Industrial Power Control
Final Data Sheet
Rev 2.0, 2012-07-31
1ED020I12-FT
Single IGBT Driver IC
EiceDRIVER™
Edition 2012-07-31
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2012 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
EiceDRIVER™
1ED020I12-FT
Final Data Sheet 3 Rev 2.0, 2012-07-31
Trademarks of Infineon Technologies AG
AURIX™, BlueMoon™, C166™, CanPAK™, CIPOS™, CIPURSE™, COMNEON™, EconoPACK™, CoolMOS™,
CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™,
MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PRIMARION™,
PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™,
SINDRION™, SIPMOS™, SMARTi™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™,
TRENCHSTOP™, TriCore™, X-GOLD™, X-PMU™, XMM™, XPOSYS™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™
of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc.
RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc.
SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden
Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™
of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of
Diodes Zetex Limited.
Last Trademarks Update 2010-10-26
Revision History
Page or Item Subjects (major changes since previous revision)
Rev 2.0, 2012-07-31
EiceDRIVER™
1ED020I12-FT
Final Data Sheet 4 Rev 2.0, 2012-07-31
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Internal Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.1 Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.2 READY Status Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.3 Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.4 Active Shut-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Non-Inverting and Inverting Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Driver Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Two-Level Turn-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7 Minimal On Time / Off Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.8 External Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.8.1 Desaturation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.8.2 Active Miller Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.8.3 Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.9 RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Recommended Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4.1 Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4.2 Logic Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4.3 Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4.4 Active Miller Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4.5 Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4.6 Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4.7 Desaturation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4.8 Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4.9 Two-level Turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.1 Reference Layout for Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.2 Printed Circuit Board Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table of Contents
EiceDRIVER™
1ED020I12-FT
Final Data Sheet 5 Rev 2.0, 2012-07-31
Figure 1 Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2 Block Diagram 1ED020I12-FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 3 Pin Configuration PG-DSO-16-15 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4 Application Example Bipolar Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 5 Application Example Unipolar Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 6 Propagation Delay, Rise and Fall Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 7 Principle Switching Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 8 Typical Switching Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 9 DESAT Switch-OFF Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 10 Short Switch ON Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 11 Short Switch OFF Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 12 Short Switch OFF Pulses, Ringing Surpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 13 VCC2 Ramp Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 14 VCC2 Ramp Down and VCC2 Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 15 Typical TTLSET Time over CTLSET Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 16 PG-DSO-16-15 (Plastic (Green) Dual Small Outline Package) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 17 Reference Layout for Thermal Data (Copper thickness 102 μm) . . . . . . . . . . . . . . . . . . . . . . . . . . 31
List of Figures
EiceDRIVER™
1ED020I12-FT
Final Data Sheet 6 Rev 2.0, 2012-07-31
Table 1 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 3 Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4 Recommended Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 5 Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 6 Logic Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 7 Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 8 Active Miller Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 9 Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 10 Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 11 Desaturation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 12 Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 13 Two-level Turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
List of Tables
Product Name Gate Drive Current Package
1ED020I12-FT ±2A PG-DSO-16-15
EiceDRIVER™
Single IGBT Driver IC 1ED020I12-FT
Final Data Sheet 7 Rev 2.0, 2012-07-31
1Overview
Main Features
Single channel isolated IGBT Driver
For 600 V/1200 V IGBTs
2 A rail-to-rail output
Vcesat-detection
Active Miller Clamp
Two level turn off
Product Highlights
Coreless transformer isolated driver
Galvanic Insulation
Integrated protection features
Suitable for operation at high ambient temperature
Typical Application
Inverters for motor drives
UPS systems
Welding
Description
The 1ED020I12-FT is a galvanic isolated single channel IGBT driver in PG-DSO-16-15 package that provides an
output current capability of typically 2A.
All logic pins are 5V CMOS compatible and could be directly connected to a microcontroller.
The data transfer across galvanic isolation is realized by the integrated Coreless Transformer Technology.
The 1ED020I12-FT provides several protection features like IGBT two level turn off, desaturation protection, active
Miller clamping and active shut down.
