1/10
RBO40-40G/T
®
REVERSED BATTERY AND
OVERVOLTAGE PROTECTION
September 2005 - Ed:6
Application Specific Discretes
A.S.D.™
D2PAK
RBO40-40G
TO220-AB
RBO40-40T
1
2
3
FUNCTIONAL DIAGRAM
PROTECTION AGAINST “LOAD DUMP” PULSE
40A DIODE TO GUARD AGAINST BATTERY
REVERSAL
MONOLITHIC STRUCTURE FOR GREATER
RELIABILITY
BREAKDOWN VOLTAGE : 24 V min.
CLAMPING VOLTAGE : ± 40 V max.
COMPLIANT WITH ISO / DTR 7637
FEATURES
Designed to protect against battery reversal and
load dump overvoltages in automotive applica-
tions, this monolithic component offers multiple
functions in the same package :
D1 : reversed battery protection
T1 : clamping against negative overvoltages
T2 : Transil function against “load dump” effect.
DESCRIPTION
TM : TRANSIL and ASD are trademarks of STMicroelectronics.
RBO40-40G / RBO40-40T
2/10
Symbol Parameter Value Unit
IFSM Non repetitive surge peak forward current
(Diode D1)
tp=10ms 120 A
IFDC forward current (Diode D1) Tc=75°C 40 A
VPP Peak load dump voltage (see note 1and 2)
5 pulses (1 minute between each pulse)
80 V
PPP Peak pulse power between Input and Output
(Transil T1) Tj initial = 25°C
10/1000 µs 1500 W
Tstg/Tj Storage and operating junction temperature range - 40 to + 150 °C
TLMaximum lead temperature for soldering during 10 s
at 4.5mm from case for TO220-AB
260 °C
Note 1 : for a surge greater than the maximum value, the device will fail in short-circuit.
Note 2 : see Load Dump curves.
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
Rth (j-c) Junction to case RBO40-40G
RBO40-40T
1.0
1.0
°C/W
Rth (j-a) Junction to ambient RBO40-40T 60 °C/W
THERMAL RESISTANCE
D1
T1 2
31
VCL31 VRM31
VF13 V13
I13
IRM31
IR31
Ipp31
VBR31
T2
IF
Ipp32
VRM32 VBR32 VCL32
3
2
1
V32
I32
IR32
IRM32
Ex :VF13 . between Pin 1 and Pin 3 VBR 32 . between Pin 3 and Pin 2
RBO40-40G / RBO40-40T
3/10
Symbol Test Conditions Value Unit
Min. Typ. Max.
VF13 IF=40A 1.9 V
VF13 IF= 20A 1.45 V
VF13 IF=1A 1V
VF13 IF= 100 mA 0.95 V
C13 F = 1MHz VR=0V 3000 pF
ELECTRICAL CHARACTERISTICS : DIODE D1 (- 40°C < Tamb < + 85°C)
Symbol Parameter
VRM31/VRM32 Stand-off voltage Transil T1 / Transil T2.
VBR31/VBR32 Breakdown voltage Transil T1 / Transil T2.
IR31/IR32 Leakage current Transil T1 / Transil T2.
VCL31/VCL32 Clamping voltage Transil T1 / Transil T2.
VF13 Forward voltage drop Diode D1.
IPP Peak pulse current.
αTTemperature coefficient of VBR.
C31/C32 Capacitance Transil T1 / Transil T2.
C13 Capacitance of Diode D1
Symbol Test Conditions Value Unit
Min. Typ. Max.
VBR 31 IR=1mA 22 35 V
VBR 31 IR= 1 mA, Tamb = 25°C 24 32 V
IRM 31 VRM =20V 100 µA
IRM 31 VRM =20V,T
amb = 25°C 10 µA
VCL 31 IPP = 37.5A, Tj initial = 25°C 10/1000µs 40 V
αTTemperature coefficient of VBR 910
-4/°C
C31 F = 1MHz VR=0V 3000 pF
ELECTRICAL CHARACTERISTICS : TRANSIL T1 (- 40°C < Tamb < + 85°C)
Symbol Test Conditions Value Unit
Min. Typ. Max.
