80960CF-40, -33, -25
32-Bit High-Performance Superscalar
Embedded Microprocessor
Datasheet
Product Features
Socket and Object Code Compatible with 80960CA
Two Instructions/Clock Sustained Execution
Four 71 Mbytes/s DMA Channels with Data Chaining
Demultiplexed 32-Bit Burst Bu s with Pipelining
32-Bit Parallel Archi tectu re
Two Instructions/clock Execution
Load/Store Architect ure
Sixteen 32-Bit Global Registers
Sixteen 32-Bit Local Registers
Manipulates 64-Bit Bit Fields
11 Addressing Modes
Full Parallel Fault Model
Supervisor Protection Model
Fast Procedure Call/Return Model
Full Procedure Call in 4 C lo c ks
On-Chip Register Cache
Caches Registers on Call/Ret
Minimum of 6 Fram es Pr ovided
Up to 15 Programmable Frames
On-Chip Instruction C ache
4 Kbyte Two-Way Set Associative
128-Bit Path to Instruction Sequencer
Cache-Lock Modes
Cache-Off Mode
High Bandwidth On-Chip Data RAM
1 Kbyte On-Chip Data RAM
Sust ain s 128 bits per Clock Acce ss
Selectable Big or Little Endian Byte
Ordering
Four On-Chip DMA Channels
71 M bytes/ s Fly-b y Transfers
40 Mbytes/s Two-Cycle Transfers
Data Chaining
Data Packing/Unpacking
Programmable Prio rity Method
32-Bit Demultiplexed Burs t Bus
128-Bit Internal Data Paths to and from
Registers
Burst Bus for DRAM Interfacing
Address Pipelining Option
Fully Programmable Wait States
Supports 8-, 16- or 32-Bit Bus Widths
Supports Unaligned Accesses
Supervisor Protection Pin
High-Speed Interrupt Controller
Up to 248 External Interrupts
32 Fully Progra mmable Priorities
Multi-mode 8-Bit Interrupt Port
Four Internal DMA Interrupts
Separate, Non-maskable Interrupt Pin
Context Switch in 625 ns Typical
On-Chip Data Cache
1 Kbyte Direct-Mapped, Write Through
128 bits per Clock Access on Cache Hit
Order Number: 272886-002
September 2002
2 Datasheet
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THI S DOCUMENT. EXCEPT AS PROVIDED IN
INTEL’ S TERMS AND CONDITI ONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO L IABILITY WHATSOEVER, AND INTEL DISCLAI MS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY P ATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to the m.
The 80960CF-40, -33, -25 32-Bit High-Performance Superscalar Embedded Microprocessor may contain design defects or errors known as errata
which may cause the product to deviate from published specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calli ng
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.
Copyright © Intel Corporation, 2002
AlertVIEW, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Connect, CT Media, Dialogic, DM3, EtherExpress,
ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share,
Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, LANDesk, LanRover, MCS, MMX, MMX
logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your
Command, RemoteExpress, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside,
TokenExpress, Trillium, VoiceBrick, Vtune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.
*Other names an d bran ds may be claimed as the proper ty of others.
Datasheet 3
Contents
Contents
1.0 Purpose ..........................................................................................................................................7
2.0 809 60CF Pro c ess or Over vie w ......................................................................................................7
2.1 The 80960C-Series Core......................................................................................................8
2.2 Pipelined, Burst Bus .............................................................................................................9
2.3 Instruction Set Summary ......................................................................................................9
2.4 Flexible DMA Controller........................................................................................................9
2.5 Priority Interrupt Controller....................................................................................................9
3.0 Package Information ...................................................................................................................10
3.1 Package Introduction..........................................................................................................10
3.2 Pin Descriptions..................................................................................................................11
3.3 80960CF Mechan ic al Data ................ ...... ............................................. .......................... ....16
3.3.1 80960CF PGA Pinou t ........... ...... ....... ...... ...... ....... ...... ...........................................16
3.3.2 80960CF PQFP Pinout (80960CF-33 and -25 Only).............................................20
3.4 Package Thermal Specifications ........................................................................................22
3.5 Stepping Register Information ............................................................................................24
3.6 Sources for Accessories.....................................................................................................25
4.0 Elect rica l Specifications .............................................................................................................26
4.1 Absolute Maximum Ratings................................................................................................26
4.2 Operating Conditions..........................................................................................................26
4.3 Recommended Connections ..............................................................................................27
4.4 D.C. Specificat ion s ............... ...... ....... ...... ....... ...... .......................... ....................................27
4.5 A.C. Specifications..............................................................................................................29
4.5.1 A.C. Test Conditions..............................................................................................35
4.5.2 A.C. Timing Waveforms.........................................................................................36
4.5.3 Derating Curves.....................................................................................................40
5.0 Reset, Backoff and Hold Acknowledge.....................................................................................41
6.0 Bus Waveforms ...........................................................................................................................43
Figures
1 80960CF Processor-Block Diagram.............................................................................................7
2 80960CF PGA PinoutView from Top (Pins Facing Down)......................................................16
3 80960CF PGA PinoutView from Bottom (Pins Facing Up) .....................................................17
4 80960CF PQFP PinoutTop View (80960CF-33 and -25 Only) ...............................................22
5 Measuring 80960CF PGA and PQFP Case Temperature..........................................................23
6 Register g0 .................................................................................................................................25
7 A.C. Test Load................. .......................... ......................... .......................... ..............................35
8 Input and Output Clocks Waveform............................................................................................36
9 CLKIN Waveform........................................................................................................................36
10 Output Delay and Float Waveform .............................................................................................37
11 Input Setup and Hold Waveform.................................................................................................37
12 NMI, XINT7:0 Input Setup and Hold Waveform..........................................................................38
13 Hold Acknowledge Timings ........................................................................................................38
Contents
4 Datasheet
14 Bus Backoff (BOFF) Timings......................................................................................................39
15 Relative Timings Waveforms......................................................................................................39
16 Output Delay or Hold vs. Load Capacitance ..............................................................................40
17 Rise and Fall Time Derating at Highest Operating Temperature and Minimum VCC ................40
18 ICC vs. Frequency and Temperature80960CF-33 and -25......................................................40
19 ICC vs. Frequency and Temperature80960CF-40...................................................................41
20 Cold Reset Waveform ................................................................................................................43
21 Warm Reset Waveform ..............................................................................................................44
22 Entering the ONCE State ...........................................................................................................45
23 Clock Synchronization in the 2-x Clock Mode ............................................................................46
24 Clock Synchronization in the 1-x Clock Mode ............................................................................46
25 Non-Burst, Non-Pipelined Requests Without Wait States..........................................................47
26 Non-Burst, Non-Pipelined Read Request With Wait States .......................................................48
27 Non-Burst, Non-Pipelined Write Request With Wait States .......................................................49
28 Burst, Non-Pipelined Read Request Without Wait States, 32-Bit Bus .......................................50
29 Burst, Non-Pipelined Read Request With Wait States, 32-Bit Bus ............................................51
30 Burst, Non-Pipelined Write Request Without Wait States, 32-Bit Bus........................................52
31 Burst, Non-Pipelined Write Request With Wait States, 32-Bit Bus.............................................53
32 Burst, Non-Pipelined Read Request With Wait States, 16-Bit Bus ............................................54
33 Burst, Non-Pipelined Read Request With Wait States, 8-Bit Bus ..............................................55
34 Non-Burst, Pipelined Read Request Without Wait States, 32-Bit Bus .......................................56
35 Non-Burst, Pipelined Read Request With Wait States, 32-Bit Bus ............................................57
36 Burst, Pipelined Read Request Without Wait States, 32-Bit Bus ...............................................58
37 Burst, Pipelined Read Request With Wait States, 32-Bit Bus ....................................................59
38 Burst, Pipelined Read Request With Wait States, 16-Bit Bus ....................................................60
39 Burst, Pipelined Read Request With Wait States, 8-Bit Bus......................................................61
40 Using External READY...............................................................................................................62
41 Terminating a Burst with BTERM ...............................................................................................63
42 BOFF Functional Timing.............................................................................................................64
43 HOLD Functional Timing ............................................................................................................65
44 DREQ and DACK Functional Timi ng..... ....... ...... ....... ......................... .......................... ..............66
45 EOP Functional Timing...............................................................................................................66
46 Terminal Count Functional Timing..............................................................................................67
47 FAIL Functional Timing...............................................................................................................67
48 A Summary of Aligned and Unaligned Transfers for Little Endian Regions ...............................68
49 A Summary of Aligned and Unaligned Transfers for Little Endian Regions ...............................69
50 Idle Bus Operation......................................................................................................................70
Tables
1 80960CF Instruct ion Set........... ....... ...... ....... ...... .......................... .......................... ....................10
2 Symbol Legend................... ...... .......................... .......................... .......................... ....................11
3 80960CF Pi n Descr iptionExternal Bus Signal s...... ...... ...... ....... ...... ....... ...... ....... ....................12
4 80960CF Pin DescriptionProcessor Control Signals ..............................................................14
5 80960CF Pi n Descr iptionDMA and Interrupt Unit Control Signals..........................................15
6 80960CF PG A Pi nou tIn Si gna l Order ....... ...... ....... ...... ...... ....... ...... ....... ...... ....... ....................18
7 80960CF PG A Pi nou tIn Pi n Order............................... .......................... .......................... .......19
8 80960CF PQ FP PinoutIn Signal Order (80960CF-33 and -25 Only)......................................20
9 80960CF PQ FP PinoutIn Pin Order (80960CF-33 and -25 Only)...........................................21
10 Maximum TA at Various Airflows in oC (PGA Package Only).....................................................23
11 80960CF PGA Pac kage Therma l Charac teri sti cs ........... ...... ....... ...... ....... .................................24
Datasheet 5
Contents
12 80960CF PQFP Package Thermal Characteristics....................................................................24
13 Die Stepping Cross Reference...................................................................................................25
14 Absolute Maximum Ratings........................................................................................................26
15 Operating Conditions..................................................................................................................26
16 D.C. Specifications .....................................................................................................................28
17 80960CF AC Characteristics (40 MHz) ......................................................................................29
18 80960CF AC Characteristics (33 MHz) ......................................................................................31
19 80960CF AC Characteristics (25 MHz) ......................................................................................33
20 Reset Conditions ........................................................................................................................42
21 Hold Acknowledge and Backoff Conditions................................................................................42
Revision History
Date Revision Description
September 2002 002 References to the -16 MHz product have been removed from the datasheet.
June 1996 001 Initial release of the datasheet.
Contents
6 Datasheet
This page intentionally left blank.
80960-40, -33, -25
Datasheet 7
1.0 Purpose
This document provides electrical characteristics of Intels i960® CF embedded microprocessor.
For functional d e scr iptions consult the i960® CA/CF Microprocessor Users Manual (order
number 270710). To obtain data sheet updates and errata, visit the Intel World Wide Web site at
http://www.intel.com or contact your Intel field sales representative.
2.0 80960CF Processor Overview
Intels 80960CF is the second processor in the series of superscalar i960 microprocessors that also
includes t he 80960 CA and the 8096 0HA/ HD/HT. Upgrading fro m the 80960C A to the 8096 0CF is
straightforward because the two processors are socket- and object code-compatible.
As shown in Figure 1, the 80960CFs instruction cache is 4 Kbytes; data cache is 1 Kbyte
(80960CA instruction cache is 1 Kbyte; it does not have a data cache.) This extra cache on the CF
adds a significant performance boost over the CA.
Figure 1. 80960CF Processor-Block Diagram
Execution
Unit
Programmable
Bus Controller
Bus Request
Queues
Six-Port
Register File
64-Bit
SRC1 Bus
64-Bit
SRC2 Bus
64-Bit
DST Bus
32-Bit
Base Bus
128-Bit
Load Bus
128-Bit
Store Bus
Instruction
Instruction Cache
(4 Kbyte, Two-Way
Set Associative)
128-BIT CACHE BUS
Prefetch Queue
Interrupt Controller
Control
Address
Data
Memory-side
Machine Bus
Register-side
Machine Bu s
Parallel
Instruction
Scheduler
Memory Region
Configuration
Multiply/Divide
Unit
Four-Channel
DMA Controller
Interrupt
Port
1 Kbyte
5 to 15 Sets
Register Cache
Data RAM
Address
Gene ra tion Uni t
F_CF001A
DMA Port
1 Kbyte
Direct Mapped
Data Cache
80960-40, -33, -25
8 Datasheet
The 80960CF, object code compatible with the 32-bit 80960 core Architecture, employs Special
Function Reg ister extensions to control on-chip peripherals and instruction set extensi ons to shift
64-bit operands and configure on-chip hardware. Multiple 128-bit internal buses, on-chip
instruction caching and a sophisticated instruction scheduler allow the processor to sustain
execution of two instructions per clock with peak execution of three instructions per clock.
A 32-bit demultiplexed and pipelined burst bus provides a 132 Mbyte/s bandwidth to a systems
high-speed external memory subsystem. Also, the 80960CFs on-chip caching of instructions,
procedure context and critical program data substantially decouples system performance from the
wait states associated with accesses to the systems slo w er, cost sensitive, main memory
subsystem.
The 80960CF bus controller integrates full wait state and bus width control for highest system
performance with minimal system design comp lexity. Unaligned access and Big End ian byte order
support reduces the cost o f porti ng existing applications to the 80960CF.
The processor also integrates four complete data-chaining DMA channels and a high-speed
interrupt controller on-chip. DMA channels p er form single-cy cle or two - cycle transfers, data
packing and unpacking and data chaining. Block transfers in addition to source o r destination
synchronized transfers are supported.