EiceDRIVER™
1ED020I12-FT
Overview
Final Data Sheet 8 Rev 2.0, 2012-07-31
Figure 1 Typical Application
DESAT
CLAMP
TLSET
OUT
CPU
IN+, IN-, /RST
/FLT, RDY
VCC1 VCC2_H
VEE2_H
GND2
Input Side Output Side
GND1
DESAT
CLAMP
TLSET
OUT
VCC1 VCC2_L
VEE2_L
GND2
GND1
IN+, IN-, /RST
/FLT, RDY
EiceDRIVER
TM
1ED020I12-FT
1ED020I12-FT
EiceDRIVER
TM
EiceDRIVER™
1ED020I12-FT
Block Diagram
Final Data Sheet 9 Rev 2.0, 2012-07-31
2 Block Diagram
Figure 2 Block Diagram 1ED020I12-FT
GND1
IN+
IN-
RDY
/RST
/FLT
VCC1
10
11
12
13
14
15
9
7
6
5
4
3
2
VCC2
OUT
GND2
CLAMP
DESAT
TLSET
delay
TX
RXDECODER
UVLO
TX
VEE2
2V
ENCODER
500µA
9V
K3
&
delay
1
FLT
VCC1
VCC1
VCC1
VCC1
&
&
delay 1
Q
S
R
/RDY
1
1
1
FLTNL
RST
UVLO
RX
&
VEE2
1
&
VCC2
RDY2
FLT2
16 1 8
VEE2
GND1 VEE2
K4
VCC2
1ED020I12-FT
OSC
20MHz
VCC2
7V
500µA
LOGIC
S
R
Q
VEE2
EiceDRIVER™
1ED020I12-FT
Pin Configuration and FunctionalityPin Configuration
Final Data Sheet 10 Rev 2.0, 2012-07-31
3 Pin Configuration and Functionality
3.1 Pin Configuration
Figure 3 Pin Configuration PG-DSO-16-15 (top view)
Table 1 Pin Configuration
Pin No. Name Function
1 VEE2 Negative power supply output side
2 DESAT Desaturation protection
3 GND2 Signal ground output side
4 TLSET Two level set
5 VCC2 Positive power supply output side
6 OUT Driver output
7 CLAMP Miller clamping
8 VEE2 Negative power supply output side
9 GND1 Ground input side
10 IN+ Non inverted driver input
11 IN- Inverted driver input
12 RDY Ready output
13 /FLT Fault output, low active
14 /RST Reset input, low active
15 VCC1 Positive power supply input side
16 GND1 Ground input side
VEE2
IN+
IN-
RDY
/RST
/FLT
VCC1
GND1
VCC2
OUT
GND2
CLAMP
DESAT
TLSET
1
2
3
4
5
9
16
15
14
13
12
11
GND1
107
8
6
VEE2
EiceDRIVER™
1ED020I12-FT
Pin Configuration and FunctionalityPin Functionality
Final Data Sheet 11 Rev 2.0, 2012-07-31
3.2 Pin Functionality
GND1
Ground connection of the input side.
IN+ Non Inverting Driver Input
IN+ control signal for the driver output if IN- is set to low. (The IGBT is on if IN+ = high and IN- = low)
A minimum pulse width is defined to make the IC robust against glitches at IN+. An internal Pull-Down-Resistor
ensures IGBT Off-State.
IN- Inverting Driver Input
IN- control signal for driver output if IN+ is set to high. (IGBT is on if IN- = low and IN+ = high)
A minimum pulse width is defined to make the IC robust against glitches at IN-. An internal Pull-Up-Resistor
ensures IGBT Off-State.
/RST Reset Input
Function 1: Enable/shutdown of the input chip. (The IGBT is off if /RST = low). A minimum pulse width is defined
to make the IC robust against glitches at /RST.
Function 2: Resets the DESAT-FAULT-state of the chip if /RST is low for a time TRST. An internal Pull-Up-Resistor
is used to ensure /FLT status output.
/FLT Fault Output
Open-drain output to report a desaturation error of the IGBT (/FLT is low if desaturation occurs)
RDY Ready Status
Open-drain output to report the correct operation of the device (RDY = high if both chips are above the UVLO level
and the internal chip transmission is faultless).
VCC1
5 V power supply of the input chip
VEE2
Negative power supply pins of the output chip. If no negative supply voltage is available, all VEE2 pins have to be
connected to GND2.
DESAT Desaturation Detection Input
Monitoring of the IGBT saturation voltage (VCE) to detect desaturation caused by short circuits. If OUT is high, VCE
is above a defined value and a certain blanking time has expired, the desaturation protection is activated and the
IGBT is switched off. The blanking time is adjustable by an external capacitor.
CLAMP Miller Clamping
Ties the gate voltage to ground after the IGBT has been switched off at a defined voltage to avoid a parasitic
switch-on of the IGBT.During turn-off, the gate voltage is monitored and the clamp output is activated when the
gate voltage goes below 2 V below VEE2.
EiceDRIVER™
1ED020I12-FT
Pin Configuration and FunctionalityPin Functionality
Final Data Sheet 12 Rev 2.0, 2012-07-31
GND2 Reference Ground
Reference ground of the output chip.
OUT Driver Output
Output pin to drive an IGBT. The voltage is switched between VEE2 and VCC2. In normal operating mode Vout
is controlled by IN+, IN- and /RST. During error mode (UVLO, internal error or DESAT) Vout is set to VEE2
independent of the input control signals.
VCC2
Positive power supply pin of the output side.
