PRODUCTS AND SPECIFICATIONS DISCUSSED HER EIN ARE SUBJE CT TO CHANGE BY MICRON WITHO U T NOTICE.
pdf: 09005aef80804052, so urce: 09005a ef806e057b
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 1©2004 Micron Technolog y, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
DDR SDRAM
SMALL-OUTLINE DIMM
MT9VDDT1672H – 128MB,
MT9VDDT3272H – 256MB,
MT9VDDT6472H – 512MB,
MT9VDDT12872H – 1GB
For the latest data sheet, please refer to the Micron
Web
site: www.micron.com/products/modules
Features
200-pin, small-ou tline, dual in-line memory
module (SODIMM)
Supports ECC error detection and correction
Fast data transfer rates: PC1600, PC2100, or PC2700
Utilizes 200 MT/s, 2 66 MT /s, and 333 MT/s DDR
SDRAM components
128MB (16 Meg x 72), 256MB (32 Meg x 72), 512MB
(64 Meg x 72), and 1GB (128 Meg x 72)
•V
DD = VDDQ = +2.5V
•V
DDSPD = +2.3V to +3.6V
2.5V I/O (SSTL_2 compatible)
Commands entered on each positive CK edge
DQS edge-a ligned with data for READs; center-
aligned with data for WRITEs
Internal, pipelined double data rate (DDR)
architecture; two data accesses per clock cycle
Bidirectional data strobe (DQS) transmitted/
received with data—i.e., source-synchronous data
capture
Differential clock in puts CK and CK#
Four internal device banks for concurrent operation
Programmable burst lengths: 2, 4, or 8
Auto precharge option
Auto Refresh and Self Refresh Modes
15.625µs (128 MB) or 7.8125µs (256MB, 512MB,
1GB) maximum average periodic refresh interval
Serial Presence Detect (SPD) with EEPROM
Programmable READ CAS latency
•Gold edge contacts
Figure 1: 200-Pin SODIMM (MO-224)
NOTE: 1. CL = Device CAS (RE AD ) Late nc y.
2. Consult Micron for product availability.
OPTIONS MARKING
Oper ating Temperature Ran g e
Commercial (0°C T A +70°C) Non e
Industrial (-40°C TA +85°C ) I2
•Package
200-pin SODIMM (standard) G
200-pin SODIMM (lead-free) Y2
Memory clock, Sp eed, CAS Latency1
6.0ns (167 MHz), 333 MT/s, CL = 2.5
-335
7.5ns (13 3 MH z), 266 MT/s, CL = 2 -2622
7.5ns (13 3 MH z), 266 MT/s, CL = 2 -26A2
7.5ns (13 3 MHz), 266 MT/s , CL = 2.5
-265
10ns (100 MH z) , 200 MT/s, CL = 2 -2022
•PCB
1.25in. (31.75mm) See page 2 note
1.25in. (31.75mm)
Table 1: Addr ess Table
128MB 256MB 512MB 1GB
Refresh Count 4K 8K 8K 8K
Row Addressing 8K (A0–A11) 8K (A0–A12) 8K (A0–A12) 16K (A0–A13)
Device Bank Addressing 4 (BA0, BA1) 4 (BA0, BA1) 4 (BA0, BA1) 4 (BA0, BA1)
Device Configuration 128Mb (16 Meg x 8) 256Mb (32 Meg x 8) 512Mb (64 Meg x 8) 1Gb (128 Meg x 8)
Column Addressing 1K (A0–A9) 1K (A0–A9) 2K (A0–A9, A11) 2K (A0–A9, A11)
Module Rank Addressing 1 (S0#) 1 (S0#) 1 (S0#) 1 (S0#)
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 2©2004 Micron Technolog y, Inc. All rights reserved.
NOTE:
All part numbers end with a two-place code (not shown), designating component and PCB revisions. Consult factory for
current revision codes. Example: MT9VDDT3272HG-265A1.
Table 2: Part Numbers and Timing Parameters
PART NUMBER MODULE
DENSITY CONFIGURATION
MODULE
BANDWIDTH
MEMORY CLOCK/
DATA RATE LATENCY
(CL - tRCD - tRP)
MT9VDDT1672H(I)G-335__ 128MB 16 Meg x 72 2.7 GB/s 6.0ns/333 MT/s 2.5-3-3
MT9VDDT1672H(I)Y-335__ 128MB 16 Meg x 72 2.7 GB/s 6.0ns/333 MT/s 2.5-3-3
MT9VDDT1672H(I)G-262__ 128MB 16 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT9VDDT1672H(I)Y-262__ 128MB 16 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT9VDDT1672H(I)G-26A__ 128MB 16 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT9VDDT1672H(I)Y-26A__ 128MB 16 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT9VDDT1672H(I)G-265__ 128MB 16 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT9VDDT1672H(I)Y-265__ 128MB 16 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT9VDDT1672H(I)G-202__ 128MB 16 Meg x 72 1.6 GB/s 10ns/200 MT/s 2-2-2
MT9VDDT1672H(I)Y-202__ 128MB 16 Meg x 72 1.6 GB/s 10ns/200 MT/s 2-2-2
MT9VDDT3272H(I)G-335__ 256MB 32 Meg x 72 2.7 GB/s 6.0ns/333 MT/s 2.5-3-3
MT9VDDT3272H(I)Y-335__ 256MB 32 Meg x 72 2.7 GB/s 6.0ns/333 MT/s 2.5-3-3
MT9VDDT3272H(I)G-262__ 256MB 32 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT9VDDT3272H(I)Y-262__ 256MB 32 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT9VDDT3272H(I)G-26A__ 256MB 32 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT9VDDT3272H(I)Y-26A__ 256MB 32 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT9VDDT3272H(I)G-265__ 256MB 32 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT9VDDT3272H(I)Y-265__ 256MB 32 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT9VDDT3272H(I)G-202__ 256MB 32 Meg x 72 1.6 GB/s 10ns/200 MT/s 2-2-2
MT9VDDT3272H(I)Y-202__ 256MB 32 Meg x 72 1.6 GB/s 10ns/200 MT/s 2-2-2
MT9VDDT6472H(I)G-335__ 512MB 64 Meg x 72 2.7 GB/s 6.0ns/333 MT/s 2.5-3-3
MT9VDDT6472H(I)Y-335__ 512MB 64 Meg x 72 2.7 GB/s 6.0ns/333 MT/s 2.5-3-3
MT9VDDT6472H(I)G-262__ 512MB 64 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT9VDDT6472H(I)Y-262__ 512MB 64 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT9VDDT6472H(I)G-26A__ 512MB 64 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT9VDDT6472H(I)Y-26A__ 512MB 64 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT9VDDT6472H(I)G-265__ 512MB 64 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT9VDDT6472H(I)Y-265__ 512MB 64 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT9VDDT6472H(I)G-202__ 512MB 64 Meg x 72 1.6 GB/s 10ns/200 MT/s 2-2-2
MT9VDDT6472H(I)Y-202__ 512MB 64 Meg x 72 1.6 GB/s 10ns/200 MT/s 2-2-2
MT9VDDT12872H(I)G-335__ 1GB 128 Meg x 72 2.7 GB/s 6.0ns/333 MT/s 2.5-3-3
MT9VDDT12872H(I)Y-335__ 1GB 128 Meg x 72 2.7 GB/s 6.0ns/333 MT/s 2.5-3-3
MT9VDDT12872H(I)G-262__ 1GB 128 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT9VDDT12872H(I)Y-262__ 1GB 128 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT9VDDT12872H(I)G-26A__ 1GB 128 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT9VDDT12872H(I)Y-26A__ 1GB 128 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT9VDDT12872H(I)G-265__ 1GB 128 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT9VDDT12872H(I)Y-265__ 1GB 128 Meg x 72 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT9VDDT12872H(I)G-202__ 1GB 128 Meg x 72 1.6 GB/s 10ns/200 MT/s 2-2-2
MT9VDDT12872H(I)Y-202__ 1GB 128 Meg x 72 1.6 GB/s 10ns/200 MT/s 2-2-2
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 3©2004 Micron Technolog y, Inc. All rights reserved.
NOTE:
1. Pin 99 is NC for 128MB and A12 for 256MB, 512MB, and 1GB.
2. Pin 123 is NC for 128MB, 256MB, and 512MB and A13 for 1GB.
Figure 2: Module Layout
Table 3: Pin Assignment
(200-Pin SODIMM Front)
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL
1VREF 51 VSS 101 A9 151 DQ42
3V
SS 53 DQ19 103 Vss 153 DQ43
5DQ055DQ24105 A7 155 Vdd
7DQ157 VDD 107 A5 157 Vdd
9V
DD 59 DQ25 109 A3 159 VSS
11 DQS0 61 DQS3 111 A1 161 VSS
13 DQ2 63 VSS 113 VDD 163 DQ48
15 VSS 65 DQ26 115 A10 165 DQ49
17 DQ3 67 DQ27 117 BA0 167 VDD
19 DQ8 69 VDD 119 WE# 169 DQS6
21 VDD 71 CB0 121 S0# 171 DQ50
23 DQ9 73 CB1 123 NC/A132173 VSS
25 DQS1 75 VSS 125 VSS 175 DQ51
27 VSS 77 DQS8 127 DQ32 177 DQ56
29 DQ10 79 CB2 129 DQ33 179 VDD
31 DQ11 81 VDD 131 VDD 181 DQ57
33 VDD 83 CB3 133DQS4183DQS7
35 CK0 85 NC 135 DQ34 185 VSS
37 CK0# 87 VSS 137 VSS 187 DQ58
39 VSS 89 CK2 139 DQ35 189 DQ59
41 DQ16 91 CK2# 141 DQ40 191 VDD
43 DQ17 93 VDD 143 VDD 193 SDA
45 VDD 95 NC 145 DQ41 195 SCL
47 DQS2 97 NC 147 DQS5 197 VDDSPD
49 DQ18 99 NC/A121149 VSS 199 NC
Table 4: Pin Assignment
(200-pin SODIMM Back)
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL
2VREF 52 VSS 102 A8 152 DQ46
4V
SS 54 DQ23 104 VSS 154 DQ47
6DQ456DQ28106 A6 156 VDD
8DQ558 VDD 108 A4 158 CK1#
10 VDD 60 DQ29 110 A2 160 CK1
12DM062DM3112 A0 162 VSS
14 DQ6 64 VSS 114 VDD 164 DQ52
16 VSS 66 DQ30 116 BA1 166 DQ53
18 DQ7 68 DQ31 118 RAS# 168 VDD
20 DQ12 70 VDD 120 CAS# 170 DM6
22 VDD 72 CB4 122 NC 172 DQ54
24 DQ13 74 CB5 124 NC 174 VSS
26 DM1 76 VSS 126 VSS 176 DQ55
28 VSS 78 DM8 128 DQ36 178 DQ60
30 DQ14 80 CB6 130 DQ37 180 VDD
32 DQ15 82 VDD 132 VDD 182 DQ61
34 VDD 84 CB7 134 DM4 184 DM7
36 VDD 86 NC 136 DQ38 186 VSS
38 VSS 88 VSS 138 VSS 188 DQ62
40 VSS 90 VSS 140 DQ39 190 DQ63
42 DQ20 92 VDD 142 DQ44 192 VDD
44 DQ21 94 VDD 144 VDD 194 SA0
46 VDD 96 CKE0 146 DQ45 196 SA1
48 DM2 98 NC 148 DM5 198 SA2
50 DQ22 100 A11 150 VSS 200 NC
U1 U2 U3 U4 U5 U10U9
U8
U7
U6
PIN 1 PIN 199
(all odd pins) PIN 2
PIN 200 (all even pins)
Indicates a VDD or VDDQ pin Indicates a VSS pin
Front View Back View
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 4©2004 Micron Technolog y, Inc. All rights reserved.
Table 5: Pin Descriptions
Pin numbers may not correlate with symbols; refer to Pin Assignment Tables on page 3 for more information
PIN NUMBERS SYMBOL TYPE DESCRIPTION
118, 119, 120 WE#, CAS#, RAS# Input Command Inputs: RAS#, CAS#, and WE# (along with S#) define
the command being entered.
