL _ 135 pF Vs = OV. Vpg = 28V, f = 1.0 MHz Coss Output Capacitance ALL - 80 = pF See Fig. 10 Crs Reverse Transfer Capacitance ALL = 20 _ oF tgion) Turn-On Delay Time ALL _ 10 20 ns Voo = O.5 BVoss: lp = 1,5A, 25 = 500 ty Rise Time ALL = 15 25 ns See Fig. 17, tajotty Turn-Off Delay Time ALL = 15 25 as (MOSFET switching times are essentially ty Fall Time ALL _ 10 20 ns independent of operating temperature.) Qg Total Gate Charge ' ALL _ 5.0 75 ac Vos = TOV, Ip = 8.0A. Vog = 0.8 Max. Rating. {Gate-Source Plus Gate-Drain) See Fig. 18 for test circuit. (Gate charge is essentially gs Gate-Source Charge ALL _ 20 3.0 nc independent of operating temperature.) Qgq Gate-Drain (Miller) Charge ALL - 3.0 45 nc lp Internal Drain Inductance ALL _ 5.0 - nH Measured from the Modified MOSFET drain tead, 5 mm {0.2 symbol showing the in.) from header to internat device center of die. inductances. Lo ls internal Source Inductance ALL _ 16 - oH Measured from the source lead, 5mm (0.2 in.) from header to G LS source bonding pad. s Thermal Resistance | Ric Junction-to-Case | ALL I - | - I 8.33 I C/W I | Rinja Junction-to-Ambient | ALL [ = | > | 178 | C/W I Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current IRFFI10 _ _ 35 A Modified MOSFET symbol (Body Diode} IRFFA1 . showing the integrat IRFFI12 reverse P-N junction rectifier. D inFE113 [| ~ { 30 A Ismu Pulse Source Current IRFF110 14 A (Body Diode) @ IRFF V4 ~ _ G IRFF112 s IRFE 113, - - 12 a Vso Diode Forward Voltage @ IREFI10 _ _ 25 v Te = 25C, Ig = 3.5A, Vag = OV a - | 20 v To = 25C, Ig = 3.0A, Veg = OV ter Reverse Recovery Time ALL = 200 { ns Ty = 150C, ip = 3.5A, dig/dt = 100A/ys Qpr Reverse Recovered Charge ALL - 1.0 ~ ac Ty = 180C, ip = 3.5A, digidt = TO0A/us ton Forward Turn-on Time ALL totrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. @Ty = 25C to 160C. 3-250 @Pulse Test: Pulse width < 300ys, Duty Cycle < 2%. Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5).Zenaclt/ Any. NORMALIZED EFFECTIVE TRANSIENT THEAMAL IMPEDANCE (PEA UNIT) Standard Power MOSFETs IRFF110, IRFF111, IRFF112, IRFF113. ( Vos > !pton} Rosion) mex. Ig, ORAIN CURRENT (AMPERES} tp, DRAIN CURRENT (AMPERES) G a 2 n a sa Q 2 4 6 a Ww Vps. DRAIN-TO-SQURCE VOLTAGE (VOLTS) Vas, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics 1G bo 50 OPERATION IN THIS AREA(S LIMITED se 20 10, 1-77] 8Y Roston) 2 2 ss : SOHRFF 1 5 aa = 5 2 = 40 =, 3 eo z 32 z = 10 & 2 a To = 250 . O51 1) = 150C MAX. 1s Aihic = 8.33 C/W. a2 IFFT, os IRFF110, 0 01 0 06 10 15 20 25 30 35 40 45 50 102 5 10 20 50 100 200 500 Vps. GRAIN-TO-SOURCE VOLTAGE (VOLTS) Vos, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area to a5 02 01 0.05 1. DUTY FACTOR, D = z- 002 SINGLE PULSE (TRANSIENT 2. PER UNIT BASE = Rene = 8.33 DEG. CW ! THERMAL {MPEOANCE) a. Ty ~ Te = Pom Ztnselt. 001 ws 2 5 wt 2 5 1-32 5 we 2 5 wrt 2 5 10 2 5 1 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maxi Effective T i Thermal ( d j ion-to-Case Vs. Pulse Duration 3-251Standard Power MOSFETs IRFF110, |RFF111, IRFF112, IRFF113 3-252 40 36 ot Vos > 'pion} * Rosion) 0 O08 16 24 32 40 48 S56 64 72 80 Ip, ORAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current 1.20 BV ngs ORAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) 8 0.75 60 40 -200 0 2 40 66 80 100 120 140 Ty, JUNCTION TEMPERATURE {C} Fig. 8 Breakdown Voltage Vs. Temperature =0 f= 1 MMe Cigg ~ Cop + Cog, Cos SHORTED Cryy = Cog Com * Oat ey Cay + Cg C. CAPACITANCE (pF) o 10 2 x a so Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage (pp. REVERSE ORAIN CURRENT (AMPERES) 01 0 02 Of 06 08 10 42 14 16 18 20 Vgp, SOURCE.TO-DRAIN VOLTAGE (VOLTS) Fig. 7 Typical Source-Drain Diode Forward Voitage 2.50 x iy a x 8 ~~" a & 2 y a Vgs * 10 tp = 15A z Rosion). ORAIN-TO-SOURCE ON-STATE RESISTANCE (NORMALIZED) & ip a a 60 40 -20 0 20 40 60 80 100 120 140 Ty, JUNCTION TEMPERATURE (C) Fig. 9 Normalized On-Resistance Vs. Temperature a Vos 7 80V, IRFF110, 112 wn Vgg, GATE-TO-SOURCE VOLTAGE (VOLTS) 3S p= BA FOR TEST CIRCUIT SEE FIGURE o 2 4 6 8 Dy Qy, TOTAL GATE CHARGE (nC} Fig. 11 Typical Gate Charge Vs. Gate-to-Source VoltageStandard Power MOSFETs (RFF110, IRFF111, IRFF112, IRFF113 flpston) WITH CURRENT PULSE OF 2 Bus BURATION. INITIAL Ty = 25C. (HEATING EFFECT OF 2.0 us PULSE IS MINIMAL } (RFF IG, W11 Rosion). ORAIN-TO-SOURCE ON RESISTANCE (OHMS} ty, GRAIN CURRENT (AMPERES) 0 5 19 15 20 5 50 8 100 125 150 Ip, DRAIN CURRENT (AMPERES) Te. GASE TEMPERATURE {C} Fig. 12 -- Typical On-Resistance Vs. Drain Current Fig. 13 Maximum Drain Current Vs. Case Temperature 20 Pp, POWER DISSIPATION (WATTS) 3S a wn 0 28 4a $0 80 100 120 140 Tc, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve VARY ty TO OBTAIN REQUIRE PEAK (, TT our Ves *20V| it | \ t Vee ee Fig. 15 Clamped Inductive Test Circuit Fig. 16 Clamped Inductive Waveforms b E, = 0.58Vp5 Vc ~ 0.758Vps5 ey o *Yos ADJUST RE OEY CURRENT (ISOLATED REGULATOR SUPPLY) TO OBTAIN SPECIFIEO Ip SAME TYPE PULSE GENERATOR cr - TO SCOPE ana HIGH FREQUENCY SHUNT Fig. 17 Switching Time Test Circuit | | 15 mA 0 ~~ CURRENT = CURRENT SHUNT SHUNT Fig. 18 Gate Charge Test Circuit 3-253