TLSET Two Level Turn Off Adjust
Circuitry at TLSET adjust the two level turn off time with an external capacitor to GND2 and the two level voltage
with an external Zener diode to GND2, for wave forms please see Figure 9.
EiceDRIVER™
1ED020I12-FT
Functional DescriptionIntroduction
Final Data Sheet 13 Rev 2.0, 2012-07-31
4 Functional Description
4.1 Introduction
The 1ED020I12-FT is an advanced IGBT gate driver for motor drives typical greater 10 kW. Control and protection
functions are included to make possible the design of high reliability systems.
The device consists of two galvanic separated parts. The input chip can be directly connected to a standard 5 V
DSP or microcontroller with CMOS in/output and the output chip is connected to the high voltage side.
An effective active Miller clamp function avoids the need of negative gate driving in some applications and allows
the use of a simple bootstrap supply for the high side driver.
A rail-to-rail driver output enables the user to provide easy clamping of the IGBTs gate voltage during short circuit
of the IGBT. So an increase of short circuit current due to the feedback via the Miller capacitance can be avoided.
Further, a rail-to-rail output reduces power dissipation.
The device also includes an IGBT desaturation protection with a /FAULT status output.
A two-level turn-off feature with adjustable delay protects against excessive overvoltage at turn-off in case of
overcurrent or short circuit condition. The same delay is applied at turn-on to prevent pulse width distortion.
A READY status output reports if the device is supplied and operates correctly.
Figure 4 Application Example Bipolar Supply
4.2 Supply
The driver 1ED020I12-FT is designed to support two different supply configurations, bipolar supply and unipolar
supply.
In bipolar supply the driver is typically supplied with a positive voltage of 15V at VCC2 and a negative voltage of
-8V at VEE2, refer to Figure 4. Negative supply prevents a dynamic turn on due to the additional charge which
is generated from IGBT input capacitance times negative supply voltage. If an appropriate negative supply voltage
is used, connecting CLAMP to IGBT gate is redundant and therefore typically not necessary.
For unipolar supply configuration the driver is typically supplied with a positive voltage of 15V at VCC2. Erratically
dynamic turn on of the IGBT could be prevented with active Miller clamp function, so CLAMP output is directly
connected to IGBT gate, refer to Figure 5.
GND1
IN+
IN-
RDY
/FLT
/RST
VCC1
OUT
VCC2
GND2
CLAMP
DESAT
+5V
VEE 2
SGND
IN+
RDY
FLT
RST
+15V
-8V
TLSET
1k
10k
10k
10R
220p47p10V
100n
EiceDRIVER™
1ED020I12-FT
Functional DescriptionInternal Protection Features
Final Data Sheet 14 Rev 2.0, 2012-07-31
Figure 5 Application Example Unipolar Supply
4.3 Internal Protection Features
4.3.1 Undervoltage Lockout (UVLO)
To ensure correct switching of IGBTs the device is equipped with an undervoltage lockout for both chips, refer to
Figure 13 and Figure 14.
If the power supply voltage VVCC1 of the input chip drops below VUVLOL1 a turn-off signal is sent to the output chip
before power-down. The IGBT is switched off and the signals at IN+ and IN- are ignored as long as VVCC1 reaches
the power-up voltage VUVLOH1.
If the power supply voltage VVCC2 of the output chip goes down below VUVLOL2 the IGBT is switched off and signals
from the input chip are ignored as long as VVCC2 reaches the power-up voltage VUVLOH2. VEE2 is not monitored,
otherwise negative supply voltage range from 0 V to -12 V would not be possible.
4.3.2 READY Status Output
The READY output at pin /RDY shows the status of three internal protection features.
UVLO of the input chip
UVLO of the output chip after a short delay
Internal signal transmission after a short delay
It is not necessary to reset the READY signal since its state only depends on the status of the former mentioned
protection signals.
4.3.3 Watchdog Timer
During normal operation the internal signal transmission is monitored by a watchdog timer. If the transmission fails
for a given time, the IGBT is switched off and the READY output reports an internal error.
4.3.4 Active Shut-Down
The Active Shut-Down feature ensures a safe IGBT off-state if the output chip is not connected to the power
supply, IGBT gate is clamped at OUT to VEE2.
GND1
IN+
IN-
RDY
/FLT
/RST
VCC1
OUT
VCC2
GND2
CLAMP
DESAT
+5V
VEE 2
SGND
IN+
RDY
FLT
RST
+15V
TLSET
1k
10k
10k
10R
220p47p10V
100n
EiceDRIVER™
1ED020I12-FT
Functional DescriptionNon-Inverting and Inverting Inputs
Final Data Sheet 15 Rev 2.0, 2012-07-31
4.4 Non-Inverting and Inverting Inputs
There are two possible input modes to control the IGBT. At non-inverting mode IN+ controls the driver output while
IN- is set to low. At inverting mode IN- controls the driver output while IN+ is set to high, refer to Figure 7. A
minimum input pulse width is defined to filter occasional glitches.