35, 37, 89, 91, 158, 160 CK0, CK0#, CK1,
CK1#, CK2, CK2# Input Clock: CK, CK# are differential clock inputs. All address and
control input signals are sampled on the crossing of the positive
edge of CK,and negative edge of CK#. Output data (DQs and
DQS) is referenced to the crossings of CK and CK#.
96 CKE0 Input Clock Enable: CKE HIGH activates and CKE LOW deactivates the
internal clock, input buff ers and output drivers. Taking CKE L OW
provides PRECHARGE POWER-DOWN and SELF REFRESH
operations (all de vice banks idle), or ACTI VE POWER-DOWN (row
ACTIVE in any device bank ).CKE is synchronous for POWER-
DOWN entry and exit, and for SELF REFRESH entry. CKE is
asynchronous for SELF REFRESH exit and for disabling the
outputs. CKE must be maintained HIGH throughout read and
write accesses. Input buffers (excluding CK, CK# and CKE) are
disabled during POWER-DOWN. Input buffers (excluding CKE)
are disabled during SELF REFRESH. CKE is an SSTL_2 input but
will detect an LVCMOS LOW level after VDD is applied.
121 S0# Input Chip Se lects: S# enables (registered LOW) and disables
(registered HIGH) the command decoder. All commands are
masked when S# is registered HIGH. S# is considered part of the
command cod e.
116, 117 BA0, BA1 Input Bank Address: BA0, BA1 define to which device bank an ACTIVE,
READ, WRITE, or PRECHARGE command is being applied.
99 (256MB, 512M B, 1GB ),
100, 101, 102, 105, 106, 107,
108, 109, 110, 111, 112, 115,
123 (1GB)
A0–A11
(128MB)
A0–A12
(25 6MB, 512MB)
A0–A13
(1GB)
Input Address Inputs: Provide the row address for ACTIVE commands,
and the column address and auto precharge bit (A10) for READ/
WRITE commands, to select one location out of the memory
array in the respective device bank. A10 sampled during a
PRECHARGE command determines whether the PRECHARGE
applies to one device bank (A10 LOW, device bank selected by
BA0, BA1) or all device ba nks (A10 HIGH). The address inputs also
provide the op-code during a MODE REGISTER SET command.
BA0 and BA1 de fine which mode register (mode register or
extended mode register) is load ed during the LOAD MODE
REGISTER command.
11, 25, 47, 6 1, 77 , 133 , 14 7,
169, 183 DQS0–DQS8 Input/
Output Data Strobe: Output with READ data, input with WRITE data.
DQS is edge-aligned with READ data, centered in WRITE data.
Used to capture data.
12, 26, 48, 6 2, 78 , 134 , 14 8,
170, 184 DM0–DM8 Input Data Mask: DM is an input mask signal for write data. Input data
is masked when DM is sample d HIGH along with that input data
during a WRITE access. DM is sampled on both edges of DQS.
Although DM pins are input-only, the DM loading is designed to
match that of DQ and DQS pins.
71,72, 73, 74, 79, 80, 83, 84 CB0–CB7 Input/
Output Check Bits.
5–8, 13–20, 23–24, 29–32,
41–44, 49–50, 53–56, 59–60,
65–68, 127–130, 135–136,
139–142, 145–146, 151–154,
163–166, 171–172, 175–178,
181–18 2, 187–190
DQ0DQ63 Input/
Output Data I/Os: Data bus.
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 5©2004 Micron Technolog y, Inc. All rights reserved.
195 SCL Input Serial Clock for Presence-Detect: SCL is used to synchronize the
presence-detect data transfer to and from the module.
194, 196, 198 SA0–SA2 Input Presence-Dete ct Address Inputs: Thes e pins are used to configure
the presen ce -dete ct devi ce .
193 SDA Input/
Output Serial Presenc e-Detect Data: SDA is a bidirectional pin used to
transfer addresses and data into and out of the presence-detect
portion of the module.
1, 2 V REF Supply SSTL_2 referen c e voltage.
9–10, 21–22, 33–34, 36, 45–
46, 57–58, 69–70, 81–82,
92–94, 113–114, 131–132,
143–144, 155–157, 167–168,
17–180, 191–192
VDD Supply Power Supply: +2.5V ±0.2V.
3–4 15–16, 27–28, 38–40,
51–52, 63–64, 75–76, 87–88,
90, 103–104, 125–126,
137–138, 149–150, 159,
161–162, 173–174, 185–186
VSS Supply Ground.
197 VDDSPD Supply Serial EEPROM positive power supply: +2.3V to +3.6V.
85, 95, 97, 122,
123 (128MB, 256 MB,
512MB), 199 (128MB),
98, 124, 200
NC No Connect: These pins should be left unconnected.
Table 5: Pin Descriptions (Continued)
Pin numbers may not correlate with symbols; refer to Pin Assignment Tables on page 3 for more information
PIN NUMBERS SYMBOL TYPE DESCRIPTION
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 6©2004 Micron Technolog y, Inc. All rights reserved.
Figure 3: Functional Bl ock Diagram
A0
SA0
SERIAL PD
SDA
A1
SA1
A2
SA2
BA0, BA1
A0-A11/12/13
RAS#
CAS#
CKE0
WE#
BA0, BA1: DDR SDRAMs
A0-A11/12/13: DDR SDRAMs
RAS#: DDR SDRAMs
CAS#: DDR SDRAMs
CKE0: DDR SDRAMs
WE#: DDR SDRAMs
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
U6
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
U7
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
U4
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
U3
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
U9
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
U10
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DM CS# DQS
U1
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DM0
S0#
U2
WP
SCL
DM CS# DQS
DM CS# DQS
DM CS# DQS
DQS0 DM4
DQS4
DM1
DQS1 DM5
DQS5
DM2
DQS2 DM6
DQS6
DM CS# DQS
U5
DM CS# DQS
DM CS# DQS DM CS# DQS
DM CS# DQS
DM3
DQS3 DM7
DQS7
DM8
DQS8
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
VDDSPD
VDD
VREF
VSS
SPD/EEPROM
DDR SDRAMS
DDR SDRAMS
DDR SDRAMS
U8
CK0
CK0#
120
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
U1, U9,
U10 CK1
CK1# U5-U7
CK2
CK2# U2-U4
120
120
NOTE:
1. All resistor values are 22 unless otherwise specified.
2. Per industry standard, Micron modules utilize various component speed
grad es, as referenced in the module part numbering guide at
www.micron.com/numberguide.
Standard modules use the following DDR SDRAM devices:
MT46V16M8TG (128MB); MT46V32M8TG (256MB); MT46V64M8TG
(512MB); MT46V128M8TG ( 1GB )
Lead-free modules use the following DDR SDRAM devices:
MT46V16M8P (128MB); MT46V32M8P (256MB); MT46V64M8P (512MB);
MT46V128M8P (1GB)
Contact Mic ron for ava ilabilit
y
of IT modules.
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 7©2004 Micron Technolog y, Inc. All rights reserved.
General D e scrip tion
The
MT9VDDT1672H, MT9VDDT3272H,
MT9VDDT6472H, and MT9VDDT12872H are high-
speed CMOS, dynamic random-access, 128MB,
256MB, 512MB, and 1GB memory modules organized
in x72 (ECC) configuration. DDR SDRAM modules use
interna lly conf igur ed qu ad-ban k DDR SDRAM devices .
DDR SDRAM modules use a double data ra te archi-
tecture to achieve high-speed operation. The double
data rate architecture is essentially a 2n-prefetch
architecture with an interface designed to transfer two
data words per clock cycle at the I/O pins. A single
re ad or write ac cess for the DDR SDRAM module eff ec-
tively consists of a single 2n-bit wide, one-clock-cycle
data transfer at the internal DRAM core and two corre-
sponding n-bit wide, one-half-clock-cycle data trans-
fers at the I/O pins.
A bidirectional data strobe (DQS) is transmitted
externally, along with data, for use in data capture at
the receiver. DQS is an intermittent strobe transmitted
by the DDR SDRAM during READs and by the memory
controller during WRITEs. DQS is edge-aligned with
data for READs and center-aligned with data for
WRITEs.
DDR SDRAM modules operate from differential
clock inputs (CK and CK#); the crossing of CK going
HIGH and CK# going LOW will be referred to as the
positive edge of CK. Commands (address and control
signals) are registered at every positive edge of CK.
I nput data is r egis ter ed on both edges of DQS, and out-
put data is referenced to both edges of DQS, as well as
to both edges of CK.
Read and write accesses to DDR SDRAM modules
are burst o rien ted; acce sses start at a s electe d locat ion
and continue for a programmed number of locations
in a programmed sequence. Accesses begin with the
registration of a n ACTIVE command, which is then fol-
lowed by a READ or WRITE command. The address
bits registered coincident with the ACTIVE command
are used to select the device bank and row to be
accessed (BA0, BA1 select device bank; A0–A11 select
device rofw for 128MB; A0–A12 select device row for
256MB and 512MB; A0–A13 select device row for 1GB).
The address bits registered coincident with the READ
or WRITE comm and are used to sel ect the device bank
and the starting device column location for the burst
access.
DDR SDRAM modules provide for programmable
READ or WRITE burst lengths of 2, 4, or 8 locations . An
auto precharge function may be enabled to provide a
self-timed row precharge that is initiated at the end of
the burst ac cess.
The pipelined, multibank architecture of DDR
SDRAM modules allows for concurrent operation,
thereby providing high effective bandwidth by hiding
row precharge and activation time.
An auto refresh mode is provided, along with a
power-saving power-down mode. All inputs are com-
patible with the JEDEC Standard for SSTL_2. All out-
puts are SSTL_2, Class II compatible. For more
inform ation regarding DDR SDRAM operation, refer to
the 128Mb, 256Mb, 512Mb, or 1Gb DDR SDRAM com-
pone nt data sheets.
Serial Presence-Detect Operation
DDR SDRAM modules incorporate serial presence-
detect (SPD). The SPD function is implemented using
a 2,048-bit EEPROM. This nonvolatile storage device
contains 256 bytes. The first 128 bytes can be pro-
grammed by Micron to identify the module type and
various SDRAM organizations and timing parameters.
The remaining 128 bytes of storage are available for
use by the customer. System READ/ WRITE operations
between the system logic and the module EEPROM
device occur via a standard I2C bus using the DIMM’s
SCL (clock) and SDA (data) signals, together with SA
(2:0), which provide eight unique DIMM/EEPROM
addresses. Write protect (WP) is tied to ground on the
module, permanently disabling hardware write pro-
tect.
Mode Regis t e r Definition
The mode register is used to define the specific
mode of operation of DDR SDRAM devices. This defi-
nition includes the selection of a burst length, a burst
type, a CAS latency and an operating mode, as shown
in Figure 4, Mode Register Definition Diagram, on
page 8. The mode register is programmed via the
MODE REGISTER SET command (with BA0 = 0 and
BA1 = 0 ) and will retain the stored information until it
is programmed again or the device l ose s power (except
for bit A8, which is self-clearing).
Reprogramming the mode register will not alter the
contents of the memory, provided it is performed cor-
rectly. The mode register must be loaded (reloaded)
when all device banks are idle and no bursts are in
progress, and the controller must wait the specified
time before initiating the subsequent operation. Vio-
lating either of these requirements will result in
unspecified operation.
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 8©2004 Micron Technolog y, Inc. All rights reserved.
M ode reg ister bits A0–A2 s pecify the burst l ength, A3
specifies the type of burst (sequential or interleaved),
A4–A6 specify the CAS lat ency, and
A7–A11 (
128MB),
A7–
A12 (
256MB
,
512MB
) or A7–A13 (
1GB
)
specify the oper at-
ing mode.
Bur s t Le ng th
Read and w rite accesses to DDR SDRAM devices are
burst oriented, with the burst length being program-
mable, as shown in Mode Register Diagram. The burst
length determines the maximum number of column
locations that can be accessed for a given READ or
WRITE command. Burst lengths of 2, 4, or 8 locations
are available for both the sequential and the inter-
leaved burst types.
Reserved states should not be used, as unknown
operation or incompatibility with future versions may
result.
