This is information on a product in full production.
September 2017 DocID028370 Rev 5 1/108
LSM6DS3H
iNEMO inertial module:
always-on 3D accelerometer and 3D gyroscope
Datasheet - production data
Features
Power consumption: 0.85 mA in combo normal
mode and 1.1 mA in combo high-performance mode
up to 1.6 kHz.
“Always-on” experience with low power
consumption for both accelerometer and gyroscope
Interface flexibility: selectable SPI (3/4-wire) or I2C
with the main processor
Auxiliary SPI (3-wire) to support OIS applications
EIS/OIS support
Accelerometer ODR up to 6.66 kHz
Gyroscope ODR up to 3.33 kHz
Smart FIFO
±2/±4/±8/±16 g full scale
±125/±250/±500/±1000/±2000 dps full scale
Analog supply voltage: 1.71 V to 3.6 V
Independent IOs supply (1.62 V)
Compact footprint, 2.5 mm x 3 mm x 0.83 mm
SPI/I2C serial interface data synchronization feature
Embedded temperature sensor
ECOPACK®, RoHS and “Green” compliant
Applications
EIS and OIS for camera applications
Collecting sensor data
Motion tracking and gesture detection
Pedometer, step detector and step counter
Significant motion and tilt functions
Indoor navigation
IoT and connected devices
Vibration monitoring and compensation
Description
The LSM6DS3H is a system-in-package featuring a 3D
digital accelerometer and a 3D digital gyroscope
performing at 1.1 mA (up to 1.6 kHz ODR) in high-
performance mode and enabling always-on low-power
features for an optimal motion experience for the
consumer.
The LSM6DS3H supports main OS requirements,
offering real, virtual and batch sensors with 4 kbyte
FIFO + flexible 4 kbyte (FIFO or programmable) for
dynamic data batching.
The LSM6DS3H gyroscope supports both OIS/EIS
applications. The device can be connected to the
camera module through a dedicated auxiliary SPI
(Mode 3) while flexibility for the primary interface is
available (I2C/SPI).
ST’s family of MEMS sensor modules leverages the
robust and mature manufacturing processes already
used for the production of micromachined
accelerometers and gyroscopes.
The various sensing elements are manufactured using
specialized micromachining processes, while the IC
interfaces are developed using CMOS technology that
allows the design of a dedicated circuit which is
trimmed to better match the characteristics of the
sensing element.
The LSM6DS3H has a full-scale acceleration range of
±2/±4/±8/±16 g and an angular rate range of
±125/±250/±500/±1000/±2000 dps.
High robustness to mechanical shock makes the
LSM6DS3H the preferred choice of system designers
for the creation and manufacturing of reliable products.
The LSM6DS3H is available in a plastic land grid array
(LGA) package.
LGA-14L
(2.5 x 3 x 0.83 mm) typ.
Table 1. Device summary
Part number Temp.
range [°C] Package Packing
LSM6DS3H -40 to +85
LGA-14L
(2.5 x 3 x 0.83 mm)
Tray
LSM6DS3HTR -40 to +85 Tape &
Reel
www.st.com
Contents LSM6DS3H
2/108 DocID028370 Rev 5
Contents
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Embedded low-power features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1 Tilt detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.2 I2C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6.2 Zero-g and zero-rate level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Gyroscope power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Accelerometer power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Interface flexibility with auxiliary SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5.1 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5.2 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5.3 Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5.4 Continuous-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5.5 Bypass-to-Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5.6 FIFO reading procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5.7 Filter block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
DocID028370 Rev 5 3/108
LSM6DS3H Contents
108
6 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.1 LSM6DS3H electrical connections in Mode 1 . . . . . . . . . . . . . . . . . . . . . 42
7.2 LSM6DS3H electrical connections in Mode 2 . . . . . . . . . . . . . . . . . . . . . 43
7.3 LSM6DS3H electrical connections in Mode 3 . . . . . . . . . . . . . . . . . . . . . 44
8 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.1 FUNC_CFG_ACCESS (01h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.2 SENSOR_SYNC_TIME_FRAME (04h) . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.3 FIFO_CTRL1 (06h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.4 FIFO_CTRL2 (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.5 FIFO_CTRL3 (08h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.6 FIFO_CTRL4 (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.7 FIFO_CTRL5 (0Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.8 ORIENT_CFG_G (0Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.9 INT1_CTRL (0Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.10 INT2_CTRL (0Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.11 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.12 CTRL1_XL (10h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.13 CTRL2_G (11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.14 CTRL3_C (12h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.15 CTRL4_C (13h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.16 CTRL5_C (14h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.17 CTRL6_C (15h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.18 CTRL7_G (16h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Contents LSM6DS3H
4/108 DocID028370 Rev 5
9.19 CTRL8_XL (17h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.20 CTRL9_XL (18h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.21 CTRL10_C (19h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.22 MASTER_CONFIG (1Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.23 WAKE_UP_SRC (1Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.24 TAP_SRC (1Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.25 D6D_SRC (1Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.26 STATUS_REG/STATUS_SPIAux (1Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.27 OUT_TEMP_L (20h), OUT_TEMP (21h) . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.28 OUTX_L_G (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.29 OUTX_H_G (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.30 OUTY_L_G (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.31 OUTY_H_G (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.32 OUTZ_L_G (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.33 OUTZ_H_G (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.34 OUTX_L_XL (28h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.35 OUTX_H_XL (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.36 OUTY_L_XL (2Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.37 OUTY_H_XL (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.38 OUTZ_L_XL (2Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.39 OUTZ_H_XL (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.40 SENSORHUB1_REG (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.41 SENSORHUB2_REG (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.42 SENSORHUB3_REG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.43 SENSORHUB4_REG (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.44 SENSORHUB5_REG (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.45 SENSORHUB6_REG (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.46 SENSORHUB7_REG (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.47 SENSORHUB8_REG(35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.48 SENSORHUB9_REG (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.49 SENSORHUB10_REG (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.50 SENSORHUB11_REG (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.51 SENSORHUB12_REG(39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
DocID028370 Rev 5 5/108
LSM6DS3H Contents
108
9.52 FIFO_STATUS1 (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.53 FIFO_STATUS2 (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.54 FIFO_STATUS3 (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.55 FIFO_STATUS4 (3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.56 FIFO_DATA_OUT_L (3Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.57 FIFO_DATA_OUT_H (3Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.58 TIMESTAMP0_REG (40h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.59 TIMESTAMP1_REG (41h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.60 TIMESTAMP2_REG (42h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.61 STEP_TIMESTAMP_L (49h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.62 STEP_TIMESTAMP_H (4Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.63 STEP_COUNTER_L (4Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.64 STEP_COUNTER_H (4Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.65 SENSORHUB13_REG (4Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.66 SENSORHUB14_REG (4Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.67 SENSORHUB15_REG (4Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.68 SENSORHUB16_REG (50h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.69 SENSORHUB17_REG (51h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.70 SENSORHUB18_REG (52h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.71 FUNC_SRC (53h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.72 TAP_CFG (58h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.73 TAP_THS_6D (59h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.74 INT_DUR2 (5Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.75 WAKE_UP_THS (5Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.76 WAKE_UP_DUR (5Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.77 FREE_FALL (5Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.78 MD1_CFG (5Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.79 MD2_CFG (5Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.80 OUT_MAG_RAW_X_L (66h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.81 OUT_MAG_RAW_X_H (67h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.82 OUT_MAG_RAW_Y_L (68h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.83 OUT_MAG_RAW_Y_H (69h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.84 OUT_MAG_RAW_Z_L (6Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Contents LSM6DS3H
6/108 DocID028370 Rev 5
9.85 OUT_MAG_RAW_Z_H (6Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.86 CTRL_SPIAux (70h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10 Embedded functions register mapping . . . . . . . . . . . . . . . . . . . . . . . . . 91
11 Embedded functions registers description . . . . . . . . . . . . . . . . . . . . . 93
11.1 SLV0_ADD (02h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.2 SLV0_SUBADD (03h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.3 SLAVE0_CONFIG (04h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.4 SLV1_ADD (05h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.5 SLV1_SUBADD (06h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.6 SLAVE1_CONFIG (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.7 SLV2_ADD (08h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.8 SLV2_SUBADD (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.9 SLAVE2_CONFIG (0Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
11.10 SLV3_ADD (0Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
11.11 SLV3_SUBADD (0Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
11.12 SLAVE3_CONFIG (0Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.13 DATAWRITE_SRC_MODE_SUB_SLV0 (0Eh) . . . . . . . . . . . . . . . . . . . . . 97
11.14 PEDO_THS_REG (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.15 SM_THS (13h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.16 PEDO_DEB_REG (14h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.17 STEP_COUNT_DELTA (15h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.18 MAG_SI_XX (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.19 MAG_SI_XY (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.20 MAG_SI_XZ (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.21 MAG_SI_YX (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11.22 MAG_SI_YY (28h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11.23 MAG_SI_YZ (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11.24 MAG_SI_ZX (2Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11.25 MAG_SI_ZY (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.26 MAG_SI_ZZ (2Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.27 MAG_OFFX_L (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.28 MAG_OFFX_H (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
DocID028370 Rev 5 7/108
LSM6DS3H Contents
108
11.29 MAG_OFFY_L (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.30 MAG_OFFY_H (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.31 MAG_OFFZ_L (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.32 MAG_OFFZ_H (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
12 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
13 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
13.1 LGA-14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
13.2 LGA-14 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
14 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
List of tables LSM6DS3H
8/108 DocID028370 Rev 5
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 3. Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 5. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 6. SPI slave timing values (in mode 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 7. I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 8. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 9. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 10. I2C terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 11. SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 12. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 13. Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 14. Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 37
Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 37
Table 16. Registers address map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 17. FUNC_CFG_ACCESS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 18. FUNC_CFG_ACCESS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 19. SENSOR_SYNC_TIME_FRAME register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 20. SENSOR_SYNC_TIME_FRAME register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 21. FIFO_CTRL1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 22. FIFO_CTRL1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 23. FIFO_CTRL2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 24. FIFO_CTRL2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 25. FIFO_CTRL3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 26. FIFO_CTRL3 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 27. Gyro FIFO decimation setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 28. Accelerometer FIFO decimation setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 29. FIFO_CTRL4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 30. FIFO_CTRL4 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 31. Fourth FIFO data set decimation setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 32. Third FIFO data set decimation setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 33. FIFO_CTRL5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 34. FIFO_CTRL5 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 35. FIFO ODR selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 36. FIFO mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 37. ORIENT_CFG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Table 38. ORIENT_CFG_G register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 39. Settings for orientation of axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 40. INT1_CTRL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 41. INT1_CTRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Table 42. INT2_CTRL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 43. INT2_CTRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Table 44. WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 45. CTRL1_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 46. CTRL1_XL register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Table 47. Accelerometer ODR register setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 48. BW and ODR (high-performance mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
DocID028370 Rev 5 9/108
LSM6DS3H List of tables
108
Table 49. CTRL2_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 50. CTRL2_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Table 51. Gyroscope ODR configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 52. CTRL3_C register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 53. CTRL3_C register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 54. CTRL4_C register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 55. CTRL4_C register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 56. CTRL5_C register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 57. CTRL5_C register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 58. Output registers rounding pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Table 59. Angular rate sensor self-test mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 60. Linear acceleration sensor self-test mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 61. CTRL6_C register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 62. CTRL6_C register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 63. CTRL7_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 64. CTRL7_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Table 65. Gyroscope high-pass filter mode configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 66. CTRL8_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 67. CTRL8_XL register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Table 68. Accelerometer slope and high-pass filter selection and cutoff frequency . . . . . . . . . . . . . . 63
Table 69. Accelerometer LPF2 cutoff frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 70. CTRL9_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 71. CTRL9_XL register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Table 72. CTRL10_C register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 73. CTRL10_C register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Table 74. MASTER_CONFIG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 75. MASTER_CONFIG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 76. WAKE_UP_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Table 77. WAKE_UP_SRC register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 78. TAP_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 79. TAP_SRC register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Table 80. D6D_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 81. D6D_SRC register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Table 82. STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 83. STATUS_REG register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 84. STATUS_SPIAux register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 85. STATUS_SPIAux description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 86. OUT_TEMP_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 87. OUT_TEMP_H register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 88. OUT_TEMP register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 89. OUTX_L_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 90. OUTX_L_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Table 91. OUTX_H_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 92. OUTX_H_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 93. OUTY_L_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 94. OUTY_L_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Table 95. OUTY_H_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 96. OUTY_H_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 97. OUTZ_L_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 98. OUTZ_L_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Table 99. OUTZ_H_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 100. OUTZ_H_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