4.5 Driver Output
The output driver section uses only MOSFETs to provide a rail-to-rail output. This feature permits that tight control
of gate voltage during on-state and short circuit can be maintained as long as the drivers supply is stable. Due to
the low internal voltage drop, switching behaviour of the IGBT is predominantly governed by the gate resistor.
Furthermore, it reduces the power to be dissipated by the driver.
4.6 Two-Level Turn-Off
The Two-Level Turn-OFF introduces a second turn off voltage level at the driver output in between ON- and OFF-
level, refer to Figure 8. This additional level ensures lower VCE overshoots at turn off by reducing gate emitter
voltage of the IGBT at short circuits or over current events. The VGE level is adjusting the current of the IGBT at
the end two level turn off interval, the required timing is depending on stray inductance and over current at
beginning of two level turn off interval.
Reference voltage level and hold up time could be adjusted at TLSET pin. The reference voltage is set by the
required Zener diode connected between pin TLSET and GND2. The holdup time is set by the capacitor connected
to the same pin TLSET and GND2.
The hold time can be adjusted during switch on using the whole capacitance connected at pin TLSET including
capacitor, parasitic wiring capacitance and junction capacitance of Zener diode. When a switch on signal is given
the IC starts to discharge CTLSET. Discharging CTLSET is stopped after 500 ns. Then Ctlset is charged with an
internal charge current ITLSET. When the voltage of the capacitor CTLSET exceeds 7 V a second current source starts
charging CTLSET up to VZDIODE. At the end of this discharge-charge cycle the gate driver is switched on.
The time between IN initiated switch-on signal (minus an internal propagation delay of approximately 200 ns) and
switch-on of the gate drive is sampled and stored digitally. It represents the two level turn off set time TTLSET during
switch-off. Due to digitalization the tpdon time can vary in time steps of 50 ns.
If switch off is initiated from IN+, IN- or /RST signal, the gate driver is switched off immediately after internal
propagation delay of approximately 200 ns and VOUT begins to decrease to the second gate voltage level.
For switch off initiated by DESAT, the gate driver switch off is delayed by desaturation sense to OUT delay,
afterwards VOUT begins to decrease to the second gate voltage level.
For reaching second gate voltage level the output voltage VOUT is sensed and compared with the Zener voltage
VZDIODE. When VOUT falls below the reference voltage VZDIODE of the Zener diode the switch off process is
interrupted and VOUT is adjusted to VZDIODE. OUT is switched to VEE2 after the holdup time has passed.
The Two-Level Turn-OFF function cannot be disabled.
EiceDRIVER™
1ED020I12-FT
Functional DescriptionMinimal On Time / Off Time
Final Data Sheet 16 Rev 2.0, 2012-07-31
4.7 Minimal On Time / Off Time
The 1ED020I12-FT driver requires minimal on and off time for proper operation in the application. Minimal on time
must be greater than the adjustable two level plateau time TTLSET, shorter on times will be suppressed by
generating of the plateau time refer to Figure 10. Due to the short on time, the voltage at TLSET pin does not
reach the comparator threshold; therefore the driver does not turn on. A similar principle takes place for off time.
Minimal off time must be greater than TTLSET; shorter off times will be suppressed, which means OUT stays on
refer to Figure 11. A two level turn off plateau cannot be shortened by the driver. If the driver has entered the turn
off sequence it cannot switch off due to the fact, that the driver has already entered the shut off mode. But if the
driver input signal is turned on again, it will leave the lower level after TTLSET time by switching OUT to high, refer
to Figure 12.
4.8 External Protection Features
4.8.1 Desaturation Protection
A desaturation protection ensures the protection of the IGBT at short circuit. When the DESAT voltage goes up
and reaches 9 V, the output is driven low, refer to Figure 9. Further, the FAULT output is activated. A
programmable blanking time is used to allow enough time for IGBT saturation. Blanking time is provided by a
highly precise internal current source and an external capacitor.
4.8.2 Active Miller Clamp
In a half bridge configuration the switched off IGBT tends to dynamically turn on during turn on phase of the
opposite IGBT. A Miller clamp allows sinking the Miller current across a low impedance path in this high dV/dt
situation. Therefore in many applications, the use of a negative supply voltage can be avoided.
During turn-off, the gate voltage is monitored and the clamp output is activated when the gate voltage goes below
typical 2 V (related to VEE2). The clamp is designed for a Miller current up to 2 A.
4.8.3 Short Circuit Clamping
During short circuit the IGBTs gate voltage tends to rise because of the feedback via the Miller capacitance. An
additional protection circuit connected to OUT and CLAMP limits this voltage to a value slightly higher than the
supply voltage. A current of maximum 500 mA for 10 μs may be fed back to the supply through one of this paths.