The interrupt controller pr ovides full programmability of 248 interrup t so urces in to 32 priority
levels with a typical in ter rup t task switch (latency) time of 625 ns.
2.1 The 80960C-Series Core
The C-Series core is a very high perfo rmance microarchitectural imp lementation of the 8 0960 Core
Architecture. This core may sustain execution of two instructions per clock (80 MIPS at 40 MHz).
To achieve this level of performance, Intel has incorporated state-of-the-art silicon technology and
innovative microarchitectural constructs into the C-Series core implementation. Factors that
contribute to the cores performance include:
Parallel instruction decoding allows issuance of up to three instructions per clock.
Single-clock execution of most instructions
Parallel instruction decode allows sustained, simultaneous execution of two single-clock
instructions every clock cycle.
Efficient instruction pipeline minimizes pipeline break losses.
Register and resource scoreboarding allow simultaneous multi-clock instruction execution.
Branch look-ahead and prediction allows many branches to execute with no pipeline break.
Local Register Cache integrated on-chip caches Call/R etu rn context.
Two-way set associative, 4 Kbyte integrated instruction cache
1 Kbyte integrated Data RAM sustains a four-word (128-bit) access every clock cycle.
Direct mapped, 1 Kbyte data cache, write through, write allocate
80960-40, -33, -25
Datasheet 9
2.2 Pipelined, Burst Bus
A 32-bit high performance bus controller interfaces the 80960CF to external memory and
peripherals. The Bus Control Unit features a maximum transfer rate of 160 Mbytes per second (at
40 MHz). Internally programmable wait states an d 16 separately conf ig urab le memo r y regi ons
allow the processor to interface with a variety of memory subsystems with a minimum of system
complexity and a maximum of performance. The Bus Control Units main features include:
Demultiplexed, burst bus to exploi t most efficient DRAM access modes
Address pipelining to reduce memory cost while maintaining performance
32-, 16- and 8-bit modes for I/O interfacing ease
Full internal wait state generation to reduce system cost
Little and Big Endian support to ease ap pli cation development
Unaligned access support for code portability
Three-deep request queue to decouple the bus from the core
2.3 Instruction Set Summary
Table 1 summarizes the 80960CF instruction set by logical groupings. For a complete description
of the instruction s et, s ee th e i960® CA/CF Micro pr ocessor Users Manual (order num ber 270710 ).
2.4 Flexible DMA Controller
A four-channel DMA controller provides high speed DMA control for data transfers involving
peripherals and memory. The DMA provides advanced features such as data chaining, byte
assembly and di sassem bly and a high p erfo rmance fly-by mode capable of transfer speeds of u p to
71 Mbytes per second at 40 MHz. The DMA controller features a performance and flexibility
which is only possible by in tegratin g the DMA controller and the 80960CF core.
2.5 Priority Interr upt Contro ll er
A progr ammabl e-p riority interru pt co nt roll er manages u p to 24 8 external sources throu gh t he 8 -bit
external interrupt port. The Interrupt Unit also handles the four internal so urces from the DMA
controller and a single non-maskable interrupt input. The 8-bit interrupt port may also be
configured to provide individual inter r upt sources that are level or edge triggered.
80960CF interrupts are prioritized and signaled within 225 ns of the request. When the interrupt is
of higher priority than the pro cessor priority, the context switch to the interrupt routine typically
completes in another 400 ns. The interrupt unit provides the mechanis m for the lo w latency and
high throughput interrupt s ervice which is essential for embedded applications.
Table 1 presents the 80960CF Instr uction Set.
80960-40, -33, -25
10 Datasheet
3.0 Package Information
3.1 Package Introduction
This section desc ribes the pi ns , pinou ts and t her mal charact eris tics for the 80 960 CF in th e 168- pin
Ceramic Pin Grid Array (PGA) package; the 80960CF-33 and -25 devices are also available in the
196-pin Plastic Quad Flat Package (PQFP). For complete package specifications and information,
see the Intel Packaging Databook, available in individual chapters, at http://www.intel.com.
Table 1. 80960CF Instruction Set
Data Movement Arithmetic Logical Bit / Bit Field / Byte
Load
Store
Move
Load Address
Add
Subtract
Multiply
Divide
Remainder
Modulo
Shift
*Extended Shift
Extended Multiply
Extended Divide
Add with Carry
Subtract with Carry
Rotate
And
Not And
And Not
Or
Exclusive Or
Not Or
Or Not
Nor
Exclusive Nor
Not
Nand
Set Bit
Clear Bit
Not Bit
Alter Bit
Scan For Bit
Span Over Bit
Extract
Modify
Scan Byte for Equal
Comparison Branch Call/Return Fault
Compare
Conditional Compare
Compare and Increment
Compare and Decrement
Test Condition Code
Check Bit
Unconditional Branch
Conditional Branch
Compare and Branch
Call
Call Extended
Call System
Return
Branch and Link
Conditional Fault
Synchronize Faults
Debug Processor Mgmt Atomic
Modify Trace Controls
Mark
Force Mark
Flush Local Registers
Modify Arithmetic
Controls
Modify Process Controls
*System Control
*DMA Control
Atomic Add
Atomic Modify
NOTE: Instructions marked by (*) are 80960Cx extensions to the 80960 instruction set.
80960-40, -33, -25
Datasheet 11
3.2 Pin Descriptions
This section defines the 80960CF pins. Table 2 presen ts the legend for interpreting the pin
descriptions in Tables 3 through 5. Table 3 presents the external bus signals. Table 4 presents
processor control signals. Table 5 presents the DMA and Interrupt Unit control signals.
Note: All pins float while the processor is in the ONCE mode.
Table 2. Symbol Legend
Symbol Description
IInput only pin
OOutput only pin
I/O Pin may be either an input or output
Pins must be connected as described
S(...)
Synchronous. Inputs must meet setup and hold times relative to PCLK2:1 for proper operation.
Outputs are synchronous to PCLK2:1.
S(E) Edge sensitive input
S(L) Level sensitive input
A(...) Asynchronous. Inputs may be asynchronous to PCLK2:1.
A(E)Edge sensitive input
A(L)Level sensitive input
H(...)
While the bus is in the Hold Acknowledge or Bus Backoff state, the pin:
H(1) is driven to VCC
H(0)is driven to VSS
H(Z) floats
H(Q)continues to be a valid input
R(...)
While the processor s RESET pin is low, the pin:
R(1) is driven to VCC
R(0)is driven to VSS
R(Z) floats
R(Q)continues to be a valid output
80960-40, -33, -25
12 Datasheet
Table 3. 80960CF Pin DescriptionExternal Bus Signals (Sheet 1 of 2)
Name Type Description
A31:2
O
S
H(Z)
R(Z)
ADDRESS BUS carries the physical address upper 30 bit s . A31 is the most significant
bit; A2 is least significant. During a bus access, A31:2 identify all external addresses to
word (4-byte) boundaries. Byte enable signals indicate the selected byte in each word.
During burst accesses, A3:2 increment to indicate success ive data cycles.
D31:0
I/O
S(L)
H(Z)
R(Z)
DATA BUS carries 32-, 16- or 8-bit data quantities depending on bus width
configuration. The least significant bit is carried on D0 and the most significant on D31.
When the bus is configured for 8-bit data, the lower 8 data lines, D7:0 are used. For 16-
bit data bus widths, D15:0 are used. For 32-bit bus widths the full data bus is used.
BE3:0
O
S
H(Z)
R(1)
BYTE ENABLES select which of the four bytes addressed by A31:2 are active during
an access to a memory region configured for a 32-bit data-bus width. BE3 applies to
D31:24; BE2 applies to D23:16; BE1 applies to D15:8 BE0 applies to D7:0.
32-bit bus:
BE3 Byte Enable 3 enable D31:24
BE2 Byte Enable 2 enable D23:16
BE1 Byte Enable 1 enable D15:8
BE0 Byte Enable 0 enable D7:0
For accesses to a memory region configured for a 16-bit data-bus width, the processor
uses the BE3, BE1 and BE0 pins as BHE, A1 and BLE respectively.
16-bit bus:
BE3 Byte High Enable (BHE) enable D15:8
BE2 Not used (driven high or low)
BE1 Address Bit 1 (A1)
BE0 Byte Low Enable (BLE) enable D7:0
For accesses to a memory region configured for an 8-bit data-bus width, the processor
uses the BE1 and BE0 pins as A1 and A0 respectively.
8-bit bus:BE3 Not used (driven high or low)
BE2 Not used (driven high or low)
BE1 Address Bit 1 (A1)
BE0 Address Bit 0 (A0)
W/R
O
S
H(Z)
R(0)
WRITE/READ is asserted for read requests and deasserted for write requests.
The W/R signal changes in the same clock cycle as ADS. It remains valid for the entire
access in non-pipelined regions. In pipelined regions, W/R is not ensured to be valid in
the last cycle of a read access.
ADS
O
S
H(Z)
R(1)
ADDRESS STROBE indicates a valid address and the start of a new bus access. ADS
is asserted for the first clock of a bus access.
READY
I
S(L)
H(Z)
R(Z)
READY is an input which signals the termination of a data transfer. READY is used to
indicate that read data on the bus is valid or that a write-data transfer has completed.
The READY signal works in conjunction with the internally programmed wait-state
generator. When READY is enabled in a region, the pin is sampled after the
programmed number of wait-states has expired. When the READY pin is deasserted,
wait states continue to be inserted until READY becomes asser ted. This is true for the
NRAD, NRDD, NWAD and NWDD wait states. The NXDA wait st ates cannot be extended.
BTERM
I
S(L)
H(Z)
R(Z)
BURST TERMINATE is an input which breaks up a burst access and causes another
address cycle to occur. The BTERM signal works in conjunction with the internally
programmed wait-state generator. When READY and BTERM are enabled in a region,
the BTERM pin is sampled after the programmed number of wait states has expired.
When BTERM is asserted, a new ADS signal is generated and the access is completed.
The READY input is ignored when BTERM is asserted. BTERM must be externally
synchronized to satisfy BTERM setup and hold times.
WAIT
O
S
H(Z)
R(1)
WAIT indicates internal wait state generator status. WAIT is asserted when wait states
are being caused by the internal wait state generator and not by the READY or BTERM
inputs. WAIT may be used to derive a write-data strobe. WAIT may also be thought of
as a READY output that the processor provides when it is inserting wait states.
80960-40, -33, -25
Datasheet 13
BLAST
O
S
H(Z)
R(0)
BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the last
data transfer of burst and non-burst accesses after the wait state counter reaches zero.
BLAST remains asserted until the clock following the last cycle of the last data transfer
of a bus access. When the READY or BTERM input is used to extend wait states, the
BLAST signal remains asserted until READY or BTERM terminates the access.
DT/R
O
S
H(Z)
R(0)
DATA TRANSMIT/RECEIV E indicates direction for data transceivers. DT/R is used in
conjunction with DEN to provide control for data transceivers attached to the external
bus. When DT/R is asserted, the signal indicates that the processor receives data.
Conversely , when deasserted, the processor sends data. DT/R changes only while DEN
is high.
DEN
O
S
H(Z)
R(1)
DATA ENABLE indicates data cycles in a bus request. DEN is asserted at the start of
the bus request first data cycle and is deasserted at the end of the last data cycle. DEN
is used in conjunction with DT/R to provide control for data transceivers attached to the
external bus. DEN remains asserted for sequential reads from pipelined memory
regions. DEN is deasserted when DT/R changes.
LOCK
O
S
H(Z)
R(1)
BUS LOCK indicates that an atomic read-modify-write operation is in progress. LOCK
may be used to prevent external agents from accessing memory which is currently
involved in an atomic operation. LOCK is asserted in the first clock of an atomic
operation and deasserted in the clock cycle following the last bus access for the atomic
operation. To allow the most flexibility for memor y system enforcement of locked
accesses, the processor acknow ledges a bus hold request when LOCK is asserted.
The processor performs DMA transfers while LOCK is active.
HOLD
I
S(L)
H(Z)
R(Z)
HOLD REQUEST signals that an external agent requests access to the external bus.
The processor asserts HOLDA after completing the current bus request. HOLD, HOLDA
and BREQ are used together to arbitrate access to the processors external bus by
external bus agents.
BOFF
I
S(L)
H(Z)
R(Z)
BUS BACKOFF, when asserted, suspends the current access and causes the bus pins
to float. When BOFF is deasserted, the ADS signal is asserted on the next clock cycle
and the access is resumed.
HOLDA
O
S
H(1)
R(Q)
HOLD ACKNOWLEDGE indicates to a bus requestor that the processor has
relinquished control of the external bus. When HOLDA is asserted, the external address
bus, data bus and bus control signals are floated. HOLD, BOFF, HOLDA and BREQ are
used together to arbitrate access to the processors external bus by external bus
agents. Since the processor grants HOLD requests and enters the Hold Acknowledge
state even while RESE T is asserted, the state of the HOLDA pin is independent of the
RESET pin.
BREQ
O
S
H(Q)
R(0)
BUS REQUEST is asserted when the bus controller has a request pending. BREQ may
be used by external bus arbitration logic in conjunction with HOLD and HOLDA to
determine when to return mastership of the external bus to the processor.
D/C
O
S
H(Z)
R(Z)
DATA OR CODE is asserted for a data request and deasserted for instruction requests.
D/C has the same timing as W/R.
