Datasheet 36VHigh-performance, High-reliability Withstand Voltage Stepping Motor Driver BD68710EFV General Description BD68710EFV is a bipolar low-consumption driver that driven by PWM current. Rated power supply voltage of the device is 36 V, and rated output current is 1.0 A. PARA-IN driving mode is adopted for input interface, and excitation mode is corresponding to FULL STEP mode, HALF STEP mode (2 types) and QUARTER STEP mode via a built-in DAC. In terms of current decay, the FAST DECAY/SLOW DECAY ratio may be set without any limitation, and all available modes may be controlled in the most appropriate way. In addition, the power supply may be driven by one single system, which simplifies the design. Features Rated output currentDC1.0A Low ON resistance DMOS output PARA-IN drive mode PWM constant current (other oscillation) Built-in spike noise cancel function (external noise filter is unnecessary) Full-, half (two kinds)-, quarter-step functionality Freely timing excitation mode switch Current decay mode switch linearly variable FAST/SLOW DECAY ratio Normal rotation & reverse rotation switching function Power save function Built-in logic input pull-down resistor Power-on reset function Thermal shutdown circuit (TSD) Over-current protection circuitOCP Under voltage lock out circuit (UVLO) Over voltage lock out circuit (OVLO) Ghost Supply Prevention (protects against malfunction when power supply is disconnected) Adjacent pins short protection Microminiature, ultra-thin and high heat-radiation (exposed metal type) package Key Specifications Range of power supply voltage 1928 [V] Rated output current (continuous) 1.0 [A] Rated output current (peak value) 1.5 [A] Range of operating temperature -25+85 [] Output ON resistance (total of 1.2 [] (Typ.) upper and lower resistors) Package W(Typ.) x D(Typ.)x H(Max.) HTSSOP-B28 9.70mm x 6.40mm x 1.00mm Typical Application circuit 9 GND PHASE1 15 PHASE2 17 14 PS I01 16 I11 18 I02 19 I12 20 VREF 13 7 VCC1 5 2 3 4 Applications PPC, multi-function printer, laser beam printer, and ink-jet printer Monitoring camera and WEB camera Sewing machine Photo printer, FAX, scanner and mini printer Toy and robot 22 CR 10 24 27 26 MTH 12 25 1 OUT1A OUT1B RNF1 RNF1S VCC2 OUT2A OUT2B RNF2 RNF2S GND Figure.1 Application circuit Product structuresilicon monolithic integrated circuit www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211114001 It is not the radiation-proof design for this product. 1/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV Pin Configuration Block Diagram [TOP VIEW] 28 NC OUT1B 2 27 OUT2B RNF1 3 26 RNF2 RNF1S 4 25 RNF2S OUT1A NC VCC1 NC GND 5 24 OUT2A 6 23 NC 21 8 9 VREF 13 OCP OVLO UVLO RESET 9 GND 14 PS 2bit DAC 7 VCC1 5 RNF1S 2 3 RNF2S Blank time PWM control NC 20 Translator TSD I12 20 VCC2 22 7 PHASE1 15 PHASE2 17 I01 16 I11 18 I02 19 CR 10 I12 22 24 OSC 27 19 CR 10 NC 11 18 I02 MTH 12 MTH 12 17 PHASE2 VREF 13 16 I01 PS 14 15 PHASE1 26 Mix decay control I11 OUT1A OUT1B RNF1 4 RNF1S Predriver 1 Control logic GND 25 Regulator 1 VCC2 OUT2A OUT2B RNF2 RNF2S GND Figure.3 Block Diagram Figure.2 Pin configuration Pin Description Pin No. Pin name 1 GND 2 OUT1B 3 RNF1 4 Function Pin No. Pin name Function Ground terminal 15 PHASE1 H bridge output terminal 16 I01 Connection terminal of resistor for output current detection 17 PHASE2 RNF1S Input terminal comparator 18 I11 VREF division ratio setting terminal 5 OUT1A H bridge output terminal 19 I02 VREF division ratio setting terminal 6 NC Non connection 20 I12 VREF division ratio setting terminal 7 VCC1 Power supply terminal 21 NC Non connection 8 NC Non connection 22 VCC2 9 GND Ground terminal 23 NC 10 CR Connection terminal of CR for setting chopping frequency 24 OUT2A H bridge output terminal 11 NC Non connection 25 RNF2S Input terminal of current limit comparator 12 MTH Current decay mode setting terminal 26 RNF2 Connection terminal of resistor for output current detection 13 VREF Output current value setting terminal 27 OUT2B 14 PS Power save terminal 28 NC www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 of current limit 2/20 Phase selection terminal VREF division ratio setting terminal Phase selection terminal Power supply terminal Non connection H bridge output terminal Non connection TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV Absolute Maximum Ratings (Ta=25) Item Symbol Rated Value Unit VCC1,2 -0.2+36.0 V VIN -0.2+5.5 V RNF maximum voltage VRNF 0.7 V Maximum output current (DC) IOUT 1.0 A/Phase IOUTPEAK 1.5 A/Phase Operating temperature range Topr -25+85 Storage temperature range Tstg -55+150 Supply voltage Input voltage for control pin Maximum output (PEAK)(Note 1) current (Note 1)Pulse width tw1ms, duty 20%. Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings. Recommended operating range (Ta= -25+85) Item Supply voltage Maximum Output current (DC) www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 Symbol Rated Value Unit VCC1,2 1928 V IOUT 0.7 A/ Phase 3/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV Thermal Resistance(Note 2) Parameter Symbol Thermal Resistance (Typ) Unit 1s(Note 4) 2s2p(Note 5) JA 107.0 25.1 C/W JT 6 3 C/W HTSSOP-B28 Junction to Ambient Junction to Top Characterization Parameter (Note 3) (Note 2)Based on JESD51-2A(Still-Air) (Note 3)The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface of the component package. (Note 4)Using a PCB board based on JESD51-3. Layer Number of Measurement Board Single Material Board Size FR-4 114.3mm x 76.2mm x 1.57mmt Top Copper Pattern Thickness Footprints and Traces 70m (Note 5)Using a PCB board based on JESD51-7. Layer Number of Measurement Board 4 Layers Material Board Size FR-4 114.3mm x 76.2mm x 1.6mmt Top 2 Internal Layers Bottom Copper Pattern Thickness Copper Pattern Thickness Copper Pattern Thickness Footprints and Traces 70m 74.2mm x 74.2mm 35m 74.2mm x 74.2mm 70m www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 4/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV Electrical Characteristics (Unless otherwise specified Ta=25, VCC1,2=24V) Specification Item Symbol Minimum Standard Maximum Unit Condition [Whole] Circuit current at standby ICCST - 0.8 2.0 mA PS=L ICC - 2.0 5.0 mA PS=H, VREF=3V H-level input voltage VIN1H 2.8 - - V L-level input voltage VIN1L - - 0.6 V VIN1HYS - 0.85 - V H-level input current IIN1H 35 50 100 A VIN1=5V L-level input current IIN1L -10 0 - A VIN1=0V Circuit current [Control input] (PHASE1, PHASE2) Input hysteresis voltage [Control input] (PS, I01, I11, I02, I12) H-level input voltage VIN2H 2.0 - - V L-level input voltage VIN2L - - 0.8 V H-level input current IIN2H 35 50 100 A VIN2=5V L-level input current IIN2L -10 0 - A VIN2=0V IOUT =1.0A (total of upper and lower resistors) [Output (OUT1A, OUT1B, OUT2A, OUT2B)] Output ON resistance RON - 1.2 1.5 Output leak current ILEAK - - 10 A RNFXS input current IRNFS -2.0 -0.1 - A RNFxS=0V RNFX input current IRNF -80 -40 - A RNFx=0V VREF input current IVREF -2.0 -0.1 - A VREF=0V VREF input voltage range VVREF 0 - 3.0 V MTH input current IMTH -2.0 -0.1 - A MTH input voltage range VMTH 0 - 3.5 V Minimum ON time (Blank time) tONMIN 0.3 0.7 1.5 s C=1000pF, R=39k Comparator threshold VCTH 0.57 0.60 0.63 V VREF=3V [Current control] www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 5/20 MTH=0V TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV Function explanation PS/Power saving pin PS can make circuit standby state and make motor output OPEN. When PS=LH, please be careful because there is a delay of 40s (max.) before it is returned from standby state to normal state and the motor output becomes ACTIVE. PS State L H Standby state(RESET) ACTIVE PHASE1, PHASE2/Phase selection terminal This is the pin to decide output logic. PHASE1 PHASE2 OUT1A L H L H L L H H OUT1B OUT2A OUT2B H L H L L L H H H H L L L H L H I01,I02,I11,I12 / VREF division ratio setting pin These terminals determine internal 2bit-DAC output voltage for current limit. I0x I1x Output current level (%) L L H L L H H H (I0X, I1X)=(H, H): motor outputs are open. 100 67 33 0 VCC1,VCC2Power supply terminal Motor's drive current is flowing in it, so please wire in such a way that the wire is thick & short and has low impedance. Voltage VCC may have great fluctuation, so please arrange the bypass capacitor of about 100470F as close to the terminal as possible and adjust in such a way that the voltage VCC is stable. Please increase the capacity if needed especially when a large current is used or those motors that have great back electromotive force are used. In addition, for the purpose of reducing of power supply's impedance in wide frequency bandwidth, parallel connection of multi-layered ceramic capacitor of 0.010.1F etc is recommended. Extreme care must be used to make sure that the voltage VCC does not exceed the rating even for a moment. VCC1 & VCC2 are shorted inside IC, so please be sure to short externally VCC1 & VCC2 when using. If used without shorting, malfunction or destruction may occur because of concentration of current routes etc., so please make sure that they are shorted when in use. Still more, in the power supply terminal, there is built-in clamp component for preventing of electrostatic