VBR 32 IR=1mA 22 35 V
VBR 32 IR= 1 mA, Tamb = 25°C 24 32 V
IRM 32 VRM =20V 100 µA
IRM 32 VRM =20V,T
amb = 25°C 10 µA
VCL 32 IPP = 20 A (note 1) 40 V
αTTemperature coefficient of VBR 910
-4/°C
C32 F = 1MHz VR=0V 8000 pF
Note 1 : One pulse, see pulse definition in load dump test generator circuit.
ELECTRICAL CHARACTERISTICS : TRANSIL T2 (- 40°C < Tamb < + 85°C)
RBO40-40G / RBO40-40T
4/10
PRODUCT DESCRIPTION
1
2
3
The RBO has 3 functions integrated on the same
chip.
D1 : “Diode function” in order to protect against
reversed battery operation.
T2 : “Transil function” in order to protect against
positive surge generated by electric systems
(ignition, relay. ...).
T1 : Protection for motor drive application
(See below).
BASIC APPLICATION
* The monolithic multi-function protection
(RBO) has been developed to protect sen-
sitive semiconductors in car electronic
modules against both overvoltage and
battery reverse.
* In addition, the RBO circuit prevents
overvoltages generated by the module from
affecting the car supply network.
MOTOR DRIVER APPLICATION
D1
T1
T2
BATTERY
RBO
DEVICE MOTOR CONTROL
MOTOR
Filter
In this application, one half of the motor drive circuit is supplied through the “RBO” and is thus protected
as per its basic function application.
The second part is connected directly to the “car supply network” and is protected as follows :
- For positive surges : T2 (clamping phase) and D1 in forward-biased.
- For negative surges : T1 (clamping phase) and T2 in forward-biased.
RBO40-40G / RBO40-40T
5/10
- Input (1) : Pin 1
- Output (3) : Pin 3
- Gnd (2) : Connected to base Tab
Marking : Logo, date code, RBO40-40G
PINOUT configuration in D2PAK :
D1
T1
T2
TAB
D1
T1
T2
(TAB)
- Input (1) : Pin 1
- Output (3) : Pin 3
- GND (2) : Connected to base Tab
Marking : Logo, date code, RBO40-40T
PINOUT configuration in TO220AB :
RBO40-40G / RBO40-40T
6/10
LOAD DUMP TEST GENERATOR CIRCUIT (SCHAFFNER NSG 506 C). Issued from ISO / DTR 7637.
U(V) t
0
Vbat
90%
Vs
10%
t
tr
offset
10% / 13.5V
Open circuit (voltage curve)
(pulse test n°5)
Corresponding current wave with D.U.T.
Ipp
Ipp/2
0
I
tp = 40ms t
Impulse N°5
Vs (V) 66.5
Vbat (V) 13.5
Ri ()2
t (ms) 200 (*)
tr (ms) <10
Number 5
60s between each pulse
(*) Generator setting
1) With open circuit (generator is in open circuit):
- calibrate Vs
2) With short circuit (generator is in short circuit):
- calibrate Ri (Ri = 2)
3) With D.U.T.
- calibrate tp (tp = 40ms @ Ipp/2)
typ. Vpp
VBat
20ms/div.
10.0V/div.
Typical Voltage curve (open circuit)
typ. VCL
Ipp
20ms/div.
5.0V/div.
20ms/div.
3A/div.
Typical Voltage and Current curve with D.U.T.
CALIBRATION METHOD FOR SCHAFFNER NSG 506 C
RBO40-40G / RBO40-40T
7/10
12 5 10 20 50 100
0.1
0.2
0.5
1.0
2.0
5.0
10.0
Transil T1
Transil T2
t
p
(ms)
Ppp(kW)
Fig. 1 : Peak pulse power versus exponential
pulse duration (Tj initial = 85°C).
V (V)CL
12 5 10 20 50 100 200 500
25
30
35
40
45
50
55
tp=1ms
tp = 20µs
Ipp(A)
Fig. 2-2 : Clamping voltage versus peak pulse
current (Tj initial = 85°C).
Exponential waveform tp = 1 ms and tp = 20 µs
(TRANSIL T1).