DMA
O
S
H(Z)
R(Z)
DMA ACCESS indicates whether the bus request was initiated by the DMA controller.
DMA is asserted for any DMA request. DMA is deasserted for all other requests.
SUP
O
S
H(Z)
R(Z)
SUPERVISOR ACCESS indicates whether the bus request is issued while in supervisor
mode. SUP is asserted when the request has supervisor privileges and is deasserted
otherwise. SUP may be used to isolate supervisor code and data structures from non-
supervisor requests.
Table 3. 80960CF Pin DescriptionExternal Bus Signals (Sheet 2 of 2)
Name Type Description
80960-40, -33, -25
14 Datasheet
Table 4. 80960CF Pin DescriptionProcessor Control Signals (Sheet 1 of 2)
Name Type Description
RESET
I
A(L)
H(Z)
R(Z)
RESET causes the chip to reset. When RESET is asserted, all external signals return
to the reset state. When RESET is deasserted, initialization begins. When the 2-x
clock mode is selected, RESET must remain asserted for 32 CLKIN cycles before
being deasserted to ensure correct processor initialization. When the 1-x clock mode
is selected, RESET must remain asserted for 10,000 CLKIN cycles before being
deasserted to ensure correct processor initialization. The CLKMOD E pin selects 1-x
or 2-x input clock division of the CLKIN pin.
The Hold Acknowledge bus state functions while the chip is reset. When the bus is in
the Hold Acknowledge state when RESET is asserted, the processor internally
resets, but maintains the Hold Acknowledge state on external pins until the Hold
request is removed. When a Hold request is made while the processor is in the reset
state, the processor bus grants HOLDA and enters the Hold Acknowledge state.
FAIL
O
S
H(Q)
R(0)
FAIL indicates failure of the self-test performed at initialization. When RESET is
deasserted and initializat ion begins, the FAIL pin is asserted. An internal self-test is
performed as part of the initialization process. When this self-test passes, the FAIL
pin is deasserted; otherwise it remains asserted. The FAIL pin is reasserted while the
processor performs an external bus self-confidence test. When this self-test passes,
the processor deasserts the FAIL pin and branches to the users initializ ation routine;
otherwise the FAIL pin remains asserted. Internal self-test and the use of the FAI L pin
may be disabled with the STEST pin.
STEST
I
S(L)
H(Z)
R(Z)
SELF TEST enables or disables the internal self-test feature at initialization. STEST
is read on the rising edge of RESET. When asserted, internal self-test and external
bus confidence tests are performed during processor initialization. When deasserted,
only the bus confidence tests are performed during initialization.
ONCE
I
A(L)
H(Z)
R(Z)
ON CIRCUIT EMULATION, when asserted, causes all outputs t o be floated. ONCE is
continuously sampled while RESET is low and is latched on the rising edge of
RESET. To place the processor in the ONCE state:
(1) Assert RES ET and ONCE (order does not matter)
(2) Wait for at least 16 CLKIN periods in 2-x modeor 10,000 CLKIN
periods in 1-x modeafter VCC and CLKIN are within operating
specifications
(3) Deassert RESET
(4) Wait at least 32 CLKIN periods
(The processor may now be latched in the ONCE state while RESET is high.)
To exit the ONCE state, bring VCC and CLKIN to operating conditions, then assert
RESET and bring ONCE high prior to deasserting R ESE T.
CLKIN must operate within the specified operating conditions until Step 4 completes.
CLKIN may then be changed to DC to achieve the lowest possible ONCE mode
leakage current.
ONCE may be used by emulator products or board testers to effectively make an
installed processor transparent in the board.
CLKIN
I
A(E)
H(Z)
R(Z)
CLOCK INPUT is an input for the external clock needed to run the processor. The
external clock is internally divided as prescribed by the CLKMODE pin to produce
PCLK2:1.
CLKMODE
I
A(L)
H(Z)
R(Z)
CLOCK MODE selects the division factor applied to the external clock input (CLKIN).
When CLKMODE is high, CLKIN is divided by one to create PCLK2:1 and the
processors internal clock. When CLKMODE is low , CLKIN is divided by two to create
PCLK2:1 and the processors internal clock. CLKMODE should be tied high or low in
a system as the clock mode is not latched by the processor. When left unconnected,
the processor internally pulls the CLKMODE pin low, enabling the 2-x clock mode.
80960-40, -33, -25
Datasheet 15
PCLK2:1
O
S
H(Q)
R(Q)
PROCESSOR OUTPUT CLOCKS provide a timing reference for all inputs and
outputs. All input and output timings are specified in relation to PCLK2 and PCLK1.
PCLK2 and PCLK1 are identical signals. Two output pins are provided to allow
flexibility in the systems allocation of capacitive loading on the clock. PCLK2:1 may
also be connected at the processor to form a single clock signal.
VSS GROUND connections must be connected externally to a VSS board plane.
VCC POWER connections must be connected externally to a VCC board plane.
VCCPLL VCCPLL is a separate VCC supply pin for the phase lock loop used in 1-x clock mode.
Connecting a simple lowpass filter to VCCPLL may help reduce clock jitter (TCP) in
noisy environments. Otherwise, VCCPLL should be connected to VCC.
NC NO CONNECT pins must not be connected in a system.
Table 5. 80960CF Pin DescriptionDMA and Interrupt Unit Control Signals
Name Type Description
DREQ3:0
I
A(L)
H(Z)
R(Z)
DMA REQUEST is used to request a DMA transfer. Each of the four signals
requests a transfer on a single channel. DREQ0 requests channel 0, DREQ1
requests channel 1, etc. When two or more channels are requested simultaneously,
the channel with the highest priority is serviced first. Channel priority mode is
programmable.
DACK3:0
O
S
H(1)
R(1)
DMA ACKNOWLEDGE indicates that a DMA transfer is being executed. Each of
the four signals acknowledges a transfer for a single channel. DACK0
acknowledges channel 0, DACK1 acknowledges channel 1, etc. DACK3:0 are
asserted when the requesting device of a DMA is accessed.
EOP/TC3:0
I/O
A(L)
H(Z/Q)
R(Z)
END OF PROCESS/TERMINAL COUNT may be programmed as either an input
(EOP3:0) or output (TC3:0), but not both. Each pin is individually programmable.
When programmed as an input, EOPx causes termination of a current DMA transfer
for the channel that corresponds to the EOPx pin. EOP0 corresponds to channel 0,
EOP1 corresponds to channel 1, etc. When a channel is configured for source and
destination chaining, the EOP pin for that channel causes termination of only the
current buffer transferred and causes the next buffer to be transferred. EOP3:0 are
asynchronous inputs.
When programmed as an output, the channels TCx pin indicates that the channel
byte count has reached 0 and a DMA has terminated. TCx is driven with the same
timing as DACKx during the last DMA transfer for a buffer. When the last bus
request is executed as multiple bus accesses, TCx stays asserted for the entire bus
request.
XINT7:0
I
A(E/L)
H(Z)
R(Z)
EXTERNAL INTERRUPT PINS cause interrupts to be requested. These pins may
be configured in three modes:
Dedicated Mode: Each pin is a dedicated external interrupt source. Dedicated
inputs may be individually programmed to be level (low) or edge (falling) activated.
Expanded Mode: The eight pins act together as an 8-bit vectored interrupt source.
The interrupt pins in this mode are level activated. Since the interrupt pins are active
low, the vector number requested is the 1s complement of the positive logic value
place on the port. This eliminates glue logic to interface to combinational priority
encoders which output negative logic.
Mixed Mode: XINT7:5 are dedicated sources and XINT4:0 act as the five most
significant bits of an expanded mode vector. The least significant bits are set to 010
internally.
NMI
I
A(E)
H(Z)
R(Z)
NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur.
NMI is the highest priority interrupt recognized . NMI is an edge (falling) activated
source.
Table 4. 80960CF Pin DescriptionProcessor Control Signals (Sheet 2 of 2)
Name Type Description
80960-40, -33, -25
16 Datasheet
3.3 80960CF Mechanical Data
3.3.1 80960CF PGA Pinout
Figure 2 shows the complete 80960CF PGA pinout as viewed from the top side of the component
(i.e., pins facing down). Figure 3 shows the complete 80960CF PGA pinout as viewed from the
pin-side of the package (i.e., pins facing up).
Table 6 presents the 80960CF pin names and packag e location in sign al order. Table 7 presents the
pin names and package location in pin order. See Section 4.0, Electrical Specifications on
page 26 for specifications and recommended connections.
Figure 2. 80960CF PGA PinoutView from Top (Pins Facing Down)
D5D7D8D9D11D12D13D15D16D17D19D21D24D25
D2D4D6VCC
D10VCC
VCC
D14VCC
D18D20D23D27D29
NCD0VCC
VSS
VSS
VSS
VSS
VSS
VSS
VCC
D22D31READY D26
D28
BTERM
HOLDA
D30HOLDBE3
VCC
ADSBE2
VSS
VCC
BE1
VSS
VCC
BLAST
VSS
BE0DEN
VSS
VCC
W/R
VSS
VCC
DT/R
A29LOCK
SUPWAIT DMA
A28
A30BREQD/C
D3
D1
ONCE
NC
NC
VCC
VSS
VSS
VSS
VSS
VSS
CLKIN
CLKMODE
VSS
BOFF
STEST
NC
NC
DREQ0
DREQ2
VCC
DACK0
VCC
VCCPLL
VCC
PCLK2
PCLK1
VCC
NC
FAIL
NC
NC
NC
DREQ1
DREQ3
DACK1
DACK2
DACK3
EOP/TC0
EOP/TC2
EOP/TC3
EOP/TC1
VSS
A2
VCC
A22A25
A20 VSS
A3A5
NMI
VCC
VSS
VSS
VSS
VSS VSS
A24A31 A26
A4VCC
A6A8A9A10A11A12A14A15A17A18
VCC
VCC
VCC
A13VCC
A16A19A21A23A27 A7 XINT6
XINT7
XINT4
XINT3
XINT5
XINT0
RESET
XINT2
XINT1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
ABCDEFGHJKLMNPQRS
F_CA002A
ABCDEFGHJKLMNPQRS
80960-40, -33, -25
Datasheet 17
Figure 3. 80960CF PGA PinoutView from Bottom (Pins Facing Up)
D5 D7 D8 D9 D11 D12 D13 D15 D16 D17 D19 D21 D24 D25
D2 D4 D6 VCC D10 VCC VCC D14 VCC D18 D20 D23 D27 D29
NC D0 VCC VSS VSS VSS VSS VSS VSS VCC D22 D31 READYD26
D28 BTERM HOLDA
D30 HOLD BE3
VCC ADS BE2
VSS VCC BE1
VSS VCC BLAST
VSS BE0 DEN
VSS VCC W/R
VSS VCC DT/R
A29 LOCK
SUP WAITDMA
A28
A30 BREQ D/C
D3
D1
ONCE
NC
NC
VCC
VSS
VSS
VSS
VSS
VSS
CLKIN
CLK MODE
VSS
BOFF
STEST
NC
NC
DREQ0
DREQ2
VCC
DACK0
VCC
VCCPLL
VCC
PCLK2
PCLK1
VCC
NC
FAIL
NC
NC
NC
DREQ1
DREQ3
DACK1
DACK2
DACK3
EOP/TC0
EOP/TC2
EOP/TC3
EOP/TC1
VSS
A2
VCC
A22 A25
A20VSS
A3 A5
NMI VCC VSS VSS VSS VSS
VSS A24 A31A26