List of tables LSM6DS3H
10/108 DocID028370 Rev 5
Table 101. OUTX_L_XL register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 102. OUTX_L_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Table 103. OUTX_H_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 104. OUTX_H_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Table 105. OUTY_L_XL register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 106. OUTY_L_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Table 107. OUTY_H_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 108. OUTY_H_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Table 109. OUTZ_L_XL register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 110. OUTZ_L_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Table 111. OUTZ_H_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 112. OUTZ_H_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Table 113. SENSORHUB1_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 114. SENSORHUB1_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 115. SENSORHUB2_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 116. SENSORHUB2_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 117. SENSORHUB3_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 118. SENSORHUB3_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 119. SENSORHUB4_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 120. SENSORHUB4_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 121. SENSORHUB5_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 122. SENSORHUB5_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 123. SENSORHUB6_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 124. SENSORHUB6_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 125. SENSORHUB7_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 126. SENSORHUB7_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 127. SENSORHUB8_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 128. SENSORHUB8_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 129. SENSORHUB9_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 130. SENSORHUB9_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 131. SENSORHUB10_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 132. SENSORHUB10_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 133. SENSORHUB11_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 134. SENSORHUB11_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 135. SENSORHUB12_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 136. SENSORHUB12_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 137. FIFO_STATUS1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 138. FIFO_STATUS1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 139. FIFO_STATUS2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 140. FIFO_STATUS2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 141. FIFO_STATUS3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 142. FIFO_STATUS3 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 143. FIFO_STATUS4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 144. FIFO_STATUS4 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 145. FIFO_DATA_OUT_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Table 146. FIFO_DATA_OUT_L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 147. FIFO_DATA_OUT_H register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 148. FIFO_DATA_OUT_H register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 149. TIMESTAMP0_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 150. TIMESTAMP0_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 151. TIMESTAMP1_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 152. TIMESTAMP1_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
DocID028370 Rev 5 11/108
LSM6DS3H List of tables
108
Table 153. TIMESTAMP2_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 154. TIMESTAMP2_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 155. STEP_TIMESTAMP_L register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 156. STEP_TIMESTAMP_L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 157. STEP_TIMESTAMP_H register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 158. STEP_TIMESTAMP_H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 159. STEP_COUNTER_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 160. STEP_COUNTER_L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 161. STEP_COUNTER_H register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 162. STEP_COUNTER_H register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 163. SENSORHUB13_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 164. SENSORHUB13_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 165. SENSORHUB14_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 166. SENSORHUB14_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 167. SENSORHUB15_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 168. SENSORHUB15_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 169. SENSORHUB16_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 170. SENSORHUB16_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 171. SENSORHUB17_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 172. SENSORHUB17_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 173. SENSORHUB18_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 174. SENSORHUB18_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 175. FUNC_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 176. FUNC_SRC register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
Table 177. TAP_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 178. TAP_CFG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 179. TAP_THS_6D register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 180. TAP_THS_6D register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 181. Threshold for D4D/D6D function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
Table 182. INT_DUR2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 183. INT_DUR2 register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 184. WAKE_UP_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 185. WAKE_UP_THS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 186. WAKE_UP_DUR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 187. WAKE_UP_DUR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 188. FREE_FALL register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 189. FREE_FALL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Table 190. Threshold for free-fall function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 191. MD1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 192. MD1_CFG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Table 193. MD2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 194. MD2_CFG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Table 195. OUT_MAG_RAW_X_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 196. OUT_MAG_RAW_X_L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 197. OUT_MAG_RAW_X_H register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 198. OUT_MAG_RAW_X_H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 199. OUT_MAG_RAW_Y_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 200. OUT_MAG_RAW_Y_L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 201. OUT_MAG_RAW_Y_H register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 202. OUT_MAG_RAW_Y_H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 203. OUT_MAG_RAW_Z_L register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 204. OUT_MAG_RAW_Z_L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
List of tables LSM6DS3H
12/108 DocID028370 Rev 5
Table 205. OUT_MAG_RAW_Z_H register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 206. OUT_MAG_RAW_Z_H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 207. CTRL_SPIAux register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 208. CTRL_SPIAux register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 209. Registers address map - embedded functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 210. SLV0_ADD register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 211. SLV0_ADD register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Table 212. SLV0_SUBADD register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 213. SLV0_SUBADD register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 214. SLAVE0_CONFIG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Table 215. SLAVE0_CONFIG register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 216. SLV1_ADD register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 217. SLV1_ADD register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
Table 218. SLV1_SUBADD register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 219. SLV1_SUBADD register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 220. SLAVE1_CONFIG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Table 221. SLAVE1_CONFIG register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 222. SLV2_ADD register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 223. SLV2_ADD register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Table 224. SLV2_SUBADD register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 225. SLV2_SUBADD register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 226. SLAVE2_CONFIG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Table 227. SLAVE2_CONFIG register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 228. SLV3_ADD register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 229. SLV3_ADD register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Table 230. SLV3_SUBADD register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 231. SLV3_SUBADD register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 232. SLAVE3_CONFIG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
Table 233. SLAVE3_CONFIG register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 234. DATAWRITE_SRC_MODE_SUB_SLV0 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 235. DATAWRITE_SRC_MODE_SUB_SLV0 register description. . . . . . . . . . . . . . . . . . . . . . . 97
Table 236. PEDO_THS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
Table 237. PEDO_THS_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 238. SM_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 239. SM_THS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 240. PEDO_DEB_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
Table 241. PEDO_DEB_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 242. STEP_COUNT_DELTA register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 243. STEP_COUNT_DELTA register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 244. MAG_SI_XX register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 245. MAG_SI_XX register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
Table 246. MAG_SI_XY register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 247. MAG_SI_XY register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
Table 248. MAG_SI_XZ register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 249. MAG_SI_XZ register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
Table 250. MAG_SI_YX register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 251. MAG_SI_YX register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 252. MAG_SI_YY register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 253. MAG_SI_YY register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 254. MAG_SI_YZ register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 255. MAG_SI_YZ register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 256. MAG_SI_ZX register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
DocID028370 Rev 5 13/108
LSM6DS3H List of tables
108
Table 257. MAG_SI_ZX register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 258. MAG_SI_ZY register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 259. MAG_SI_ZY register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 260. MAG_SI_ZZ register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 261. MAG_SI_ZZ register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 262. MAG_OFFX_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 263. MAG_OFFX_L register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 264. MAG_OFFX_H register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 265. MAG_OFFX_L register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 266. MAG_OFFY_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 267. MAG_OFFY_L register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 268. MAG_OFFY_H register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 269. MAG_OFFY_L register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 270. MAG_OFFZ_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 271. MAG_OFFZ_L register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 272. MAG_OFFZ_H register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 273. MAG_OFFX_L register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 274. Reel dimensions for carrier tape of LGA-14 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 275. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
List of figures LSM6DS3H
14/108 DocID028370 Rev 5
List of figures
Figure 1. Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 2. LSM6DS3H connection modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 3. SPI slave timing diagram (in mode 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 4. I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 5. Mode 3 interface configuration (OIS applications) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 6. Accelerometer chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 7. Accelerometer composite filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 8. Gyroscope chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 9. Read and write protocol (in mode 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 10. SPI read protocol (in mode 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 11. Multiple byte SPI read protocol (2-byte example) (in mode 3) . . . . . . . . . . . . . . . . . . . . . . 39
Figure 12. SPI write protocol (in mode 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 13. Multiple byte SPI write protocol (2-byte example) (in mode 3) . . . . . . . . . . . . . . . . . . . . . . 40
Figure 14. SPI read protocol in 3-wire mode (in mode 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 15. LSM6DS3H electrical connections in Mode 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 16. LSM6DS3H electrical connections in Mode 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 17. LSM6DS3H electrical connections in Mode 3
(SPI 4-wire primary interface configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 18. LGA-14 2.5x3x0.86 14L package outline and mechanical data . . . . . . . . . . . . . . . . . . . . 104
Figure 19. Carrier tape information for LGA-14 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 20. LGA-14 package orientation in carrier tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 21. Reel information for carrier tape of LGA-14 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
DocID028370 Rev 5 15/108
LSM6DS3H Overview
108
1 Overview
The LSM6DS3H is a system-in-package featuring a high-performance 3-axis digital
accelerometer and 3-axis digital gyroscope.
The integrated power-efficient modes are able to reduce the power consumption down to
1.1 mA in high-performance mode, combining always-on low-power features with superior
sensing precision for an optimal motion experience for the consumer thanks to ultra-low
noise performance for both the gyroscope and accelerometer.
The LSM6DS3H delivers best-in-class motion sensing that can detect orientation and
gestures in order to empower application developers and consumers with features and
capabilities that are more sophisticated than simply orienting their devices to portrait and
landscape mode.
The event-detection interrupts enable efficient and reliable motion tracking and contextual
awareness, implementing hardware recognition of free-fall events, 6D orientation, tap and
double-tap sensing, activity or inactivity, and wakeup events.
The LSM6DS3H supports main OS requirements, offering real, virtual and batch mode
sensors. In addition, the LSM6DS3H can efficiently run the sensor-related features specified
in Android, saving power and enabling faster reaction time. In particular, the LSM6DS3H
has been designed to implement hardware features such as significant motion, tilt,
pedometer functions, timestamping and to support the data acquisition of an external
magnetometer with ironing correction (hard, soft).
The LSM6DS3H offers hardware flexibility to connect the pins with different mode
connections to external sensors to expand functionalities such as adding a sensor hub,
auxiliary SPI, etc. The application processor connection is supported by both SPI and I2C
interfaces for complete interface flexibility.
Up to 8 kbyte of FIFO [4 kbyte FIFO + flexible 4 kbyte (FIFO or programmable)] with
dynamic allocation of significant data (i.e. external sensors, timestamp, etc.) allows overall
power saving of the system.
Like the entire portfolio of MEMS sensor modules, the LSM6DS3H leverages the robust and
mature in-house manufacturing processes already used for the production of
micromachined accelerometers and gyroscopes. The various sensing elements are
manufactured using specialized micromachining processes, while the IC interfaces are
developed using CMOS technology that allows the design of a dedicated circuit which is
trimmed to better match the characteristics of the sensing element.
The LSM6DS3H is available in a small plastic land grid array (LGA) package of
2.5 x 3.0 x 0.83 mm to address ultra-compact solutions.
Embedded low-power features LSM6DS3H
16/108 DocID028370 Rev 5
2 Embedded low-power features
The LSM6DS3H has been designed to be fully compliant with Android, featuring the
following on-chip functions:
8 kbyte data buffering
4 kbyte FIFO + flexible 4 kbyte (FIFO or programmable)
100% efficiency with flexible configurations and partitioning
possibility to store timestamp
Event-detection interrupts (fully configurable):
free-fall
wakeup
6D orientation
tap and double-tap sensing
activity / inactivity recognition
Specific IP blocks with negligible power consumption and high-performance:
pedometer functions: step detector and step counters
tilt (Android compliant, refer to Section 2.1: Tilt detection for additional info
significant motion (Android compliant)
Sensor hub
up to 6 total sensors: 2 internal (accelerometer and gyroscope) and 4 external
sensors
Data rate synchronization with external trigger for reduced sensor access and enhanced
fusion
2.1 Tilt detection
The tilt function helps to detect activity change and has been implemented in hardware
using only the accelerometer to achieve both the targets of ultra-low power consumption
and robustness during the short duration of dynamic accelerations.