destruction. If steep pulse or voltage of surge more that maximum absolute rating is applied, this clamp component operates, as a result there is the danger of destruction, so please be sure that the maximum absolute rating must not be exceeded. It is effective to mount a Zener diode of about the maximum absolute rating. Moreover, the diode for preventing of electrostatic destruction is inserted between VCC terminal and GND terminal, as a result there is the danger of IC destruction if reverse voltage is applied between VCC terminal and GND terminal, so please be careful. GNDGround terminal In order to reduce the noise caused by switching current and to stabilize the internal reference voltage of IC, please wire in such a way that the wiring impedance from this terminal is made as low as possible to achieve the lowest electrical potential no matter what operating state it may be. OUT1A,OUT1B,OUT2A,OUT2BH Bridge output terminal Motor's drive current is flowing in it, so please wire in such a way that the wire is thick & short and has low impedance. It is also effective to add a Schottky diode if output has positive or negative great fluctuation when large current is used etc, for example, if counter electromotive voltage etc. is great. Moreover, in the output terminal, there is built-in clamp component for preventing of electrostatic destruction. If steep pulse or voltage of surge more than maximum absolute rating is applied, this clamp component operates, as a result there is the danger of even destruction, so please be sure that the maximum absolute rating must not be exceeded. www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 6/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV RNF1,RNF2Connection terminal of resistor for detecting of output current Please connect the resistor of 0.10.3 for current detection between this terminal and GND. In view of the power consumption of the current-detecting resistor, please determine the resistor in such a way that W=IOUT2R[W] does not exceed the power dissipation of the resistor. In addition, please wire in such a way that it has a low impedance and does not have a impedance in common with other GND patterns because motor's drive current flows in the pattern through RNF terminalcurrent-detecting resistorGND. Please do not exceed the rating because there is the possibility of circuits' malfunction etc. if RNF voltage has exceeded the maximum rating (0.7V). Moreover, please be careful because if RNF terminal is shorted to GND, large current flows without normal PWM constant current control, then there is the danger that OCP or TSD will operate. If RNF terminal is open, then there is the possibility of such malfunction as output current does not flow either, so please do not let it open. RNF1S,RNF2SInput terminal of current limit comparator In this series, RNFS terminal, which is the input terminal of current limit comparator, is independently arranged in order to decrease the lowering of current-detecting accuracy caused by the wire impedance inside the IC of RNF terminal. Therefore, please be sure to connect RNF terminal and RNFS terminal together when using in the case of PWM constant current control. In addition, because the wires from RNFS terminal is connected near the current-detecting resistor in the case of interconnection, the lowering of current-detecting accuracy, which is caused by the impedance of board pattern between RNF terminal and the current-detecting resistor, can be decreased. Moreover, please design the pattern in such a way that there is no noise plunging. In addition, please be careful because if terminals of RNF1S & RNF2S are shorted to GND, large current flows without normal PWM constant current control and, then there is the danger that OCP or TSD will operate. VREFOutput current value setting terminal This is the terminal to set the output current value. The output current value can be set by VREF voltage and current-detecting resistor (RNF resistor). Output current IOUT [A] = {VREF [V] / 5(division ratio inside IC)} / RNF [] Please avoid using it with VREF terminal open because if VREF terminal is open, the input is unsettled, and the VREF voltage increases, and then there is the possibility of such malfunctions as the setting current increases and a large current flows etc. Please keep to the input voltage range because if the voltage of over 3V is applied on VREF terminal, then there is also the danger that a large current flows in the output and so OCP or TSD will operate. Besides, please take into consideration the outflow current (max.2A) if inputted by