A4 VCC
A6 A8 A9 A10 A11 A12 A14 A15 A17 A18
VCC VCC VCC A13 VCC A16 A19 A21 A23 A27A7XINT6
XINT7
XINT4
XINT3
XINT5
XINT0
RESET
XINT2
XINT1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
F_CA003A
ABCDEFGHJKLMNPQRS
ABCDEFGHJKLMNPQRS
Metal Lid
80960-40, -33, -25
18 Datasheet
Table 6. 80960CF PGA PinoutIn Signal Order
Address Bus Data Bus Bus Control Processor Control I/O
Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin
A31 S15 D31 R3 BE3 S5 RESET A16 DREQ3 A7
A30 Q13 D30 Q5 BE2 S6 DREQ2 B6
A29 R14 D29 S2 BE1 S7 FAIL A2 DREQ1 A6
A28 Q14 D28 Q4 BE0 R9 DREQ0 B5
A27 S16 D27 R2 STEST B2
A26 R15 D26 Q3 W/R S10 DACK3 A10
A25 S17 D25 S1 ONCE C3 DACK2 A9
A24 Q15 D24 R1 ADS R6 DACK1 A8
A23 R16 D23 Q2 CLKIN C13 DACK0 B8
A22 R17 D22 P3 READY S3 CLKMODE C14
A21 Q16 D21 Q1 BTERM R4 PLCK1 B14 EOP/TC3 A14
A20 P15 D20 P2 PLCK2 B13 EOP/TC2 A13
A19 P16 D19 P1 WAIT S12 EOP/TC1 A12
A18 Q17 D18 N2 BLAST S8 VSS EOP/TC0 A11
A17 P17 D17 N1 Location
A16 N16 D16 M1 DT/R S11 C7, C8, C9, C10, C11,
C12, F15, G3, G15,
H3, H15, J3, J15, K3,
K15, L3, L15, M3,
M15, Q7, Q8, Q9,
Q10, Q11
XINT7 C17
A15 N17 D15 L1 DEN S9 XINT6 C16
A14 M17 D14 L2 XINT5 B17
A13 L16 D13 K1 LOCK S14 XINT4 C15
A12 L17 D12 J1 XINT3 B16
A11 K17 D11 H1 VCC XINT2 A17
A10 J17 D10 H2 HOLD R5 Location XINT1 A15
A9 H17 D9 G1 HOLDA S4 B7, B9 , B11, B12, C6,
E15, F3, F16, G2,
H16, J2, J16, K2, K16,
M2, M 1 6, N3, N 1 5 ,
Q6, R7, R8, R10, R11
XINT0 B15
A8 G17 D8 F1 BREQ R13
A7 G16 D7 E1 NMI D15
A6 F17 D6 F2 D/C S13
A5 E17 D5 D1 DMA R12
A4 E16 D4 E2 SUP Q12 VCCPLL B10
A3 D17 D3 C1 No Connect
A2 D16 D2 D2 BOFF B1 Location
D1 C2 A1, A3, A4, A5, B3,
B4, C4, C5, D3
D0 E3
80960-40, -33, -25
Datasheet 19
Table 7. 80960CF PGA PinoutIn Pin Order
Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal
A1 NC C1 D3 F17 A6 M15 VSS R3 D31
A2 FAIL C2 D1 G1 D9 M16 VCC R4 BTERM
A3 NC C3 ONCE G2 VCC M17 A14 R5 HOLD
A4 NC C4 NC G3 VSS N1 D17 R6 ADS
A5 NC C5 NC G15 VSS N2 D18 R7 VCC
A6 DREQ1 C6 VCC G16 A7 N3 VCC R8 VCC
A7 DREQ3 C7 VSS G17 A8 N15 VCC R9 BE0
A8 DACK1 C8 VSS H1 D11 N16 A16 R10 VCC
A9 DACK2 C9 VSS H2 D10 N17 A15 R11 VCC
A10 DACK3 C10 VSS H3 VSS P1 D19 R12 DMA
A11 EOP/TC0 C11 VSS H15 VSS P2 D20 R13 BREQ
A12 EOP/TC1 C12 VSS H16 VCC P3 D22 R14 A29
A13 EOP/TC2 C13 CLKIN H17 A9 P15 A20 R15 A26
A14 EOP/TC3 C14 CLKMODE J1 D12 P16 A19 R16 A23
A15 XINT1 C15 XINT4 J2 VCC P17 A17 R17 A22
A16 RESET C16 XINT6 J3 VSS Q1 D21 S1 D25
A17 XINT2 C17 XINT7 J15 VSS Q2 D23 S2 D29
B1 BOFF D1 D5 J16 VCC Q3 D26 S3 READY
B2 STEST D2 D2 J17 A10 Q4 D28 S4 HOLDA
B3 NC D3 NC K1 D13 Q5 D30 S5 BE3
B4 NC D15 NMI K2 VCC Q6 VCC S6 BE2
B5 DREQ0 D16 A2 K3 VSS Q7 VSS S7 BE1
B6 DREQ2 D17 A3 K15 VSS Q8 VSS S8 BLAST
B7 VCC E1 D7 K16 VCC Q9 VSS S9 DEN
B8 DACK0 E2 D4 K17 A11 Q10 VSS S10 W/R
B9 VCC E3 D0 L1 D15 Q11 VSS S11 DT/R
B10 VCCPLL E15 VCC L2 D14 Q12 SUP S12 WAIT
B11 VCC E16 A4 L3 VSS Q13 A30 S13 D/C
B12 VCC E17 A5 L15 VSS Q14 A28 S14 LOCK
B13 PCLK2 F1 D8 L16 A13 Q15 A24 S15 A31
B14 PCLK1 F2 D6 L17 A12 Q16 A21 S16 A27
B15 XINT0 F3 VCC M1 D16 Q17 A18 S17 A25
B16 XINT3 F15 VSS M2 VCC R1 D24
B17 XINT5 F16 VCC M3 VSS R2 D27
80960-40, -33, -25
20 Datasheet
3.3.2 80960CF PQFP Pinout (80960CF-33 and -25 Only)
Table 8 and Table 9 present the 80960CF pin names with package location. Figure 4 shows the
80960CF P Q FP pinout as viewed from the top side. See Section 4.0 , Electrical Specifications on
page 26 for specifications and recommended connections.
Table 8. 80960CF PQFP PinoutIn Signal Order (80960CF-33 and -25 Only)
Address Bus Data Bus Bus Control Processor Control I/O
Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin
A31 153 D31 186 BE3 176 RESET 91 DREQ3 60
A30 152 D30 187 BE2 175 FAIL 45 DREQ2 59
A29 151 D29 188 BE1 172 STEST 46 DREQ1 58
A28 145 D28 189 BE0 170 ONCE 43 DREQ0 57
A27 144 D27 191 CLKIN 87
A26 143 D26 192 W/R 164 CLKMOD
E85 DACK3 65
A25 142 D25 194 PCLK2 74 DACK2 64
A24 141 D24 195 ADS 178 PCLK1 78 DACK1 63
A23 139 D23 3VSS DACK0 62
A22 138 D22 4READY 182 Location
A21 137 D21 5BTERM 184 2, 7, 16, 24, 30, 38,
39, 49, 56, 70, 75,
77, 81, 83, 88, 89,
92, 98, 105, 109,
110, 121, 125, 131,
135, 147, 150, 161,
165, 173, 174, 185,
196
EOP/TC3 69
A20 136 D20 6EOP/TC2 68
A19 134 D19 8WAIT 162 EOP/TC1 67
A18 133 D18 9BLAST 169 EOP/TC0 66
A17 132 D17 10
A16 130 D16 11 DT/R 163 XINT7 107
A15 129 D15 13 DEN 167 VCC XINT6 106
A14 128 D14 14 Location XINT5 102
A13 124 D13 15 LOCK 156 1, 12, 20, 28, 32, 37,
44, 50, 61, 71, 79,
82, 96, 99, 103, 115,
127, 140, 148, 154,
168, 171, 180, 190
XINT4 101
A12 123 D12 17 XINT3 100
A11 122 D11 18 HOLD 181 XINT2 95
A10 120 D10 19 HOLDA 179 XINT1 94
A9 119 D9 21 BREQ 155 XINT0 93
A8 118 D8 22 VCCPLL 72
A7 117 D7 23 D/C 159 No Connect NMI 108
A6 116 D6 25 DMA 160 Location
A5 114 D5 26 SUP 158 29, 31, 41, 42, 47,
48, 51, 52, 53, 54,
55, 73, 76, 80, 84,
86, 90, 97, 104, 126,
146, 149, 157, 166,
177, 183, 193
A4 113 D4 27
A3 112 D3 33 BOFF 40
A2 111 D2 34
D1 35
D0 36
80960-40, -33, -25
Datasheet 21
Table 9. 80960CF PQFP PinoutIn Pin Order (80960CF-33 and -25 Only)
Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal
1VCC 34 D2 67 EOP/TC1 100 XINT3 133 A18 166 NC
2VSS 35 D1 68 EOP/TC2 101 XINT4 134 A19 167 DEN
3D23 36 D0 69 EOP/TC3 102 XINT5 135 VSS 168 VCC
4D22 37 VCC 70 VSS 103 VCC 136 A20 169 BLAST
5D21 38 VSS 71 VCC 104 NC 137 A21 170 BE0
6D20 39 VSS 72 VCCPLL 105 VSS 138 A22 171 VCC
7VSS 40 BOFF 73 NC 106 XINT6 139 A23 172 BE1
8D19 41 NC 74 PCLK2 107 XINT7 140 VCC 173 VSS
9D18 42 NC 75 VSS 108 NMI 141 A24 174 VSS
10 D17 43 ONCE 76 NC 109 VSS 142 A25 175 BE2
11 D16 44 VCC 77 VSS 110 VSS 143 A26 176 BE3
12 VCC 45 FAIL 78 PCLK1 111 A2 144 A27 177 NC
13 D15 46 STEST 79 VCC 112 A3 145 A28 178 ADS
14 D14 47 NC 80 NC 113 A4 146 NC 179 HOLDA
15 D13 48 NC 81 VSS 114 A5 147 VSS 180 VCC
16 VSS 49 VSS 82 VCC 115 VCC 148 VCC 181 HOLD
17 D12 50 VCC 83 VSS 116 A6 149 NC 182 READY
18 D11 51 NC 84 NC 117 A7 150 VSS 183 NC
19 D10 52 NC 85 CLKMODE 118 A8 151 A29 184 BTERM
20 VCC 53 NC 86 NC 119 A9 152 A30 185 VSS
21 D9 54 NC 87 CLKIN 120 A10 153 A31 186 D31
22 D8 55 NC 88 VSS 121 VSS 154 VCC 187 D30
23 D7 56 VSS 89 VSS 122 A11 155 BREQ 188 D29
24 VSS 57 DREQ0 90 NC 123 A12 156 LOCK 189 D28
25 D6 58 DREQ1 91 RESET 124 A13 157 NC 190 VCC
26 D5 59 DREQ2 92 VSS 125 VSS 158 SUP 191 D27
27 D4 60 DREQ3 93 XINT0 126 NC 159 D/C192 D26
28 VCC 61 VCC 94 XINT1 127 VCC 160 DMA 193 NC
29 NC 62 DACK0 95 XINT2 128 A14 161 VSS 194 D25
30 VSS 63 DACK1 96 VCC 129 A15 162 WAIT 195 D24
31 NC 64 DACK2 97 NC 130 A16 163 DT/R196 VSS
32 VCC 65 DACK3 98 VSS 131 VSS 164 W/R
33 D3 66 EOP/TC0 99 VCC 132 A17 165 VSS
80960-40, -33, -25
22 Datasheet
3.4 Package Thermal Specifications
The 80960CF is specified for operation when case temperature (TC) is within the range of
0 °C100 °C for 33 and 25 MHz, and 0 °C85 °C for 40 MHz. TC may be measured in any
environment to determine whether the 80960CF is within specified operating range. Case
temperature should be measured at the center of the top surface, opposite the pins.
Refer to Figure 5 for more information.
Ambient temperature (TA) is calculated from thermal resistance from case to ambient (θCA) using
Equation 1:
Equation 1. Calculation of Ambient Temperature (TA)
Table 10 shows the maximum TA allowable (without exceeding TC) at various airflows and
operating frequencies (fPCLK).
Note that TA is greatly improved by attaching fins or a heatsink to the package. Maximum power
consumption (P) is calculated by using the typical ICC as tabulated in Section 4.4, D.C.
Specifications on page 27 and VCC of 5 V.
Figure 4. 80960CF PQFP PinoutTop View (80960CF-33 and -25 Only)
5098
99
147
148 196
Pin 1
49
F_CA004A
TATCPθCA
()=
80960-40, -33, -25
Datasheet 23
Figure 5. Measuring 80960CF PGA and PQFP Case Temperature
Table 10. Maximum TA at Various Airflows in oC (PGA Package Only)
Airflow-ft/min (m/sec)
fPCLK
(MHz) 0
(0) 200
(1.01) 400
(2.03) 600
(3.04) 800
(4.06) 1000
(5.07)
TA with Heat sink ()
40
33
25
16
20
38
50
63
40
57
65
74
58
74
79
84
60
76
81
86
66
81
85
89
68
84
87
90
TA without Heatsink ()
40
33
25
16
0
18
34
51
15
33
46
60
30
47
57
68
40
57
65
74
50
66
72
80
52
67
74
81
0.285 high unidirectional heat sink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).
Measure PQFP case temperature
at center of top surfac e.
Measure PGA temperature at
center of top surface
168 - Pin PGA Pin 196 Pin 1
center of top surface
80960-40, -33, -25
24 Datasheet
3.5 Stepping Register Information
Upon reset, register g0 contains die stepping information (see Figure 6). The most significant byte
contains ASCII 0; the upper middle byte contains an ASCII C; the lower middle byte contains an
ASCII F. The least significant byte contains the stepping number in ASCII, and g0 retains this
information until it is overwritten by the user program. Table 13 contains a cross reference of the
number in the least significant byte of register g0 to the die stepping number.
Table 11. 80960CF PGA Package Thermal Characteristics
Thermal Resistance °C/Watt
Parameter
Airflow ft./min (m/sec)
0
(0) 200
(1.01) 400
(2.03) 600
(3.07) 800
(4.06) 1000
(5.07)
θ Junction-to-Case
(Case measured as
shown in Figure 5.) 1.5 1.5 1.5 1.5 1.5 1.5
θ Case-to-Ambient
(No Heatsink) 17 14 11 9 7.1 6.6
θ Case-to-Ambient
(With Heatsink)
(See Note 3.) 13 9 5.5 5 3.9 3.4
NOTES:
1. This table applies to 80960CF PGA plugged into socket or soldered directly to board.
2. θJA = θJC + θCA
3. 0.285 high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).
Table 12. 80960CF PQFP Package Thermal Characteristics
Thermal Resistance °C/Watt
Parameter
Airflow ft./min (m/sec)
0
(0) 50
(0.25) 100
(0.50) 200
(1.01) 400
(2.03) 600
(3.04) 800
(4.06)
θ Junction-to-Case (Case Measured
as shown in Figure 5.) 5555555
θ Case-to-Ambient (No Heatsink) 19 18 17 15 12 10 9
NOTES:
1. This table applies to 80960CF PQFP soldered directly to board.
2. θJA = θJC + θCA
θJC
θJA
θ
JC
80960-40, -33, -25
Datasheet 25
3.6 Sources for Accessories
The following is a list of suggested sources for 80960CF accessories. This is neither an
endorsement nor a warranty of the performance of any of the listed products and/or companies.