When a READ or WRITE command is issued, a block
of columns equal to the burst length is effectively
selected. All accesses for that burst take place within
this block, meaning that the burst will wrap within the
block if a boundary is reached. The block is uniquely
selected by A1–Ai when the burst length is set to two,
by A2Ai when the burst length is set to four and by
A3–Ai when the burst length is set to eight (where Ai is
the most significant column address bit for a given
configuration; see Note 5 of Table 6, Burst Definition
Table, on page 9). The remaining (least significant)
address bit(s) is (are) used to select the starting loca-
tion within the block. The programmed burst length
applies to both READ and WRITE bursts.
Burst Type
Accesses within a given burst may be programmed
to be either sequent ia l or interl eaved; this is referred to
as the burst type and is selected via bit M3.
The ordering of accesses within a burst is deter-
mined by the burst length, the bur s t ty p e an d the start-
ing column address, as shown in Table 6, Burst
Definition Table, on page9.
Rea d La tenc y
The READ latency is the delay, in clock cycles,
between the registration of a READ command and the
availability of the first bit of output data. The latency
can be set to 2 or 2.5 clocks, as shown in Figure 5, CAS
Laten cy Dia gram, on pa ge 9.
If a READ command is registered at clock edge n,
and the latency is m clocks, the data will be available
nominally coincident with clock edge n + m. Table 7,
CAS Latency (CL) Table, indicates the operating fre-
quencies at which each CAS latency setting can be
used.
Figure 4: Mode Register Definit ion
Diagram
Burst LengthCAS Latency BT0*
A9 A7 A6 A5 A4 A3
A8 A2 A1 A0
Mode Register (Mx)
Address Bus
976543
8210
Operating Mode
A10
A12 A11
BA0
BA1
10
11
12
13
0*
14
Burst LengthCAS Latency BT0*0*
A9 A7 A6 A5 A4 A3
A8 A2 A1 A0
Mode Register (Mx)
Address Bus
976543
8210
Operating Mode
A10
A11
BA0
BA1
10
11
12
13
* M13 and M12 (BA0 and BA1) must be “0, 0” to select the
base mode register (vs. the extended mode register).
256MB and 512MB Modules
128MB Module
M3 = 0
Reserved
2
4
8
Reserved
Reserved
Reserved
Reserved
Operating Mode
Normal Operation
Normal Operation/Reset DLL
All other states reserved
0
1
-
0
0
-
0
0
-
0
0
-
0
0
-
0
0
-
Valid
Valid
-
0
1
Burst Type
Sequential
Interleaved
CAS Latency
Reserved
Reserved
2
Reserved
Reserved
Reserved
2.5
Reserved
Burst Length
M0
0
1
0
1
0
1
0
1
Burst LengthCAS Latency BT0*
A9 A7 A6 A5 A4 A3A8 A2 A1 A0
Mode Register (Mx)
Address Bus
9765438210
M1
0
0
1
1
0
0
1
1
M2
0
0
0
0
1
1
1
1
M3
M4
0
1
0
1
0
1
0
1
M5
0
0
1
1
0
0
1
1
M6
0
0
0
0
1
1
1
1
M6-M0
M8 M7
Operating Mode
A10A12 A11BA0BA1
10111214
0*
15
* M15 and M14 (BA1 and BA0)
must be “0, 0” to select the
base mode register (vs. the
extended mode register).
M9M10M12 M11
A13
13
0
0
-
M13
* M14 and M13 (BA0 and BA1) must be “0, 0” to select the
base mode register (vs. the extended mode register).
1GB Module
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 9©2004 Micron Technolog y, Inc. All rights reserved.
NOTE:
1. For a burst length of two, A1–Ai select the two-data-
element block; A0 selects the first access within the
block.
2. For a burst length of four, A2–Ai select the four-data-
element block; A0–A1 select the first access within the
block.
3. For a burst length of eight, A3–Ai select the eight-data-
element block; A0–A2 select the first access within the
block.
4. Whenever a boundary of the block is reached within a
given sequence above, the following access wraps
within the block.
5. i = 9 for 128MB, 256MB;
i = 9, 11 for 512MB, 1GB.
Figure 5: CAS Latency Diagram
Reserved states should not be used as unknown
operation or incompatibility with future versions may
result.
Operati ng Mo de
The nor mal operatin g mode is s elected by issuin g a
MODE REGISTER SET command with bits
A7–A11
(128MB), A7–A12 (
256MB
,
512MB
) or A7–A13 (
1GB
)
each
set to zero, and bits A0–A6 set to the desired values. A
DLL reset is initiated by issuing a MODE REGISTER
SET command with bits A7 and
A9–A11 (
128MB); A7
and
A9–A12 (
256MB,
512MB); or A7 and A9–A13 (
1GB
)
each set to zero, bit A8 set to one, and bits A0–A6 set to
the desired values. Although not required by the
Micron device, JEDEC specifications recommend
when a LOAD MODE REGISTER command is issued to
res et the DLL, it should always be followed by a LOAD
MODE REGISTER command to select normal operat-
ing mode.
All other com bination s of values for
A7–A11 (128MB);
A7–A12 (
256MB
,
512MB
); or A7–A13 (
1GB
)
are reserved
for future use and/or test modes. Test modes and
reserved states should not be used because unknown
operation or incompatibility with future versions may
result.
Table 6: Burst Definition Table
BURST
LENGTH
STARTING
COLUMN
ADDRESS
ORDER O F ACCESSES WITHIN
A BURST
TYPE =
SEQUENTIAL TYPE =
INTERLEAVED
2
A0
00-1 0-1
11-0 1-0
4
A1 A0
0 0 0-1-2-3 0-1-2-3
0 1 1-2-3-0 1-0-3-2
1 0 2-3-0-1 2-3-0-1
1 1 3-0-1-2 3-2-1-0
8
A2 A1 A0
0 0 0 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7
0 0 1 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6
0 1 0 2-3-4-5-6-7-0-1 2-3-0-1-6-7-4-5
0 1 1 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4
1 0 0 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3
1 0 1 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2
1 1 0 6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1
1 1 1 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0
Table 7: CAS Latency (CL) Table
ALLOWABLE OPERATING
CLOCK FREQUENCY (MHZ)
SPEED CL = 2 CL = 2.5
-335 75 f 133 75 f 167
-262 75 f 133 75 f 133
-26A 75 f 133 75 f 133
-265 75 f 100 75 f 133
-202 75 f 100 N/A
CK
CK#
COMMAND
DQ
DQS
CL = 2
READ NOP NOP NOP
READ NOP NOP NOP
Burst Length = 4 in the cases shown
Shown with nominal tAC, tDQSCK, and tDQSQ
CK
CK#
COMMAND
DQ
DQS
CL = 2.5
T0 T1 T2 T2n T3 T3n
T0 T1 T2 T2n T3 T3n
DON’T CARETRANSITIONING DATA
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 10 ©2004 Micron Technolog y, Inc. All rights reserved.
Extended Mode Register
The extended mode register controls functions
beyond those controlled by the mode register; these
additional functions are DLL enable/disable and out-
put drive strength. These functions are controlled via
the bits shown in Figure 6, Extended Mode Register
Definition Diagram. The extended mode register is
programmed via the LOAD MODE REGISTER com-
mand to the mode register (with BA0 = 1 and BA1 = 0)
and will retain the stored information until it is pro-
grammed again or the device loses power. The
enabling of the DLL should always be followed by a
LOAD MODE REGISTER command to the mode regis-
ter ( BA 0 /BA1 bo th LOW) to reset the D LL.
The extended mode register must be loaded when
all device banks are idle and no bursts are in progress,
and the controller must wait the specified time before
initiating any subsequent operation. Violating either
of these r equir em ents coul d r es ult in uns pecif ied oper -
ation.
DLL Enable/Disable
The DLL must be enabled for normal operation.
DLL enable is required during power-up initialization
and upon returning to normal operation after having
disabled the DLL for the purpose of debug or evalua-
tion. (When the device exits se lf r efr es h mode , the DLL
is enab le d automat ica lly.) Any time the D LL is ena bled,
200 clock cycles with CKE HIGH must occur before a
READ command can be issu ed.
Figure 6: Extended Mode Register
Definition Diagram
NOTE:
1. BA1 and BA0 (E13 and E12 for 128MB, E14 and E13 for
256MB, 51 2MB , or E15 a nd E14 fo r 1GB) m ust be “ 0, 1”
to select the Extended Mode Register (vs. the base
Mode Register).
2. QFC# is not supported.
DLL
11
01
A9 A7 A6 A5 A4 A3
A8 A2 A1 A0
Extended Mode
Register (Ex)
Address Bus
976543
8210
Operating Mode
A10
A11A2
BA1BA0
10
11
12
1314
DS
DLL
11
01
A9 A7 A6 A5 A4 A3
A8 A2 A1 A0
Extended Mode
Register (Ex)
Address Bus
976543
8210
Operating Mode
A10
A11
BA1BA0
10
11
12
13
DS
128MB Module
256MB and 512MB Modules
Operating Mode
Reserved
Reserved
0
0
Valid
0
1
DLL
Enable
Disable
DLL
1
1
0
1
A9 A7 A6 A5 A4 A3A8 A2 A1 A0
Extended Mode
Register (Ex)
Address Bus
9765438210
E0
0Drive Strength
Normal
E1
E2 E0
E1,
Operating Mode
A10A11A12BA1BA0
1011121415
E3E4
0
0
0
0
0
E6 E5
E7E8E9
0
0
E10E11
0
E12
DS
0
0
E13
A13
13
1GB Module
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 11 ©2004 Micron Technolog y, Inc. All rights reserved.
Commands
Table 8, Commands Truth Table, and Table 9, DM
Operation Truth Table, provide a general reference of
available commands. For a more detailed description
of commands and operations, refer to the 128Mb,
256Mb, 512Mb, or 1Gb DDR SDRAM component data
sheets.
NOTE:
1. DESELECT and NOP are functionally int erchangeable.
2. BA0–BA1 provide device bank address and A0–A11 (128MB), A0–A12 (256MB, 512MB) or A0–A13 (1GB) provide row
address.
3. BA0–BA1 prov ide device bank address; A0–A9 (128MB, 2 56MB) or A0–A9,11 (512MB, 1GB), provide column address; A10
HIGH enables the auto precharge feature (nonpersistent), and A10 LO W disables the au to pr echarge feature.
4. Applies only to read bursts with auto precharge disabled; this command is undefined (and should not be used) for READ
bursts with auto precharge enabled and for WRITE bursts.
5. A10 LOW: BA0–BA1 determine which device bank is precharged. A10 HIGH: all device banks are precharged and BA0-
BA1 are “Don’t Care.”
6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.
7. Internal refresh counter controls row addressing; all inpu ts and I/Os are “Don’t Care” except for CKE.
8. BA0–BA1 select either the mode register or the exten ded mode register (B A0 = 0, BA1 = 0 select the mode register; BA0
= 1, BA1 = 0 select extended mode register; other combinations of BA0–BA1 are reserved). A0–A11 (128MB), A0–A12
(256MB, 512MB) or A0–A13 (1GB) provide the op-code to be written to the selected mode register.
Table 8: Commands Truth Table
CKE is HIGH for all commands shown ex cept SELF REFRESH; all states and sequences not shown are illegal or reserved
NAME (FUNCTION) CS# RAS# CAS# WE# ADDRESS NOTES
DESELECT (NOP) HX XX X 1
NO OPERATION (NOP) LH HH X 1
ACTIVE (Select bank and activate row) L L H H Bank/Row 2
READ (Select bank and column, and start READ burst) L H L H Bank/Col 3
WRITE (Select bank and column, and start WRITE burst) L H L L Bank/Col 3
BURST TERMINATE LH HL X 4
PRECHARGE (Deactivate row in bank or banks) L L H L Code 5
AUTO REFRE SH or SELF REFRESH
(Enter self refresh mode) LL LH X 6, 7
LOAD MODE REGISTER L L L L Op-Code 8
Table 9: DM Operation Truth Table
Used to mask write data; provided coincident with the corresponding data
NAME (FUNCTION) DM DQS
WRITE Enable L Valid
WRITE Inhibit HX
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 12 ©2004 Micron Technolog y, Inc. All rights reserved.