It is based on a trigger of an event each time the device's tilt changes by an angle greater
than 35 degrees from the start position.
The tilt function can be used with different scenarios, for example:
a) Trigger when phone is in a front pants pocket and the user goes from sitting to
standing or standing to sitting;
b) Doesn’t trigger when phone is in a front pants pocket and the user is walking,
running or going upstairs.
DocID028370 Rev 5 17/108
LSM6DS3H Pin description
108
3 Pin description
Figure 1. Pin connections
1. Leave pin electrically unconnected and soldered to PCB.
(TOP VIEW)
DIRECTIONS OF THE
DETECTABLE
ANGULAR RATES
X
Z
X
Y
(TOP VIEW)
DIRECTION OF THE
DETECTABLE
ACCELERATIONS
YX
Z
SDO/SA0
SDx
SCx
INT1
1
75
14
BOTTOM
VIEW
11
VDD
INT2
CS_Aux
NC
12
4
8
+Ω
+Ω
+Ω
CS
SCL
SDA
VDDIO
GND
GND
(1)
Pin description LSM6DS3H
18/108 DocID028370 Rev 5
3.1 Pin connections
The LSM6DS3H offers the flexibility to connect the pins in order to have three different
mode connections and functionalities. In detail:
Mode 1: I2C slave interface or SPI (3- and 4-wire) serial interface is available;
Mode 2: I2C slave interface or SPI (3- and 4-wire) serial interface and I2C interface
master for external sensors connections are available;
Mode 3(a): I2C slave interface or SPI (3- and 4-wire) serial interface is available for the
application processor interface while an auxiliary SPI (3-wire) serial interface for
external sensor connections (i.e. camera module) is available.
Figure 2. LSM6DS3H connection modes
In the following table each mode is described for the pin connection and function.
a. In the primary SPI connection, the gyroscope output data is available in registers 22h to 27h with user-selected
FS and ODR. In the auxiliary SPI connection, gyroscope output data is available in registers 22h to 27h
@ 3.3 kHz and FS = 250 dps.
/60'6+
+267
,&63,Z
/60'6+
+267
,&63,Z
0DVWHU,&
([WHUQDOVHQVRUV
«
«
/60'6+
+267
,&63,Z
$X[63,Z
&DPHUD
0RGXOH
0RGH 0RGH 0RGH
DocID028370 Rev 5 19/108
LSM6DS3H Pin description
108
Table 2. Pin description
Pin# Name Mode 1 function Mode 2 function Mode 3 function
1 SDO/SA0
SPI 4-wire interface serial
data output (SDO)
I2C least significant bit of the
device address (SA0)
SPI 4-wire interface serial data
output (SDO)
I2C least significant bit of the
device address (SA0)
SPI 4-wire interface serial
data output (SDO)
I2C least significant bit of the
device address (SA0)
2 SDx Connect to VDDIO or GND I2C serial data master (MSDA)
Auxiliary SPI 3-wire interface
serial data input (SDI_Aux)
and serial data output
(SDO_Aux)
3 SCx Connect to VDDIO or GND I2C serial clock master (MSCL) Auxiliary SPI 3-wire interface
serial port clock (SPC_Aux)
4 INT1 Programmable interrupt 1
5 VDDIO(1) Power supply for I/O pins
6 GND 0 V supply
7 GND 0 V supply
8 VDD(2) Power supply
9 INT2 Programmable interrupt 2
(INT2)/ Data enable (DEN)
Programmable interrupt 2
(INT2)/ Data enable (DEN)/
I2C master external
synchronization signal
(MDRDY)
Programmable interrupt 2
(INT2)/ Data enable (DEN)
10 CS_Aux Leave unconnected(3) Leave unconnected(3) Auxiliary SPI 3-wire interface
enable
11 NC(3) Leave unconnected
12 CS
I2C/SPI mode selection
(1: SPI idle mode / I2C
communication enabled; 0:
SPI communication mode /
I2C disabled)
I2C/SPI mode selection
(1: SPI idle mode / I2C
communication enabled;
0: SPI communication mode /
I2C disabled)
I2C/SPI mode selection
(1: SPI idle mode / I2C
communication enabled;
0: SPI communication mode
/I2C disabled)
13 SCL I2C serial clock (SCL)
SPI serial port clock (SPC)
I2C serial clock (SCL)
SPI serial port clock (SPC)
I2C serial clock (SCL)
SPI serial port clock (SPC)
14 SDA
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data
output (SDO)
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data
output (SDO)
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data
output (SDO)
1. Recommended 100 nF filter capacitor.
2. Recommended 100 nF capacitor.
3. Leave pin electrically unconnected and soldered to PCB.
Module specifications LSM6DS3H
20/108 DocID028370 Rev 5
4 Module specifications
4.1 Mechanical characteristics
@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.
Table 3. Mechanical characteristics
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
LA_FS Linear acceleration measurement
range
±2
g
±4
±8
±16
G_FS Angular rate
measurement range
±125
dps
±250
±500
±1000
±2000
LA_So Linear acceleration sensitivity(2)
FS = ±2 0.061
mg/LSB
FS = ±4 0.122
FS = ±8 0.244
FS = ±16 0.488
G_So Angular rate sensitivity(3)
FS = ±125 4.375
mdps/LSB
FS = ±250 8.75
FS = ±500 17.50
FS = ±1000 35
FS = ±2000 70
LA_SoDr Linear acceleration sensitivity
change vs. temperature
from -40° to +85°
delta from T=25° ±1 %
G_SoDr Angular rate sensitivity change
vs. temperature
from -40° to +85°
delta from T=25° ±1.5 %
LA_TyOff Linear acceleration typical zero-g
level offset accuracy(4) ±40 mg
G_TyOff Angular rate typical zero-rate
level(4) ±10 dps
LA_OffDr Linear acceleration zero-g level
change vs. temperature ±0.5 mg/ °C
G_OffDr Angular rate typical zero-rate
level change vs. temperature ±0.05 dps/°C
DocID028370 Rev 5 21/108
LSM6DS3H Module specifications
108
Rn Rate noise density
in high-performance mode(5) 6 mdps/Hz
RnRMS Gyroscope RMS noise
in low-power mode(6) 120 mdps
An Acceleration noise density
in high-performance mode(7)
FS= ±2 g90 μg/Hz
FS= ±4 g90 μg/Hz
FS= ±8 g110 μg/Hz
FS= ±16 g180 μg/Hz
RMS Acceleration RMS noise
in normal/low-power mode(8)
FS= ±2 g1.7 mg(RMS)
FS= ±4 g2.0 mg(RMS)
FS= ±8 g2.7 mg(RMS)
FS= ±16 g4.4 mg(RMS)
LA_ODR Linear acceleration output data
rate
12.5
26
52
104
208
416
833
1666
3332
6664 Hz
G_ODR Angular rate output data rate
12.5
26
52
104
208
416
833
1666
3332(9)
Vst
Linear acceleration
self-test output change(10)(11) FS = 2 g90 1700 mg
Angular rate
self-test output change(12)(13) FS = 2000 dps 150 700 dps
Top Operating temperature range -40 +85 °C
1. Typical specifications are not guaranteed.
2. Linear acceleration sensitivity after factory calibration test and trimming.
3. Angular rate sensitivity after factory calibration test and trimming.
4. Values after soldering.
5. RND (rate noise density) mode is independent of the ODR and FS setting.
Table 3. Mechanical characteristics (continued)
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
Module specifications LSM6DS3H
22/108 DocID028370 Rev 5
6. Gyro noise RMS is independent of the ODR and FS setting.
7. Noise density in HP mode is the same for all ODRs.
8. Noise RMS in Normal/LP mode is the same for all the ODR RMS related to BW = ODR /2 (for ODR /9, typ value can be
calculated by Typ *0.6)
9. To enable this ODR, refer to CTRL4_C (13h).
10. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in CTRL5_C (14h), Table 60 for all
the axes.
11. The linear acceleration self-test output change is defined with the device in stationary condition as the absolute value of:
OUTPUT[LSb] (self-test enabled) - OUTPUT[LSb] (self-test disabled). 1LSb = 0.061 mg at ±2 g full scale.
12. The sign of the angular rate self-test output change is defined by the STx_G bits in CTRL5_C (14h), Table 59 for all the
axes.
13. The angular rate self-test output change is defined with the device in stationary condition as the absolute value of:
OUTPUT[LSb] (self-test enabled) - OUTPUT[LSb] (self-test disabled). 1LSb = 70 mdps at ±2000 dps full scale.
DocID028370 Rev 5 23/108
LSM6DS3H Module specifications
108
4.2 Electrical characteristics
@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.
Table 4. Electrical characteristics
For details related to the LSM6DS3H operating modes, refer to 5.2: Gyroscope power
modes and 5.3: Accelerometer power modes.
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
Vdd Supply voltage 1.71 1.8 3.6 V
Vdd_IO Power supply for I/O 1.62 Vdd + 0.1 V
IddHP Gyroscope and accelerometer in
high-performance mode up to ODR = 1.6 kHz 1.1 mA
IddNM Gyroscope and accelerometer in
normal mode ODR = 208 Hz 0.85 mA
IddLP Gyroscope and accelerometer in
low-power mode ODR = 12.5 Hz 0.4 mA
LA_IddHP
Accelerometer current
consumption in high-performance
mode
up to ODR = 1.6 kHz 240 μA
LA_IddNM Accelerometer current
consumption in normal mode ODR = 104 Hz 60 μA
LA_IddLM Accelerometer current
consumption in low-power mode ODR = 12.5 Hz 10 μA
IddPD Gyroscope and accelerometer in
power down 6μA
VIH Digital high-level input voltage 0.7 *
VDD_IO V
VIL Digital low-level input voltage 0.3 *
VDD_IO V
VOH High-level output voltage IOH = 4 mA (2) VDD_IO -
0.2 V
VOL Low-level output voltage IOL = 4 mA (2) 0.2 V
Top Operating temperature range -40 +85 °C
1. Typical specifications are not guaranteed.
2. 4 mA is the maximum driving capability, i.e. the maximum DC current that can be sourced/sunk by the digital pad in order to
guarantee the correct digital output voltage levels VOH and VOL.
Module specifications LSM6DS3H
24/108 DocID028370 Rev 5
4.3 Temperature sensor characteristics
@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.
Table 5. Temperature sensor characteristics
Symbol Parameter Test condition Min. Typ.(1)
1. Typical specifications are not guaranteed.
Max. Unit
TODR Temperature refresh rate 52 Hz
Toff Temperature offset(2)
2. The output of the temperature sensor is 0 LSB (typ.) at 25 °C.
-15 +15 °C
TSen Temperature sensitivity 16 LSB/°C
TST Temperature stabilization
time(3)
3. Time from power ON bit to valid data based on characterization data.
500 μs
T_ADC_res Temperature ADC resolution 12 bit
Top Operating temperature range -40 +85 °C
DocID028370 Rev 5 25/108
LSM6DS3H Module specifications
108
4.4 Communication interface characteristics
4.4.1 SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Figure 3. SPI slave timing diagram (in mode 3)
Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output
ports.
Table 6. SPI slave timing values (in mode 3)
Symbol Parameter
Value(1)
Unit
Min Max
tc(SPC) SPI clock cycle 100 ns
fc(SPC) SPI clock frequency 10 MHz
tsu(CS) CS setup time 5
ns
th(CS) CS hold time 20
tsu(SI) SDI input setup time 5
th(SI) SDI input hold time 15
tv(SO) SDO valid output time 50
th(SO) SDO output hold time 5
tdis(SO) SDO output disable time 50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production
Module specifications LSM6DS3H
26/108 DocID028370 Rev 5
4.4.2 I2C - inter-IC control interface
Subject to general operating conditions for Vdd and Top.