Sockets
1. 3M Textool Test and Interconnection Products
6801 River Place Blvd. Mail Stop 130-3N-29
Austin, TX 78726-9000
(800) 328-04 11
2. Augat, Inc. Int erco nnection Product s Grou p
452 John Dietsch Blvd.
Attleboro Falls, MA 02763
(508) 699-76 46
3. Concept Mfg., Inc. (Decoupling Sockets)
400 Walnut St. Suite 609
Redwood City, CA 94063
(415) 365-1162 FAX: (415)265-1164
Heatsinks/Fins
1. Thermalloy, Inc.
2021 West Valley View Lane
Dallas, TX 75234
(214) 243-43 21
FAX: (214) 241-4656
2. Wakefield Engineer ing
60 Audubon Road
Wakefield, MA 01880
(617) 245-59 00
Figure 6. Register g0
Table 13. Die Stepping Cross Reference
g0 Least Significant Byte Di e Stepping
01 A
02 B
03 C
04 D
05 E
ASCII 00 43 46 Stepping Number
DECIMAL 0 C FStepping Number
MSB LSB
80960-40, -33, -25
26 Datasheet
4.0 Electrical Specifications
4.1 Absolute Maximum Ratings
Table 14 presents the absolute maximum ratings for the 80960CF.
Note: The specifications are subject to chan ge without notice. Verify with yo ur local Intel sales of fice that
you have the late st data sheet befor e finalizing a design.
Warning: Stressing the device beyond the Absolute Maximum Ratings may cause permanent damage.
These are stress ratings only. Operation beyond the Operating Conditions is not recommended
and extended exposure beyond the Operating Conditions may affect device reliability.
4.2 Oper ating Cond itions
Table 15 presents the operating conditions for the 80960CF.
Table 14. Absolute Maximum Ratings
Pa rameter Max imu m Rati ng
Storage Temperature 65 °C to +150 °C
Case Temperature Under Bias 65 °C to +110 °C
Supply Voltage wrt. VSS 0.5 V to + 6.5 V
Voltage on Other Pins wrt. VSS 0.5 V to VCC + 0.5 V
Table 15. Operating Conditions
Symbol Parameter Min Max Units Notes
VCC
Supply Voltage
80960CF-40
80960CF-33
80960CF-25
4.75
4.50
4.50
5.25
5.50
5.50
V
fCLK2x
Input Clock Frequency (2-x Mode)
80960CF-40
80960CF-33
80960CF-25
0
0
0
80
66
50
MHz
fCLK1x
Input Clock Frequency (1-x Mode)
80960CF-40
80960CF-33
80960CF-25
8
8
8
40
33
25
MHz ()
TC
Case Temp Under Bias
PGA Pkg. (80960CF-40)
PGA Pkg. (80960CF-33, -25 Only)
196-Pin PQFP (80960CF-33, -25 Only)
0
0
0
85
100
100
oC
When in the 1-x input clock mode, CLKIN is an input t o an internal phase-locked loop and must maintain a
minimum frequency of 8 M Hz for proper processor operation. However, in the 1-x mode, CLKIN may still
be stopped when the processor is in a reset condition. When CLKIN is stopped, the specified RESET low
time must be provided once CLKIN restarts and has stabilized.
80960-40, -33, -25
Datasheet 27
4.3 Recommended Connections
Power and ground connections must be made to multiple VCC and VSS (GND) pins. Every
80960CF-based circuit board should include power (VCC) and ground (VSS) planes for power
distribution. Every VCC pin must be connected to the power plane, and every VSS pin must be
connected to the ground plane. Pins identified as NC must not be connected in the system.
Liberal decoupling capacitance should be placed near the 80960CF. The processor may cause
transient power su rges whe n its numerous o utput buf fers transition, p articularly when conn ected to
large capacitive loads.
Low inductance capacitors and interconnects are recommended for best high frequency electrical
performance. Ind uctance may be reduced by shortening the board traces between the processor and
decoupling capacitors as much as possible. Capacitors specifically designed for PGA packages
may offer the lowest possible inductance.
For reliable operation, always connect unused inputs to an appropriate signal level. In particular,
any unused interrupt (XINT, NMI), DMA (DREQ), or BTERM input should be connected to VCC
through a pu ll-up r esistor. Pull-up resistors should be in the in the ra nge of 20 KW fo r each pin tied
high. Wh en READY or HOLD ar e not used, the unused inpu t should be conn ected to gro und. N.C.
pins must always remain unconnected. For additional information refer to the i960® CA/CF
Microprocessor Users Manual (order number 270710).
4.4 D.C. Specifications
Table 16 presents the D.C. specifications of the 80960CF.
80960-40, -33, -25
28 Datasheet
Table 16. D.C. Specifications
Symbol Parameter (1) Min Max Units Notes
VIL Input Low Voltage for all pins except RESET 0.3 +0.8 V
VIH Input High Voltage for all pins except RESET 2.0 VCC + 0.3 V
VOL Output Low V oltage 0.45 V IOL = 5 mA
VOH Output High V oltage IOH = 1 mA
IOH = 200 µA2.4
VCC 0.5 V
V
VILR Input Low Voltage for RESET 0.3 1.5 V
VIHR Input High Voltage for RESET 3.5 VCC + 0.3 V
ILI1
Input Leakage Current for each pin except:
BTERM, ONCE, DREQ3:0, STES T,
EOP3:0/TC3:0, NMI, XINT7:0, BOFF, READY,
HOLD, CLKMODE ±15 µA 0 VIN VCC (2)
ILI2 Input Leakage Current for:
BTERM, ONCE, DREQ3:0, STES T,
EOP3:0/TC3:0, NMI, XINT7:0, BOFF 0 300 µ A VIN = 0.45 V (3)
ILI3 Input Leakage Current for:
READY, HOLD, CLKMODE 0 500 µA VIN = 2.4 V (4, 8)
ILO Output Leakage Current ±15 µA 0. 45 VOUT
VCC
ICC Supply Current (80960CF-40, 33):
ICC Max
ICCTyp 1150
1000 mA
mA (5)
(6)
ICC Supply Current (80960CF-25):
ICC Max
ICCTyp 950
775 mA
mA (5)
(6)
ICC Supply Current (80960CF-16):
ICC Max
ICCTyp 750
575 mA (5)
(6)
IONCE
ONCE-mode Supply Curren t
80960CF-40
80960CF-33, -25, -16 225
150 mA
CIN Input Capacitance for: CLKIN, RESET, ONCE,
READY, HOL D , D R EQ3:0 , BOFF, XINT7:0 ,
NMI, BTE R M, CLKMODE 012pFF
C = 1 MHz
COUT Output Capacitance of each output pin 12 pF FC = 1 MHz (7)
CI/O I/O Pin Capacitance 12 pF FC = 1 MHz
NOTES:
1. 80960CF-33 and -25 under the conditions described in Section 4.2, Operating Conditions on page 26.
2. No pullup or pulldown.
3. These pins have internal pullup resistors.
4. These pins have internal pulldown resistors.
5. Measured at worst case frequency, VCC and temperature, with device operating and output s loaded to the
test conditions described in Section 4.5.1, A.C. Test Conditions on page 35.
6. ICC Typical is not tested.
7. Output Capacitance is the capacit ive load of a floating output.
8. CLKMODE pin has a pulldown resistor only when ONCE pin is deasserted.
80960-40, -33, -25
Datasheet 29
4.5 A.C. Specifications
Table 17. 80960CF AC Characteristics (40 MHz) (Sheet 1 of 2)
Symbol Parameter (1) Min Max Units Notes
Input Clock (2, 10)
TFCLKIN Frequency 0 80 MHz
TCCLKIN Period In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)25
12.5 125
ns
ns (12)
TCS CLKIN Period Stability In 1-x Mode (fCLK1x) ±0.1% (13)
TCH CLKIN High Time In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)5
562.5
ns
ns (12)
TCL CLKIN Low Time In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)5
562.5
ns
ns (12)
TCR CLKIN Rise Time 0 6 ns
TCF CLKIN Fall Time 0 6 ns
Output Clocks (2, 9)
TCP CLKIN to PCLK2:1 Delay In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x) 2
22
25 ns
ns (4, 13)
(4)
TPCLK2:1 Period In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)TC
2TCns
ns (13)
(4)
TPH PCLK2:1 High Time (T/2) 2 T/2 ns (13)
TPL PCLK2:1 Low Time (T/2) 2 T/2 ns (13)
TPR PCLK2:1 Rise Time 1 4 ns (4)
TPF PCLK2:1 Fall Time 1 4 ns (4)
Synchronous Outputs (9)
TOH
TOV
Output Valid Delay, Output Hold
TOH1, TOV1 A31:2
TOH2, TOV2 BE3:0
TOH3, TOV3 ADS
TOH4, TOV4 W/R
TOH5, TOV5 D/C, SUP, DMA
TOH6, TOV6 BLAST, WAIT
TOH7, TOV7 DEN
TOH8, TOV8 HOLDA, BREQ
TOH9, TOV9 LOCK
TOH10, TOV10 DACK3:0
TOH11, TOV11 D31:0
TOH12, TOV12 DT/R
TOH13, TOV13 FAIL
TOH14, TOV14 EOP3:0/TC3:0
3
3
6
3
4
5
3
4
4
4
3
T/2 + 3
2
3
14
16
16
16
16
16
16
16
16
16
16
T/2 + 14
14
16
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
(7, 11)
(7, 11)
TOF Output Float for all outputs 3 22 ns (7)
Synchr onous Inputs (2, 10, 11)
TIS
Input Setup
TIS1 D31:0
TIS2 BOFF
TIS3 BTERM/READY
TIS4 HOLD
3
15
7
5
ns
ns
ns
ns
80960-40, -33, -25
30 Datasheet
TIH
Input Hold
TIH1 D31:0
TIH2 BOFF
TIH3 BTERM/READY
TIH4 HOLD
5
5
2
3
ns
ns
ns
ns
Relative Output Timings (2, 3, 4, 9)
TAVSH1 A31:2 Valid to ADS Rising T 4T + 4ns
TAVSH2 BE3:0, W/R, SUP, D/C, DMA, DACK3:0 Valid to ADS
Rising T 6T + 6ns
TAVEL1 A31:2 Valid to DEN Falling T 4T + 4ns
TAVEL2 BE3:0, W/R, SUP, INST,DMA, DACK3:0 Valid to DEN
Falling T 6T + 6ns
TNLQV WAIT Falling to Output Data Valid ± 6 ns
TDVNH Output Data Valid to WA IT Rising N*T 6N*T + 6ns (5)
TNLNH WAIT Falling to WAIT Rising N*T ± 4 ns (5)
TNHQX Output Data Hold after WAIT Rising (N+1)*T8 (N+1)*T+6 ns (6)
TEHTV DT/R Hold after DEN High T/2 7ns(7)
TTVEL DT/R Vali d to DE N Falling T/2 4ns
Relative Input Timings (2, 3, 4)
TIS5 RESET Input Setup (2-x Clock Mode) 6 ns (14)
TIH5 RESET Input Hold (2-x Clock Mode) 5 ns (14)
TIS6 DREQ3:0 Input Setup 12 ns (8)
TIH6 DREQ3:0 Input Hold 7 ns (8)
TIS7 XINT7:0, NMI Input Setup 7 ns (16)
TIH7 XINT7:0, NMI Input Hold 3 ns (16)
TIS8 RESET Input Setup (1-x Clock Mode) 3 ns (15)
TIH8 RESET Input Hold (1-x Clock Mode) T/4 + 1 ns (15)
NOTES:
1. 80960CF-40 only, per the conditions in Section 4.2, Operating Conditions and Section 4.5.1, A.C. Test
Conditions.
