Standard Power MOSFETs File Number 1572 IRF430, IRF431, IRF432, IRF433 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors N-CHANNEL ENHANCEMENT MODE 4.0A and 4.5A, 450V-500V 0 fos(On) = 1.5Q and2.09 Features: w SOA is power-dissipation limited @ Nanosecond switching speeds Linear transfer characteristics 6 @ High input impedance @ Majority carrier device 3 92CS-33741 The IRF430, IRF431, IRF432 and IRF433 are TERMINAL DIAGRAM n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, relay TERMINAL DESIGNATION drivers, and drivers for high-power bipolar switching tran- ORAIN sistors requiring high speed and low gate-drive power. SOURCE (FLANGE ) These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA steel package. GATE 92CS-37801 JEDEC TO-204AA Absolute Maximum Ratings Parameter IRF430 IRF431 IRF432 IRF433 Units, Vos Grain - Source Voltage UL 500 450 500 450 Vv Voce Drain Gate Voltage (Rgg 20kQ) 500 450 500 450 v Ip @ Te = 25C Continuous Drain Current 456 4.5 40 4.0 A Ip @ Te = 100C Continuous Drain Current 3.0 3.0 256 2.6 A lom Pulsed Drain Current @ 18 18 16 16 A Vos. Gate - Source Voltage +20 v Pp @ To = 25C Max. Power Dissipation: 75 (See Fig. 14) w Linear Derating Factor 0.6 (See Fig. 14) wee LM inductive Current, Clamiped (See Fig. 15 and 16) = 100yH A 18 l 18 l 16 I 16 Tig Storage Temperature Range $810 150 Lead Temperature 300 (0.063 in. {1.6mm} from case for 10s} 3-119Standard Power MOSFETs IRF430, IRF431, (RF432, IRF433 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units. Test Conditions BVpss_ Drain - Source Breakdown Voltage IRF430 = inra32 | 500 ~ - v Vgs = OV IRF431 inrag3 | 45 - - v tp = 250nA Vgsith) Gate Threshold Voltage ALL 2.0 ~ [| 40 v Vos = Vas. !p = 250nA igss Gate-Source Leakage Forward ALL = = 100 nA Vos = 20V | GSS. Iggg _ Gate-Source Leakage Reverse ALL = [-100 nA -20V Ipsg Zero Gate Voltage Drain Current AU _ | 250 HA Vps = Max. Rating, Veg = OV = [1000 | 4A Vps = Max. Rating x 0.8, Vag = OV, Te = 125C IDton) On-State Drain Current @ 1RF430 45 - - A InFa3t Vos?! R Vag = 10 TREa32 Ds * !Dion) * Fosion} max. YGS = imraga | 7 | 7 | 7 A Rosion) Static Drain-Source On-State IRF430 _ 1.3 15 2 Resistance IRF431 . . Vy tov, 25a wara3s2. | Ol as | 29 a cs Spe * (RF433 . . Its Forward Transconductance ALL 25 | 32] $ (8) Vos pion Fosion} max. 'p = 2:54 Cis Input Capacitance ALL = 600 _ pF Vas = OV, Vpg = 25V. 1 = 1.0 MHz Coss Output Capacitance ALL = 100 _ pF See Fig. 10 Criss Reverse Transfer Capacitance ALL = 30 - pF talon) _Turn-On Delay Time ALL ~ = 30 ns Vop * 228. Ip = 2.58, Zp = 152 t Rise Time ALL = _ 30 ns See Fig. 17 tgloft) _Turn-Off Delay Time ALL = = 55 ns (MOSFET switching times are essentially tf Fall Time ALL _ _ 30 ns independent of operating temperature.) Q, Total Gate Charge Veg = 10V, Ip = 6.08, Vig = 0.8 Max. Rating. 3 ALL - 30 Cc GS a Vos (Gate-Source Plus Gate-Drain! u 22 " See Fig. 18 for test circuit. (Gate charge is essentially Qge Gate-Source Charge ALL . 4 17 nc independent of operating temperature.) Qgq _ Gate-Drain (Miller) Charge ALL - 14 17 nc lp Internal Drain Inductance ALL - 50] nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer 10 imternat device source and gate pins inductances. and center of die. D ts Internal Source Inductance ALL ~ fri2ze] - nH Measured from the to source pin, 6 mm (0.25 in.) from header G and source bonding ts pad. s Thermal Resistance Pins Junetion-to-Case ALL = ~ [167 | cw Rthcs _ Case-to-Sink ALL ~ 0.1 [| cca Mounting surface flat, smooth, and greased. RinJa _Junction-to-Ambient ALL = - 30 [ c/w Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current IRF430 _ _ 45 A Modified MOSFET symbol (Body Diode} IRF431 . showing the intagrat TRFa32 reverse