resistance division when selecting the resistance value. The minimum current, which can be controlled by VREF voltage, is determined by motor coil's L & R values and minimum ON time because there is a minimum ON time in PWM drive. CRConnection terminal of CR for setting chopping frequency This is the terminal to set the chopping frequency of output. Please connect the external C(470p1500pF) and R(10k 200k) between this terminal and GND. Please refer to P9. Please interconnect from external components to GND in such a way that the interconnection does not have impedance in common with other GND patterns. In addition, please carry out the pattern design in such ways as keeps such steep pulses as square wave etc. away and that there is no noise plunging. Please mount the two components of C and R if being used by PWM constant current control because normal PWM constant current control becomes impossible if CR terminal is open or it is biased externally. MTHCurrent decay mode-setting terminal This is the terminal to set the current decay mode. Current decay mode can be optionally set according to input voltage. MTH terminal input voltage[V] Current decay mode 0~0.3 SLOW DECAY 0.4~1.0 MIX DECAY 1.5~3.5 FAST DECAY Please connect to GND if using at SLOW DECAY mode. Please avoid using with MTH terminal open because if MTH terminal is open, the input is unsettled, and then there is the danger that PWM operation becomes unstable. Besides, please take into consideration the outflow current (max.2A) if inputted by resistance division when selecting the resistance value. NC terminal This terminal is unconnected electrically with IC internal circuit. www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 7/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV Thermal Shutdown (TSD) This IC has a built-in thermal shutdown circuit for thermal protection. When the IC's chip temperature rises above 175(Typ.), the motor output becomes OPEN. Also, when the temperature returns to under 150 (Typ.), it automatically returns to normal operation. However, even when TSD is in operation, if heat is continued to be added externally, heat overdrive can lead to destruction. Over Current Protection (OCP) This IC has a built in over current protection circuit as a provision against destruction when the motor outputs are shorted each other or VCC-motor output or motor output-GND is shorted. This circuit latches the motor output to OPEN condition when the regulated threshold current flows for 4s (Typ.). It returns with power reactivation or a reset of the PS terminal. The over current protection circuit's only aim is to prevent the destruction of the IC from irregular situations such as motor output shorts, and is not meant to be used as protection or security for the set. Therefore, sets should not be designed to take into account this circuit's functions. After OCP operating, if irregular situations continues and the return by power reactivation or a reset of the PS terminal is carried out repeatedly, then OCP operates repeatedly and the IC may generate heat or otherwise deteriorate. When the L value of the wiring is great due to the wiring being long, after the over current has flowed and the output terminal voltage jumps up and the absolute maximum values may be exceeded and as a result, there is a possibility of destruction. Also, when current which is over the output current rating and under the OCP detection current flows, the IC can heat up to over Tjmax=150 and can deteriorate, so current which exceeds the output rating should not be applied. Under Voltage Lock Out (UVLO) This IC has a built-in under voltage lock out function to prevent false operation such as IC output during power supply under voltage. When the applied voltage to the VCC terminal goes under 15V (Typ.), the motor output is set to OPEN. This switching voltage has a 1V (Typ.) hysteresis to prevent false operation by noise etc. Please be aware that this circuit does not operate during power save mode. Also, the electrical angle is reset when the UVLO circuit operates during PARA-IN drive mode. Over Voltage Lock Out (OVLO) This IC has a built-in over voltage lock out function to protect the IC output and the motor during power supply over voltage. When the applied voltage to the VCC terminal goes over 32V (Typ.), the motor output is set to OPEN. This switching voltage has a 1V (Typ.) hysteresis and a 4s (Typ.) mask time to prevent false operation by noise etc. Although this over voltage locked out circuit is built-in, there is a possibility of destruction if the absolute maximum value for power