If higher currents are expected or a tighter clamping is desired external Schottky diodes may be added.
4.9 RESET
The reset input has two functions.
Firstly, /RST is in charge of setting back the FAULT output. If /RST is low longer than a given time, /FLT will be
cleared at the rising edge of /RST, refer to Figure 9; otherwise, it will remain unchanged. Moreover, it works as
enable/shutdown of the input logic, refer to Figure 7.
EiceDRIVER™
1ED020I12-FT
Electrical ParametersAbsolute Maximum Ratings
Final Data Sheet 17 Rev 2.0, 2012-07-31
5 Electrical Parameters
5.1 Absolute Maximum Ratings
Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of
the integrated circuit. Unless otherwise noted all parameters refer to GND1.
Table 2 Absolute Maximum Ratings
Parameter Symbol Values Unit Note /
Test Condition
Min. Max.
Positive power supply output side VVCC2 -0.3 20 V 1)
1) With respect to GND2.
Negative power supply output side VVEE2 -12 0.3 V 1)
Maximum power supply voltage output side
(VVCC2 - VVEE2)
Vmax2 –28V
Gate driver output VOUT VVEE2-0.3 Vmax2+0.3 V
Gate driver high output maximum current IOUT 2.4 A t = 2 µs
Gate & Clamp driver low output maximum
current
IOUT 2.4 A t = 2 µs
Maximum short circuit clamping time tCLP –10μsICLAMP/OUT =
500 mA
Positive power supply input side VVCC1 -0.3 6.5 V
Logic input voltages
(IN+,IN-,RST)
VLogicIN -0.3 6.5 V
Opendrain Logic output voltage (FLT)VFLT# -0.3 6.5 V
Opendrain Logic output voltage (RDY) VRDY -0.3 6.5 V
Opendrain Logic output current (FLT)IFLT# –10mA
Opendrain Logic output current (RDY) IRDY –10mA
Pin DESAT voltage VDESAT -0.3 VVCC2
+0.3
V1)
Pin CLAMP voltage VCLAMP -0.3 VVCC2
+0.32)
V3)
Input to output isolation voltage (GND2) VISO -1200 1200 V
Junction temperature TJ-40 150 °C
Storage temperature TS-55 150 °C
Power dissipation, per input part PD, IN 100 mW 4) @TA = 25°C
Power dissipation, per output part PD, OUT 700 mW 4) @TA = 25°C
Thermal resistance (Input part) RTHJA,IN 160 K/W 4) @TA = 25°C
Thermal resistance (Output chip active) RTHJA,OUT 125 K/W 4) @TA = 25°C
ESD Capability VESD 1.5 kV Human Body
Model5)
EiceDRIVER™
1ED020I12-FT
Electrical ParametersOperating Parameters
Final Data Sheet 18 Rev 2.0, 2012-07-31
5.2 Operating Parameters
Note: Within the operating range the IC operates as described in the functional description. Unless otherwise
noted all parameters refer to GND1.
5.3 Recommended Operating Parameters
Note: Unless otherwise noted all parameters refer to GND1.
2) May be exceeded during short circuit clamping.
3) With respect to VEE2.
4) Output IC power dissipation is derated linearly at 10 mW/°C above 62°C. Input IC power dissipation does not require
derating. See Figure 17 for reference layouts for these thermal data. Thermal performance may change significantly with
layout and heat dissipation of components in close proximity.
5) According to EIA/JESD22-A114-B (discharging a 100 pF capacitor through a 1.5 k series resistor).
Table 3 Operating Parameters
Parameter Symbol Values Unit Note /
Test Condition
Min. Max.
Positive power supply output side VVCC2 13 20 V 1)
1) With respect to GND2.
Negative power supply output side VVEE2 -12 0 V 1)
Maximum power supply voltage output side
(VVCC2 - VVEE2)
Vmax2 –28V
Positive power supply input side VVCC1 4.5 5.5 V
Logic input voltages
(IN+,IN-,RST)
VLogicIN -0.3 5.5 V
Pin CLAMP voltage VCLAMP VVEE2-0.3 VVCC2
2)
2) May be exceeded during short circuit clamping.
V–
Pin DESAT voltage VDESAT -0.3 VVCC2 V1)
Pin TLSET voltage VTLSET -0.3 VVCC2 V1)
Ambient temperature TA-40 105 °C
Common mode transient immunity3)
3) The parameter is not subject to production test - verified by design/characterization
|DVISO/dt| 50 kV/μs@ 500V
Table 4 Recommended Operating Parameters
Parameter Symbol Value Unit Note / Test Condition
Positive power supply output side VVCC2 15 V 1)
1) With respect to GND2.
