INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
Benefits
Absolute Maximum Ratings
Thermal Resistance
Parameter Min. Typ. Max. Units
RθJC Junction-to-Case - IGBT ––– ––– 0.42
RθJC Junction-to-Case - Diode ––– ––– 0.83 °C/W
RθCS Case-to-Sink, flat, greased surface ––– 0.24 –––
RθJA Junction-to-Ambient, typical socket mount ––– ––– 40
WtWeight ––– 6 (0.21) ––– g (oz)
ZθJC Transient Thermal Impedance Junction-to-Case (Fig.24)
9/17/07
E
G
C
IRGP30B120KD-E
Motor Control Co-Pack IGBT
PD- 93818A
TO-247AD
N-channel
www.irf.com 1
Parameter Max. Units
VCES Collector-to-Emitter Breakdown Voltage 1200 V
IC @ TC = 25°C Continuous Collector Current (Fig.1) 60
IC @ TC = 100°C Continuous Collector Current (Fig.1) 30
ICM Pulsed Collector Current (Fig.3, Fig. CT.5) 120
ILM Clamped Inductive Load Current(Fig.4, Fig. CT.2) 120 A
IF @ TC = 100°C Diode Continuous Forward Current 30
IFM Diode Maximum Forward Current 120
VGE Gate-to-Emitter Voltage ± 20 V
PD @ TC = 25°C Maximum Power Dissipation (Fig.2) 300
PD @ TC = 100°C Maximum Power Dissipation (Fig.2) 120
TJOperating Junction and -55 to + 150
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300, (0.063 in. (1.6mm) from case)
°C
Mounting Torque, 6-32 or M3 screw. 10 lbf•in (1.1N•m)
W
• Low VCE(on) Non Punch Through (NPT)
Technology
• Low Diode VF (1.76V Typical @ 25A & 25°C)
• 10 μs Short Circuit Capability
• Square RBSOA
• Ultrasoft Diode Recovery Characteristics
• Positive VCE(on) Temperature Coefficient
• Extended Lead TO-247AD Package
• Benchmark Efficiency for Motor Control
Applications
• Rugged Transient Performance
• Low EMI
• Significantly Less Snubber Required
• Excellent Current Sharing in Parallel Operation
• Longer leads for Easier Mounting
VCES = 1200V
VCE(on) typ. = 2.28V
VGE = 15V, IC = 25A, 25°C
IRGP30B120KD-E
2www.irf.com
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions Fig.
V(BR)CES Collector-to-Emitter Breakdown Voltage
1200 V
VGE = 0V,Ic =250 μA
ΔV
(BR)CES
/ ΔTj
Temperature Coeff. of Breakdown Voltage
+1.2 V/°C
VGE = 0V, Ic = 1 mA ( 25 -125 oC )
2.28 2.48
IC = 25A, VGE = 15V
5, 6
Collector-to-Emitter Saturation
2.46 2.66
IC = 30A, VGE = 15V
7, 9
VCE(on) Voltage
3.43 4.00 V
IC = 60A, VGE = 15V
10
2.74 3.10
IC = 25A, VGE = 15V, TJ = 125°C
11
2.98 3.35
IC = 30A, VGE = 15V, TJ = 125°C
VGE(th) Gate Threshold Voltage
4.0 5.0 6.0 V
VCE = VGE, IC = 250 μA
9,10,11,12
ΔV
GE(th)
/ ΔTj
Temperature Coeff. of Threshold Voltage
- 1.2
mV/
o
CVCE = VGE, IC = 1 mA ( 25 -125 oC )
gfe Forward Transconductance
14.8 16.9 19.0 S
VCE = 50V, IC = 25A, PW=80μs
250
VGE = 0V,VCE = 1200V
ICES Zero Gate Voltage Collector Current
325 675 μA
VGE = 0v, VCE = 1200V, TJ =125°C
2000
VGE = 0v, VCE = 1200V, TJ =150°C
1.76 2.06
IC = 25A
VFM Diode Forward Voltage Drop
1.86 2.17 V
IC = 30A
8
1.87 2.18
IC = 25A, TJ = 125°C
2.01 2.40
IC = 30A, TJ = 125°C
IGES Gate-to-Emitter Leakage Current
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions Fig.