Absolute Maximum Ratings
Stresses greater than those listed may cause perma-
nent damage to the device. This is a stress rating only,
and functional operation of the device at these or any
other conditions above those indicated in the opera-
tional sections of this specification is not implied.
Exposure to absolute maximum rating conditions for
extended peri ods may affec t reliability.
VDD Supply Voltage
Rel a ti ve to VSS. . . . . . . . . . . . . . . . . . . . .-1V to +3.6V
VDDQ Supply Vo ltage
Rel a ti ve to VSS. . . . . . . . . . . . . . . . . . . . -1V to +3.6V
VREF and Inputs Voltage
Rel a ti ve to VSS. . . . . . . . . . . . . . . . . . . . -1V to +3.6V
I/O Pin Voltage
Rel a ti ve to VSS. . . . . . . . . . . . . -0.5V to VDDQ +0.5V
Operati ng Te mperature,
TA (ambient - commercial) . . . . . . . .. 0°C to +70°C
TA (ambient - industrial) . . . . . . . .. -40°C to +85°C
Stora ge Temperature (plastic). . . . . .-55° C to +15 0°C
Short Circuit Output Current. . . . . . . . . . . . . . . 50mA
Table 10: DC Electrical Characteristics and Operating Conditions
Notes: 1–5, 14; notes appear on pages 20–23; 0°C TA +70°C
PARAMETER/CONDITION
SYMBOL
MIN MAX UNITS NOTES
Supply Voltage VDD 2.3 2.7 V 32, 36
I/O Supply Voltage VDDQ 2.3 2 .7 V 32, 36, 39
I/O Reference Voltage VREF
0.49
X
V
DD
Q
0.51
X
V
DD
Q
V6, 39
I/O Termination Voltage (system) VTT VREF - 0.04 VREF + 0.04 V 7, 39
Input High (Logic 1) Voltage VIH(DC) VREF + 0.15 VDD + 0.3 V 25
Input Low (Logic 0) Vo ltage VIL(DC) -0.3 VREF - 0.15 V 25
INPUT LEAKAGE CURRENT
Any input 0V VIN VDD, VREF pin 0V VIN
1.35V (All other pins not under test = 0V)
Command/
Address, RAS#,
CAS#, WE#,
CKE, S# II-18 18 µA 46
CK, CK# -6 6
DM -2 2
OUTPUT LEAKAGE CURRENT
(DQs are disabled; 0V
V
OUT
VDDQ) DQ, DQS IOZ -5 5 µA 46
OUTPUT LEVELS
High Current (V
OUT
= V
DD
Q - 0.37 3V, minimum V
REF
, minimu m V
TT
)
Low Current (V
OUT
= 0.373V, maximum V
REF
, maximum V
TT
)
IOH -16.8 mA
33, 34
IOL 16.8 mA
Table 11: AC Input Operating Conditions
Notes: 1–5,12, 48; notes appear on pages 20–23; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
PARAMETER/CONDITION SYMBOL MIN MAX UNITS NOTES
Input High (Logic 1) Voltage VIH(AC)VREF + 0.310 V 25, 35
Input Low (Logic 0) Vo ltage VIL(AC)–VREF - 0.310 V 25, 35
I/O Reference Voltage VREF(AC)0.49 X VDDQ 0.51 X VDDQV 6
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 13 ©2004 Micron Technolog y, Inc. All rights reserved.
Table 12: IDD Specifications and Conditions – 128MB
DDR SDRAM components only
Notes: 1–5, 8, 10, 12, 47; notes appear on pages 20–23; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
MAX
PARAMETER/CONDITION SYMBOL -335 -262
-26A/
-265/
-202 UNITS NOTES
OPERATING CURRENT: One device bank; Active-Precharge;
tRC = tRC (MIN); tCK = tCK (MIN); DQ, DM an d DQS in puts c hangin g
once per clock cyle; Address and control inputs changing once
every two clock cycles
IDD0 1,125 990 945 mA 20, 41
OPERATING CURRENT: One device bank; Active -Read Precharge;
Burst = 2; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address and
control inputs changing once per clock cycle
IDD1 1,215 1,080 1,080 mA 20, 41
PRECHARGE POWER-DOWN STANDBY CURRENT: All device banks
idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW) IDD2P 27 27 27 mA 21,28, 43
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK =
tCK MIN; CKE = HIGH; Address and other control inputs changing
once per clock cycle. VIN = VREF for DQ, DQS, and DM
IDD2F 405 405 360 mA 46
ACTIVE POWER-DOWN STANDBY CURRENT: One device bank
active; Power-down mode; tCK = tCK (MIN); CKE = LOW IDD3P 225 225 180 mA 21, 28 ,
43
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device
bank; Active-Prec harge; tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM
andDQS inputs changing twice per clock cycle; Address and other
control inputs changing once per clock cycle
IDD3N 450 450 405 mA
OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One
bank active; Address and control inputs changing once per clock
cycle; tCK = tCK (MIN); IOUT = 0mA
IDD4R 1,260 1,170 1,125 mA 20, 41
OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One
device bank active; Address and control inputs changing once per
clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs changing
twice per clock cycle
IDD4W 1,260 1,125 1,080 mA 20
AUTO REFRESH CURRENT tREFC = tRFC (MIN) IDD5 2,385 1,980 1,980 mA 20,43
tREFC = 15.625 µs IDD5A 45 45 45 mA 24, 43
SELF REFRESH CURRENT: CKE 0.2V IDD6 27 27 18 mA 9
OPERATING CURRENT: Four device bank interleaving READs (BL = 4)
with auto precharge, tRC = tRC (MIN); tCK = tCK (MIN); Address and
control inputs change only during Active READ, or WRITE
commands
IDD7 3,195 2,970 2,925 mA 20, 42
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 14 ©2004 Micron Technolog y, Inc. All rights reserved.
Table 13: IDD Specifications and Conditions – 256MB
DDR SDRAM components only
Notes: 1–5, 8, 10, 12, 47; notes appear on pages 20–23; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
MAX
PARAMETER/CONDITION SYMBOL -335 -262
-26A/
-265/
-202 UNITS NOTES
OPERATING CURRENT: One device bank; Active-Precharge;
tRC = tRC (MIN); tCK = tCK (MIN); DQ, DM an d DQS in puts c hangin g
once per clock cyle; Address and control inputs changing once
every two clock cycles
IDD0 1,125 1,125 1,080 mA 20, 41
OPERATING CURRENT: One device bank; Active -Read Precharge;
Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address and
control inputs changing once per clock cycle
IDD1 1,530 1,440 1,305 mA 20, 41
PRECHARGE POWER-DOWN STANDBY CURRENT: All device banks
idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW) IDD2P 36 36 36 mA 21,28, 43
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK =
tCK MIN; CKE = HIGH; Address and other control inputs changing
once per clock cycle. VIN = VREF for DQ, DQS, and DM
IDD2F 450 405 405 mA 46
ACTIVE POWER-DOWN STANDBY CURRENT: One device bank
active; Power-down mode; tCK = tCK (MIN); CKE = LOW IDD3P 270 225 225 mA 21, 28 ,
43
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device
bank; Active-Prec harge; tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM
andDQS inputs changing twice per clock cycle; Address and other
control inputs changing once per clock cycle
IDD3N 540 450 450 mA
OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One
bank active; Address and control inputs changing once per clock
cycle; tCK = tCK (MIN); IOUT = 0mA
IDD4R 1,575 1,350 1,350 mA 20, 41
OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One
device bank active; Address and control inputs changing once per
clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs changing
twice per clock cycle
IDD4W 1,575 1,350 1,350 mA 20
AUTO REFRESH CURRENT tREFC = tRFC (MIN) IDD5 2,295 2,115 2,115 mA 20,43
tREFC = 7.8125µs IDD5A 54 54 54 mA 24, 43
SELF REFRESH CURRENT: CKE 0.2V IDD6 36 36 36 mA 9
OPERATING CURRENT: Four device bank interleaving READs (BL = 4)
with auto precharge, tRC = tRC (MIN); tCK = tCK (MIN); Address and
control inputs change only during Active READ, or WRITE
commands
IDD7 3,690 3,150 3,150 mA 20, 42
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 15 ©2004 Micron Technolog y, Inc. All rights reserved.
Table 14: IDD Specifications and Conditions – 512MB
DDR SDRAM components only
Notes: 1–5, 8, 10, 12, 47; notes appear on pages 20–23; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
MAX
PARAMETER/CONDITION SYMBOL -335 -262
-26A/
-265/
-202 UNITS NOTES
OPERATING CURRENT: One device bank; Active-Precharge;
tRC = tRC (MIN); tCK = tCK (MIN); DQ, DM an d DQS in puts c hangin g
once per clock cyle; Address and control inputs changing once
every two clock cycles
IDD0 1,170 1,170 1,035 mA 20, 41
OPERATING CURRENT: One device bank; Active -Read Precharge;
Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address and
control inputs changing once per clock cycle
IDD1 1,440 1,440 1,305 mA 20, 41
PRECHARGE POWER-DOWN STANDBY CURRENT: All device banks
idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW) IDD2P 45 45 45 mA 21, 28,
43
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK =
tCK MIN; CKE = HIGH; Address and other control inputs changing
once per clock cycle. VIN = VREF for DQ, DQS, and DM
IDD2F 405 405 360 mA 44
ACTIVE POWER-DOWN STANDBY CURRENT: One device bank
active; Power-down mode; tCK = tCK (MIN); CKE = LOW IDD3P 315 315 270 mA 21,28,
43
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device
bank; Active-Prec harge; tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM
andDQS inputs changing twice per clock cycle; Address and other
control inputs changing once per clock cycle
IDD3N 450 450 405 mA
OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One
bank active; Address and control inputs changing once per clock
cycle; tCK = tCK (MIN); IOUT = 0mA
IDD4R 1,485 1,485 1,305 mA 20, 41
OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One
device bank active; Address and control inputs changing once per
clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs changing
twice per clock cycle
IDD4W 1,575 1,395 1,215 mA 20
AUTO REFRESH CURRENT tREFC = tRFC (MIN) IDD5 2,610 2,610 2,520 mA 20, 43
tREFC = 7.8125µs IDD5A 90 90 90 mA 24, 43
SELF REFRESH CURRENT: CKE 0.2V IDD6 45 45 45 mA 9
OPERATING CURRENT: Four device bank interleaving READs (BL = 4)
with auto precharge, tRC = tRC (MIN); tCK = tCK (MIN); Address and
control inputs change only during Active READ, or WRITE
commands
IDD7 3,645 3,600 3,150 mA 20, 42
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 16 ©2004 Micron Technolog y, Inc. All rights reserved.
Table 15: IDD Sp ecifications and C ondition s – 1GB
DDR SDRAM components only
Notes: 1–5, 8, 10, 12, 47; notes appear on pages 20–23; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
MAX
PARAMETER/CONDITION SYMBOL -335 -262
-26A/
-265/
-202 UNITS NOTES
OPERATING CURRENT: One device bank; Active-Precharge;
tRC = tRC (MIN); tCK = tCK (MIN); DQ , DM and DQS inpu ts changin g
once per clock cyle; Address and control inputs changing once
every two clock cycles
IDD0 1,170 1,170 1,305 mA 20, 41
OPERATING CURRENT: One device bank; Active -Read Precharge;
Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address and
control inputs changing once per clock cycle
IDD1 1,440 1,440 1,620 mA 20, 41
PRECHARGE POWER-DOWN STANDBY CURRENT: All device banks
idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW) IDD2P 45 45 90 mA 21, 28,
43
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK =
tCK MIN; CKE = HIGH; Address and other control inputs changing
once per clock cycle. VIN = VREF for DQ, DQS, and DM
IDD2F 405 405 540 mA 44
ACTIVE POWER-DOWN STANDBY CURRENT: One device bank
active; Power-down mode; tCK = tCK (MIN); CKE = LOW IDD3P 315 315 270 mA 21,28,
43
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device
bank; Active -Precharge; tRC = tRAS (M AX); tCK = tCK (M IN); DQ, DM
andDQS inputs changing twice per clock cycle; Address and other
control inputs changing once per clock cycle
IDD3N 405 405 405 mA
OPERA T ING CURRENT: Burst = 2; Reads; Continuous burst; One ba nk
active; Address and control inputs changing once per clock cycle;
tCK = tCK (MIN); IOUT = 0mA
IDD4R 1,485 1,485 1,800 mA 20, 41
OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One
device bank active; Address and control inputs changing once per
clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs changing
twice per clock cycle
IDD4W 1,395 1,395 1,890 mA 20
AUTO REFRESH CURRENT tREFC = tRFC (MIN) IDD5 2,61 0 2,610 2,970 mA 20, 43
tREFC = 7.8125µs IDD5A 90 90 90 mA 24, 43
SELF REFRESH CURRENT: CKE 0.2V IDD6 45 45 81 mA 9
OPERATING CURRENT: Four device bank interle aving READs (BL = 4)
with auto precharge, tRC = tRC (M IN); tCK = tCK (MIN); Address an d
control inputs change only during Active READ, or WRITE
commands
IDD7 3,645 3,600 4,365 mA 20, 42
Table 16: Capacitance
Note: 11; notes appear on pages 20–23
PARAMETER SYMBOL MIN MAX UNITS
Input/Output Capacitance: DQ, DQS, DM CIO 45 pF
Input Capacitance: Command and Address, S#, CKE CI1 18 27 pF
Input Capacitance:CK, CK# CI2 69 pF
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 17 ©2004 Micron Technolog y, Inc. All rights reserved.