0.1 0.2 0.5 1 2 5 10 20 50 100
30.0
32.5
35.0
37.5
40.0
42.5
45.0
tp = 40ms
tp = 1ms
Ipp(A)
V (V)CL
Fig. 2-1 : Clamping voltage versus peak pulse
current (Tj initial = 85°C).
Exponential waveform tp = 40 ms and tp=1ms
(TRANSIL T2).
025 50 75 100 125 150 175
0.00
0.20
0.40
0.60
0.80
1.00
1.20
Tj initial (°C)
Ppp[Tj]/Ppp[Tj initial=85°C]
Fig. 3 : Relative variation of peak pulse power
versus junction temperature.
RBO40-40G / RBO40-40T
8/10
1E-3 1E-2 1E-1 1E+0 1E+1
0.1
0.2
0.5
1.0
Zth(j-c)/Rth(j-c)
tp (s)
Fig. 4 : Relative variation of thermal impedance
junction to case versus pulse duration.
0.1 0.2 0.5 12 510 20 50 100
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
VFM(V)
Tj = 25°°C
Tj = 150°°C
IFM(A)
Fig. 5-1 : Peak forward voltage drop versus peak
forward current (typical values) - (TRANSIL T2).
0.1 0.2 0.5 2 10 20 50 100
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VFM(V)
0.1 0.2 0.5 1 5 20 50 100
0.5
1.0
1.5
2.0
2.5
3.0
3.5
Tj = 25°°C
Tj = 150°°C
IFM(A)
Fig. 5-2 : Peak forward voltage drop versus peak
forward current (typical values) - (DIODE D1).
Fig. 6 : Relative variation of leakage current
versus junction temperature.
RBO 40 40 G-
Reverse Battery &
Overvoltage Protection
Package:
G = D PAK
T = TO-220AB
2
I = 40A
F(AV)
V = 40V
CL
ORDERING INFORMATION
RBO40-40G / RBO40-40T
9/10
PACKAGE MECHANICAL DATA
D2PAK Plastic
A
C2
D
R
2.0 MIN.
FLAT ZONE
A2
V2
C
A1
G
L
L3
L2
B
B2
E
REF.
DIMENSIONS
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 4.30 4.60 0.169 0.181
A1 2.49 2.69 0.098 0.106
A2 0.03 0.23 0.001 0.009
B 0.70 0.93 0.027 0.037
B2 1.40 0.055
C 0.45 0.60 0.017 0.024
C2 1.21 1.36 0.047 0.054
D 8.95 9.35 0.352 0.368
E 10.00 10.28 0.393 0.405
G 4.88 5.28 0.192 0.208
L 15.00 15.85 0.590 0.624
L2 1.27 1.40 0.050 0.055
L3 1.40 1.75 0.055 0.069
R 0.40 0.016
V2
FOOT-PRINT (in millimeters)
D2PAK
8.90
3.70
1.30
5.08
16.90
10.30
RBO40-40G / RBO40-40T
10/10
PACKAGE MECHANICAL DATA
TO-220AB Plastic
M
B
l4
C
b2
a2
l2
c2
l3
b1
a1
A
F
L
I
e
c1
REF.
DIMENSIONS
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 15.20 15.90 0.598 0.625
a1 3.75 0.147
a2 13.00 14.00 0.511 0.551
B 10.00 10.40 0.393 0.409
b1 0.61 0.88 0.024 0.034
b2 1.23 1.32 0.048 0.051
C 4.40 4.60 0.173 0.181
c1 0.49 0.70 0.019 0.027
c2 2.40 2.72 0.094 0.107
e 2.40 2.70 0.094 0.106
F 6.20 6.60 0.244 0.259
I 3.75 3.85 0.147 0.151
I4 15.80 16.40 16.80 0.622 0.646 0.661
L 2.65 2.95 0.104 0.116
l2 1.14 1.70 0.044 0.066
l3 1.14 1.70 0.044 0.066
M 2.60 0.102
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not au-
thorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners.
© 2005 STMicroelectronics - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany -
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain -
Sweden - Switzerland - United Kingdom - United States
www.st.com