QgTotal Gate charge (turn-on)
169 254
IC = 25A
23
Qge Gate - Emitter Charge (turn-on)
19 29 nC
VCC =600V
CT 1
Qgc Gate - Collector Charge (turn-on)
82 123
VGE = 15V
Eon Turn-On Switching Loss
1066 1250
IC = 25A, VCC = 600V
CT 4
Eoff Turn-Off Switching Loss
1493 1800 μJ
VGE = 15V, Rg = 5Ω, L=200μH
WF1
Etot Total Switching Loss
2559 3050
T
J
= 25
o
C, Energy losses include tail
and diode reverse recovery
WF2
Eon Turn-on Switching Loss
1660 1856
Ic =25A, VCC=600V
13, 15
Eoff Turn-off Switching Loss
2118 2580 μJ
VGE = 15V, Rg = 5Ω, L=200μH
CT 4
Etot Total Switching Loss
3778 4436
T
J
= 125
o
C, Energy losses include tail
and diode reverse recovery
WF1 & 2
td(on) Turn - on delay time
50 65
Ic =25A, VCC=600V
14, 16
tr Rise time
25 35 ns
VGE = 15V, Rg = 5Ω, L=200μH
CT 4
td(off) Turn - off delay time
210 230
TJ = 125oC,
WF1
tf Fall time
60 75
WF2
Cies Input Capacitance
2200
VGE = 0V
Coes Output Capacitance
210 pF
VCC = 30V
22
Cres Reverse Transfer Capacitance
85
f = 1.0 MHz
TJ =150oC, Ic = 120A
4
RBSOA Reverse bias safe operating area
FULL SQUARE
VCC = 1000V, VP = 1200V
CT 2
Rg = 5Ω, VGE = +15V to 0 V
TJ = 150oC
CT 3
SCSOA Short Circuit Safe Operating Area
10 ---- ---- μs
VCC = 900V,VP = 1200V
WF4
Rg = 5Ω, VGE = +15V to 0 V
Erec Reverse recovery energy of the diode
1820 2400 μJ
TJ = 125oC
17,18,19
trr Diode Reverse recovery time
300 ns
VCC = 600V, Ic = 25A
20, 21
Irr Peak Reverse Recovery Current
34 38 A
VGE = 15V, Rg = 5Ω, L=200μH
CT 4 , W F 3
Le Internal Emitter Inductance
13 nH
Measured 5 mm from the package.
IRGP30B120KD-E
www.irf.com 3
Fig.1 - Maximum DC Collector
Current vs. Case Temperature
0
10
20
30
40
50
60
70
0 40 80 120 160
T
C
C)
I C ( A )
Fig.2 - Power Dissipation vs. Case
Temperature
0
40
80
120
160
200
240
280
320
0 40 80 120 160
T
C
(°C)
P
t o t
( W )
Fig.3 - Forward SOA
TC=25°C; Tj < 150°C
0.1
1
10
100
1000
1 10 100 1000 10000
VCE (V)
I
C
( A )
DC
10ms
1ms
100μs
10μs
2μs
PULSED
Fig.4 - Reverse Bias SOA
Tj = 150°C, V
GE
= 15V
1
10
100
1000
1 10 100 1000 10000
V
CE
(V)
I
C
( A )
IRGP30B120KD-E
4www.irf.com
Fig.5 - Typical IGBT Output
Characteristics
Tj= -40°C; tp=300μs
0
5
10
15
20
25
30
35
40
45
50
55
60
0123456
VCE (V)
I
C
( A )
V
GE
= 18V
V
GE
= 15V
V
GE
= 12V
V
GE
= 10V
V
GE
= 8V
Fig.6 - Typical IGBT Output
Characteristics
Tj=25°C; tp=300μs
0
5
10
15
20
25
30
35
40
45
50
55
60
0123456
VCE (V)
I
C
( A )
V
GE
= 18V
V
GE
= 15V
V
GE
= 12V
V
GE
= 10V
V
G
E
= 8
V
Fig.7 - Typical IGBT Output
Characteristics
Tj=125°C; tp=300μs
0
5
10
15
20
25
30
35
40
45
50
55
60
0123456
VCE (V)
I
C
( A )
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8V
Fig.8 - Typical Diode Forward
Characteristic
tp=300μs
0
5
10
15
20
25
30
35
40
45
50
55
60
01234
VF (V)
I
F
( A )
- 40°C
25°C
125°C
IRGP30B120KD-E