Figure 4. I2C slave timing diagram
Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
Table 7. I2C slave timing values
Symbol Parameter
I2C Standard mode(1) I2C Fast mode (1)
Unit
Min Max Min Max
f(SCL) SCL clock frequency 0 100 0 400 kHz
tw(SCLL) SCL clock low time 4.7 1.3
μs
tw(SCLH) SCL clock high time 4.0 0.6
tsu(SDA) SDA setup time 250 100 ns
th(SDA) SDA data hold time 0 3.45 0 0.9 μs
th(ST) START condition hold time 4 0.6
μs
tsu(SR) Repeated START condition
setup time 4.7 0.6
tsu(SP) STOP condition setup time 4 0.6
tw(SP:SR) Bus free time between STOP
and START condition 4.7 1.3
1. Data based on standard I2C protocol requirement, not tested in production.
6'$
6&/
W
VX63
W
Z6&//
W
VX6'$
W
VX65
W
K67
W
Z6&/+
W
K6'$
W
Z6365
67$57
5(3($ 7('
67$57
6723
67$ 57
DocID028370 Rev 5 27/108
LSM6DS3H Module specifications
108
4.5 Absolute maximum ratings
Stresses above those listed as “Absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Note: Supply voltage on any pin should never exceed 4.8 V.
Table 8. Absolute maximum ratings
Symbol Ratings Maximum value Unit
Vdd Supply voltage -0.3 to 4.8 V
TSTG Storage temperature range -40 to +125 °C
Sg Acceleration g for 0.2 ms 10,000 g
ESD Electrostatic discharge protection (HBM) 2 kV
Vin Input voltage on any control pin
(including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0) -0.3 to Vdd_IO +0.3 V
This device is sensitive to mechanical shock, improper handling can cause
permanent damage to the part.
This device is sensitive to electrostatic discharge (ESD), improper handling can
cause permanent damage to the part.
Module specifications LSM6DS3H
28/108 DocID028370 Rev 5
4.6 Terminology
4.6.1 Sensitivity
Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration
to the device. Because the sensor can measure DC accelerations, this can be done easily
by pointing the selected axis towards the ground, noting the output value, rotating the
sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing
so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the
smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This
value changes very little over temperature and over time. The sensitivity tolerance describes
the range of sensitivities of a large number of sensors.
An angular rate gyroscope is device that produces a positive-going digital output for
counterclockwise rotation around the axis considered. Sensitivity describes the gain of the
sensor and can be determined by applying a defined angular velocity to it. This value
changes very little over temperature and time.
4.6.2 Zero-g and zero-rate level
Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output
signal from the ideal output signal if no acceleration is present. A sensor in a steady state on
a horizontal surface will measure 0 g on both the X-axis and Y-axis, whereas the Z-axis will
measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content
of OUT registers 00h, data expressed as 2’s complement number). A deviation from the
ideal value in this case is called zero-g offset.
Offset is to some extent a result of stress to MEMS sensor and therefore the offset can
slightly change after mounting the sensor onto a printed circuit board or exposing it to
extensive mechanical stress. Offset changes little over temperature, see “Linear
acceleration zero-g level change vs. temperature” in Table 3. The zero-g level tolerance
(TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.
Zero-rate level describes the actual output signal if there is no angular rate present. The
zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor
and therefore the zero-rate level can slightly change after mounting the sensor onto a
printed circuit board or after exposing it to extensive mechanical stress. This value changes
very little over temperature and time.
DocID028370 Rev 5 29/108
LSM6DS3H Functionality
108
5 Functionality
5.1 Operating modes
The LSM6DS3H has three operating modes available:
only accelerometer active and gyroscope in power-down
only gyroscope active and accelerometer in power-down
both accelerometer and gyroscope sensors active with independent ODR
The accelerometer is activated from power down by writing ODR_XL[3:0] in CTRL1_XL
(10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in
CTRL2_G (11h). For combo mode the ODRs are totally independent.
5.2 Gyroscope power modes
In the LSM6DS3H, the gyroscope can be configured in four different operating modes:
power-down, low-power, normal mode and high-performance mode. The operating mode
selected depends on the value of the G_HM_MODE bit in CTRL7_G (16h). If G_HM_MODE
is set to ‘0’, high-performance mode is valid for all ODRs (from 12.5 Hz up to 1.6 kHz).
To enable the low-power and normal mode, the G_HM_MODE bit has to be set to ‘1’. Low-
power mode is available for lower ODR (12.5, 26, 52 Hz) while normal mode is available for
ODRs equal to 104 and 208 Hz.
5.3 Accelerometer power modes
In the LSM6DS3H, the accelerometer can be configured in four different operating modes:
power-down, low-power, normal mode and high-performance mode. The operating mode
selected depends on the value of the XL_HM_MODE bit in CTRL6_C (15h). If
XL_HM_MODE is set to ‘0’, high-performance mode is valid for all ODRs (from 12.5 Hz up
to 6.66 kHz).
To enable the low-power and normal mode, the XL_HM_MODE bit has to be set to ‘1’. Low-
power mode is available for lower ODRs (12.5, 26, 52 Hz) while normal mode is available
for ODRs equal to 104 and 208 Hz.
Functionality LSM6DS3H
30/108 DocID028370 Rev 5
5.4 Interface flexibility with auxiliary SPI
In Mode3 configuration of the LSM6DS3H, interface flexibility is supported as follows:
Primary interface: I2C or SPI (3/4-wire)
Auxiliary interface: SPI (3-wire)
This configuration can support OIS applications, see details in the following figure.
Figure 5. Mode 3 interface configuration (OIS applications)
The primary interface is always available and the gyroscope output values are in registers
22h to 27h as per user-selected FS and ODR.
The auxiliary interface needs to be enabled in CTRL_SPIAux (70h) register and gyroscope
output values are in registers 22h to 27h with FS = 250 dps and ODR = 3.3 kHz. In this
interface SPI can write only to the dedicated register (CTRL_SPIAux (70h)). When the
auxiliary SPI is connected to the camera module, the recommendations are as follows:
Single axis enable bits in CTRL9_XL (18h) and CTRL10_C (19h) have to be ‘1’ (default
value)
Sign and orient bits in ORIENT_CFG_G (0Bh) have to be set to ‘0’ (default value)
Sleep bit in CTRL4_C (13h) has to be set to ‘0’ (default value)
Avoid using the self-test if the camera module is reading data
When the camera module is not connected, the device has the same behavior as the
LSM6DS3 (all bits supported).
DocID028370 Rev 5 31/108
LSM6DS3H Functionality
108
5.5 FIFO
The presence of a FIFO allows consistent power saving for the system since the host
processor does not need continuously poll data from the sensor, but it can wake up only
when needed and burst the significant data out from the FIFO.
LSM6DS3H embeds 4 kbyte FIFO + flexible 4 kbyte (FIFO or programmable) to store the
following data:
gyroscope
accelerometer
external sensors
step counter and timestamp
temperature
Writing data in the FIFO can be configured to be triggered by the:
- accelerometer/gyroscope data-ready signal; in which case the ODR must be lower than or
equal to both the accelerometer and gyroscope ODRs;
- sensor hub data-ready signal;
- step detection signal.
In addition, each data can be stored at a decimated data rate compared to FIFO ODR and it
is configurable by the user, setting the registers FIFO_CTRL3 (08h) and FIFO_CTRL4
(09h). The available decimation factors are 2, 3, 4, 8, 16, 32.
Programmable FIFO threshold can be set in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h)
using the FTH [11:0] bits.
To monitor the FIFO status, dedicated registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2
(3Bh), FIFO_STATUS3 (3Ch), FIFO_STATUS4 (3Dh)) can be read to detect FIFO overrun
events, FIFO full status, FIFO empty status, FIFO threshold status and the number of
unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2
pads of these status events, the configuration can be set in INT1_CTRL (0Dh) and
INT2_CTRL (0Eh).
FIFO buffer can be configured according to five different modes:
Bypass mode
FIFO mode
Continuous mode
Continuous-to-FIFO mode
Bypass-to-continuous mode
Each mode is selected by the FIFO_MODE_[2:0] in FIFO_CTRL5 (0Ah) register. To
guarantee the correct acquisition of data during the switching into and out of FIFO mode,
the first sample acquired must be discarded.
Functionality LSM6DS3H
32/108 DocID028370 Rev 5
5.5.1 Bypass mode
In Bypass mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 000), the FIFO is not
operational and it remains empty.
Bypass mode is also used to reset the FIFO when in FIFO mode.
5.5.2 FIFO mode
In FIFO mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 001) data from the output
channels are stored in the FIFO until it is full.
To reset FIFO content, Bypass mode should be selected by writing FIFO_CTRL5 (0Ah)
(FIFO_MODE_[2:0]) to '000' After this reset command, it is possible to restart FIFO mode by
writing FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0]) to '001'.
FIFO buffer memorizes up to 4096 samples of 16 bits each but the depth of the FIFO can be
resized by setting the FTH [11:0] bits in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h). If the
STOP_ON_FTH bit in CTRL4_C (13h) is set to '1', FIFO depth is limited up to FTH [11:0]
bits in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h).
5.5.3 Continuous mode
Continuous mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 110) provides a continuous
FIFO update: as new data arrives, the older data is discarded.
A FIFO threshold flag FIFO_STATUS2 (3Bh)(FTH) is asserted when the number of unread
samples in FIFO is greater than or equal to FIFO_CTRL1 (06h) and FIFO_CTRL2
(07h)(FTH [11:0]).
It is possible to route FIFO_STATUS2 (3Bh) (FTH) to the INT1 pin by writing in register
INT1_CTRL (0Dh) (INT1_FTH) = ‘1’ or to the INT2 pin by writing in register INT2_CTRL
(0Eh) (INT2_FTH) = ‘1’.
A full-flag interrupt can be enabled, INT1_CTRL (0Dh) (INT_ FULL_FLAG) = '1', in order to
indicate FIFO saturation and eventually read its content all at once.
If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and
the OVER_RUN flag in FIFO_STATUS2 (3Bh) is asserted.
In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of
unread samples available in FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh)
(DIFF_FIFO[11:0]).
5.5.4 Continuous-to-FIFO mode
In Continuous-to-FIFO mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 011), FIFO
behavior changes according to the trigger event detected in one of the following interrupt
registers FUNC_SRC (53h), TAP_SRC (1Ch), WAKE_UP_SRC (1Bh) and D6D_SRC
(1Dh).
When the selected trigger bit is equal to '1', FIFO operates in FIFO mode.
When the selected trigger bit is equal to '0', FIFO operates in Continuous mode.
DocID028370 Rev 5 33/108
LSM6DS3H Functionality
108
5.5.5 Bypass-to-Continuous mode
In Bypass-to-Continuous mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = '100'), data
measurement storage inside FIFO operates in Continuous mode when selected triggers in
one of the following interrupt registers FUNC_SRC (53h), TAP_SRC (1Ch),
WAKE_UP_SRC (1Bh) and D6D_SRC (1Dh) are equal to '1', otherwise FIFO content is
reset (Bypass mode).
5.5.6 FIFO reading procedure
The data stored in FIFO are accessible from dedicated registers (FIFO_DATA_OUT_L
(3Eh) and FIFO_DATA_OUT_H (3Fh)) and each FIFO sample is composed of 16 bits.
All FIFO status registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh), FIFO_STATUS3
(3Ch), FIFO_STATUS4 (3Dh)) can be read at the start of a reading operation, minimizing
the intervention of the application processor.
Saving data in the FIFO buffer is organized in four FIFO data sets consisting of 6 bytes
each:
The 1st FIFO data set is reserved for gyroscope data;
The 2nd FIFO data set is reserved for accelerometer data;
The 3rd FIFO data set is reserved for the external sensor data stored in the registers from
SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h);
The 4th FIFO data set can be alternately associated to the external sensor data stored in the
registers from SENSORHUB7_REG (34h) to SENSORHUB12_REG(39h), to the step
counter and timestamp info, or to the temperature sensor data.