2. See Table 19 for all notes related to AC specifications.
Table 17. 80960CF AC Characteristics (40 MHz) (Sheet 2 of 2)
Symbol Parameter (1) Min Max Unit s Notes
80960-40, -33, -25
Datasheet 31
Table 18. 80960CF AC Characteristics (33 MHz) (Sheet 1 of 2)
Symbol Parameter (1) Min Max Units Notes
Input Clock (2, 10)
TFCLKIN Frequency 0 66.66 MHz
TCCLKIN Period In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)30
15 125
ns
ns (12)
TCS CLKIN Period Stability In 1-x Mode (fCLK1x)±0.1% (13)
TCH CLKIN High Time In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)5
562.5
ns
ns (12)
TCL CLKIN Low Time In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)5
562.5
ns
ns (12)
TCR CLKIN Rise Time 0 6ns
TCF CLKIN Fall Time 0 6ns
Output Clocks (2, 9)
TCP CLKIN to PCLK2:1 Delay In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x) 2
22
25 ns
ns (4,13)
(4)
TPCLK2:1 Period In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)TC
2TC ns
ns (13)
(4)
TPH PCLK2:1 High Time (T/2) 2T/2ns(13)
TPL PCLK2:1 Low Time (T/2) 2T/2ns(13)
TPR PCLK2:1 Rise Time 1 4 ns (4)
TPF PCLK2:1 Fall Time 14ns(4)
Synchronous Outputs (9)
TOH
TOV
Output Valid Delay, Output Hold
TOH1, TOV1 A31:2
TOH2, TOV2 BE3:0
TOH3, TOV3 ADS
TOH4, TOV4 W/R
TOH5, TOV5 D/C, SUP, DMA
TOH6, TOV6 BLAST, WAIT
TOH7, TOV7 DEN
TOH8, TOV8 HOLDA, BREQ
TOH9, TOV9 LOCK
TOH10, TOV10 DACK3:0
TOH11, TOV11 D31:0
TOH12, TOV12 DT/R
TOH13, TOV13 FAIL
TOH14, TOV14 EOP3:0/TC3:0
3
3
6
3
4
5
3
4
4
4
3
T/2 + 3
2
3
14
16
18
18
16
16
16
16
16
18
16
T/ 2 + 14
14
18
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
(7, 11)
(7, 11)
TOF Output Float for all outputs 3 22 ns (7)
Synchronous Inputs (2, 10 , 11)
TIS
Input Setup
TIS1 D31:0
TIS2 BOFF
TIS3 BTERM/READY
TIS4 HOLD
3
17
7
7
ns
ns
ns
ns
TIH
Input Hold
TIH1 D31:0
TIH2 BOFF
TIH3 BTERM/READY
TIH4 HOLD
5
5
2
3
ns
ns
ns
ns
80960-40, -33, -25
32 Datasheet
Relative Output T imings (2, 3, 4, 9)
TAVSH1 A31:2 Valid to ADS Rising T 4T + 4ns
TAVSH2 BE3:0, W/R, SUP, D/C, DMA, DACK3:0 Valid to ADS
Rising T 6T + 6ns
TAVEL1 A31:2 Valid to DEN Falling T 4T + 4ns
TAVEL2 BE3:0, W/R, SUP, INST,DMA, DACK3:0 V alid to DEN
Falling T 6T + 6ns
TNLQV WAIT Falling to Output Data Valid ± 6 ns
TDVNH Output Data Valid to WAIT Rising N*T 6N*T + 6ns (5)
TNLNH WAIT Fallin g to WAIT Rising N*T ± 4 ns (5)
TNHQX Output Data Hold after WAIT Rising (N+1)*T8 (N+1)*T+6 ns (6)
TEHTV DT/R Hold a fte r D E N High T/2 7 ns (7)
TTVEL DT/R Valid to DEN Falling T/2 4ns
Relati ve Input Timings (2, 3, 4)
TIS5 RESET Input Setup (2-x Clock Mode) 6 ns (14)
TIH5 RESET Input Hold (2-x Clock Mode) 5 ns (14)
TIS6 DREQ3:0 Input Setup 12 ns (8)
TIH6 DREQ3:0 Input Hold 7 ns (8)
TIS7 XINT7:0, NMI Input Setup 7 ns (16)
TIH7 XINT7:0, NMI Input Hold 3 ns (16)
TIS8 RESET Input Setup (1-x Clock Mode) 3 ns (15)
TIH8 RESET Input Hold (1-x Clock Mode) T/4 + 1 ns (15)
NOTES:
1. 80960CF-33 only, per the conditions in Section 4.2, Operating Conditions and Section 4.5.1, A.C. Test
Conditions.
2. See Table 19 for all notes related to AC specifications.
Table 18. 80960CF AC Characteristics (33 MHz) (Sheet 2 of 2)
Symbol Parameter (1) Min Max Units Notes
80960-40, -33, -25
Datasheet 33
Table 19. 80960CF AC Characteristics (25 MHz) (Sheet 1 of 3)
Symbol Parameter (1) Min Max Unit Notes
Input Clock (2, 10 )
TFCLKIN Frequency 0 50 MHz
TCCLKIN Period In 1-x Mode (f CLK1x)
In 2-x Mode (f CLK2x)40
20 125
ns
ns (12)
TCS CLKIN Period Stability In 1-x Mode (f CLK1x) ±0.1% (13)
TCH CLKIN High Time In 1-x Mode (f CLK1x)
In 2-x Mode (f CLK2x)8
862.5
ns
ns (12)
TCL CLKIN Low Time In 1-x Mode (f CLK1x)
In 2-x Mode (f CLK2x)8
862.5
ns
ns (12)
TCR CLKIN Rise Time 0 6 ns
TCF CLKIN Fall Time 0 6 ns
Output Clocks (2, 9)
TCP CLKIN to PCLK2:1 Delay In 1-x Mode (f CLK1x)
In 2-x Mode (f CLK2x) 2
22
25 ns
ns (4, 13)
(4)
TPCLK2:1 Period In 1-x Mode (f CLK1x)
In 2-x Mode (f CLK2x)TC
2TCns
ns (13)
(4)
TPH PCLK2:1 High Time (T/2) 3T/2 ns(13)
TPL PCLK2:1 Low Time (T/2) 3T/2 ns(13)
TPR PCLK2:1 Rise Time 1 4 ns (4)
TPF PCLK2:1 Fall Time 1 4 ns (4)
Synchronous Outputs (9)
TOH
TOV
Output Valid Delay, Output Hold
TOH1, TOV1 A31:2
TOH2, TOV2 BE3:0
TOH3, TOV3 ADS
TOH4, TOV4 W/R
TOH5, TOV5 D/C, SUP, DMA
TOH6, TOV6 BLAST, WAIT
TOH7, TOV7 DEN
TOH8, TOV8 HOLDA, BREQ
TOH9, TOV9 LOCK
TOH10, TOV10 DACK3:0
TOH11, TOV11 D31:0
TOH12, TOV12 DT/R
TOH13, TOV13 FAIL
TOH14, TOV14 EOP3:0/TC3:0
3
3
6
3
4
5
3
4
4
4
3
T/2 + 3
2
3
16
18
20
20
18
18
18
18
18
20
18
T/2 + 16
16
20
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
(7, 11)
(7, 11)
TOF Output Float for all outputs 3 22 ns (7)
Synchr onous Inputs (2, 10, 11)
TIS Input Setup
TIS1 D31:0
TIS2 BOFF
TIS3 BTERM/READY
TIS4 HOLD
5
19
9
9
ns
ns
ns
ns
TIH Input Hold
TIH1 D31:0
TIH2 BOFF
TIH3 BTERM/READY
TIH4 HOLD
5
19
9
9
ns
ns
ns
ns
80960-40, -33, -25
34 Datasheet
Relative Output Timings (2, 3, 4, 9)
TAVSH1 A31:2 Valid to ADS Rising T 4T + 4ns
TAVSH2 BE3:0, W/R, SUP, D/C,
DMA, DACK3:0 Valid to ADS Rising T 6T + 6ns
TAVEL1 A31: 2 Valid to DEN Falling T 4T + 4ns
TAVEL2 BE3:0, W/R, SUP, INST,
DMA, DACK3:0 Valid to DEN Falling T 6T + 6ns
TNLQV WAIT Falling to Output Data Valid ± 6 ns
TDVNH Output Data Valid to WAIT Rising N*T FN*T + 6ns (5)
TNLNH WAIT Falling to WAIT Rising N*T ± 4 ns (5)
TNHQX Output Data Hold after W AIT Rising (N+1)*T
8(N+1)*T+6 ns (6)
TEHTV DT/R Ho ld after DEN High T/2 7 ns (7)
TTVEL DT/R Valid to DEN Falling T/2 4ns
Relative Input Timings (2, 3, 4)
TIS5 RESET Input Setup (2-x Clock Mode) 8 ns (14)
TIH5 RESET Input Hold (2-x Clock Mode) 7 ns (14)
TIS6 DREQ3:0 Input Setup 14 ns (8)
TIH6 DREQ3:0 Input Hold 9 ns (8)
TIS7 XINT7:0, NMI Input Setup 9 ns (16)
TIH7 XINT7:0, NM I Input Hold 5 ns (16)
TIS8 RESET Input Setup (1-x Clock Mode) 3 ns (15)
TIH8 RESET Input Hold (1-x Clock Mode) T/4 + 1 ns (15)
Table 19. 80960CF AC Characteristics (25 MHz) (Sheet 2 of 3)
Symbol Parameter (1) Min Max Unit Notes
80960-40, -33, -25
Datasheet 35
4.5.1 A.C. Test Conditions
The AC Specifications in Section 4.5, A.C. Specifications on pa ge 29 are tested with the 50 pF
load shown in Figure 7. Figure 16 shows how timin gs vary wit h load capacitance.
Specifications are measured at the 1.5 V crossing point, unless otherwise indicated. Input
waveforms are assumed to have a rise and fall time of < 2 ns from 0.8 V to 2.0 V. See Section 4.5.2,
A.C. Timing Waveforms on page 36 for AC specification definitions, test points and
illustrations.
NOTES:
1. 80960CF-25 only, per the conditions in Section 4.2, Operating Conditions and Sec tion 4.5.1, A.C. Test
Conditions.
2. See Section 4.5.2, A.C. Timing Waveforms for waveforms and definitions.
3. See Figure 16 for capacitive derating information for output delays and hold times.
4. See Figure 17 for capacitive derating information for rise and fall times.
5. Where N is the number of NRAD, NRDD, NWAD or NWDD wait states that are programmed in the Bus
Controller Region Table. WAIT never goes active when there are no wait states in an access.
6. N = Number of wait states inserted with READY.
7. Output Data and/or DT/R may be driven indefinitely following a cycle when there is no subsequent bus
activity.
8. Since asynchronous inputs are synchronized internally by the 80960CF, they have no required setup or
hold times to be recognized and for proper operation. However, to ensure recognition of the input at a
particular edge of PCLK2:1, the setup times shown must be met. Asynchronous inputs must be active for
at least two consecutive PCLK2:1 rising edges to be seen by the processor.
9. These specifications are ensured by the processor.
10.Thes e specifications must be met by the system for proper operation of the processor.
11.This timing is dependent upon the loading of PCLK2:1. Use the derating curves of Section 4.5.3, Derating
Curves to adjust the timing for PCLK2:1 loading.
12.In the 1-x input clock mode, the maximum input clock period is limited to 125 ns while the processor is
operating. When the processor is in reset, the input clock may stop even in 1-x mode.
13.When in the 1-x input clock mode, these specifications assume a stable input clock with a period variation
of less than ± 0.1% between adjacent cycles.
14.In 2-x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper
operation. However, to ensure the device exits reset synchronized to a particular clock edge, the RESET
pin must meet setup and hold times to the falling edge of the CLKIN. (See Figure 23.)
15.In 1-x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper
operation. However, to ensure the device exits reset synchronized to a particular clock edge, the RESET
pin must meet setup and hold times to the rising edge of the CLKIN. (See Figure 24.)
16.The interrupt pins are synchronized internally by the 80960CF. They have no required setup or hold times
for proper operation. These pins are sampled by the interrupt controller every other clock and must be
active for at least three consecutive PCLK2:1 rising edges when asserting them asynchronously. To ensure
recognition at a particular clock edge, the setup and hold times shown must be met for two consecutive
PCLK2:1 rising edges.
Table 19. 80960CF AC Characteristics (25 MHz) (Sheet 3 of 3)
Symbol Parameter (1) Min Max Unit Notes
Figure 7. A.C. Test Load
Output Pin
CL = 50 pF for all signals
CL
F_CX008A
80960-40, -33, -25
36 Datasheet
4.5.2 A.C. Timing Waveforms
Figure 8. Input and Output Clocks Waveform
Figure 9. CLKIN Waveform
PCLK2:1 2.4 V
1.5 V
1.5 V 1.5 V
0.45 V
T
CP
T
PH
T
PL
T
PR
T
PF
T
F_CX009A
CLKIN
2.0 V
1.5 V
0.8 V
TCF
TCH TCL
TC
TCR
F_CX010A
80960-40, -33, -25
Datasheet 37
Figure 10. Output Delay and Float Waveform
NOTES:
1. TOV TOH - OUTPUT DELAY - Maximum output delay is referred to as Output Valid Delay (TOV); minimum
output delay is referred to as Output Hold (TOH).
2. TOF - OUTPUT FLOAT DELAY - Output float condition occurs when the maximum output current becomes
less that ILO in magnitude.
Figure 11. Input Setup and Hold Waveform
NOTE: TIS TIH - INPUT SETUP AND HOLD - The input setup and hold requirements specify the sampling
window during which synchronous inputs must be stable for correct processor operation.
PCLK2:1
Outputs
1.5 V
1.5 V
TOV
Min Max
TOH
Min Max
TOF
1.5 V 1. 5 V
1.5 V
1.5 V
Outputs
F_CX011A
PCLK2:1
Inputs:
1.5 V1.5 V1.5 V
Valid
TIS TIH
(READY, HOLD, BTERM,
BOFF, DREQ3:0,
D31:0 on reads)
F_CX012A
Min Max
80960-40, -33, -25
38 Datasheet
Figure 12. NMI, XINT7:0 Input Setup and Hold Waveform
Figure 13. Hold Acknowledge Timings
NOTES:
1. TOV TOH - OUTPUT DELAY - Maxim um outpu t delay is referred to as Output Valid Delay (TOV); min imum
output delay is referred to as Output Hold (TOH).
2. TOF - OUTPUT FLOAT DEL AY - Output float condition occurs when the maximum output current becomes
less that ILO in magnitude.
3. TIS TIH - INPUT SETUP AND HOLD - The input setup and hold requirements specify the sampling window
during which synchronous inputs must be stable for correct proces sor operation.