Negative power supply output side VVEE2 -8 V 1)
Positive power supply input side VVCC1 5V
EiceDRIVER™
1ED020I12-FT
Electrical ParametersElectrical Characteristics
Final Data Sheet 19 Rev 2.0, 2012-07-31
5.4 Electrical Characteristics
Note: The electrical characteristics include the spread of values in supply voltages, load and junction temperatures
given below. Typical values represent the median values at TA = 25°C. Unless otherwise noted all voltages
are given with respect to their respective GND (GND1 for pins 9 to 16, GND2 for pins 1 to 8).
5.4.1 Voltage Supply
Table 5 Voltage Supply
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
UVLO Threshold Input Chip VUVLOH1 –4.14.3V
VUVLOL1 3.5 3.8 V
UVLO Hysteresis Input Chip
(VUVLOH1 - VUVLOL1)
VHYS1 0.15 V
UVLO Threshold Output Chip VUVLOH2 12.0 12.6 V
VUVLOL2 10.4 11.0 V
UVLO Hysteresis Output Chip
(VUVLOH1 - VUVLOL1)
VHYS2 0.7 0.9 V
Quiescent Current Input Chip IQ1 –79mAVVCC1 =5 V
IN+ = High,
IN- = Low
=>OUT = High,
RDY = High,
/FLT = High
Quiescent Current Output Chip IQ2 –4.56mAVVCC2 =15 V
VVEE2 =-8 V
IN+ = High,
IN- = Low
=>OUT = High,
RDY = High,
/FLT = High
EiceDRIVER™
1ED020I12-FT
Electrical ParametersElectrical Characteristics
Final Data Sheet 20 Rev 2.0, 2012-07-31
5.4.2 Logic Input and Output
Table 6 Logic Input and Output
Parameter Symbol Values Unit Note /
Test Condition
Min. Typ. Max.
IN+,IN-, RST Low Input Voltage VIN+L,
VIN-L,
VRSTL#
––1.5V
IN+,IN-, RST High Input Voltage VIN+H,
VIN-H,
VRSTH#
3.5––V
IN-, RST Input Current IIN-, IRST# -400 -100 μAVIN- = GND1
VRST# = GND1
IN+ Input Current IIN+, 100 400 μAVIN+ = VCC1
RDY,FLT Pull Up Current IPRDY, IPFLT# -400 -100 μAVRDY = GND1
VFLT# = GND1
Input Pulse Suppression IN+,
IN-
TMININ+,
TMININ-
30 40 ns
Input Pulse Suppression RST
for ENABLE/SHUTDOWN
TMINRST 30 40 ns
Pulse Width RST
for Reseting FLT
TRST 800––ns
FLT Low Voltage VFLTL ––300mVISINK(FLT#) = 5 mA
RDY Low Voltage VRDYL ––300mVISINK(RDY) = 5 mA
EiceDRIVER™
1ED020I12-FT
Electrical ParametersElectrical Characteristics
Final Data Sheet 21 Rev 2.0, 2012-07-31
5.4.3 Gate Driver
5.4.4 Active Miller Clamp
Table 7 Gate Driver
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
High Level Output
Voltage
VOUTH1 VVCC2-1.2 VVCC2-0.8 V IOUTH = -20 mA
VOUTH2 VVCC2-2.5 VVCC2-2.0 V IOUTH = -200 mA
VOUTH3 VVCC2-9 VVCC2-5 V IOUTH = -1 A
VOUTH4 VVCC2-10 V IOUTH = -2 A
High Level Output Peak
Current
IOUTH -1.5 -2.0 A IN+ = High, IN- = Low;
OUT = High
Low Level Output
Voltage
VOUTL1 VVEE2+0.04 VVEE2+0.09 V IOUTL = 20 mA
VOUTL2 VVEE2+0.3 VVEE2+0.85 V IOUTL = 200 mA
VOUTL3 VVEE2+2.1 VVEE2+5.0 V IOUTL = 1 A
VOUTL4 VVEE2+7 V IOUTL = 2 A
Low Level Output Peak
Current
IOUTL 1.5 2.0 A IN+ = Low, IN- = Low;
OUT = Low,
VVCC2 =15 V,
VVEE2 =-8 V
Table 8 Active Miller Clamp
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Low Level Clamp
Voltage
VCLAMPL1 VVEE2+0.03 VVEE2 +0.08 V IOUTL = 20 mA
VCLAMPL2 VVEE2+0.3 VVEE2 +0.8 V IOUTL = 200 mA
VCLAMPL3 VVEE2+1.9 VVEE2 +4.8 V IOUTL = 1 A
Low Level Clamp
Current
ICLAMPL 2––A
1)
1) The parameter is not subject to production test - verified by design/characterization
Clamp Threshold
Voltage
VCLAMP 1.6 2.1 2.4 V Related to VEE2
EiceDRIVER™
1ED020I12-FT
Electrical ParametersElectrical Characteristics
Final Data Sheet 22 Rev 2.0, 2012-07-31
5.4.5 Short Circuit Clamping
5.4.6 Dynamic Characteristics
Dynamic characteristics are measured with VVCC1 = 5 V VCC2 = 15 V and VVEE2 = -8 V.