5.5.7 Filter block diagrams
Figure 6. Accelerometer chain
$'&
%:B;/>@
'LJLWDO
/3)LOWHU
$QDORJ
$QWLDOLDVLQJ
/3)LOWHU
2'5B;/>@
&RPSRVLWH
)LOWHU
/3)
Functionality LSM6DS3H
34/108 DocID028370 Rev 5
Figure 7. Accelerometer composite filter
Figure 8. Gyroscope chain
6/23(
),/7(5
'LJLWDO
/3)LOWHU
'LJLWDO
+3)LOWHU
6/23(B)'625 )81&B(1
+3&)B;/>@




/3)B;/B(1 
+3B6/23(B;/B(1 
;/
2XWSXW
5HJ
),)2
:DNHXS
''
6/23(B)'6
/2:B3$66B21B'
)UHHIDOO
$QGURLG
IXQFWLRQV
6'7DS
6/23(B)'625 )81&B(1
/3)
/3)B;/B(1 
+3B6/23(B;/B(1 
/3)B;/B(1 ;
+3B6/23(B;/B(1 
$FWLYLW\
,QDFWLYLW\
$'&
'LJLWDO
+3)LOWHU
+3B*B(1
/3)LOWHU
$QDORJ
$QWLDOLDVLQJ
/3)LOWHU
2'5B*>@
DocID028370 Rev 5 35/108
LSM6DS3H Digital interfaces
108
6 Digital interfaces
The registers embedded inside the LSM6DS3H may be accessed through both the I2C and
SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode. The device is compatible with SPI modes 0 and 3.
The serial interfaces are mapped onto the same pins. To select/exploit the I2C interface, the
CS line must be tied high (i.e connected to Vdd_IO).
6.1 I2C serial interface
The LSM6DS3H I2C is a bus slave. The I2C is employed to write the data to the registers,
whose content can also be read back.
The relevant I2C terminology is provided in the table below.
There are two signals associated with the I2C bus: the serial clock line (SCL) and the Serial
DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data
to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up
resistors. When the bus is free, both the lines are high.
The I2C interface is implemeted with fast mode (400 kHz) I2C standards as well as with the
standard mode.
In order to disable the I2C block, (I2C_disable) = 1 must be written in CTRL4_C (13h).
Table 9. Serial interface pin description
Pin name Pin description
CS
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication enabled;
0: SPI communication mode / I2C disabled)
SCL/SPC I2C Serial Clock (SCL)
SPI Serial Port Clock (SPC)
SDA/SDI/SDO
I2C Serial Data (SDA)
SPI Serial Data Input (SDI)
3-wire Interface Serial Data Output (SDO)
SDO/SA0 SPI Serial Data Output (SDO)
I2C less significant bit of the device address
Table 10. I2C terminology
Term Description
Transmitter The device which sends data to the bus
Receiver The device which receives data from the bus
Master The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave The device addressed by the master
Digital interfaces LSM6DS3H
36/108 DocID028370 Rev 5
6.1.1 I2C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the master.
The Slave ADdress (SAD) associated to the LSM6DS3H is 110101xb. The SDO/SA0 pin
can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is
connected to the supply voltage, LSb is ‘1’ (address 1101011b); else if the SDO/SA0 pin is
connected to ground, the LSb value is ‘0’ (address 1101010b). This solution permits to
connect and address two different inertial modules to the same I2C bus.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver
which has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded inside the LSM6DS3H behaves like a slave device and the following
protocol must be adhered to. After the start condition (ST) a slave address is sent, once a
slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted.
The increment of the address is configured by the CTRL3_C (12h) (IF_INC).
The slave address is completed with a Read/Write bit. If the bit is ‘1’ (Read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write)
the master will transmit to the slave with direction unchanged. Table 11 explains how the
SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Table 11. SAD+Read/Write patterns
Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W
Read 110101 0 1 11010101 (D5h)
Write 110101 0 0 11010100 (D4h)
Read 110101 1 1 11010111 (D7h)
Write 110101 1 0 11010110 (D6h)
Table 12. Transfer when master is writing one byte to slave
Master ST SAD + W SUB DATA SP
Slave SAK SAK SAK
Table 13. Transfer when master is writing multiple bytes to slave
Master ST SAD + W SUB DATA DATA SP
Slave SAK SAK SAK SAK
DocID028370 Rev 5 37/108
LSM6DS3H Digital interfaces
108
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit
(MSb) first. If a receiver can’t receive another complete byte of data until it has performed
some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to
receive because it is performing some real-time function) the data line must be left HIGH by
the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In the presented communication format MAK is Master acknowledge and NMAK is No
Master Acknowledge.
Table 14. Transfer when master is receiving (reading) one byte of data from slave
Master ST SAD + W SUB SR SAD + R NMAK SP
Slave SAK SAK SAK DATA
Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave
Master ST SAD+W SUB SR SAD+R MAK MAK NMAK SP
Slave SAK SAK SAK DATA DATA DATA
Digital interfaces LSM6DS3H
38/108 DocID028370 Rev 5
6.2 SPI bus interface
The LSM6DS3H SPI is a bus slave. The SPI allows writing and reading the registers of the
device.
The serial interface communicates to the application using 4 wires: CS, SPC, SDI and SDO.
Figure 9. Read and write protocol (in mode 3)
CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of
the transmission and goes back high at the end. SPC is the serial port clock and it is
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and
SDO are, respectively, the serial port data input and output. Those lines are driven at the
falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in
multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling
edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge
of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the
rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In latter case, the chip will drive SDO at the start of bit 8.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands further blocks of 8 clock periods will be added. When the
CTRL3_C (12h) (IF_INC) bit is ‘0’, the address used to read/write data remains the same for
every block. When the CTRL3_C (12h) (IF_INC) bit is ‘1’, the address used to read/write
data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
&6
63&
6',
6'2
5:
$' $' $' $' $' $'
', ', ', ', ', ', ', ',
'2 '2 '2 '2 '2 '2 '2 '2
$'
DocID028370 Rev 5 39/108
LSM6DS3H Digital interfaces
108
6.2.1 SPI read
Figure 10. SPI read protocol (in mode 3)
The SPI Read command is performed with 16 clock pulses. A multiple byte read command
is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
bit 16-...: data DO(...-8). Further data in multiple byte reads.
Figure 11. Multiple byte SPI read protocol (2-byte example) (in mode 3)
&6
63&
6',
6'2
5:
'2 '2 '2 '2 '2 '2 '2 '2
$' $' $' $' $' $'
$'
&6
63&
6',
6'2
5:
'2 '2 '2 '2 '2 '2 '2 '2
$' $' $' $' $' $'
'2'2'2'2'2'2'2 '2
$'
Digital interfaces LSM6DS3H
40/108 DocID028370 Rev 5
6.2.2 SPI write
Figure 12. SPI write protocol (in mode 3)
The SPI Write command is performed with 16 clock pulses. A multiple byte write command
is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1 -7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple byte writes.
Figure 13. Multiple byte SPI write protocol (2-byte example) (in mode 3)
&6
63&
6',
5: ', ', ', ', ', ', ', ',
$' $' $' $' $' $'$'
&6
63&
6',
5:
$' $' $' $' $' $'
', ', ', ', ', ', ', ', ',',',',',',', ',
$'
DocID028370 Rev 5 41/108
LSM6DS3H Digital interfaces
108
6.2.3 SPI read in 3-wire mode
A 3-wire mode is entered by setting the CTRL3_C (12h) (SIM) bit equal to ‘1’ (SPI serial
interface mode selection).
Figure 14. SPI read protocol in 3-wire mode (in mode 3)
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
A multiple read command is also available in 3-wire mode.
&6
63&
6',2
5: '2 '2 '2 '2 '2 '2 '2 '2
$' $' $' $' $' $'
$'
Application hints LSM6DS3H
42/108 DocID028370 Rev 5
7 Application hints
7.1 LSM6DS3H electrical connections in Mode 1
Figure 15. LSM6DS3H electrical connections in Mode 1
1. Leave pin electrically unconnected and soldered to PCB.
The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1,
C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device
(common design practice).
The functionality of the device and the measured acceleration/angular rate data is
selectable and accessible through the SPI/I2C interface.
The functions, the threshold and the timing of the two interrupt pins for each sensor can be
completely programmed by the user through the SPI/I2C interface.
6&/
6'$
9GGB,2
5SX 5SX
3XOOXSWREHDGGHG
5SX N2KP
,&FRQILJXUDWLRQ


DocID028370 Rev 5 43/108
LSM6DS3H Application hints
108
7.2 LSM6DS3H electrical connections in Mode 2
Figure 16. LSM6DS3H electrical connections in Mode 2
1. Leave pin electrically unconnected and soldered to PCB.
The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1,
C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device
(common design practice).
The functionality of the device and the measured acceleration/angular rate data is
selectable and accessible through the SPI/I2C interface.
The functions, the threshold and the timing of the two interrupt pins for each sensor can be
completely programmed by the user through the SPI/I2C interface.
9GGB,2
*1'
Q)
&
6'26$
06'$
06&/
,17
*1'
9'',2
*1' &6
6&/
6'$


723
9,(:
9''
1&
1&

9GG
*1'
Q)
&
0'5'<,17
/60'6+
+267
63,Z
0DVWHU,&
([WHUQDOVHQVRUV
«
«
0RGH
,&
6&/
6'$
9GGB,2
5SX 5SX
3XOOXSWREHDGGHG
5SX N2KP
,&FRQILJXUDWLRQ


Application hints LSM6DS3H
44/108 DocID028370 Rev 5
7.3 LSM6DS3H electrical connections in Mode 3
Figure 17. LSM6DS3H electrical connections in Mode 3
(SPI 4-wire primary interface configuration)
1. Leave pin electrically unconnected and soldered to PCB.
The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1,
C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device
(common design practice).
The functionality of the device and the measured acceleration/angular rate data is
selectable and accessible through the SPI/I2C interface.
The functions, the threshold and the timing of the two interrupt pins for each sensor can be
completely programmed by the user through the SPI/I2C interface.
In the primary SPI connection, the gyroscope output data is available in registers 22h to 27h
with user-selected FS and ODR. In the auxiliary SPI, the gyroscope output is available in
registers 22h to 27h @ 3.3 kHz and FS = 250 dps.
127(
7RDYRLGOHDNDJHFXUUHQWLWLVUHFRPPHQGHGWRDGGSXOOXS
UHVLVWRUVRQWKH63,OLQHVXQOHVVWKH63,PDVWHUFDQEHOHIWRQ
DOVRZKLOHWKH2,6V\VWHPLVRII
/60'6+
+267
63,Z
$X[63,Z
&DPHUD
0RGXOH
0RGH
,&
6&/
6'$
9GGB,2
5SX 5SX
3XOOXSWREHDGGHG
5SX N2KP
,&FRQILJXUDWLRQ

DocID028370 Rev 5 45/108
LSM6DS3H Register mapping
108
8 Register mapping
The table given below provides a list of the 8/16 bit registers embedded in the device and
the corresponding addresses.