Table 17: DDR SDRAM Component Electrical Characteristics and Recommended AC
Operating Conditions (-335 and -262 Speed Gr ades)
Notes: 1–5, 12-15, 29; notes appear on pages 20–23; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
AC CHARACTERISTICS -335 -262
PARAMETER SYMBOL
MIN MAX MIN MAX
UNITS NOTES
Access window of DQs from CK/
CK#
tAC -0.7 +0.7 -0.75 +0.75 ns
CK high-level width tCH 0.45 0.55 0.45 0.55 tCK 26
CK low-level width tCL 0.45 0.55 0.45 0.55 tCK 26
Clock cycle time CL = 2.5 tCK (2.5) 6 13 7.5 13 ns 40, 45
CL = 2 tCK (2) 7 .5 13 7.5 13 ns 40, 45
DQ and DM input hold time relative to DQS tDH 0.45 0.5 ns 23, 27
DQ and DM input setup time relative to DQS tDS 0.45 0.5 ns 23, 27
DQ and DM input pulse width (for each input) tDIPW 1.75 1.75 ns 27
Access window of DQS from CK/CK# tDQSCK
-0.60
+0.60 -0.75 +0.75 ns
DQS input high pulse width tDQSH 0.35 0.35 tCK
DQS input low pulse width tDQSL 0.35 0.35 tCK
DQS-DQ skew, DQS to last DQ valid, per group, per access tDQSQ 0.45 0.5 ns 22, 23
Write command to first DQS latching transition tDQSS 0.75 1.25 0.75 1.25 tCK
DQS falling edge to CK rising - setup time tDSS 0.2 0.2 tCK
DQS falling edge from CK rising - hold time tDSH 0.2 0.2 tCK
Half clock period tHP tCH, tCL tCH, tCL ns 30
Data-out high-impedance window from CK/CK# tHZ +0.70 +0.75 ns 16, 37
Data-out low-impedance window from CK/CK# tLZ
-0.70
-0.75 ns 16, 37
Address and control input hold time (fast slew rate) tIHF0.75 0.90 ns 12
Address and control input setup time (fast slew rate) tISF0.75 0.90 ns 12
Address and control input hold time (slow slew rate) tIHS0.80 1 ns 12
Address and control input setup time (slow slew rate) tISS0.80 1 ns 12
Address and Control input pulse width (for each input) tIPW 2.2 2.2 ns
LOAD MODE REGISTER command cycle time tMRD 12 15 ns
DQ-DQS hold, DQS to first DQ to go non-valid, per access tQH tHP -
tQHS
tHP -
tQHS ns 22, 23
Data hold skew factor tQHS 0.60 0.75 ns
ACTIVE to PRECHARGE command tRAS 42
70,000
40
120,000
ns 31, 48
ACTIVE to READ with Auto precharge command tRAP 15 15 ns
ACTIVE to ACTIVE/AUTO REFRESH command period tRC 60 60 ns
AUTO REFRESH command period 128MB, 256MB, 512MB tRFC 72 75 ns 43
1GB 120 120
ACTIVE to READ or WRITE delay tRCD 15 15 ns
PRECHARGE command period tRP 15 15 ns
DQS read preamble tRPRE 0.9 1.1 0.9 1.1 tCK 38
DQS read postamble tRPST 0.4 0.6 0.4 0.6 tCK 38
ACTIVE bank a to ACTIVE bank b command tRRD 12 15 ns
DQS write preamble tWPRE 0.25 0.25 tCK
DQS write preamble setup time tWPRES 0 0 ns 17, 19
DQS write postamble tWPST 0.4 0.6 0.4 0.6 tCK 17
Wr i t e recovery ti me tWR 15 15 ns
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 18 ©2004 Micron Technolog y, Inc. All rights reserved.
Internal WRITE to READ command delay tWTR 1 1 tCK
Data valid ou tput window na tQH - tDQSQ tQH - tDQSQ ns 22
REFRESH to REFRESH command interval tREFC 70.3 70.3 µs 21
Average periodic refresh interval tREFI 7.8 7.8 µs 21
Terminating voltage delay to VDD tVTD 0 0 ns
Exit SELF REFRESH to non-READ command tXSNR 75 75 ns
Exit SELF REFRESH to READ
command
tXSRD 200 200 tCK
Table 17: DDR SDRAM Component Electrical Characteristics and Recommended AC
Operating Conditions (-335 and -262 Speed Grades) (Continued)
Notes: 1–5, 12-15, 29; notes appear on pages 20–23; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
AC CHARACTERISTICS -335 -262
PARAMETER SYMBOL
MIN MAX MIN MAX
UNITS NOTES
Table 18: DDR SDRAM Component Electrical Characteristics and Recommended AC
Operating Conditions (-26A, -265, and -202 Speed Grades)
Notes: 1–5, 12-15, 29; notes appear on pages 20–23; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
AC CHARACTERISTICS -26A/-265 -202
PARAMETER SYMBOL MIN MAX MIN MAX UNITS NOTES
Access window of DQs from CK/
CK#
tAC -0.75 0.75 -0.8 0.8 ns
CK high-level width tCH 0.45 0.55 0.45 0.55 tCK 26
CK low-level width tCL 0.45 0.55 0.45 0.55 tCK 26
Clock cycle time CL = 2.5 tCK (2.5) 7.5 13 8 13 ns 40, 45
CL = 2 tCK (2)
7.5/10
13 10 13 ns 40, 45
DQ and DM input hold time relative to DQS tDH 0.5 0.6 ns 23, 27
DQ and DM input setup time relative to DQS tDS 0.5 0.6 ns 23, 27
DQ and DM input pulse width (for each input) tDIPW 1.75 2 ns 27
Access window of DQS from CK/CK# tDQSCK -0.75 +0.75 -0.8 +0.8 ns
DQS input high pulse width tDQSH 0.35 0.35 tCK
DQS input low pulse width tDQSL 0.35 0.35 tCK
DQS-DQ skew, DQS to last DQ valid, per group, per access tDQSQ 0.5 0.6 ns 22, 23
Write command to first DQS latching transition tDQSS 0.75 1.25 0.75 1.25 tCK
DQS falling edge to CK rising - setup time tDSS 0.2 0.2 tCK
DQS falling edge from CK rising - hold time tDSH 0.2 0.2 tCK
Half clock period tHP tCH, tCL tCH, tCL ns 30
Data-out high-impedance window from CK/CK# tHZ +0.75 +0.8 ns 16, 37
Data-out low-impedance window from CK/CK# tLZ -0.75 -0.8 ns 16, 37
Addre ss an d co ntr ol input hol d tim e (fa st sle w rate)
tIHF0.90 1.1 ns 12
Address and control input setu p time (fast slew rate)
tISF0.90 1.1 ns 12
Address and control input hold time (slow slew ra te)
tIHS11.1ns12
Address and control input setu p time (slow slew rate)
tISS11.1ns12
Address and Control input pulse width (for each input) tIPW 2.2 2.2 ns
LOAD MODE REGISTER command cycle time tMRD 15 16 ns
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 19 ©2004 Micron Technolog y, Inc. All rights reserved.
DQ-DQS hold, DQS to first DQ to go non-valid, per access tQH tHP -
tQHS
tHP -
tQHS ns 22, 23
Data hold skew factor tQHS 0.75 1 ns
ACTIVE to PRECHARGE command tRAS
40 120,000 40 120,000
ns 31, 48
ACTIVE to READ with Auto precharge command tRAP 20 20 ns
ACTIVE to ACTIVE/AUTO REFRESH command period tRC 65 70 ns
AUTO REFRESH command period 128MB, 256MB, 512MB tRFC 72 75 ns 43
1GB 120 120
ACTIVE to READ or WRITE delay tRCD 20 20 ns
PRECHARGE command period tRP 20 20 ns
DQS read preamble tRPRE 0.9 1.1 0.9 1.1 tCK 38
DQS read postamble tRPST 0.4 0.6 0.4 0.6 tCK 38
ACTIVE bank a to ACTIVE bank b command tRRD 15 15 ns
DQS write preamble tWPRE 0.25 0.25 tCK
DQS write preamble setup time tWPRES 0 0 ns 17, 19
DQS write postamble tWPST 0.4 0.6 0.4 0.6 tCK 17
Wr i t e recovery ti me tWR 15 15 ns
Internal WRITE to READ command delay tWTR 1 1 tCK
Data valid ou tput window na tQH - tDQSQ tQH - tDQSQ ns 22
REFRESH to REFRESH command interval tREFC 70.3 70.3 µs 21
Average periodic refresh interval tREFI 7.8 7.8 µs 21
Terminating voltage delay to VDD tVTD 0 0 ns
Exit SELF REFRESH to non-READ command tXSNR 75 80 ns
Exit SELF REFRESH to READ
command
tXSRD 200 200 tCK
Table 18: DDR SDRAM Component Electrical Characteristics and Recommended AC
Operating Conditions (-26A, -265, and -202 Speed Grades) (Continued)
Notes: 1–5, 12-15, 29; notes appear on pages 20–23; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
AC CHARACTERISTICS -26A/-265 -202
PARAMETER SYMBOL MIN MAX MIN MAX UNITS NOTES
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 20 ©2004 Micron Technolog y, Inc. All rights reserved.
Notes
1. All voltages refe renced to VSS.
2. Tests for AC timing, IDD, and electrical AC and DC
characteristics may be conducted at nominal ref-
er enc e/ s upp l y volta ge level s, but the related spec-
ifications and device operation are guaranteed for
the full voltage range specified.
3. Outputs measured with equivalent load:
4. AC timing and IDD tests may use a VIL-to-VIH
swing of up to 1.5V in the test environment, but
input timing is still referenced to VREF (or to the
crossing point for CK/CK#), and parameter speci-
fica ti ons are guar a nteed for the specified AC input
levels under normal use conditions. The mini-
mum slew rate for the input signals used to test
the device is 1V/ns in the range between VIL(AC)
and VIH(AC).
5. The AC and DC input level specifications are as
defined in the SSTL_2 Standard (i.e., the receiver
will effectively switch as a result of the signal
crossing the AC input level, and will r emain in that
state as long as the signal does not ring back
above [below] the DC input LOW [HIGH] level).
6. VREF is expected to equal VDDQ/2 of th e transm it-
ting d evice and to track variat ions in the D C level
of the same. Peak-to-peak noise (non-common
mode) on VREF may not exceed ±2 percent of the
DC value. Thus, from VDDQ/2, VREF is allowed
±25mV for DC error and an additional ±25mV for
AC noise. This measurement is to be taken at the
neares t VREF bypass capacitor.
7. VTT is not applied directly to the device. VTT is a
system supply for signal termination resistors, is
expected to be set equal to VREF and must track
variations in the DC level of VREF.
8. IDD is dependent on output loading and cycle
rates. Specified values are obtained with mini-
mum cycle time at CL = 2 for -26A and -202, CL =
2.5 for -265 and -335 with the outputs open.