supply voltage is exceeded, therefore the absolute maximum value should not be exceeded. Please be aware that this circuit does not operate during power save mode. Ghost Supply Prevention (protects against malfunction when power supply is disconnected) If a signal (logic input, MTH, VREF) is input when there is no power supplied to this IC, there is a function which prevents the false operation by voltage supplied via the electrostatic destruction prevention diode from these input terminals to the VCC to this IC or to another IC's power supply. Therefore, there is no malfunction of the circuit even when voltage is supplied to these input terminals while there is no power supply. www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 8/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV [V] PWM Constant current control 1) Current control operation When the output transistor is turned on, the output current increases, raising the voltage over the current sense resistor. When the voltage on the RNF pin reaches the voltage value set by the internal 2-bit DAC and the VREF input voltage, the current limit comparator engages and enters current decay mode. The output is then held off for a period of time determined by the RC time constant connected to the CR pin. The process repeats itself constantly for PWM operation. 2) Noise-masking function In order to avoid misdetection of output current due to RNF spikes that may occur when the output turns ON, the IC employs an automatic current detection-masking period (tONMIN), during which current detection is disabled immediately after the output transistor is turned on. This allows for constant-current drive without the need for an external filter. This noise-masking period defines the minimum ON-time for the motor output transistor. 3) CR Timer The CR filter connected to the CR pin is repeatedly charged and discharged between the VCRH and VCRL levels. The output of the internal comparator is masked while charging from VCRL to VCRH in order to cancel noise. (As mentioned above, this period defines the minimum ON-time of the motor output transistor.) The CR terminal begins discharging once the voltage reaches VCRH. When the output current reaches the current limit during this period (i.e. RNF voltage reaches the decay trigger voltage), then the IC enters decay mode. The CR continues to discharge during this period until it reaches VCRL, at which point the IC output is switched back ON. The current output and CR pin begin charging simultaneously. The CR charge time (tONMIN) and discharge time (tdischarge) are set by external components, according to the following formulas. The total of tONMIN and tdischarge yield the chopping period, tchop. tONMIN[s]CR'R / (R'+R)ln[(VCR-0.4)/(VCR-1.0)] VCR=VR/(R'+R) 0.30 V: internal regulator voltage 5V(Typ.) 0.25 R': CR terminal internal impedance 5k(Typ.) 0.20 tdischarge[s]CRln[(1+)/0.4] 0.15 :See the right graph. 0.10 tCHOP[s]tONMIN + tdischarge 0.05 0.00 0 500 1000 C[pF] 1500 2000 Spike noise Current limit Value Output current 0mA Current limit Value RNF Voltage GND VCRH(1.0V typ.) CR Voltage VCRL(0.4V typ.) Discharge time tdischarge GND Minimum ON Time Chopping Period tCHOP tONMIN Figure 4 Timing chart of CR voltage, RNF voltage and output current Attach a resistor of at least 10 k to the CR terminal (10 k~200 k recommended) as lower values may keep the RC from reaching the VCRH voltage level. A capacitor in the range of 470 pF - 1500 pF is also recommended. As the capacitance value is increased, however, the noise-masking period (tonmin) also increases, and there is a risk that the output current may exceed the current limit threshold due to the internal L and R components of the output motor coil. Also, ensure that the chopping period (tchop) is not set longer than necessary, as doing so will increase the output ripple, thereby decreasing the average output current and yielding lower output rotation efficiency. The optimal value should reduce the motor drive noise while keeping distortion of the output current waveform to a minimum. www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 9/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV Current decay mode The IC allows for a mixed decay mode in which the ratio of fast and slow decay can be optionally set. The following diagrams show the operating state of each transistor and the regenerative current path during attenuation for each decay mode: SLOW DECAY FAST DECAY OFF ONOFF OFFOFF ONOFF M M OFFON ONOFF OFFON ONON Output ON Time Current Decay Time Figure 5 Route of Regenerated Current during Current