Table 16. Registers address map
Name Type
Register address
Default Comment
Hex Binary
RESERVED - 00 00000000 00000000 Reserved
FUNC_CFG_ACCESS r/w 01 00000001 00000000
Embedded
functions
configuration
register
RESERVED - 02 00000010 - Reserved
RESERVED - 03 00000011 - Reserved
SENSOR_SYNC_TIME_
FRAME r/w 04 00000100 00000000
Sensor sync
configuration
register
RESERVED - 05 00000101 - Reserved
FIFO_CTRL1 r/w 06 00000110 00000000
FIFO
configuration
registers
FIFO_CTRL2 r/w 07 00000111 00000000
FIFO_CTRL3 r/w 08 00001000 00000000
FIFO_CTRL4 r/w 09 00001001 00000000
FIFO_CTRL5 r/w 0A 00001010 00000000
ORIENT_CFG_G r/w 0B 00001011 00000000
RESERVED - 0C 00001100 - Reserved
INT1_CTRL r/w 0D 00001101 00000000 INT1 pin control
INT2_CTRL r/w 0E 00001110 00000000 INT2 pin control
WHO_AM_I r 0F 00001111 01101001 Who I am ID
CTRL1_XL r/w 10 00010000 00000000
Accelerometer
and gyroscope
control
registers
CTRL2_G r/w 11 00010001 00000000
CTRL3_C r/w 12 00010010 00000100
CTRL4_C r/w 13 00010011 00000000
CTRL5_C r/w 14 00010100 00000000
CTRL6_C r/w 15 00010101 00000000
CTRL7_G r/w 16 00010110 00000000
CTRL8_XL r/w 17 0001 0111 00000000
CTRL9_XL r/w 18 00011000 00111000
CTRL10_C r/w 19 00011001 00111000
Register mapping LSM6DS3H
46/108 DocID028370 Rev 5
MASTER_CONFIG r/w 1A 00011010 00000000
I2C master
configuration
register
WAKE_UP_SRC r 1B 00011011 output
Interrupt
registers
TAP_SRC r 1C 00011100 output
D6D_SRC r 1D 00011101 output
STATUS_REG(1)/
STATUS_SPIAux(2) r 1E 00011110 output
Status data
register for user
interface and
OIS data
RESERVED - 1F 00011111 - Reserved
OUT_TEMP_L r 20 00100000 output Temperature
output data
registers
OUT_TEMP_H r 21 00100001 output
OUTX_L_G r 22 00100010 output
Gyroscope
output registers
for user
interface and
OIS data
OUTX_H_G r 23 00100011 output
OUTY_L_G r 24 00100100 output
OUTY_H_G r 25 00100101 output
OUTZ_L_G r 26 00100110 output
OUTZ_H_G r 27 00100111 output
OUTX_L_XL r 28 00101000 output
Accelerometer
output registers
OUTX_H_XL r 29 00101001 output
OUTY_L_XL r 2A 00101010 output
OUTY_H_XL r 2B 00101011 output
OUTZ_L_XL r 2C 00101100 output
OUTZ_H_XL r 2D 00101101 output
Table 16. Registers address map (continued)
Name Type
Register address
Default Comment
Hex Binary
DocID028370 Rev 5 47/108
LSM6DS3H Register mapping
108
SENSORHUB1_REG r 2E 00101110 output
Sensor hub
output registers
SENSORHUB2_REG r 2F 00101111 output
SENSORHUB3_REG r 30 00110000 output
SENSORHUB4_REG r 31 00110001 output
SENSORHUB5_REG r 32 00110010 output
SENSORHUB6_REG r 33 00110011 output
SENSORHUB7_REG r 34 00110100 output
SENSORHUB8_REG r 35 00110101 output
SENSORHUB9_REG r 36 00110110 output
SENSORHUB10_REG r 37 00110111 output
SENSORHUB11_REG r 38 00111000 output
SENSORHUB12_REG r 39 00111001 output
FIFO_STATUS1 r 3A 00111010 output
FIFO status
registers
FIFO_STATUS2 r 3B 00111011 output
FIFO_STATUS3 r 3C 00111100 output
FIFO_STATUS4 r 3D 00111101 output
FIFO_DATA_OUT_L r 3E 00111110 output FIFO data
output registers
FIFO_DATA_OUT_H r 3F 00111111 output
TIMESTAMP0_REG r 40 01000000 output
Timestamp
output registers
TIMESTAMP1_REG r 41 01000001 output
TIMESTAMP2_REG r/w 42 01000010 output
RESERVED - 43-48 - Reserved
STEP_TIMESTAMP_L r 49 0100 1001 output Step counter
timestamp
registers
STEP_TIMESTAMP_H r 4A 0100 1010 output
STEP_COUNTER_L r 4B 01001011 output Step counter
output registers
STEP_COUNTER_H r 4C 01001100 output
SENSORHUB13_REG r 4D 01001101 output
Sensor hub
output registers
SENSORHUB14_REG r 4E 01001110 output
SENSORHUB15_REG r 4F 01001111 output
SENSORHUB16_REG r 50 01010000 output
SENSORHUB17_REG r 51 01010001 output
SENSORHUB18_REG r 52 01010010 output
FUNC_SRC r 53 01010011 output Interrupt
register
Table 16. Registers address map (continued)
Name Type
Register address
Default Comment
Hex Binary
Register mapping LSM6DS3H
48/108 DocID028370 Rev 5
Registers marked as Reserved must not be changed. Writing to those registers may cause
permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibration values. Their content is automatically restored when the device is
powered up.
RESERVED - 54-57 - Reserved
TAP_CFG r/w 58 01011000 00000000
Interrupt
registers
TAP_THS_6D r/w 59 01011001 00000000
INT_DUR2 r/w 5A 01011010 00000000
WAKE_UP_THS r/w 5B 01011011 00000000
WAKE_UP_DUR r/w 5C 01011100 00000000
FREE_FALL r/w 5D 01011101 00000000
MD1_CFG r/w 5E 01011110 00000000
MD2_CFG r/w 5F 01011111 00000000
RESERVED - 60-65 - Reserved
OUT_MAG_RAW_X_L r 66 0110 0110 output
External
magnetometer
raw data output
registers
OUT_MAG_RAW_X_H r 67 0110 0111 output
OUT_MAG_RAW_Y_L r 68 0110 1000 output
OUT_MAG_RAW_Y_H r 69 0110 1001 output
OUT_MAG_RAW_Z_L r 6A 0110 1010 output
OUT_MAG_RAW_X_H r 6B 0110 1011 output
CTRL_SPIAux r/w 70 0111 0000 00000000 OIS data
control register
1. This register status is read using the primary interface for user interface gyroscope data.
2. This register status is read using the auxiliary SPI for OIS gyroscope data.
Table 16. Registers address map (continued)
Name Type
Register address
Default Comment
Hex Binary
DocID028370 Rev 5 49/108
LSM6DS3H Register description
108
9 Register description
The device contains a set of registers which are used to control its behavior and to retrieve
linear acceleration, angular rate and temperature data. The register addresses, made up of
7 bits, are used to identify them and to write the data through the serial interface.
9.1 FUNC_CFG_ACCESS (01h)
Enable embedded functions register (r/w).
Table 18. FUNC_CFG_ACCESS register description
9.2 SENSOR_SYNC_TIME_FRAME (04h)
Sensor synchronization time frame register (r/w).
Table 20. SENSOR_SYNC_TIME_FRAME register description
9.3 FIFO_CTRL1 (06h)
FIFO control register (r/w).
Table 22. FIFO_CTRL1 register description
Table 17. FUNC_CFG_ACCESS register
FUNC_CFG_EN 0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
0(1) 0(1) 0(1) 0(1) 0(1) 0(1)
FUNC_CFG_EN
Enable access to the embedded functions configuration registers (1) from address
02h to 32h. Default value: 0.
(0: disable access to embedded functions configuration registers;
1: enable access to embedded functions configuration registers)
1. The embedded functions configuration registers details are available in 10: Embedded functions register
mapping and 11: Embedded functions registers description.
Table 19. SENSOR_SYNC_TIME_FRAME register
TPH_7 TPH_6 TPH_5 TPH_4 TPH_3 TPH_2 TPH_1 TPH_0
TPH_ [7:0]
Sensor synchronization time frame with the step of 500 ms and full range of 5 s.
Unsigned 8-bit.
Default value: 0000 0000
Table 21. FIFO_CTRL1 register
FTH_7 FTH_6 FTH_5 FTH_4 FTH_3 FTH_2 FTH_1 FTH_0
FTH_[7:0]
FIFO threshold level setting(1). Default value: 0000 0000.
Watermark flag rises when the number of bytes written to FIFO after the next write is
greater than or equal to the threshold level.
Minimum resolution for the FIFO is 1 LSB = 2 bytes (1 word) in FIFO
1. For a complete watermark threshold configuration, consider FTH_[11:8] in FIFO_CTRL2 (07h).
Register description LSM6DS3H
50/108 DocID028370 Rev 5
9.4 FIFO_CTRL2 (07h)
FIFO control register (r/w).
Table 24. FIFO_CTRL2 register description
9.5 FIFO_CTRL3 (08h)
FIFO control register (r/w).
Table 26. FIFO_CTRL3 register description
Table 23. FIFO_CTRL2 register
TIMER_PEDO
_FIFO_EN
TIMER_PEDO
_FIFO_DRDY 0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
0(1) FTH_11 FTH10 FTH_9 FTH_8
TIMER_PEDO
_FIFO_EN
Enable pedometer step counter and timestamp as 4th FIFO data set. Default: 0
(0: disable step counter and timestamp data as 4th FIFO data set;
1: enable step counter and timestamp data as 4th FIFO data set)
TIMER_PEDO
_FIFO_DRDY
FIFO write mode(1). Default: 0
(0: enable write in FIFO based on XL/Gyro data-ready;
1: enable write in FIFO at every step detected by step counter.)
1. This bit is effective if the DATA_VALID_SEL_FIFO bit of the MASTER_CONFIG (1Ah) register is set to 0.
FTH_[11:8]
FIFO threshold level setting(2). Default value: 0000
Watermark flag rises when the number of bytes written to FIFO after the next
write is greater than or equal to the threshold level.
Minimum resolution for the FIFO is 1LSB = 2 bytes (1 word) in FIFO
2. For a complete watermark threshold configuration, consider FTH_[7:0] in FIFO_CTRL1 (06h)
Table 25. FIFO_CTRL3 register
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
0(1) DEC_FIFO
_GYRO2
DEC_FIFO
_GYRO1
DEC_FIFO
_GYRO0
DEC_FIFO
_XL2
DEC_FIFO
_XL1
DEC_FIFO
_XL0
DEC_FIFO_GYRO [2:0] Gyro FIFO (first data set) decimation setting. Default: 000
For the configuration setting, refer to Table 27.
DEC_FIFO_XL [2:0] Accelerometer FIFO (second data set) decimation setting. Default: 000
For the configuration setting, refer to Table 28.
DocID028370 Rev 5 51/108
LSM6DS3H Register description
108
9.6 FIFO_CTRL4 (09h)
FIFO control register (r/w).
Table 30. FIFO_CTRL4 register description
Table 27. Gyro FIFO decimation setting
DEC_FIFO_GYRO [2:0] Configuration
000 Gyro sensor not in FIFO
001 No decimation
010 Decimation with factor 2
011 Decimation with factor 3
100 Decimation with factor 4
101 Decimation with factor 8
110 Decimation with factor 16
111 Decimation with factor 32
Table 28. Accelerometer FIFO decimation setting
DEC_FIFO_XL [2:0] Configuration
000 Accelerometer sensor not in FIFO
001 No decimation
010 Decimation with factor 2
011 Decimation with factor 3
100 Decimation with factor 4
101 Decimation with factor 8
110 Decimation with factor 16
111 Decimation with factor 32
Table 29. FIFO_CTRL4 register
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
ONLY_HIGH
_DATA
DEC_DS4
_FIFO2
DEC_DS4
_FIFO1
DEC_DS4
_FIFO0
DEC_DS3
_FIFO2
DEC_DS3
_FIFO1
DEC_DS3
_FIFO0
ONLY_HIGH_DATA
8-bit data storage in FIFO. Default: 0
(0: disable MSByte only memorization in FIFO for XL and Gyro;
1: enable MSByte only memorization in FIFO for XL and Gyro in FIFO)
DEC_DS4_FIFO[2:0] Fourth FIFO data set decimation setting. Default: 000
For the configuration setting, refer to Table 31.
DEC_DS3_FIFO[2:0] Third FIFO data set decimation setting. Default: 000
For the configuration setting, refer to Table 32.