9. Enables on-chip refresh and address counters.
10. IDD specifications are tested after the device is
properly initialized , and is averaged at the defined
cycle rate.
11. This parameter is sampled. VDD = +2.5V ±0.2V,
VDDQ = +2.5V ±0 .2V, VREF = VSS, f = 100 MHz, TA =
25°C, VOUT (DC) = VDDQ/ 2, VOUT (peak to peak) =
0.2V. DM input is grouped with I/O pins, r eflecting
the fact that they are matched in loading.
12. For slew rates < 1 V/ns and to 0.5 Vns. If the slew
rate is < 0.5V/ns, timing must be derated: tIS has
an additional 50p s per each 100 mV/ns reduction
in slew rate from 500 mV/ns, while tIH is unaf-
fected. If the slew rate exceeds 4.5 V/ ns, function-
ality is uncertain. For -335, slew rates must be
0.5 V/ns.
13. The CK/CK# input reference level (for timing ref-
erenced to CK/CK#) is the point at which CK and
CK# cross; the input reference level for signals
other than CK/CK# is VREF.
14. Inputs are not recognized as val i d un ti l VREF stabi-
lizes. Exception: during the period before V
REF
stabilizes, CKE 0.3 x VDDQ is recognized as LOW.
15. The output timing referenc e level, as measured at
the timing reference point indicated in Note 3, is
VTT.
16. tHZ and tLZ transitions occur in the same access
time windows as data valid transitions. These
para meters ar e not referenced t o a spec ific v olt age
level, but specify when the device output is no
longer dr iving (HZ) or begins driving (LZ).
17. The intent of the Dont Car e state af ter comple tion
of the postamble is the DQS-driven signal should
either be high, low, or high-Z and that any signal
transiti on within the input switch ing region must
follow valid input requirements. That is, if DQS
transitions high [above VIHDC (MIN)] th en it must
not transition low (below VIHDC) prior to tDQSH
(MIN).
18. This is not a device limit. The device will operate
with a negative value, but system performance
could be degraded due to bus turnaround.
19. It is recommended that DQS be valid (HIGH or
LOW) on or before the WRITE command. The
case shown (DQS going from High-Z to logic
LO W) applies when no WRITEs were previously in
progress on the bus. If a previous WRITE was in
progress, DQS could be HIGH during this time,
depending on tDQSS.
20. MIN (tRC or tRFC) for IDD measurements is the
smallest multiple of tCK that meets the minimum
absolute value for the respective parameter. tRAS
(MAX) for IDD measurements is the largest multi-
ple of tCK that meets the maximum absolute
value for tRAS.
21. The refresh period 64ms. This equates to an aver-
age refresh rate of 15.625µs (128MB) or 7.8125µs
(256MB, 512MB, 1GB). However, an AUTO
Output
(V
OUT
)Reference
Point
50
V
TT
30pF
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 21 ©2004 Micron Technolog y, Inc. All rights reserved.
REFRESH command must be as-
serted at least
once every 140.6µs (
128MB
) or
70.3µs (256MB,
512MB, 1GB); burst refreshing or posting by the
DRAM controller greater than eight refresh cycles
is not a llowed.
22. The data valid window is derived by achieving
other s pe cification s: tHP (tCK/2), tDQSQ, and tQH
(tQH = tHP - tQHS). The data val id windo w derates
directly porportional with the clock duty cycle
and a practical data vali d window can be derived.
The clock is allowed a maximum duty cycle varia-
tion of 45/55, beyond which functionality is
uncertain. Figure 7, Derating Data Valid Window,
sho ws derat ing curves ar e provided belo w for duty
cycles ranging between 50/50 and 45/55.
23. Eac h byte lane has a co rrespondi ng DQS.
24. This limit is actually a nominal value and does not
result in a fail value. CKE is HIGH during
REFRESH command period (tRFC [MIN]) else
CKE is LOW (i.e., during standby).
25. To maintain a valid level, the transitioning edge of
the input must:
a. Sustain a constant slew rate from the current
AC level through to the target AC level, VIL(AC)
or VIH(AC).
b. Reach at least the target AC level.
c. Af ter th e AC target level is r eac hed , con ti nu e to
maintain at least the target DC level, VIL(DC) or
VIH(DC).
26. JED EC specifie s CK and CK# input sl ew rate must
be 1V/n s (2V/ns differentially).
27. DQ and DM input slew rates must not deviate
from DQS by more than 10 percent. If the DQ/
DM/DQS slew rate is less than 0.5 V/ns, timing
must be derated: 50ps must be added to tDS and
tDH for each 100 mV/ns reduction in slew rate. If
slew rate exceeds 4 V/ns, functionality is uncer-
tain. For -335, slew rate s must be 0.5 V/ns.
28. VDD must not vary more than 4 percent if CKE is
not active while any bank is active.
Figure 7: Derating Data Valid Window
(tQH – tDQSQ)
3.750 3.700 3.650 3.600 3.550 3.500 3.450 3.400 3.350 3.300 3.250
3.400 3.350 3.300 3.250 3.200 3.150 3.100 3.050 3.000 2.950 2.900
2.500 2.463 2.425 2.388 2.350 2.313 2.275 2.238 2.200 2.163 2.125
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
50/50 49.5/50.5 49/51 48.5/52.5 48/52 47.5/53.5 47/53 46.5/54.5 46/54 45.5/55.5 45/55
Clock Duty Cycle
ns
-26A/-265 @
t
CK = 10ns
-202 @
t
CK = 10ns
-262/-26A/-265 @
t
CK = 7.5ns
-335 @
t
CK = 6ns
N/A
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 22 ©2004 Micron Technolog y, Inc. All rights reserved.
29. The clock is allowed up to ±150ps of jitter. Each
timing parameter is allowed to vary by the same
amount.
30. tHP min is the lesser of tCL minimum and tCH
minimum actually applied to the device CK and
CK/ inputs, colle ctively during ban k active.
31. READs and WRITEs with auto precharge are not
allowed to be issue d un til tRA S(MI N) ca n be sa tis-
fied prior to the internal precharge command
being issued.
32. Any positive glitch in th e nominal vol tage must be
less than 1/3 of the clock and not more than
+400mV or 2.9V max imum, whichever is less. Any
negative glitch must be less than 1/3 of the clock
cycle and not exceed either -300mV or 2.2V mini-
mum, whichever is more positive.
33. Normal Output Drive Curves:
a. The full variation in driver pull-down current
from minimum to maximum proces s, temper-
ature and voltage will lie within the outer
bounding lines of the V-I curve of Figure 8,
Pull-Down Characteristics.
b. The variation in driver pull-down current
within nomin al limits of voltage and tempera-
ture is expected, but not guaranteed, to lie
within the inner bounding lines of the V-I
curve of Figure 8, Pull-Dow n Characteris tics.
c. The full variation in driver pull-up current
from minimum to maximum proces s, temper-
ature and voltage will lie within the outer
bounding lines of the V-I curve of Figure 9,
Pull-Up Characteris tics.
d. The variation in driver pull-up current within
nominal limits of voltage and temperature is
expected, but not guaranteed, to lie within the
inner boun ding lines of the V-I cur ve of Figure
9, Pull-Up Characteristics.
e. The full variation in the ratio of the maximum
to minimum pull-up and pull-down current
should be between 0.71 and 1.4, for device
drain-to-source voltages from 0.1V to 1.0V, and
at the same voltage and temperature.
f. The full variation in the ratio of the nominal
pull-up to pull-down current should be unity
±10 percent, for device drain-to-source volt-
ages from 0.1V to 1.0V.
34. The voltage levels used are derived from a mini-
mum VDD level and the referenced test load. In
practice, the voltage levels obtained from a prop-
erly terminated bus will provide significantly dif-
ferent voltage values.
35. VIH overshoot: VIH (MAX) = VDDQ + 1.5V for a
pulse width 3ns and the pulse width can not be
greater than 1/3 of the cycle rate. VIL undershoot:
VIL (MIN) = -1.5V for a pulse width 3ns and the
pulse width can not be greater than 1/3 of the
cycle rate.
36. VDD and VDDQ must track each ot her.
37. tHZ (MAX) will prevail over tDQSCK (MAX) +
tRPST (MAX) condition. tLZ (MIN) will prevail
over tDQSCK (MIN) + tRPRE (MAX ) co ndition.
38. tRPST end point and tRPRE begin point are not
referenced to a specific voltage level but specify
when the device output is no longer driving
(tRPST), or begins driving (tRPRE).
Figure 8: Pull-Down Characteristics Figure 9: Pull-U p Character istic s
160
140
IOUT (mA)
VOUT (V)
Nominal low
Minimum
Nominal high
Maximum
120
100
80
60
40
20
00.0 0.5 1.0 1.5 2.0 2.5
VOUT (V)
0
-20
IOUT (mA)
Nominal low
Minimum
Nominal high
Maximum
-40
-60
-80
-100
-120
-140
-160
-180
-2000.0 0.5 1.0 1.5 2.0 2.5
VDDQ - VOUT (V)
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 23 ©2004 Micron Technolog y, Inc. All rights reserved.
39. During initialization, VDDQ, VTT, and VREF must
be equa l to or less th an VDD + 0.3V. Alternatively,
VTT may be 1.35V maximum during power up,
even if VDD/VDDQ are 0V, provided a minimum of
42 of series resistance is used between the VTT
supply and the input pin.
40. The current Micron part operates below the slow-
est JEDEC operating frequency of 83 MHz. As
such, future die may not reflect this opti on.
41. Random addressing changing and 50 percent of
data changing at every transfer.
42. Random addressing changing and 100 percent of
data changing at every transfer.
43. CKE must be active (high) during the entire time a
refresh command is executed. That is, from the
time the AUTO REFRESH command is registered,
CKE must be active at each rising clock ed ge, until
tREF later.
44. IDD2N specifies the DQ, DQS, and DM to be
driven to a valid high or low logic level. IDD2Q is
similar to IDD2F except IDD2Q specifies the
address and control inputs to remain stable.
Although IDD2F, IDD2N, and IDD2Q are similar,
IDD2F is “worst case.
45. Whenever the operating frequency is altered, not
including jitter, the DLL is required to be reset.
This is followed by 200 clock cycles (before READ
commands).
46. Leakage number reflects the worst case leakage
possible through the module pin, not what each
memory device contributes .
47. When an input signal is HIGH or LOW, it is
defined as a steady state log ic HIGH or LOW.
48. The -335 speed gr ade will operate with tRAS (MIN)
= 40ns and tRAS (MAX) = 120,000ns at any slower
frequency.
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 24 ©2004 Micron Technolog y, Inc. All rights reserved.
Initialization
To ensure device operation the DRAM must be ini-
tialized as described below:
1. Simu ltaneously appl y power to VDD and VDDQ.
2. Apply VREF and then VTT power.
3. Assert and hold C KE at a LVCMOS logic low.
4. Provide stable CLOCK signals.
5. Wait at least 200µs.
6. Bring CKE high and provide at least one NOP or
DESELECT command. At this point the CKE input
changes from a LVCMOS input to a SSTL2 input
only and will remain a SSTL_2 input unless a
power cycle occ urs.
7. Perform a PRECHARGE ALL command.
8. Wait at least tRP time, during this time NOPs or
DESELECT commands must be given.
9. Using the LMR command program the Extended
Mode Register (E0 = 0 to enable the DL L and E1 =
0 for normal drive or E1 = 1 for reduced drive, E2
through En must be set to 0; where n = most sig-
nific ant bit).
10. Wait at least tMRD time, only NOPs or DESELECT
commands are allowed.
11. Using the LMR command program the Mode Reg-
ister to set operating parameters and to reset the
DLL. Note at least 200 clock cycles are required
between a DLL reset and any READ command.
12. Wait at least tMRD time, only NOPs or DESELECT
commands are allowed.
13. Issue a PRECH A RGE ALL com m and.
14. Wait at least tRP time, only NOPs or DESELECT
commands are allowed.
15. Issue an AUTO REFRESH command (Note this
may be moved prior to step 13).
16. Wait at least tRFC time, only NOPs or DESELECT
commands are allowed.