Decay The merits of each decay mode are as follows: SLOW DECAY During current attenuation, the voltage between motor coils is small and the regeneration current decreases slowly, decreasing the output current ripple. This is favorable for keeping motor torque high. However, due to fall-off of current control characteristics in the low-current region, or due to reverse EMF of the output motors exhibited when using high-pulse-rate half-step or quarter-step modes, the output current increases, distorting the output current waveform and increasing motor vibration. Thus, this decay mode is most suited to full-step modes, or low-pulse-rate half-step or quarter-step modes. FAST DECAY Fast decay decreases the regeneration current much more quickly than slow decay, greatly reducing distortion of the output current waveform. However, fast decay yields a much larger output current ripple, which decreases the overall average current running through the motor. This causes two problems: first, the motor torque decreases (increasing the current limit value can help eliminate this problem, but the rated output current must be taken into consideration); and second, the power loss within the motor increases and thereby radiates more heat. If neither of these problems is of concern, then fast decay can be used for high-pulse rate half- or quarter-step drive. Additionally, this IC allows for a mixed decay mode that can help improve upon problems that arise from using fast or slow decay alone. In this mode, the IC switches automatically between slow and fast decay, improving the current control characteristics without increasing the output current ripple. The ratio of fast to slow decay is set externally via the voltage input to the MTH pin; therefore, the optimal mix of slow and fast decay can be achieved for each application. Mixed decay mode operates by splitting the decay period into two sections, the first X%(t1-t2) of which operates the IC in slow decay mode, and the remainder(t2-t3) of which operates in fast decay mode. However, if the output current (i.e., the voltage on the RNF pin) does not reach the set current limit during the first X% (t1-t2) decay period, the IC operates in fast decay mode only. MTH voltage [V] Current decay mode 0~0.3 0.4~1.0 1.5~3.5 SLOW DECAY MIX DECAY FAST DECAY t2 t3 t1 1.0V CR Voltage MTH Voltage 0.4V GND Chopping Period tchop Current limit value Output Current FAST SLOW DECAY DECAY 0A Figure 6 Relation between CR terminal voltage, MTH voltage, and output current during mixed decay www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 10/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV PARALLEL-IN drive mode It is possible to drive stepping motor with FULL STEP, HALF STEP, and QUARTER STEP by inputting the following motor control signals using PARALLEL-IN drive mode. Examples of control sequence and torque vector FULL STEP Controlled by 2 logic signals of PHASE1 & PHASE2 OUT1A 100% PHASE1 PHASE2 67% I01 33% I11 OUT2B 4 1 OUT2A I02 I12 IOUT(CH1) 2 3 100% 67% 33% OUT1B -33% -67% -100% 100% 67% 33% IOUT(CH2) -33% -67% -100% HALF STEP A Controlled by 4 logic signals of PHASE1,PHASE2, I01(I11), and I02(I12) OUT1A 100% PHASE1 67% PHASE2 I01 33% I11 OUT2B I02 I12 IOUT(CH1) IOUT(CH2) www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 1 100% 67% 33% -33% -67% -100% 2 8 3 7 OUT2A 4 6 5 OUT1B 100% 67% 33% -33% -67% -100% 11/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV HALF STEP B Controlled by 6 logic signals of PHASE1,PHASE2, I01,I11,I02, and I12 OUT1A 100% PHASE1 PHASE2 67% I01 33% I11 OUT2B I02 1 2 8 3 7 4 6 I12 IOUT(CH1) OUT2A 100% 67% 33% 5 -33% -67% -100% OUT1B 100% 67% 33% IOUT(CH2) -33% -67% -100% QUARTER STEP Controlled by 6 logic signals of PHASE1,PHASE2, I01,I11,I02, and I12 OUT1A 100% PHASE1 67% PHASE2 I01 OUT2B I02 22 3 14 4 13 5 11 100% 67% 33% -33% -67% -100% OUT2A 6 12 I12 IOUT(CH2) 1 15 33% I11 IOUT(CH1) 16 7 10 9 8 OUT1B 100% 67% 33% -33% -67% -100% www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 12/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV Power dissipation Please confirm that the IC's chip temperature Tj is not over 150, while considering the IC's power consumption (W) and ambient temperature (Ta). When Tj=150 is exceeded the functions as a semiconductor do not operate and problems such as parasitism and leaks occur. Constant use under these circumstances leads to deterioration and eventually destruction of the IC. Tjmax=150 must be strictly obeyed under all circumstances. Thermal Calculation The IC's consumed power can be estimated roughly with the power supply