PCLK2:1 1.5 V1.5 V1.5 V
Valid
TIS TIH
NMI, XINT7:0
Min Min
F_CX013A
1.5 V
1.5 V
PCLK2:1 1.5 V
1.5 V 1.5 V
Outputs:
A31:2, D31:0, BE3:0,
ADS, BLAST, WAIT, W/R,
DT/R, DEN, LOCK,
D/C, SUP, DMA
Min Max Min Max
Valid 1.5 V Valid
TOF TOV
HOLD
TIS
TIH
1.5 V 1.5 V
TIH TIS
HOLDA
TOV
Min
Min Min
Min
MaxMin MaxMin
F_CX014A
1.5 V 1.5 V 1.5 V
1.5 V
TOV
80960-40, -33, -25
Datasheet 39
Figure 14. Bus Backoff (BOFF) Timings
Figure 15. Relative Timings Waveforms
PCLK2:1 1.5 V
1.5 V 1.5 V
Outputs:
A31:2, D31:0, BE3:0,
ADS, BLAST, WAIT, W/R,
DT/R, DEN, LOCK,
D/C, SUP, DMA
Min
Max
Min
Max
Valid 1.5 V Valid
TOF TOV
BOFF
TIS
TIH
1.5 V 1.5 V 1.5 V
TIH
TIS
F_CX015A
1.5 V
1.5 V
PCLK2:1 1.5 V
1.5 V 1.5 V
1.5 V
1.5 V
1.5 V 1.5 V
1.5 V
1.5 V
1.5 V
1.5 V
1.5 V
1.5 V
TAVSH
TDVNH TNHQX
TNLNH
TAVEL
TVEL
TEHTV
TNLQV
ADS
A31:2, BE3:0,
W/R, LOCK,
SUP, D/C, DMA
D31:0
WAIT
DT/R
DEN
D31:0 F_CX016A
1.5 V
In VIH
VIL
Out
80960-40, -33, -25
40 Datasheet
4.5.3 Derating Curves
Figure 16. Output Delay or Hold vs. Load Capacitance
Figure 17. Rise and Fall Time Derating at Highest Operating Temperature and Minimum VCC
Figure 18. ICC vs. Frequency and Temperature80960CF-33 and -25
50 100 150
CL (pF)
nom + 10
nom + 5
nom
All outputs except: LOCK,
EOP3:0/TC3:0, FAIL
F_CX017A
DMA, SUP, BREQ, DACK3:0,
Note: PCLK Load = 50pF
Output Valid Delays (ns) @ 1.5 V
LOCK, DMA, SUP, BREQ,
DACK3:0, EOP3:0/TC3:0, FAIL
50 100 150
Time (ns)
C
L
(pF)
10
8
6
4
2
50 100 150
Time (ns)
C
L
(pF)
10
8
6
4
2
a) All outputs except: LOCK, DMA, SUP, HOLDA, BREQ
DACK3:0, E O P 3 : 0/
TC3:0
, FAIL b) LOCK, DMA, SUP, HOLDA, BREQ, DACK3 :0 ,
EOP3:0/TC3:0, F AIL
0.8 V to 2.0 V
0.8 V to 2.0 V
F_CX019A
900
0033
TC = 100° C
TC = 0° C
fPCLK (MHz)
I
CC
(mA)
ICC - ICC under test conditions F_CX020A
80960-40, -33, -25
Datasheet 41
5.0 Reset, Back off and Hold Acknowledge
Table 20 lists th e condition of each processor output pin while RESET is asserted (low). Table 21
lists the condition of each process or o utput pin while HOLDA is asserted (high).
In Table 21, with regard to bus output pin s tate only, the Hold Acknowledge state takes precedence
over the reset state. Although asserting the RESET pin internally resets the processor, the
processors bus output pins do not enter the reset state when Hold Acknowledge has been granted
to a previous HOLD request (HOLDA is active). Furthermore, the processor grants new HOLD
requests and enters the Hold Acknowledge state even while in reset.
For example, when HOLD is asserted while HOLDA is inactive and the processor is in the reset
state, the processors bus pins enter the Hold Acknowledge state and HOLDA is granted. The
processor is not able to perform memory accesses until the HOLD request is removed, even when
the RESET pin is brought high. This operation is provided to simplify boot-up synchronization
among multiple processors sharing the same bus.
Figure 19. ICC vs. Frequency and Temperature80960CF-40
1100
0040
fPCLK (MHz)
I
CC
(mA)
ICC - ICC under test conditions
F_CX020A
TC = 10 00°
TC = 85° C
80960-40, -33, -25
42 Datasheet
Table 20. Reset Conditions
Pins St ate During Reset (HOLDA inactive)
A31:2 Floating
D31:0 Floating
BE3:0 Driven high (Inactive)
W/R Driven low (Read)
ADS Driven high (Inactive)
WAIT Driven high (Inactive)
BLAST Driven low (Active)
DT/R Driven low (Receive)
DEN Driven high (Inactive)
LOCK Driven high (Inactive)
BREQ Driven low (Inactive)
D/C Floating
DMA Floating
SUP Floating
FAIL Driven low (Active)
DACK3:0 Driven high (Inactive)
EOP3:0/TC3:0 Floating (Set to input mode)
Table 21. Hold Acknowledge and Backoff Conditions
Pins State During HOLDA
A31:2 Floating
D31:0 Floating
BE3:0 Floating
W/R Floating
ADS Floating
WAIT Floating
BLAST Floating
DT/R Floating
DEN Floating
LOCK Floating
BREQ Drive n (High or low)
D/CFloating
DMA Floating
SUP Floating
FAIL Driven high (Inactive)
DACK3:0 Driven high (Inactive)
EOP3:0/TC3:0 Driven (When output)
80960-40, -33, -25
Datasheet 43
6.0 Bus Waveforms
Figure 20. Cold Reset Waveform
CLKIN
PCLK2:1
ADS,
W/R, DT/R,
INST, SUP,
D31:0,
STEST
RESET
V
CC
- ONCE
BLAST
LOCK, WAIT,
DEN, DACK3:0
BREQ, FAIL
DMA, A31:2,
D/C, BE3:0
EOP/TC3:0
Invalid
Valid
CLKIN and V
CC
Stable to RESET high,
32 CLKIN Periods in 2x Mode,
periods in 1x Mode.
Inputs
Tdelay
1 PCLK
Tsetup
1PCLK Thold
1 PCLK
minimum
10,000 CLKIN
F_CX021A
RESET high to First Bus
activity, approximately
32 PCLK periods.
V
CC
and CLKIN Stable
to Outputs Valid, maximum
32 CLKIN Periods.
80960-40, -33, -25
44 Datasheet
Figure 21. Warm Reset Waveform
Tdelay
1PCLK
Maximum
RESET
Low to
RESET
State
4 PCLK Perio ds
1 PCLK
F_CX022A
PCLK2:1
ADS,
W/R, DT/R,
SUP,
D31:0,
STEST
RESET
BLAST
LOCK, WAIT,
DEN, DACK3:0
BREQ, F AIL
DMA, A31:2,
D/C, BE3:0
EOP/TC3:0
Valid
Thold
Tsetup
1 PC LK
RESET
High to First Bus Activity,
Approximately 32 PCLK Periods
Minimum
RESET
Low Time
16 PCLK Periods
80960-40, -33, -25
Datasheet 45
Figure 22. Entering the ONCE State
CLKIN
PCLK2:1
ADS, BE3 :0, A31:2 ,
RESET
ONCE
V
CC
and CLKIN Stable
to Outputs Valid, maximum
32 CLKIN Periods.
CLKIN and V
CC
Stable and RESET low and ONCE low to
RESET high, minimum 32 CLKIN Periods in 2x Mode,
10,000 CLKIN Periods in 1x Mode.
D31:0, LOCK, WAIT,
BLAST,W/R, D/C, DEN,
DT/R, HOLD, HOLDA,
DMA, EOP
3:0
/TC3:0,
STEST, XINT7:0, NMI,
DACK3:0, DREQ3:0
READY, BTERM
BLAST, FAIL, SUP,BREQ,
Maximum 32 CLKIN Periods
Required after ONCE Mode entered
V
CC
F_CX023A
CLKIN may not float. It must be
driven high or low or continue to run
80960-40, -33, -25
46 Datasheet
Figure 23. Clock Synchronization in the 2-x Clock Mode
Figure 24. Clock Synchronization in the 1-x Clock Mode
CLKIN
RESET
PCLK2:1
(Case 1)
PCLK2:1
(Case 2)
1.5 V
TIH TIS
1.5 V
1.5 V1.5 V
1.5 V 1.5 V
TCP
Max
Min TCP
Max
Min TCP
SYNC
Note: Case 1 and Case 2 show two possible polarities of PCLK2:1
Min
1.5 V
1.5 V
1.5 V
1.5 V
1.5 V
1.5 V
F_CX024A
Max
CLKIN 1.5 V1.5 V
RESET
TIH TIS
1.5 V
2x CLK
Note: In 1x clock mode, the RESET pin is actually sampled on the falling edge of 2xCLK. 2xCLK is an internal signal
generated by the PLL and is not available on an external pin. Therefore, RESET is specified relative to the rising
edge of CLKIN. The RESET pin is sampled when PCLK is high. F_CX025A
80960-40, -33, -25
Datasheet 47
Figure 25. Non-Burst, Non-Pipelined Requests Without Wait States
In
ADS
A31:4, SUP
,
DMA, D/C,
BE3:0, LOCK
W
/
R
BLAST
DT
/
R
DEN
A3:2
WAIT
D31:0
PCLK
ADADAD
In
Valid Valid Valid
Valid Valid
reserved
Byte
Order Bus
Width N
WDD
N
WAD
N
XDA
N
RDD
N
RAD
Pipe-
Lining External
Ready
Control Burst
reserved
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
00
00
XX
xx 0
00000 X
xx 0
00000 OFF
0Disabled
0
0
0..0 Disabled
0
Valid
F_CX026A
Out
Function
Bit
Value
xx
80960-40, -33, -25
48 Datasheet
Figure 26. Non-Burst, Non-Pipelined Read Request With Wait States
ADS
A31:2, BE3:0
DMA, D/C,
SUP, LOCK
W/R
BLAST
DT/R
DEN
WAIT
D31:0
PCLK
A3 21D1
reserved
Byte
Order Bus
Width N
WDD
N
WAD
N
XDA
N
RDD
N
RAD
Pipe-
Lining External
Ready
Control Burst
reserved
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
01
01
X
xx X
xx X
xxxxx X
xx 3
00011 OFF
0Disabled
0
0
0..0 Disabled
0
In
Function
Bit
Value
Valid
Valid
A
F_CX027A
80960-40, -33, -25
Datasheet 49
Figure 27. Non-Burst, Non-Pipelined Write Request With Wait States
ADS
A31:2,
W/R
BLAST
DT/R
DEN
SUP, DMA,
WAIT
D31:0
PCLK
A3 21 D1
reserved
Byte
Order Bus
Width N
WDD
N
WAD
N
XDA
N
RDD
N
RAD
Pipe-
Lining External
Ready
Control Burst
reserved
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
01
01
X
xx X
xx 3
00011 X
xx X
xxxxxx OFF
0Disabled
0
0
0..0 Disabled
0
Out
A
Function
Bit
Value
Valid
Valid
D/C, LOCK
F_CX028A
BE3:0
80960-40, -33, -25
50 Datasheet
Figure 28. Burst, Non-Pipelined Read Request Without Wait States, 32-Bit Bus
In0
ADS
A31:4, SUP,
DMA, D/C ,
BE3:0, LOCK
W
/
R
BLAST
DT
/
R
DEN
A3:2
WAIT
D31:0
PCLK
ADDDDA
reserved
Byte
Order Bus
Width N
WDD
N
WAD
N
XDA
N
RDD
N
RAD
Pipe-
Lining External
Ready
Control Burst
reserved
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
00
00
32-Bit
10 X
xx X
xxxxx 0
00 0
00000 OFF
0Enabled
1
0
0..0 Disabled
0
F_CX029A
Function
Bit
Value
In3In2In1
Valid
00 01 10 11
80960-40, -33, -25
Datasheet 51
Figure 29. Burst, Non-Pipelined Read Request With Wait States, 32-Bit Bus
ADS
A31:4, SU P,
DMA, D/C,
BE3:0, LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
PCLK
reserved
Byte
Order Bus
Width N
WDD
N
WAD
N
XDA
N
RDD
N
RAD
Pipe-
Lining External
Ready
Control Burst
reserved
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
01
01
32-bit
10 X
xx X
xxxxx 1
01 2
00010 OFF
0Enabled
1
0
0..0 Disabled
0
A21 D 1D1 D1D1 A
In1 In2 In3
In0
Valid
00 1101 10
Function
Bit
Value
F_CX030A
80960-40, -33, -25
52 Datasheet
Figure 30. Burst, Non-Pipelined Write Request Without Wait States, 32-Bit Bus
reserved
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
reserved
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
00
00
32-bit
10 0
00 0
00000 X
xx X
xxxxx OFF
0Enabled
1
0
0..0 Disabled
0
ADS
A31:4, SUP,
DMA, D/C,
BE3:0, LOC K
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
PCLK
ADDDDA
Function
Bit
Value
00 01 10 11
Out0
Valid
Out3Out2Out1
F_CX031A
80960-40, -33, -25
Datasheet 53
Figure 31. Burst, Non-Pipelined Write Request With Wait States, 32-Bit Bus
ADS
A31:4, SUP,
DMA, D/C,
BE3:0, LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
PCLK
reserved
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
reserved
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
01
01
32-bit
10 1
01 2
00010 X
xx X
xxxxx OFF
0Enabled
1
0
0..0 Disabled
0
A21 D 1D 1 D1D 1 A
Out0
Valid
00 1101 10
Function
Bit
Value
Out1 Out2 Out3
F_CX032A
80960-40, -33, -25
54 Datasheet
Figure 32. Burst, Non-Pipelined Read Request With Wait States, 16-Bit Bus
ADS
SUP, DMA,
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
PCLK
reserved
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
reserved
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
01
01
16-bit
01 X
xx X
xxxxx 1
01 2
00010 OFF
0Enabled
1
0
0..0 Disabled
0
A21 D 1D 1 D1D1 A
Function
Bit
Value
Valid
A3:2 = 00 or 10 A3:2 = 01 or 11
D15:0
A1=0 D15:0
A1=1 D15:0
A1=0 D15:0
A1=1
D/C, LOCK,
A31:4, BE3/BHE,
BE1/A1
BE0/BLE
F_CX033A
80960-40, -33, -25
Datasheet 55
Figure 33. Burst, Non-Pipelined Read Request With Wait States, 8-Bit Bus
ADS
SUP, DMA,
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
PCLK
reserved
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
reserved
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
01
01
8-bit
00 X
xx X
xxxxx 1
01 2
00010 OFF
0Enabled
1
0
0..0 Disabled
0
A21 D 1D 1 D1D1 A
Function
Bit
Value
Valid
A3:2 = 00, 01, 10 or 11
D7:0
Byte 0 D7:0
Byte 1 D7:0
Byte 2 D7:0
Byte 3
D/C, LOCK,
A31:4
BE1/A1, A1:0 = 00 A1:0 = 01 A1:0 = 10 A1:0 =11
BE0/A0
F_CX034A
80960-40, -33, -25
56 Datasheet
Figure 34. Non-Burst, Pipelined Read Request Without Wait States, 32-Bit Bus
Non-pipelined request concludes
pipelined read s begin. Pipelined reads conclude,
non-pipelined requests begin.