17. Issue an AUTO REFRESH command (Note this
may be moved prior to step 13).
18. Wait at least tRFC time, only NOPs or DESELECT
commands are allowed.
19. Although not required by the Micron device,
JEDEC requires a LMR command to clear the DLL
bit (set M8 = 0). If a LMR command is issued the
same operating parameters should be utilized as
in step 11.
20. Wait at least tMRD time, only NOPs or DESELECT
commands are allowed.
21. At this point the DRAM is ready for any valid com-
mand. Note 200 clock cycles are required betwee n
step 11 (DLL Reset) and any READ comma nd.
Figure 10: Init ialization Flow Diagr a m
V
DD
and V
DD
Q Ramp
Apply V
REF
and V
TT
CKE must be LVCMOS Low
Apply stable CLOCKs
Bring CKE High with a NOP command
Wait at least 200us
PRECHARGE ALL
Assert NOP or DESELECT for tRP time
Configure Extended Mode Register
Configure Load Mode Register and reset DLL
Assert NOP or DESELECT for tMRD time
Assert NOP or DESELECT for tMRD time
PRECHARGE ALL
Issue AUTO REFRESH command
Assert NOP or DESELECT for tRFC time
Optional LMR command to clear DLL bit
Assert NOP or DESELECT for tMRD time
DRAM is ready for any valid command
Step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Assert NOP or DESELECT commands for tRFC
Issue AUTO REFRESH command
Assert NOP or DESELECT for tRP time
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 25 ©2004 Micron Technolog y, Inc. All rights reserved.
Figure 11: Co mponent Case Temperature vs. Air Fl ow
NOTE:
1. Micron Technology, Inc. recommends a minimum air flow of 1 meter/second (~19 7 LFM) across all modules.
2. The component case temperature measurements shown above were obtained experimentally. The typical system to be
used for experimental purposes is a dual-processor 600 MHz work station, fully loaded, with four comparable registered
memory modules. Case temperatures charted represent worst-case component locations on modules installed in the
internal slots of the system.
3. Temperature versus air speed data is obtained by performing experiments with the system motherboard removed from
its case an d m ounte d in a Eiffel-type low air spe ed win d tun nel. P eriphe ral dev ices in sta lled on the system motherboard
for testing are the processor(s) and video card, all other peripheral devices are mounted outside of the wind tunnel test
chamber.
4. The memory diagnostic software used for determining worst-case component temperatures is a memory diagnostic soft-
ware application developed for internal use by Micron Technology, Inc.
20
30
40
50
60
70
80
90
100
0.0
0.5
1.0
2.0
Air Flow (meters/sec)
Degrees Celsius
Ambient Temperature = 25º C
T
max
- memory stress software
T
ave
- 3D gaming software
T
ave
- memory stress software
Minimum Air Flow
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 26 ©2004 Micron Technolog y, Inc. All rights reserved.
SPD Clock and Data Conventions
Data sta tes on th e SDA line ca n change only dur ing
SCL LOW. SDA state changes during SCL HIGH are
reserved for indicating start and stop conditions (as
shown in Figure 12, Data Validity, and Figure 13, Defi-
nition of Start and Stop).
SPD Start Condition
All commands are preceded by the start condition,
which is a HIGH-to-LOW transition of SDA when SCL
is HIGH. The SPD device continuously monitors the
SDA and SCL lines for the start condition and will not
respond to any command until this condition has been
met.
SPD Stop Condition
All communications are terminated by a stop condi-
tion, which is a LOW-to-HIGH transition of SDA when
SCL is HIGH. The stop condition is also used to place
the SPD device into standby power mode.
SPD Acknowledge
Acknowledge is a software convention used to indi-
cate successf ul data transfers. The transmitting device,
either master or slave, will release the bus after trans-
mitting eight bits. During the ninth clock cycle, the
receiver will pull the SDA line LOW to acknowledge
that it received the eight bits of data (as shown in Fig-
ure 14, Acknowledge Response From Re ceiver).
The SPD device will always respond with an
ackn ow ledg e af ter recogn ition of a star t co ndition and
its slave address. If both the device and a WRITE oper-
ation have been selected, the SPD device will respond
with an acknowledge after the receipt of each subse-
quent eight-bit word. In the read mode the SPD device
will transmit eight bits of data, release the SDA line and
monitor the line for an acknowledge. If an acknowl-
edge is detected and no stop condition is generated by
the master, the slave will continue to transmit data. If
an acknowledge is not detected, the slave will termi-
nate further data transmissions and await the stop
condition to return to standby power mode.
Figure 12: Data Validity Figure 13: Definit io n of Star t and Stop
Figur e 14: Acknowle dge Respon se From Receiver
SCL
SDA
DATA STABLE DATA STABLEDATA
CHANGE
SCL
SDA
START
BIT STOP
BIT
SCL from Master
Data Output
from Transmitter
Data Output
from Receiver
98
Acknowledge
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 27 ©2004 Micron Technolog y, Inc. All rights reserved.
Figure 15: SPD EEPROM Timing Diagram
Table 19: EEPROM Device Select Code
Most significant bit (b7) is sent first
SELECT CODE DEVICE TYPE IDENTIFIER CHIP ENABLE RW
b7 b6 b5 b4 b3 b2 b1 b0
Memory Area Select Code (two arrays) 1 0 1 0 SA2 SA1 SA0 RW
Protection Register Select Code 0 1 1 0 SA2 SA1 SA0 RW
Table 20: EEPROM Operating Modes
MODE RW BIT WC BYTES INITIAL SEQUENCE
Current Address Read 1V
IH or VIL 1START, Device Select, RW = ‘1
Random Address Read 0V
IH or VIL 1START, Device Select, RW = ‘0’, Address
1V
IH or VIL 1reSTART, Device Select, RW = ‘1
Sequential Read 1VIH or VIL 1Similar to Current or Random Address Read
Byte Write 0V
IL 1START, Device Select, RW = ‘0’
Page Write 0VIL 16 START, Device Select, RW = ‘0’
SCL
SDA IN
SDA OUT
tLOW
tSU:STA tHD:STA
tFtHIGH tR
tBUF
tDH
tAA
tSU:STO
tSU:DAT
tHD:DAT
UNDEFINED
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 28 ©2004 Micron Technolog y, Inc. All rights reserved.
NOTE:
1. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL = 1 and the falling or rising
edge of SDA.
2. This parameter is sampled.
3. For a reSTART condition, or following a WRITE cycle.
4. The SPD EEP ROM WRITE cycle time (tWRC) is the time from a valid stop condition of a write sequence to the end of
the EE PROM interna l erase/p rogram c ycle. Duri ng the WRIT E cycle, the E EPROM bus interfac e circuit is di sabled, SDA
remains HIGH due to pull-up resistor, and the EEPROM does not respond to its slave address.
Table 21: Serial Presence-Detect EEPROM DC Operating Conditions
All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V
PARAMETER/CONDITION SYMBOL MIN MAX UNITS
SUPPLY VOLTAGE VDDSPD 2.3 3.6 V
INPUT HIGH VOLTAGE: Logic 1; All inputs VIH VDD X 0.7 VDD + 0.5 V
INPUT LOW VOLTAGE: Logic 0; All inputs VIL -1 VDD x 0.3 V
OUTPUT LOW VOLTAGE: IOUT = 3mA VOL –0.4V
INPUT LEAKAGE CURRENT: VIN = GND to VDD ILI –10µA
OUTPUT LEAKAGE CURRENT: VOUT = GND to VDD ILO –10µA
STANDBY CURRENT:
SCL = SDA = VDD - 0.3V; All other inputs = VSS or VDD ISB –30µA
POWER SUPPLY CURRENT: SCL clock frequency = 100 KHz ICC –2mA
Table 22: Serial Presence-Detect EEPROM AC Operating Conditions
All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V
PARAMETER/CONDITION SYMBOL MIN MAX UNITS NOTES
SCL LOW to SDA data-out valid tAA 0.2 0.9 µs 1
Time the bus must be free before a new transition can start tBUF 1.3 µs
Data-out hold time tDH 200 ns
SDA and SCL fall time tF 300 ns 2
Data-in hold time tHD:DAT 0 µs
Start condition hold time tHD:STA 0.6 µs
Clock HIGH period tHIGH 0.6 µs
Noise suppression time constant at SCL, SDA inputs tI50ns
Clock LOW period tLOW 1.3 µs
SDA and SCL rise time tR0.3µs2
SCL clock f requency fSCL 400 KHz
Data-in setup time tSU:DAT 100 ns
Start condition setup time tSU:STA 0.6 µs 3
Stop condition setup time tSU:STO 0.6 µs
WRITE cycle tim e tWRC 10 ms 4
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 29 ©2004 Micron Technolog y, Inc. All rights reserved.
Ta ble 23: Serial Presence-Detect Matrix
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”
BYTE DESCRIPTION ENTRY (VERSION)
MT9VDDT1672H MT9VDDT3272H MT9VDDT6472H
0Number of SPD Bytes Used by Micron 128 808080
1Total Number of Bytes in SPD Device 256 080808
2Fundamental Memory Type SDRAM DDR 07 07 07
3Number of Row Addresses on Assembly 12 or 13 0C 0D 0D
4Number of Column Addresses on
Assembly 10 or 11 0A 0A 0B
5Number of Physical Ranks on DIMM 1 010101
6Module Data Width 72 48 48 48
7Module Data Width (Continued) 0 000000
8Module Voltage Interface Levels SSTL 2.5V 04 04 04
9SDRAM Cycle Time, tCK (CAS Latency =
2.5) (See note 1) 6ns (-335)
7ns (-262/-26A)
7.5ns (-265)
8ns (-202)
60
70
75
80
60
70
75
80
60
70
75
80
10 SDRAM Access from Clock, tAC (CAS
Latency = 2.5) 0.7ns (-335)
0.75ns (-262 /-26A/-265)
0.8ns (-202)
70
75
80
70
75
80
70
75
80
11 Module Configuration Type ECC 020202
12 Refresh Rate/Type 15.62µs, 7.8µs/SE LF 80 82 82
13 SDRAM Device Width (Primary DDR
SDRAM) 8 080808
14 Error-checking DDR SDRAM Data Width 8 080808
15 Minimum Clock Delay, Back-to-Back
Random Column Access 1 clock 010101
16 Burst Lengths Supported 2, 4, 8 0E 0E 0E
17 Number of Banks on DDR SDRAM Device 4 040404
18 CAS Latencies Supported 2, 2.5 0C0C0C
19 CS Latency 0 010101
20 WE Latency 1 020202
21 SDRAM Module Attributes Unbuffered/Diff. Clock 20 2 0 20
22 SDRAM Device Attributes: General Fast/Concurrent AP C0 C0 C0
23 SDRAM Cycle Time, tCK (CAS Latency = 2)
(See note 1)
7.5ns (-335/-262/-26A )
10ns (-265/-20 2) 75
A0 75
A0 75
A0
24 SDRAM Access from CK, tAC (CAS Latency
= 2) 0.7ns (-335)
0.75ns (-262 /-26A/-265)
0.8ns (-202)
70
75
80
70
75
80
70
75
80
25 SDRAM Cycle Time, tCK (CAS Latency =
1.5) N/A 000000
26 SDRAM Access from CK , tAC (CAS Latency
= 1.5) N/A 000000
27 Minimum Row Precharge Time, tRP 18ns (-335)
15ns (-262)
20ns (-26A/-265/-202)
48
3C
50
48
3C
50
48
3C
50
28 Minimum Row Active to Row Active, tRRD 12ns (-335)
15ns (- 262/-26A/-265/-202)
30
3C 30
3C 30
3C
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 30 ©2004 Micron Technolog y, Inc. All rights reserved.