Table 9 Short Circuit Clamping
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Clamping voltage (OUT)
(VOUT-VVCC2)
VCLPout 0.8 1.3 V IN+=High, IN- = Low,
OUT = High
IOUT = 500 mA
(pulse test,
tCLPmax = 10 μs)
Clamping voltage
(CLAMP) (VVCLAMP-VVCC2)
VCLPclamp 1.3 V IN+ = High, IN- = Low,
OUT = High
ICLAMP = 500 mA
(pulse test,
tCLPmax = 10 μs)
Clamping voltage (CLAMP) VCLPclamp 0.7 1.1 V IN+ = High, IN- = Low,
OUT = High
ICLAMP = 20 mA
Table 10 Dynamic Characteristics
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
IN+, IN- input to output
propagation delay ON and
OFF
TPDON 1.5 1.75 2.0 μsCTLSET = 0, TA = 25°C
IN+, IN- input to output
propagation delay distortion
(TPDOFF-TPDON)
TPDISTO -40 -10 20 ns CTLSET = 0, TA = 25°C
IN+, IN- input to output
propagation delay ON
variation due to temp
TPDONt ––200ns
1)CTLSET = 0
IN+, IN- input to output
propagation delay OFF
variation due to temp
TPDOFFt ––230ns
1)CTLSET = 0
IN+, IN- input to output
propagation delay distortion
variation due to temp
(TPDOFF-TPDON)
TPDISTOt ––25ns
1)CTLSET =0
Rise Time TRISE 10 30 60 ns CLOAD = 1 nF,
VL 10%, VH 90%
150 400 800 ns CLOAD = 34 nF
VL 10%, VH 90%
EiceDRIVER™
1ED020I12-FT
Electrical ParametersElectrical Characteristics
Final Data Sheet 23 Rev 2.0, 2012-07-31
5.4.7 Desaturation Protection
5.4.8 Active Shut Down
Fall Time TFALL 10 20 40 ns CLOAD = 1 nF
VL 10%, VH 90%
100 250 500 ns CLOAD = 34 nF
VL 10%, VH 90%
1) The parameter is not subject to production test - verified by design/characterization
Table 11 Desaturation Protection
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Blanking Capacitor Charge
Current
IDESATC 450 500 550 μAVVCC2 =15 V,
VVEE2 =-8 V
VDESAT = 2 V
Blanking Capacitor
Discharge Current
IDESATD 11 15 mA VVCC2 =15 V,
VVEE2 =-8 V
VDESAT =6 V
Desaturation Reference
Level
VDESAT 8.5 9 9.5 V VVCC2 =15 V
Desaturation Sense to OUT
TLTO
TDESATOUT –250320nsVOUT =90%
CLOAD = 1 nF
Desaturation Sense to FLT
Low Delay
TDESATFLT ––2.25μsVFLT #=10%;
IFLT #=5 mA
Desaturation Low Voltage VDESATL 40 70 110 mV IN+=Low, IN-=Low,
OUT=Low
Table 12 Active Shut Down
Parameter Symbol Values Unit Note /
Test Condition
Min. Typ. Max.
Active Shut Down Voltage VACTSD
1)
1) With reference to VEE2
––2.0VIOUT = -200 mA,
VCC2 open
Table 10 Dynamic Characteristics (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
EiceDRIVER™
1ED020I12-FT
Electrical ParametersElectrical Characteristics
Final Data Sheet 24 Rev 2.0, 2012-07-31
5.4.9 Two-level Turn-off
Table 13 Two-level Turn-off
Parameter Symbol Values Unit Note /
Test Condition
Min. Typ. Max.