ADS
A31: 4, SU P,
DMA, D/C,
LOCK
BLAST
WAIT
D31:0
PCLK
reserved
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
reserved
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
0X
xx
X
xx X
xx X
xxxxx X
xx 0
00000 ON
1Disabled
0
0
0..0 X
x
Function
Bit
Value
IN
DIN
DIN
D’’ IN
D’’’ IN
D’’’’
AA
DA’’
DA’’’
D’’ A’’’’
D’’’ D’’’’
Valid Valid Valid Valid Valid Invalid
Invalid
DT/R
DEN
A3:2
BE3:0 Valid Valid Valid Valid Valid Invalid
W/R
F_CX035A
80960-40, -33, -25
Datasheet 57
Figure 35. Non-Burst, Pipelined Read Request With Wait St ates, 32-Bit Bus
Non-pipelined request concludes
pipelined reads begin. Pipelined reads conclude,
non-pipelined requests begin.
ADS
A31:4, SUP,
DMA, D/C,
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
PCLK
BE3:0
A1 A
D1D
reserved
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
reserved
31-23 22 18-1721 20-19 16-12 7-311-109-8 210
X
x0
0X
xx
X
xx X
xx X
xxxxx X
xx 1
00001 ON
1Disabled
1
0
0..0 X
x
IN
D
Invalid
Valid Valid Invalid
IN
D
LOCK Valid Valid Invalid
Function
Bit
Value
F_CX036A
80960-40, -33, -25
58 Datasheet
Figure 36. Burst, Pipelined Read Request Wi thout Wait States, 32-Bit Bus
Pipelined reads
conclude, non-pipelined
requests begin
ADS
A31:4, SUP,
DMA, D/C,
BE3:0, LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
PCLK
Non-pipelined request
concludes, pipelined
reads begin
reserved
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
reserved
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
0X
xx
32-bit
10 X
xx X
xxxxx 0
00 0
00000 ON
1Enabled
1
0
0..0 Disabled
0
ADDDADD
Valid Valid
In-
ValidValid01 10 1100
IN
DIN
DIN
DIN
DIN
DIN
D
Valid
D
Function
Bit
Value
In-
Valid
In-
Valid
F_CX037A
80960-40, -33, -25
Datasheet 59
Figure 37. Burst, Pipelined Read Request With Wait States, 32-Bit Bus
ADS
A31:4, SUP,
DMA, D/C,
BE3:0, LOCK
W/R
A3:2
D31:0
WAIT
BLAST
DT/R
DEN
PCLK
reserved
Byte
Order Bus
Width N
WDD
N
WAD
N
XDA
N
RDD
N
RAD
Pipe-
Lining External
Ready
Control Burst
reserved
31-23 22 18-1721 20-19 16-12 7-311-109-8 210
X
x0
0X
xx
32-bit
10 X
xx X
xxxxx 1
01 2
00010 ON
1Enabled
1
0
0..0 Disabled
0
Function
Bit
Value
IN
DIN
DIN
DIN
DIN
D
A21 D 1D 1 D1A21
Valid
DD
Valid In-
valid
In-
valid
00 01 10 11 Valid In-
valid
Non-pipelined request concludes,
pipelined reads begin. Pipelined reads conc lud e,
non-pipelined requests begin.
F_CX038A
80960-40, -33, -25
60 Datasheet
Figure 38. Burst, Pipelined Read Request With Wait States, 16-Bit Bus
ADS
A31:4, S UP,
DMA, D/C,
BE0/BLE,
W/R
A3:2
BE1/A1
WAIT
BLAST
DT/R
DEN
PCLK
reserved
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
reserved
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
0X
xx
16-bit
01 X
xx X
xxxxx 1
01 2
00010 ON
1Enabled
1
0
0..0 Disabled
0
Function
Bit
Value
D15:0
A1=0 D15:0
A1=1 D15:0
A1=0 D15:0
A1=1 D15:0
D
A21 D 1D1 D1A21
DD
In-
valid
Non-pipelined request conclu des,
pipelined reads begin. Pipelined reads conclude,
non-pi peli n ed req ues ts begi n .
A3:2 = 00 or 10 A 3 :2 = 01 or 11 Valid In-
valid
Valid In-
valid
BE3/BHE,
D31:0
F_CX040A
LOCK
Valid Valid In-
valid
80960-40, -33, -25
Datasheet 61
Figure 39. Burst, Pipelined Read Request With Wait States, 8-Bit Bus
ADS
A31:4, S UP,
DMA, D/C,
LOCK
W/R
A3:2
BE1/A1,
WAIT
BLAST
DT/R
DEN
PCLK
reserved
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
reserved
31-23 22 18-1721 20-19 16-12 7-311-109-8 210
X
x0
0X
xx
8-bit
00 X
xx X
xxxxx 1
01 2
00010 ON
1Enabled
1
0
0..0 Disabled
0
Function
Bit
Value
D7:0
Byte 0 D7:0
Byte 1 D7:0
Byte 2 D7:0
Byte 3 D7:0
D
A21 D 1D1 D1A21
DD
In-
valid
Non-pipelined request concludes,
pipelined reads begin. Pipelin ed rea ds c onclu de ,
non-pipeline d requests begin.
Valid In-
valid
BE0/A0
D31:0
A3:2 = 00, 01, 10, or 11 Valid In-
valid
A1:0 = 00 A1:0 = 01 A1:0 = 10 A1:0 = 11
Valid Valid In-
valid
F_CX039A
80960-40, -33, -25
62 Datasheet
Figure 40. Using External READY
PCLK
ADS
A31:4, S UP,
DT/R
DEN
READY
W/R
DMA, INST,
BLAST
BTERM
A3:2
WAIT
D31:0
D/C, BE3:0,
LOCK
D0 D1 D2 D3 D0 D1 D2 D3
00 01 10 11 00 01 10 11
ValidValid
Quad-Word Read Request
NRAD = 0, NRDD = 0, NXDA = 0
Ready Enabled
Quad-Word Write Requ est
NWAD = 1, NWDD = 0, NWDA = 0
Ready Enabled
F_CX041A
80960-40, -33, -25
Datasheet 63
Figure 41. Terminating a Burst with BTERM
PCLK
ADS
A31:4, SUP,
DT/R
DEN
READY
W/R
DMA, INST,
BLAST
BTERM
A3:2
WAIT
D31:0
D/C, BE3:0,
LOCK
D0 D1 D2 D3
Valid
Quad-Word Write Request
NWAD = 0, NWDD = 0, NWDA = 0
Ready Enabled
00 01 10 11
Note: READY adds memory access time to data transfers, whether or not the
bus access is a burst access. BTERM interrupts a bus access, whether or not
the bus access has more data transfers pending. Either the READY signal or
the BTERM signal may terminate a bus access when the signal is asserted during
the last (or only) data transfer of the bus access.
See Note
F_CX042A
80960-40, -33, -25
64 Datasheet
Figure 42. BOFF Functional Timing
ADS
BLAST
READY
BOFF
A31:2, SUP,
D31:0,
BOFF may not
be asserted
BOFF may not
be asserted
BOFF may be asserted to suspend request
Begin Request End Request
SUSPEND REQUEST
NON-BURST
Regenerate ADS
DMA, D/C,
BE3:0, W AIT,
DEN, DT/R
(WRITES)
BURST
RESUME REQUEST
BURST
Note: READY/BTERM must be enabled; NRAD, NRDD, NWAD, NWDD= 0
F_CX043A
MAY CHANGE
80960-40, -33, -25
Datasheet 65
Figure 43. HOLD Functional Timing
Word Read Request
NRAD=1, NXDA=1
Word Read
Request
NRAD=0,
NXDA=0
Hold State Hold State
PCLK2:1
ADS
A31:2, SU P,
DMA, D/C,
BE3:0, W AIT,
DEN, DT/R
BLAST
HOLD
HOLDA
ValidValid
F_CX044A
80960-40, -33, -25
66 Datasheet
Figure 44. DREQ and DACK Functional Timing
Figure 45. EOP Functional Timing
PCLK2:1
ADS
! (BLAST
& READY
DACKx
(All Modes)
DREQx
(Case 1)
DREQx
(Case 2)
Note:
F_CX018A
& !WAIT)
System
Clock
Start DMA
Bus Request
End DMA
Bus Request
DMA
Acknowledge
DMA
Request
tIS6 tIH6
tIS6 tIH6
(see Note )
1. Case 1: DREQ must deassert before DACK deasserts. This applies to all Fly-By modes: source synchronized
packing modes and destination synchronized unpacking modes.
2. Case 2: DREQ must be deasserted by the second clock (rising edge) after DACK is driven high.
This applies to all other DMA transfers.
3. DACKx is asserted for the duration of a DMA bus request. The request may consist of multiple bus
accesses (defined by ADS and BLAST).
high to prevent next bus cycle
high to prevent next bus cycle
PCLK2:1
EOP
F_CX045A
Note: EOP has the same AC Timing Requirements as DREQ to prevent unwanted DMA requests. EOP is NOT edge
held for a minimum of 2 clock cycles then deasserted within 15 clock cycles.
triggered. EOP must be
15 CLKs Max
2 CLKs Min
80960-40, -33, -25
Datasheet 67
Figure 46. Terminal Count Functional Timing
Figure 47. FAIL Functio nal Timing
Note: Terminal Count becomes active during the last bus request of a buffer transfer. When the
last LOAD/STORE bus request is executed as multiple bus accesses, the TC may be active
for the entire bus request. Refer to the i960® Cx Microprocessor User’s Manual for
further information.
PCLK2:1
DREQ
ADS
DACK
TC
F_CX046A
RESET
FAIL
~65,000 Cycles 5 Cycles 102 Cycles
(Bus Test)
Pass
(Internal Self-Test)
Pass
Fail Fail
F_CX047A
80960-40, -33, -25
68 Datasheet
Figure 48. A Summary of Aligned and Unaligned Transfers for Little Endian Regions
04 812162024
0123456
One Doub le-Wo rd
Short-Word
Load/Store
Word
Load/Store
Double-Word
Load/Store
Byte, Byte Requests
Short Request (Aligned)
Short Requ est (A ligned)
Byte, Byte Requests
Word Request (Aligned)
Byte, Short, Byte, Requests
Short, Short Requests
Byte, Short, Byte Requests
Byte Offset
Word Offset
F_CX048A
One Doub le-Wo rd Burst (A li gne d)
Byte, Short, Word, Byte Requests
Short, Word, Short Requests
Byte, Word, Short, Byte Requests
Word, Word Requests
Request (Aligned)
80960-40, -33, -25
Datasheet 69
Figure 49. A Summary of Aligned and Unaligned Transfers for Little Endian Regions
04 812162024
0123456
Triple-Word
Load/Store
Quad-Word
Load/Store
Word, Word,
Word Requests
Requests
Double-
Double-
Word, Word, Word,
Word Requests
Byte Offset
Word Offset
One Three-Word
Request (Aligned)
Byte , Sh o r t, Word,
Word, Byte Requests
Short Requests
Short, Word, Word,
Byte, Word, Word,
Short, Byte Requests
Word, Word,
Word Requests
One Four-Word
Request (Aligned)
Byte, Short, Word, Word,
Word, Byte Reques ts
Short, Word, Word, Word,
Short Reque sts
Byte, W ord, Word, Word,
Short, Byte Requests
F_CX049A
Requests
Word,
Word
Word,
Word,
Word,
80960-40, -33, -25
70 Datasheet
Figure 50. Idle Bus Operation
PCLK
ADS
A31:4, S UP,
DMA, INST,
D/C, BE3:0
LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
READY,
BTERM
Write Request
NWAD=2, NXDA = 0
Ready Disabled
Idle Bus
(not in Hold Acknowledge state) Read Request
NWAD=2, NXDA = 0
Ready Disabled
In
Out
Valid
Valid
Valid Valid
Valid Valid
F_CX050A