Register description LSM6DS3H
52/108 DocID028370 Rev 5
9.7 FIFO_CTRL5 (0Ah)
FIFO control register (r/w).
Table 34. FIFO_CTRL5 register description
Table 31. Fourth FIFO data set decimation setting
DEC_DS4_FIFO[2:0] Configuration
000 Fourth FIFO data set not in FIFO
001 No decimation
010 Decimation with factor 2
011 Decimation with factor 3
100 Decimation with factor 4
101 Decimation with factor 8
110 Decimation with factor 16
111 Decimation with factor 32
Table 32. Third FIFO data set decimation setting
DEC_DS3_FIFO[2:0] Configuration
000 Third FIFO data set not in FIFO
001 No decimation
010 Decimation with factor 2
011 Decimation with factor 3
100 Decimation with factor 4
101 Decimation with factor 8
110 Decimation with factor 16
111 Decimation with factor 32
Table 33. FIFO_CTRL5 register
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
ODR_
FIFO_3
ODR_
FIFO_2
ODR_
FIFO_1
ODR_
FIFO_0
FIFO_
MODE_2
FIFO_
MODE_1
FIFO_
MODE_0
ODR_FIFO_[3:0] FIFO ODR selection, setting FIFO_MODE also. Default: 0000
For the configuration setting, refer to Table 35
FIFO_MODE_[2:0] FIFO mode selection bits, setting ODR_FIFO also. Default value: 000
For the configuration setting refer to Table 36
DocID028370 Rev 5 53/108
LSM6DS3H Register description
108
Table 35. FIFO ODR selection
ODR_FIFO_[3:0] Configuration(1)
1. If the device is working at an ODR slower than the one selected, FIFO ODR is limited to that ODR value.
Moreover, these bits are effective if both the DATA_VALID_SEL FIFO bit of MASTER_CONFIG (1Ah) and
the TIMER_PEDO_FIFO_DRDY bit of FIFO_CTRL2 (07h) are set to 0.
0000 FIFO disabled
0001 FIFO ODR is set to 12.5 Hz
0010 FIFO ODR is set to 26 Hz
0011 FIFO ODR is set to 52 Hz
0100 FIFO ODR is set to 104 Hz
0101 FIFO ODR is set to 208 Hz
0110 FIFO ODR is set to 416 Hz
0111 FIFO ODR is set to 833 Hz
1000 FIFO ODR is set to 1.66 kHz
1001 FIFO ODR is set to 3.33 kHz
1010 FIFO ODR is set to 6.66 kHz
Table 36. FIFO mode selection
FIFO_MODE_[2:0] Configuration mode
000 Bypass mode. FIFO disabled.
001 FIFO mode. Stops collecting data when FIFO is full.
010 Reserved
011 Continuous mode until trigger is deasserted, then FIFO mode.
100 Bypass mode until trigger is deasserted, then Continuous mode.
101 Reserved
110 Continuous mode. If the FIFO is full, the new sample overwrites the older one.
111 Reserved
Register description LSM6DS3H
54/108 DocID028370 Rev 5
9.8 ORIENT_CFG_G (0Bh)
Angular rate sensor sign and orientation register (r/w).
Table 37. ORIENT_CFG_G register
Table 38. ORIENT_CFG_G register description
DRDY_
PULSED 0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
SignX_G SignY_G SignZ_G Orient_2 Orient_1 Orient_0
DRDY_PULSED Enable pulsed data-ready mode. Default: 0
(0: Data-ready latched mode. Returns to 0 only after output data have been read;
1: Data-ready pulsed mode. The data-ready pulses are 50 μs long.)
SignX_G Pitch axis (X) angular rate sign. Default value: 0
(0: positive sign; 1: negative sign)
SignY_G Roll axis (Y) angular rate sign. Default value: 0
(0: positive sign; 1: negative sign)
SignZ_G Yaw axis (Z) angular rate sign. Default value: 0
(0: positive sign; 1: negative sign)
Orient [2:0] Directional user-orientation selection. Default value: 000
For the configuration setting, refer to Table 39.
Table 39. Settings for orientation of axes
Orient [2:0] 000 001 010 011 100 101
Pitch X X Y Y Z Z
Roll Y Z X Z X Y
Yaw Z Y Z X Y X
DocID028370 Rev 5 55/108
LSM6DS3H Register description
108
9.9 INT1_CTRL (0Dh)
INT1 pad control register (r/w).
Each bit in this register enables a signal to be carried through INT1. The pad’s output will
supply the OR combination of the selected signals.
Table 40. INT1_CTRL register
Table 41. INT1_CTRL register description
INT1_
STEP_
DETECTOR
INT1_SIGN
_MOT
INT1_FULL
_FLAG
INT1_
FIFO_OVR
INT1_
FTH
INT1_
BOOT
INT1_
DRDY_G
INT1_
DRDY_XL
INT1_ STEP_
DETECTOR
Pedometer step recognition interrupt enable on INT1 pad. Default value: 0
(0: disabled; 1: enabled)
INT1_SIGN_MOT Significant motion interrupt enable on INT1 pad. Default value: 0
(0: disabled; 1: enabled)
INT1_FULL_FLAG FIFO full flag interrupt enable on INT1 pad. Default value: 0
(0: disabled; 1: enabled)
INT1_FIFO_OVR FIFO overrun interrupt on INT1 pad. Default value: 0
(0: disabled; 1: enabled)
INT1_FTH FIFO threshold interrupt on INT1 pad. Default value: 0
(0: disabled; 1: enabled)
INT1_ BOOT Boot status available on INT1 pad. Default value: 0
(0: disabled; 1: enabled)
INT1_DRDY_G Gyroscope data-ready on INT1 pad. Default value: 0
(0: disabled; 1: enabled)
INT1_DRDY_XL Accelerometer data-ready on INT1 pad. Default value: 0
(0: disabled; 1: enabled)
Register description LSM6DS3H
56/108 DocID028370 Rev 5
9.10 INT2_CTRL (0Eh)
INT2 pad control register (r/w).
Each bit in this register enables a signal to be carried through INT2. The pad’s output will
supply the OR combination of the selected signals.
Table 42. INT2_CTRL register
Table 43. INT2_CTRL register description
9.11 WHO_AM_I (0Fh)
Who_AM_I register (r). This register is a read-only register. Its value is fixed at 69h.
INT2_STEP
_DELTA
INT2_STEP_
COUNT_OV
INT2_
FULL_FLAG
INT2_
FIFO_OVR
INT2_
FTH
INT2_
DRDY
_TEMP
INT2_
DRDY_G
INT2_
DRDY_XL
INT2_STEP_DELTA
Pedometer step recognition interrupt on delta time(1) enable on INT2 pad.
Default value: 0
(0: disabled; 1: enabled)
1. Delta time value is defined in register STEP_COUNT_DELTA (15h).
INT2_STEP_COUNT
_OV
Step counter overflow interrupt enable on INT2 pad. Default value: 0
(0: disabled; 1: enabled)
INT2_ FULL_FLAG FIFO full flag interrupt enable on INT2 pad. Default value: 0
(0: disabled; 1: enabled)
INT2_FIFO_OVR FIFO overrun interrupt on INT2 pad. Default value: 0
(0: disabled; 1: enabled)
INT2_FTH FIFO threshold interrupt on INT2 pad. Default value: 0
(0: disabled; 1: enabled)
INT2_DRDY_TEMP Temperature data-ready on INT2 pad. Default value: 0
(0: disabled; 1: enabled)
INT2_DRDY_G Gyroscope data-ready on INT2 pad. Default value: 0
(0: disabled; 1: enabled)
INT2_DRDY_XL Accelerometer data-ready on INT2 pad. Default value: 0
(0: disabled; 1: enabled)
Table 44. WHO_AM_I register
01101001
DocID028370 Rev 5 57/108
LSM6DS3H Register description
108
9.12 CTRL1_XL (10h)
Linear acceleration sensor control register 1 (r/w).
Table 45. CTRL1_XL register
Table 46. CTRL1_XL register description
ODR_XL3 ODR_XL2 ODR_XL1 ODR_XL0 FS_XL1 FS_XL0 BW_XL1 BW_XL0
ODR_XL [3:0] Output data rate and power mode selection. Default value: 0000 (see Table 47).
FS_XL [1:0] Accelerometer full-scale selection. Default value: 00.
(00: ±2 g; 01: ±16 g; 10: ±4 g; 11: ±8 g)
BW_XL [1:0] Anti-aliasing filter bandwidth selection. Default value: 00
(00: 400 Hz; 01: 200 Hz; 10: 100 Hz; 11: 50 Hz)
Table 47. Accelerometer ODR register setting
ODR_
XL3
ODR_
XL2
ODR_
XL1
ODR_
XL0
ODR selection [Hz] when
XL_HM_MODE = 1
ODR selection [Hz] when
XL_HM_MODE = 0
0 0 0 0 Power-down Power-down
0 0 0 1 12.5 Hz (low power) 12.5 Hz (high performance)
0 0 1 0 26 Hz (low power) 26 Hz (high performance)
0 0 1 1 52 Hz (low power) 52 Hz (high performance)
0 1 0 0 104 Hz (normal mode) 104 Hz (high performance)
0 1 0 1 208 Hz (normal mode) 208 Hz (high performance)
0 1 1 0 416 Hz (high performance) 416 Hz (high performance)
0 1 1 1 833 Hz (high performance) 833 Hz (high performance)
1 0 0 0 1.66 kHz (high performance) 1.66 kHz (high performance)
1 0 0 1 3.33 kHz (high performance) 3.33 kHz (high performance)
1 0 1 0 6.66 kHz (high performance) 6.66 kHz (high performance)
Table 48. BW and ODR (high-performance mode)
ODR(1)
1. Filter not used when accelerometer is in normal and low-power modes.
Analog filter BW (XL_HM_MODE = 0)
XL_BW_SCAL_ODR = 0 XL_BW_SCAL_ODR = 1
6.66 - 3.33 kHz Filter not used
Bandwidth is determined by
setting BW_XL[1:0] in
CTRL1_XL (10h)
1.66 kHz 400 Hz
833 Hz 400 Hz
416 Hz 200 Hz
208 Hz 100 Hz
104 - 12.5 Hz 50 Hz
Register description LSM6DS3H
58/108 DocID028370 Rev 5
9.13 CTRL2_G (11h)
Angular rate sensor control register 2 (r/w).
Table 49. CTRL2_G register
Table 50. CTRL2_G register description
ODR_G3 ODR_G2 ODR_G1 ODR_G0 FS_G1 FS_G0 FS_125 0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
ODR_G [3:0] Gyroscope output data rate selection. Default value: 0000
(Refer to Table 51)
FS_G [1:0] Gyroscope full-scale selection. Default value: 00
(00: 250 dps; 01: 500 dps; 10: 1000 dps; 11: 2000 dps)
FS_125 Gyroscope full-scale at 125 dps. Default value: 0
(0: disabled; 1: enabled)
Table 51. Gyroscope ODR configuration setting
ODR_G3 ODR_G2 ODR_G1 ODR_G0 ODR [Hz] when
G_HM_MODE = 1
ODR [Hz] when
G_HM_MODE = 0
0 0 0 0 Power down Power down
0 0 0 1 12.5 Hz (low power) 12.5 Hz (high performance)
0 0 1 0 26 Hz (low power) 26 Hz (high performance)
0 0 1 1 52 Hz (low power) 52 Hz (high performance)
0 1 0 0 104 Hz (normal mode) 104 Hz (high performance)
0 1 0 1 208 Hz (normal mode) 208 Hz (high performance)
0 1 1 0 416 Hz (high performance) 416 Hz (high performance)
0 1 1 1 833 Hz (high performance) 833 Hz (high performance)
1 0 0 0 1.66 kHz (high performance) 1.66 kHz (high performance)
DocID028370 Rev 5 59/108
LSM6DS3H Register description
108
9.14 CTRL3_C (12h)
Control register 3 (r/w).