www.irf.com 5
Fig.9 - Typical V
CE
vs V
GE
Tj= -40°C
0
2
4
6
8
10
12
14
16
18
20
6 8 10 12 14 16 18 20
V
GE
(V)
V
C E
( V )
I
CE
=10A
I
CE
=25A
I
CE
=50A
Fig.12 - Typ. Transfer Characteristics
VCE =20V; tp=20μs
0
25
50
75
100
125
150
175
200
225
250
048121620
V
GE
(V)
I
C
( A )
Tj=25°C
T
j
=125°
C
Tj=25°C
Tj=125°C
Fi
g
.10 - T
y
pical
V
CE vs
V
GE
Tj= 25°C
0
2
4
6
8
10
12
14
16
18
20
6 8 10 12 14 16 18 20
VGE (V)
V
C E
( V )
ICE =10A
ICE =25A
ICE =50A
Fig.11 - Typical V CE vs V GE
Tj= 125°C
0
2
4
6
8
10
12
14
16
18
20
6 8 10 12 14 16 18 20
VGE (V)
V
C E
( V )
ICE =10A
ICE =25A
IC
E
=50A
IRGP30B120KD-E
6www.irf.com
Fig.16 - Typical Switching Time vs Rg
Tj=125°C; L=200μH; V
CE
=600V;
I
CE
=25A; V
GE
=15V
10
100
1000
0 5 10 15 20 25 30 35 40 45 50 55
Rg (ohms)
t ( n S )
tdon
tdof
f
t
t
f
Fig.13 - Typical Energy Loss vs Ic
Tj=125°C; L=200μH; V
CE
=600V;
Rg=22
Ω
; V
GE
=15V
0
1000
2000
3000
4000
5000
6000
7000
8000
0 102030405060
I
C
(A)
E n e r g y ( μ J )
Eo
n
Eof
f
Fig.15 - Typical Energy Loss vs Rg
Tj=125°C; L=200μH; V
CE
=600V;
I
CE
=25A; V
GE
=15V
1500
1700
1900
2100
2300
2500
2700
2900
3100
3300
3500
0 5 10 15 20 25 30 35 40 45 50 55
Rg (ohms)
E n e r g y ( u J )
Eon
Eoff
Fig.14 - Typical Switching Time vs Ic
Tj=125°C; L=200μH; V CE =600V;
Rg=22
Ω
;V GE =15V
10
100
1000
0 102030405060
IC (A)
t ( n S )
tdo
n
tdof
f
tf
t
r
IRGP30B120KD-E
www.irf.com 7
Fig.20 - Typical Diode Q RR
VCC =600V; V GE =15V; Tj=125°C
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
0 500 1000 1500
dI F / dt (A/μs)
Q
R R
( n C )
51
Ω
22
Ω
10
Ω
5
Ω
50A
40A
30A
25A
20A
Fig.18 - Typical Diode IRR vs Rg
Tj=125°C; IF=25A
0
5
10
15
20
25
30
35
40
45
0 5 10 15 20 25 30 35 40 45 50 55
Rg (ohms)
I
R R
( A )
Fig.17 - Typical Diode I RR vs IF
Tj=125°C
0
5
10
15
20
25
30
35
40
45
0 102030405060
IF (A)
I
R R
( A )
Rg=5
Ω
Rg=10
Ω
Rg=22
Ω
Rg=51
Ω
Fig.19 - Typical Diode I
RR
vs dI
F
/dt
V
CC
=600V; V
GE
=15V
I
F
=25A; Tj=125°C
0
5
10
15
20
25
30
35
40
45
0 500 1000 1500
dI
F
/ dt (A/μs)
I
R R
( A )
Rg=22
Ω
Rg=51
Ω
R
g
=1
0
Ω
Rg=5
Ω
IRGP30B120KD-E
8www.irf.com
Fig.21 - Typ. Diode E
rec
vs. I
F
Tj=125°C
800
1000
1200
1400
1600
1800
2000
2200
2400
0 102030405060
I
F
(A)
E n e r g y ( u J )
5
Ω
10
Ω
22
Ω
51
Ω
Fig.23 - Typ. Gate Charge vs. V GE
IC=25A; L=600μH
0
2
4
6
8
10
12
14
16
0 40 80 120 160 200
QG, Total Gate Charge (nC)
V
G E
( V )
600
V
800
V
Fig.22 - Typical Capacitance vs V CE
VGE =0V; f=1MHz
10
100
1000
10000
0 20406080100
VCE (V)
C a p a c I t a n c e ( p F )
Cies
Coes
C res
IRGP30B120KD-E
www.irf.com 9
Fig.24 - Normalized Transient Thermal Impedance, Junction-to-Case
0.001
0.01
0.1
1
10
0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000
t
1
, Rectangular Pulse Duration (sec)
θ
SINGLE
PULSE
0.05
0.0
2
D =0.