External reference voltage range
(Zener-Diode)
VZDIODE 7.5 VCC2-0.5 V
Reference Voltage for setting
two-level delay time
VTLSET 6.6 7 7.3 V
Current for setting two-level
delay time and external
reference voltage (Zener-Diode)
ITLSET 420 500 550 μAVTLSET = 10 V
External Capacitance Range CTLSET 0–220pF
EiceDRIVER™
1ED020I12-FT
Timing DiagramsElectrical Characteristics
Final Data Sheet 25 Rev 2.0, 2012-07-31
6Timing Diagrams
All diagrams related to the Two-level switch-off feature
Figure 6 Propagation Delay, Rise and Fall Time
Figure 7 Principle Switching Behavior
Figure 8 Typical Switching Behavior
IN+
OUT
T
PD ON
50 %
50 %
T
PD OFF
10 %
90 %
T
RISE
T
FALL
OUT
/RST
IN+
IN-
OUT
TLSET
IN+
T
PD ON AD J
T
AD J 1
V
ZDIOD E
V
ZDIODE
T
TLSET
T
PD
T
TLFALL
T
PD
T
TLSET
V
TLSET
, typ. 7 V
EiceDRIVER™
1ED020I12-FT
Timing DiagramsElectrical Characteristics
Final Data Sheet 26 Rev 2.0, 2012-07-31
Figure 9 DESAT Switch-OFF Behavior
Figure 10 Short Switch ON Pulses
V
D ESAT
typ. 9V
>T
RSTmin
OUT
DESAT
IN+
/FLT
/RST
T
PD ON
T
DESATFLT
T
DESATFLT
T
D ESATO U T
T
TLSET
T
DESATOUT
T
TLSET
OUT
TLSET
IN+
T
PD ON
T
PD O FF
T
PD ON
T
PD
T
TLSET
T
TLSET
T
TLSET
T
PD
EiceDRIVER™
1ED020I12-FT
Timing DiagramsElectrical Characteristics
Final Data Sheet 27 Rev 2.0, 2012-07-31
Figure 11 Short Switch OFF Pulses
Figure 12 Short Switch OFF Pulses, Ringing Surpression
OUT
TLSET
IN+
T
PD OF F
T
PD OF F
T
PD O N
T
PD
T
PD
T
PD O N
T
PD OFF
T
TLSET
T
TLSET
T
TL SET
OUT
TLSET
IN+
T
PD ON
T
PD OF F
T
PD
T
PD OFF
T
PD OF F
T
PD O N
T
PD
forced turn off after three
consecutive on - cycles
T
TLSET
T
TLSET
T
TLSET
T
TLSET
EiceDRIVER™
1ED020I12-FT
Timing DiagramsElectrical Characteristics
Final Data Sheet 28 Rev 2.0, 2012-07-31
Figure 13 VCC2 Ramp Up
Figure 14 VCC2 Ramp Down and VCC2 Drop
OUT
IN+
VCC2
V
UVLOH2
IDESAT
T
PD ON
T
PD OF F
RDY
Vz
OUT
TLSET
IN+
VCC2 VUVLOH2
RDY
/FLT
VUVLOL2
TTLSET
TPD ON
TPD D TPD D TPD D
EiceDRIVER™
1ED020I12-FT
Timing DiagramsElectrical Characteristics
Final Data Sheet 29 Rev 2.0, 2012-07-31
Figure 15 Typical TTLSET Time over CTLSET Capacitance
EiceDRIVER™
1ED020I12-FT
Package OutlinesElectrical Characteristics
Final Data Sheet 30 Rev 2.0, 2012-07-31
7 Package Outlines
Figure 16 PG-DSO-16-15 (Plastic (Green) Dual Small Outline Package)
0.412
0.104
0.019
0.013
0.410
0.299
0.040
MILLIMETERS
L
Ĭ
h
D
DIM
A1
A
b
c
E
E1
N
e
-
MIN
16
0.024
0.29
MAX
INCHES
16
0.050 BSC
0.402
MIN
-
0.005
0.014
0.009
0.400
0.292
MAX
0.011
SCALE
1.0
0
2mm
0
1.0
0.12
2.64
0.48
0.32
10.47
10.41
7.59
7.42
10.16
10.21
0.23
0.35
1.020.61
1.27 BSC
02
ISSUE DATE
31.07.2012
DOCUMENT NO.
Z8B00166131
EUROPEAN PROJECTION
REVISION
0.0160.010
0.410.25
EiceDRIVER™
1ED020I12-FT
Application NotesReference Layout for Thermal Data
Final Data Sheet 31 Rev 2.0, 2012-07-31
8 Application Notes
8.1 Reference Layout for Thermal Data
The PCB layout shown in Figure 17 represents the reference layout used for the thermal characterisation. Pins 9
and 16 (GND1) and pins 1 and 8 (VEE2) require ground plane connections for achiving maximum power
dissipation. The 1ED020I12-FT is conceived to dissipate most of the heat generated through this pins.
Figure 17 Reference Layout for Thermal Data (Copper thickness 102 μm)
8.2 Printed Circuit Board Guidelines
Following factors should be taken into account for an optimum PCB layout.
Sufficient spacing should be kept between high voltage isolated side and low voltage side circuits.
The same minimum distance between two adjacent high-side isolated parts of the PCB should be maintained
to increase the effective isolation and reduce parasitic coupling.
In order to ensure low supply ripple and clean switching signals, bypass capacitor trace lengths should be kept
as short as possible.
Lowest trace length for VEE2 to GND2 decoupling could be achieved with capacitor closed to pins 1 and 3.
Bottom Layer
Top Layer
Published by Infineon Technologies AG
www.infineon.com