29 Minimum RAS# to CAS# Delay, tRCD 18ns (-335)
20ns (
-262)
20ns (-265/-26A/-202)
48
3C
50
48
3C
50
48
3C
50
30 Minimum RAS# Pulse Width, tRAS
(See note 3) 42 ns (-335)
45ns (-262/-26A/-265)
40ns (-202)
2A
2D
28
2A
2D
28
2A
2D
28
31 Module Rank Density 128MB, 256MB, 512 MB 20 40 80
32 Address and Command Setup Time, tIS
(See note 4) 0.8ns (-335)
1.0ns (-262/-26A/-265)
1.1ns (-202)
80
A0
B0
80
A0
B0
80
A0
B0
33 Address and Command Hold Time, tIH
(See note 4) 0.8ns (-335)
1.0ns (-262/-26A/-265)
1.1ns (-202)
80
A0
B0
80
A0
B0
80
A0
B0
34 Data/Data Mask Input Setup Time, tDS 0.45ns (-335)
0.5ns (-262/-26A/-265)
0.6ns (-202)
45
50
60
45
50
60
45
50
60
35 Data/Data Mask Input Hold Time, tDH 0.45ns (-335)
0.5ns (-262/-26A/-265)
0.6ns (-202)
45
50
60
45
50
60
45
50
60
36-40 Reserved 00 00 00
41 Min Active Auto Refresh Time, tRC 60n s (-335/-26 2)
65ns (-26A/-265)
70ns (-202)
3C
41
46
3C
41
46
3C
41
46
42 Minimum Auto Refresh to Active/
Auto Refresh Command Period, tRFC 72ns (-335)
75ns (-262/-26A/-265)
80ns (-202)
48
4B
50
48
4B
50
48
4B
50
43 SDRAM Device Max Cycle Time, tCKMAX 12ns (-335)
13ns (- 262/-26A/-265/-202)
30
34 30
34 30
34
44 SDRAM De vice Max DQ S-DQ Skew Time
tDQSQ 0.45ns (-335)
0.5ns (-262/-26A/-265)
0.6ns (-202)
2D
32
3C
2D
32
3C
2D
32
3C
45 SDRAM Device Max Read Data Hold Skew
Factor tQHS
0.5ns (-335)
0.75ns (-
262/-
26A/-265)
1.0ns (-202)
55
75
A0
55
75
A0
55
75
A0
46 Reserved 00 00 00
47 DIMM Height 01 01 01
48–61 Reserved 00 00 00
62 SPD Revision Release 1.0 1 0 10 10
63 Checksum For Byte s 0-62 -335
-262
-26A
-265
-202
16
A9
D6
06
A1
3D
D0
FD
2D
C4
7E
11
3E
6E
05
64 Manufacturer’s JEDEC ID Code MICRON 2C 2C 2C
65-71 Manufacturer’s JEDEC ID Code (Continued) 00 00 00
72 Manufacturing Location 01–12 01–0C 01–0C 01–0C
73-90 Module Part Number (ASCII) Variable Data Variable Data Variable Data
91 PCB Identification Code 1–9 01–09 01–09 01–09
92 Identification Code (Continued) 0 000000
Tabl e 23: Serial Presence-Detect Matrix (Continued)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”
BYTE DESCRIPTION ENTRY (VERSION)
MT9VDDT1672H MT9VDDT3272H MT9VDDT6472H
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 31 ©2004 Micron Technolog y, Inc. All rights reserved.
NOTE:
1. Device latencies used for SPD values.
2. Value for -262/-26A tCK set to ns (0x70) for optimum BIOS compatibility. Actual device specification value is 7.5ns.
3. The value of tRAS used for -26A/-265 modules is calculated from tRC - tRP. Actual device spec value is 40 ns.
4. The JEDEC SPD specification allows fast or slow slew rate values for these bytes. The worst-case (slow slew rate) value is
represented here. Systems requiring the fast slew rate setup and hold values are supported, provided the fast er mini-
mum slew rate is met.
5. The value of tRP, tRCD, and tRAP for -335 modules indicated as 18ns to align with industry specifications; actual DDR
SDRAM device specification is 15ns.
93 Year of Manufacture in BCD Variable Data Variable Data Variable Data
94 W e ek of Manufacture in BCD Variable Data Variable Data Variable Data
95-98 Module Serial Number Variable Data Variable Data Variable Data
99-127
Manufacturer-Specific Data (RSVD) –––
Tabl e 23: Serial Presence-Detect Matrix (Continued)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”
BYTE DESCRIPTION ENTRY (VERSION)
MT9VDDT1672H MT9VDDT3272H MT9VDDT6472H
Ta ble 24: Serial Presence-Detect Matrix
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”
BYTE DESCRIPTION ENTRY (VERSION)
MT9VDDT12872H
0Number of SPD Bytes Used by Micron 128 80
1Total Number of Bytes in SPD Device 256 08
2Fundamental Memory Type SDRAM DDR 07
3Number of Row Addresses on Assembly 14 0E
4Number of Column Addresses on Assembly 11 0B
5Number of Physical Ranks on DIMM 101
6Module Data Width 72 48
7Module Data Width (Continued) 000
8Module V oltage Interface Levels SSTL 2.5V 04
9SDRAM Cycle Time, tCK (CAS Latency = 2.5) (See note 1) 6ns (-335)
7ns ( -262/-26A)
7.5ns (-265)
8ns (-202)
60
70
75
80
10 SDRAM Access from Clock, tAC (CAS Latency = 2.5 ) 0.7ns (-335)
0.75 n s (- 26 2/-26A/-2 65 )
0.8ns (-202)
70
75
80
11 Module Configuration Type ECC 02
12 Refresh Rate/Type 7.8µs/SELF 82
13 SDRAM Device Width (Primary DDR SDRAM) 808
14 Error-checking DDR SDRAM Data Width 808
15 Minimum Clock Delay, Back-to-Back Random Column Access 1 clock 01
16 Burst Lengths Supported 2, 4, 8 0E
17 Number of Banks on DDR SDRAM Device 404
18 CAS Latencies Supported 2, 2.5 0C
19 CS Latency 001
20 WE Latency 102
21 SDRAM Module Attributes Unbuffered/Diff. Clock 20
22 SDRAM Device Attributes: General Fast/Concurrent AP C0
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 32 ©2004 Micron Technolog y, Inc. All rights reserved.
23 SDRAM Cycle Time, tCK (CAS Latency = 2) (See note 1)
7.5ns (-335/-262/-26A)
10ns (-265/-202) 75
A0
24 SDRAM Access from CK, tAC (CAS Latency = 2) 0.7ns (-335)
0.75 n s (- 26 2/-26A/-2 65 )
0.8ns (-202)
70
75
80
25 SDRAM Cycle Time, tCK (CAS Latency = 1.5) N/A 00
26 SDRAM Access from CK , tAC (CAS Latency = 1.5) N/A 00
27 Minimum Row Precharge Time, tRP 18ns (-335)
15ns (-262)
20ns (-26A/-265/-202)
48
3C
50
28 Minimum Row Active to Row Active, tRRD 12ns (-335)
15ns (-262/-26A/-265/- 20 2)
30
3C
29 Minimum RAS# to CAS# Delay, tRCD 18ns (-335)
20ns (
-262)
20ns (-265/-26A/-202)
48
3C
50
30 Minimum RAS# Pulse Width, tRAS
(See note 3) 42ns (-335)
45ns (-262/-26A/-265)
40ns (-202)
2A
2D
28
31 Module Rank Density 1GB 01
32 Address and Command Setup Time, tIS (See note 4) 0.8ns (-335)
1.0ns (-262/-26A/-265)
1.1ns (-202)
80
A0
B0
33 Address and Command Hold Time, tIH (See note 4) 0.8ns (-335)
1.0ns (-262/-26A/-265)
1.1ns (-202)
80
A0
B0
34 Data/Data Mask Input Setup Ti me, tDS 0.45ns (-335)
0.5ns (-262/-26A/-265)
0.6ns (-202)
45
50
60
35 Data/Data Mask Input Hold Time , tDH 0.45ns (-335)
0.5ns (-262/-26A/-265)
0.6ns (-202)
45
50
60
36-40 Reserved 00
41 Min Active Auto Refresh Time, tRC 60ns (-335/-262)
65ns (-26A/-265)
70ns (-202)
3C
41
46
42 Minimum Auto Refresh to Active/
Auto Refresh Command Period, tRFC 72n s (-335)
75ns (-262/-26A/-265)
80ns (-202)
78
78
78
43 SDRAM Device Max Cycle Time, tCKMAX 12ns (-335)
13ns (-262/-26A/-265/- 20 2)
30
34
44 SDRAM Device Max DQS-DQ Skew Time tDQSQ 0.45ns (-335)
0.5ns (-262/-26A/-265)
0.6ns (-202)
2D
32
3C
45 SDRAM Device Max Read Data Hold Skew Factor tQHS
0.5ns (-335)
0.75ns (-
262/-
26A/-265)
1.0ns (-202)
55
75
A0
46 Reserved 00
47 DIMM Height 01
48–61 Reserved 00
Tabl e 24: Serial Presence-Detect Matrix (Continued)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”
BYTE DESCRIPTION ENTRY (VERSION)
MT9VDDT12872H
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 33 ©2004 Micron Technolog y, Inc. All rights reserved.
NOTE:
1. Device latencies used for SPD values.
2. Value for -262/-26A tCK set to ns (0x70) for optimum BIOS compatibility. Actual device specification value is 7.5ns.
3. The value of tRAS used for -26A/-265 modules is calculated from tRC - tRP. Actual device spec value is 40 ns.
4. The JEDEC SPD specification allows fast or slow slew rate values for these bytes. The worst-case (slow slew rate) value is
represented here. Systems requiring the fast slew rate setup and hold values are supported, provided the fast er mini-
mum slew rate is met.
5. The value of tRP, tRCD, and tRAP for -335 modules indicated as 18ns to align with industry specifications; actual DDR
SDRAM device specification is 15ns.
62 SPD Revision Release 1.0 10
63 Checksum For Bytes 0-62 -335
-262
-26A
-265
-202
2C
BC
E9
19
AF
64 Manufacturer’s JEDEC ID Code MICRON 2C
65-71 Manufacturer’s JEDEC ID Code (Continued) 00
72 Ma nufacturing L ocation 01–12 01–0C
73-90 Module Part Number (ASCII) Variable Data
91 PCB Identification Code 1-9 01–09
92 Identification Code (Continued) 000
93 Year of Manufacture in BCD Variable Data
94 Week of Manufacture in BCD Variable Data
95-98 Module Seria l Number Variable Data
99-127
Manufacturer -S pe cifi c Data (RSVD)
Tabl e 24: Serial Presence-Detect Matrix (Continued)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”
BYTE DESCRIPTION ENTRY (VERSION)
MT9VDDT12872H
128MB, 256MB, 512MB, 1GB (x72, ECC, SR)
200-PIN DD R SO DIM M
pdf: 09005aef80804052, so urce: 09005a ef806e057b Micron Techn ology, Inc., reserves the right to ch ange products or spec ifica tio ns w ith out notice.
DD9C16_32_64_128x72HG.fm - Rev. B 9/04 EN 34 ©2004 Micron Technolog y, Inc. All rights reserved.
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
E-mail: prodmktg@micron.com, Internet: http://www.m icron.com, Customer Comment Line: 800-932-4992
Micron, the M logo, and the Micron logo are trademarks and/or service marks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.
Figure 16: 200-PIN DDR SODIMM Dimensions
NOTE:
All dimensions are in inches (millimeters); or typical where noted.
Data Sheet Designation
Re l e a s e d ( N o Ma r k ) : Th is dat a s heet cont ains mini-
mum and max imum limit s speci fied o ver th e comple te
power supply and temperature range for production
devices. Although considered final, these specifica-
tions are subject to change, as further product devel-
opment and data characterization sometimes occur.
U1 U2 U3 U4 U5
U10U9
U8
U7
U6
0.150 (3.80)
MAX
0.043 (1.10)
0.035 (0.90)
PIN 1
2.667 (67.75)
2.656 (67.45)
0.787 (20.00)
TYP
0.071 (1.80)
(2X)
0.024 (0.61)
TYP
0.018 (0.46)
TYP
0.079 (2.00) R
(2X)
PIN 199
PIN 200 PIN 2
FRONT VIEW
0.079 (2.00)
0.236 (6.00)
2.504 (63.60)
0.096 (2.44)
0.039 (0.99)
TYP
1.256 (31.90)
1.244 (31.60)
BACK VIEW
0.320 (8.13) MAX
Dual Rank SoDIMM
0.043 (1.10)
0.035 (0.90)
MAX
MIN