5
0.01
0.
2
0.1
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJC
+ T
C
P
DM
t
1
t
2
IRGP30B120KD-E
10 www.irf.com
Fig. CT.1 - Gate Charge Circuit (turn-off) Fig. CT.2 - RBSOA Circuit
Fig. CT.3 - S.C. SOA Circuit
L
Rg
80 V DUT
1000V
D
C
Driver
DUT
900V
Fig. CT.4 - Switching Loss Circuit
1K
VCC
DUT
0
L
L
Rg
VCC
diode clamp /
DUT
DUT /
DRIVER
- 5V
Rg
VCC
DUT
R =
V
CC
I
CM
Fig. CT.5 - Resistive Load Circuit
IRGP30B120KD-E
www.irf.com 11
Fig. WF.1 - Typ. Turn-off Loss Waveform
@ Tj=125°C using Fig. CT.4
Fig. WF.2 - Typ. Turn-on Loss Waveform
@ Tj=125°C using Fig. CT.4
Fig. WF.4 - Typ. S.C. Waveform
@ TC=150°C using Fig. CT.3
Fig. WF.3 - Typ. Diode Recovery Waveform
@ Tj=125°C using Fig. CT.4
-1200
-1000
-800
-600
-400
-200
0
-0.5 0.0 0.5 1.0
t I me (μS)
V
C E
( V )
-30
-20
-10
0
10
20
30
I
C E
( A )
Peak
IRR
QRR
tRR
10%
Peak
IRR
-100
0
100
200
300
400
500
600
700
800
900
4.04.14.24.34.44.5
t I me (μs)
V
C E
( V )
-5
0
5
10
15
20
25
30
35
40
45
I
C E
( A )
TEST CURRENT
90% test current
10% test current
Eon Loss
5% VCE
t r
-100
0
100
200
300
400
500
600
700
800
-0.50.00.51.01.52.02.5
t I me (μs)
V
C E
( V )
-5
0
5
10
15
20
25
30
35
40
I
C E
( A )
90% ICE
t f
5% VCE
5% ICE
Eoff Loss
0
200
400
600
800
1000
1200
-5 0 5 10 15 20 25 30
time (μS)
V
CE
(V)
-50
0
50
100
150
200
250
I
CE
(A)
V
CE
I
CE
IRGP30B120KD-E
12 www.irf.com
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252-7105
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936
Data and specifications subject to change without notice. 9/07
TO-247AC package is not recommended for Surface Mount Application.
TO-247AD Package Outline (Dimensions are shown in millimeters (inches))
TO-247AD Part Marking Information
AS S E MB L Y YEAR 0 = 2000
ASS E MBLE D ON WW 35, 2000
IN THE ASSEMBLY LINE "H"
EXAMPL E: T HIS IS AN IRGP30B120KD-E
LOT CODE 5657
WITH ASSEMBLY PART NUMBER
DATE CODE
INTERNATIONAL
RECTIFIER
LOGO 035H
56 57
WEEK 35
LINE H
LOT CODE
Note: "P" in ass embly line pos ition
i ndi cates "L ead-F ree"
9. For the most current drawing please refer to IR website
at http://www.irf.com/package/pkigbt.html