voltage (VCC), circuit current (ICC), output ON resistance (RONHRONL) and motor output current value (IOUT). The calculation method during FULL STEP drive, SLOW DECAY mode is shown here: Consumed power of the Vcc [W] = VCC [V]ICC [A] Consumed power of the output DMOS [W] = (RONH[] + RONL[])IOUT [A]22[ch]on_duty During output ON + (2RONL[])IOUT [A]22[ch](1 - on_duty) During current decay However, on duty: PWM on duty = ton / (tchop) ton varies depending on the L and R values of the motor coil and the current set value. Please confirm by actual measurement, or make an approximate calculation. tchop is the chopping period, which depends on the external CR. See P.8 for details. IC number BD68710EFV Upper PchDMOS ON Resistance RONH[] (Typ.) Lower NchDMOS ON Resistance RONL[] (Typ.) 0.70 0.50 Consumed power of total IC W_total [W] = + Junction temperature Tj = Ta[] + ja[/W]W_total [W] However, the thermal resistance valueja [/W] differs greatly depending on circuit board conditions. Refer to the derating curve on P.17.Also, we are taking measurements of thermal resistance valueja of boards actually in use. Please feel free to contact our salesman. The calculated values above are only theoretical. For actual thermal design, please perform sufficient thermal evaluation for the application board used, and create the thermal design with enough margin to not exceed Tjmax=150.Although unnecessary with normal use, if the IC is to be used under especially strict heat conditions, please consider externally attaching a Schottky diode between the motor output terminal and GND to abate heat from the IC. Temperature Monitoring In respect of BD68710EFV, there is a way to approximately measure the chip temperature by using the electrostatic discharge protection diode of the logic terminal (I0x or I1x) can be used when at L state. Temperature monitoring using this method is only for evaluation and experimenting purposes, and must not be used in actual usage conditions. (1)Measure the terminal voltage when a current of IDIODE=50A passes from the I0x or I1x terminal to the GND without supplying VCC to the IC. This measurement is the Vf voltage of the internal diode. (2)Measure the temperature characteristics of this terminal voltage. Vf has a linear negative temperature factor against temperature. With these results of temperature characteristics, chip temperature may be calibrated from the I0x or I1x terminal voltage. (3)Supply VCC, monitor the I0x or I1x terminal voltage while running the motor, and the chip temperature can be approximated from the results of (2). -Vf[mV] I0x or I1x Idiode Internal circuit Vf 25 150 Chip temperature Tj[] Figure.7 Model diagram for measuring chip temperature www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 13/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV Example for applied circuit Power save terminal Refer to P.6 for detail. Logic input terminal See P6 for detail. PHASE1 15 PHASE2 17 I01 16 I11 18 I02 19 I12 20 Translator TSD OCP OVLO UVLO RESET VREF 13 14 PS Bypass capacitor. Setting range is 100uF470uF(electrolytic) 0.01uF0.1uF(multilayer ceramic etc.) Refer to P.6 for detail. Be sure to short VCC1 & VCC2. 2bit DAC Set the output current. Input by resistor division. Refer to P.6 for detail. 7 VCC1 5 RNF1S Set the chopping frequency. Setting range is C:470pF1500pF R:10k200k Refer to P.7, 9 for detail. 2 3 Blank time PWM control Predriver RNF2S Control logic CR 10 39k 9 GND 4 22 24 OSC 27 1000pF MTH 12 Set the current decay mode. SLOW DECAY Connect to GND. MIX DECAY Input by resistor division. Refer to P.7, 10 for detail. 26 Mix decay control 25 Regulator 1 OUT1A OUT1B RNF1 0.2 0.1F 100F RNF1S VCC2 OUT2A OUT2B RNF2 0.2 Resistor for current detection Setting range is 0.10.3. Refer to P.7 for detail. RNF2S GND Resistor for current detection Setting range is 0.10.3. Refer to P.7 for detail. Figure.8 Block diagram and applied circuit diagram www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 14/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV Input output equivalent circuit diagram PHASE1 PHASE2 PS I01 I11 I02 I12 215k VREF MTH 10k 100k 5k 10k 100k VREG (internal regulator) RNF1S RNF2S 5k 5k CR 5k 5k VCC OUT1A OUT2A OUT1B OUT2B RNF1, RNF2 circuitry Figure.9 Input output equivalent circuit diagram www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 15/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV Operational Notes 1. Reverse Connection of Power Supply Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply pins. 2. Power Supply Lines Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. 