P-N junction rectifier. o inFa33 | > | 4 a Igy Pulse Source Current IRF430 _ _ 18 A 6 {Body Diode) @ IRF431 (RF432 s inpasa | ~ | 7 4 'S 4 Vsp _ Diode Forward Voltage @ IRF430 _ ge . . iRFa31 ~ 1.4 v Te = 28C, Ig = 4.54, Veg = OV IRF432 _ ono . = IREAa3 - - 13 v Tc = 25C, Is = 4.0A, Vgg = OV ter Reverse Recovery Time ALL = B00} ns Ty = 150C, Ip = 4.58, digit = T00AIus Orr Reverse Recovered Charge ALL - 46 | uc Ty = 150C, Ip = 450, dipidt = 100A/us ton Forward Turn-on Time ALL $ntrinsic tum-on time is negligible. Turn-on speed is substantially controtted by Ls + Lp. OTy = 25C to 150C 3-120 @Pulse Test: Pulse width < 300y8, Duty Cycle < 2%. @ Repetitive Rating: Putse width limited py max. junction temperature. See Transient Thermal tmpedance Curve (Fig. 5)Standard Power MOSFETs IRF430, IRF431, IRF432, IRF433 Vos > pton) * a a $ = 2 i . a = < s : = z Tye 12500 3 | 0 z 5s Uys asec = z Ty = 85C 3 < 4 2 6 s 0 190 200 306 a 1 2 3 5 8 7 Vos, ORAIN-TO-SCURCE VOLTAGE (VOLTS) Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 -- Typical Transfer Characteristics 5 IS LIMITED | Roston) 3 = = = = <3 = z = 5 = 3 3 z z? = = 3 = > S 2 Tp + 25C s Ty= 180C MAX. toa 2 6 2 4 8 0 102 5 10 20 80 100 200 500 Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Vos: DAAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 -- Maximum Safe Operating Area s Ss o s we +. DUTY FACTOR, O= zt . IMPEDANCE ) 2. PEA UNIT BASE = Agyc = 1.67 DEG. CW. es 3 3. Tym > Te * Pom Zensct). Zrnsc(tl/Rypye, NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE (PER UNIT) 2 152 5 wt 2 wd 2 5 2 2 5 wt 2 5 19 2 5 10 ty. SQUARE WAVE PULSE OURATION (SECONOS) Fig. 5 Maxi Effective T: ient Thermal d J ion-to-Case Vs. Pulse Duration 3-121Standard Power MOSFETs IRF 430, IRF431, IRF432, IRF433 5 Ty = 150C Gs. TRANSCONDUCTANCE {SiEMENS) ion, REVERSE DRAIN CURRENT (AMPERES) Vos > 'pjon) * Roston) max. Ty = 2600 Q 1 2 i 4 $ a 1 2 3 4 Jp. ORAIN CURRENT (AMPERES) Vgp. SOURCE-TO-DRAIN VOLTAGE {VOLTS} Fig. 6 Typical Transconductance Vs. Drain Current Fig. 7 Typical Source-Drain Diode Forward Voltage 428 2 ie a 0.85 BVgss, ORAIN-TO-SOURCE BREAKOOWN VOLTAGE (NORMALIZED) Ryston). GRAIN-TO-SOURCE ON RESISTANCE (NORMALIZED) 0.75 0 40 80 120 160 -40 0 40 80 120 Ty, JUNCTION TEMPERATURE (C) Ty, JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature Fig. 9 Normalized On-Resistance Vs. Temperature Ves 0 f= 1 MHz Cogs = Cop + Coy, Cag SHORTED Crs * Cod + L, CAPACITANCE IpF} Vs. GATE-TO-SQUACE VOLTAGE (VOLTS) Ip = 6A FOR TEST CIRCUIT SEE FIGURE 18 Q 10 2 30 40 50 @ 8 18 24 32 40 Vps. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Qg. TOTAL GATE CHARGE inC) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 3-122Standard Power MOSFETs IRF430, IRF431, IRF432, IRF433 RpSton) MEASURED WITH CURRENT PULSE OF | 2.0us DURATION. INITIAL Ty = 25C. (HEATING @ _ LEFFECT OF 2.0 ys PULSE (S MINIMAL) S 3 z* g 5 Vas = 10V, 7] = 3 4+ = a Ngg = 20V = 3 e 8 3 = 2 = 5 s 3 3 3 z z z 5 z a A = $2 $ ~ 2 z = a 1 0 5 10 15 20 25 2 50 5 100 125 150 1p. DRAIN CURRENT {AMPERES) To, CASE TEMPERATURE (C) Fig. 12 Typical On-Resistance Vs. Drain Current Fig. 13 Maximum Drain Current Vs. Case Temperature 80 70 60 2 5 3 z 0 3 = z = 40 os & 30 5 2 2 20 10 6 ee ne ee en Tc. CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve VARY ty TO OBTAIN REQUIRED PEAK I, Vos pur Ey Zar 1" 858V 085 FF Vc 0.75BVpss, veel | Jos } 5 mn 0.0582 a a Fig. 15 Clamped Inductive Test Circuit Fig. 16 Clamped Inductive Waveforms Vop * 225V CURRENT 5a PRE = VkHz Vo > [ tp Vs TO SCOPE Rv > r TT patreny OH L_ 1 ov ve Fig. 17 Switching Time Test Circuit | | 1.5m 0 --- REGULATOR o *Yos {ISOLATED SUPPLY} SAME TYPE CURRENT Fig. 18 Gate Charge Test Circuit 3-123