3. Ground Voltage Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. 4. Ground Wiring Pattern When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance. 5. Thermal Consideration Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the maximum junction temperature rating. 6. Recommended Operating Conditions These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter. 7. Inrush Current When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections. 8. Operation Under Strong Electromagnetic Field Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction. 9. Testing on Application Boards When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage. 10. Inter-pin Short and Mounting Errors Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few. www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 16/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV Operational Notes - continued 11. Unused Input Pins Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line. 12. Regarding the Input Pin of the IC This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below): When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor. Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided. Figure 10. Example of monolithic IC structure 13. Thermal Shutdown Circuit(TSD) This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be within the IC's power dissipation rating. If however the rating is exceeded for a continued period, the junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below the TSD threshold, the circuits are automatically restored to normal operation. Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat damage. 14. Over Current Protection Circuit (OCP) This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should not be used in applications characterized by continuous operation or transitioning of the protection circuit. 15. Operation Under Strong Electromagnetic Field (BD68710EFV) The IC is not designed for using in the presence of strong electromagnetic field. Be sure to confirm that no malfunction is found when using the IC in a strong electromagnetic field. 16. Metal on the backside (Define the side where product markings are printed as front) (BD68710EFV) The metal on the backside is shorted with the backside of IC chip therefore it should be connected to GND. Be aware that here is a possibility of malfunction or destruction if it is shorted with any potential other than GND. www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 17/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV Selecting a model name when ordering B D 6 8 7 1 ROHM Model 0 E F V Package type EFV :HTSSOP-B28 - E2 Packing, Forming specification E2: Reel-wound embossed taping Marking Diagram HTSSOP-B28 (TOP VIEW) Part Number Marking BD68710EFV LOT Number 1PIN MARK www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 18/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV Physical Dimension, Tape and Reel Information Package Name www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 HTSSOP-B28 19/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 BD68710EFV Revision History Date Revision 10.Jun.2016 001 Changes New Release www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 20/20 TSZ02201-0P2P0B701230-1-2 10.Jun.2016 Rev.001 Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you (Note 1) intend to use our Products in devices requiring extremely high reliability (such as medical equipment , transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASS CLASSb CLASS CLASS CLASS CLASS 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice-PGA-E (c) 2015 ROHM Co., Ltd. All rights reserved. Rev.003 Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software). 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice-PGA-E (c) 2015 ROHM Co., Ltd. All rights reserved. Rev.003 Datasheet General Precaution 1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents. ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny ROHM's Products against warning, caution or note contained in this document. 2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the la test information with a ROHM sale s representative. 3. The information contained in this doc ument is provi ded on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or concerning such information. Notice - WE (c) 2015 ROHM Co., Ltd. All rights reserved. Rev.001 Datasheet bd68710efv - Web Page Buy Distribution Inventory Part Number Package Unit Quantity Minimum Package Quantity Packing Type Constitution Materials List RoHS bd68710efv HTSSOP-B28 2500 2500 Taping inquiry Yes