Table 52. CTRL3_C register
BOOT BDU H_LACTIVE PP_OD SIM IF_INC BLE SW_RESET
Table 53. CTRL3_C register description
BOOT Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content(1))
1. Boot request is executed as soon as internal oscillator is turned on. It is possible to set bit while in power-
down mode, in this case it will be served at the next normal mode or sleep mode.
BDU Block Data Update. Default value: 0
(0: continuous update; 1: output registers not updated until MSB and LSB have
been read)
H_LACTIVE Interrupt activation level. Default value: 0
(0: interrupt output pads active high; 1: interrupt output pads active low)
PP_OD Push-pull/open-drain selection on INT1 and INT2 pads. Default value: 0
(0: push-pull mode; 1: open-drain mode)
SIM SPI Serial Interface Mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).
IF_INC Register address automatically incremented during a multiple byte access with a
serial interface (I2C or SPI). Default value: 1
(0: disabled; 1: enabled)
BLE Big/Little Endian data selection. Default value 0
(0: data LSB @ lower address; 1: data MSB @ lower address)
SW_RESET Software reset. Default value: 0
(0: normal mode; 1: reset device)
This bit is cleared by hardware after next flash boot.
Register description LSM6DS3H
60/108 DocID028370 Rev 5
9.15 CTRL4_C (13h)
Control register 4 (r/w).
9.16 CTRL5_C (14h)
Control register 5 (r/w).
Table 56. CTRL5_C register
Table 54. CTRL4_C register
XL_BW_
SCAL_ODR SLEEP_G INT2_on_
INT1
FIFO_
TEMP_EN
DRDY_
MASK I2C_disable 3.3kHz_
ODR
STOP_ON
_FTH
Table 55. CTRL4_C register description
XL_BW_
SCAL_ODR
Accelerometer bandwidth selection. Default value: 0
(0(1): bandwidth determined by ODR selection, refer to Table 48;
1(2): bandwidth determined by setting BW_XL[1:0] in CTRL1_XL (10h) register.)
1. Filter used in high-performance mode only with ODR less than 3.33 kHz.
2. Filter used in high-performance mode only.
SLEEP_G Gyroscope sleep mode enable. Default value: 0
(0: disabled; 1: enabled)
INT2_on_INT1 All interrupt signals available on INT1 pad enable. Default value: 0
(0: interrupt signals divided between INT1 and INT2 pads;
1: all interrupt signals in logic or on INT1 pad)
FIFO_TEMP_EN Enable temperature data as 4th FIFO data set(3). Default: 0
(0: disable temperature data as 4th FIFO data set;
1: enable temperature data as 4th FIFO data set)
3. This bit is effective if the TIMER_PEDO_FIFO_EN bit of FIFO_CTRL2 (07h) register is set to 0.
DRDY_MASK Data-ready mask enable. If enabled, when switching from Power-Down to an
active mode, the accelerometer and gyroscope data-ready signals are masked
until the settling of the sensor filters is completed. Default value: 0
(0: disabled; 1: enabled)
I2C_disable Disable I2C interface. Default value: 0
(0: both I2C and SPI enabled; 1: I2C disabled, SPI only)
3.3kHz_ODR Enable 3.3 kHz in primary SPI interface.
(0: disable; 1: enable 3.3 kHz ODR for gyroscope part with full scale and high-
pass filter coherent with control registers setting).(4) (5)
4. FIFO and gyroscope low-power mode are not supported when this bit is set to ‘1’.
5. Data-ready (pulsed or latched) is available on the INT1/INT2 pins.
STOP_ON_FTH Enable FIFO threshold level use. Default value: 0.
(0: FIFO depth is not limited; 1: FIFO depth is limited to threshold level)
ROUNDING2 ROUNDING1 ROUNDING0 0(1)
1. This bit must be set to ‘0’ for the correct operation of the device
ST1_G ST0_G ST1_XL ST0_XL
DocID028370 Rev 5 61/108
LSM6DS3H Register description
108
Table 57. CTRL5_C register description
ROUNDING[2:0] Circular burst-mode (rounding) read from output registers. Default: 000
(000: no rounding; Others: refer to Table 58)
ST_G [1:0] Angular rate sensor self-test enable. Default value: 00
(00: Self-test disabled; Other: refer to Table 59)
ST_XL [1:0] Linear acceleration sensor self-test enable. Default value: 00
(00: Self-test disabled; Other: refer to Table 60)
Table 58. Output registers rounding pattern
ROUNDING[2:0] Rounding pattern
000 No rounding
001 Accelerometer only
010 Gyroscope only
011 Gyroscope + accelerometer
100 Registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h) only
101 Accelerometer + registers from SENSORHUB1_REG (2Eh) to
SENSORHUB6_REG (33h)
110
Gyroscope + accelerometer + registers from SENSORHUB1_REG (2Eh) to
SENSORHUB6_REG (33h) and registers from SENSORHUB7_REG (34h) to
SENSORHUB12_REG(39h)
111 Gyroscope + accelerometer + registers from SENSORHUB1_REG (2Eh) to
SENSORHUB6_REG (33h)
Table 59. Angular rate sensor self-test mode selection
ST1_G ST0_G Self-test mode
0 0 Normal mode
0 1 Positive sign self-test
1 0 Not allowed
1 1 Negative sign self-test
Table 60. Linear acceleration sensor self-test mode selection
ST1_XL ST0_XL Self-test mode
0 0 Normal mode
0 1 Positive sign self-test
1 0 Negative sign self-test
1 1 Not allowed
Register description LSM6DS3H
62/108 DocID028370 Rev 5
9.17 CTRL6_C (15h)
Angular rate sensor control register 6 (r/w).
9.18 CTRL7_G (16h)
Angular rate sensor control register 7 (r/w).
Table 61. CTRL6_C register
TRIG_EN LVLen LVL2_EN XL_HM_MODE 0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
0(1) 0(1) 0(1)
Table 62. CTRL6_C register description
TRIG_EN Gyroscope data edge-sensitive trigger enable. Default value: 0
(0: external trigger disabled; 1: external trigger enabled)
LVLen Gyroscope data level-sensitive trigger enable. Default value: 0
(0: level-sensitive trigger disabled; 1: level sensitive trigger enabled)
LVL2_EN Gyroscope level-sensitive latched enable. Default value: 0
(0: level-sensitive latched disabled; 1: level sensitive latched enabled)
XL_HM_MODE
High-performance operating mode disable for accelerometer(1). Default value: 0
(0: high-performance operating mode enabled;
1: high-performance operating mode disabled)
1. Normal and low-power mode depends on the ODR setting, for details refer to Table 47.
Table 63. CTRL7_G register
G_HM_MODE HP_G_
EN HPCF_G1 HPCF_G0 HP_G_R
ST
ROUNDING_
STATUS 0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
0(1)
Table 64. CTRL7_G register description
G_HM_MODE
High-performance operating mode disable for gyroscope(1). Default: 0
(0: high-performance operating mode enabled;
1: high-performance operating mode disabled)
1. Normal and low-power mode depends on the ODR setting, for details refer to Table 51.
HP_G_EN
Gyroscope digital high-pass filter enable. The filter is enabled only if the gyro is in HP
mode. Default value: 0
(0: HPF disabled; 1: HPF enabled)
HP_G_RST Gyro digital HP filter reset. Default: 0
(0: gyro digital HP filter reset OFF; 1: gyro digital HP filter reset ON)
ROUNDING_
STATUS
Source register rounding function enable on STATUS_REG (1Eh), FUNC_SRC
(53h) and WAKE_UP_SRC (1Bh) registers. Default value: 0
(0: disabled; 1: enabled)
HPCF_G[1:0] Gyroscope high-pass filter cutoff frequency selection. Default value: 00.
Refer to Table 65.
DocID028370 Rev 5 63/108
LSM6DS3H Register description
108
9.19 CTRL8_XL (17h)
Linear acceleration sensor control register 8 (r/w).
Table 65. Gyroscope high-pass filter mode configuration
HPCF_G1 HPCF_G0 High-pass filter cutoff frequency
0 0 0.0081 Hz
0 1 0.0324 Hz
1 0 2.07 Hz
1 1 16.32 Hz
Table 66. CTRL8_XL register
LPF2_XL_
EN
HPCF_
XL1
HPCF_
XL0 0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
0(1) HP_SLOPE_X
L_EN 0(1) LOW_PASS
_ON_6D
Table 67. CTRL8_XL register description
LPF2_XL_EN Accelerometer low-pass filter LPF2 selection. Refer to Figure 7.
HPCF_XL[1:0]
Accelerometer slope filter and high-pass filter configuration and cutoff
setting. Refer to Table 68. It is also used to select the cutoff frequency of the
LPF2 filter, as shown in Table 69. This low-pass filter can also be used in the
6D/4D functionality by setting the LOW_PASS_ON_6D bit of CTRL8_XL
(17h) to 1.
HP_SLOPE_XL_EN Accelerometer slope filter / high-pass filter selection. Refer to Figure 7.
LOW_PASS_ON_6D Low-pass filter on 6D function selection. Refer to Figure 7.
Table 68. Accelerometer slope and high-pass filter selection and cutoff frequency
HPCF_XL[1:0] Applied filter HP filter cutoff frequency [Hz]
00 Slope ODR_XL/4
01 High-pass ODR_XL/100
10 High-pass ODR_XL/9
11 High-pass ODR_XL/400
Table 69. Accelerometer LPF2 cutoff frequency
HPCF_XL[1:0] LPF2 digital filter cutoff frequency [Hz]
00 ODR_XL/50
01 ODR_XL/100
10 ODR_XL/9
11 ODR_XL/400
Register description LSM6DS3H
64/108 DocID028370 Rev 5
9.20 CTRL9_XL (18h)
Linear acceleration sensor control register 9 (r/w).
9.21 CTRL10_C (19h)
Control register 10 (r/w).
Table 70. CTRL9_XL register
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
0(1 Zen_XL Yen_XL Xen_XL SOFT_EN 0(1) 0(1)
Table 71. CTRL9_XL register description
Zen_XL Accelerometer Z-axis output enable. Default value: 1
(0: Z-axis output disabled; 1: Z-axis output enabled)
Yen_XL Accelerometer Y-axis output enable. Default value: 1
(0: Y-axis output disabled; 1: Y-axis output enabled)
Xen_XL Accelerometer X-axis output enable. Default value: 1
(0: X-axis output disabled; 1: X-axis output enabled)
SOFT_EN
Enable soft-iron correction algorithm for magnetometer(1). Default value: 0
(0: soft-iron correction algorithm disabled;
1: soft-iron correction algorithm disabled)
1. This bit is effective if the IRON_EN bit of MASTER_CONFIG (1Ah) is set to 1.
Table 72. CTRL10_C register
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
0(1) Zen_G Yen_G Xen_G FUNC_EN PEDO_RST
_STEP
SIGN_
MOTION_EN
Table 73. CTRL10_C register description
Zen_G Gyroscope yaw axis (Z) output enable. Default value: 1
(0: Z-axis output disabled; 1: Z-axis output enabled)
Yen_G Gyroscope roll axis (Y) output enable. Default value: 1
(0: Y-axis output disabled; 1: Y axis output enabled)
Xen_G Gyroscope pitch axis (X) output enable. Default value: 1
(0: X-axis output disabled; 1: X-axis output enabled)
FUNC_EN
Enable embedded functionalities (pedometer, tilt, significant motion, sensor hub
and ironing) and accelerometer HP and LPF2 filters (refer to Figure 7). Default
value: 0
(0: disable functionalities of embedded functions and accelerometer filters;
1: enable functionalities of embedded functions and accelerometer filters)
PEDO_RST_
STEP
Reset pedometer step counter. Default value: 0
(0: disabled; 1: enabled)
SIGN_MOTION
_EN
Enable significant motion function. Default value: 0
(0: disabled; 1: enabled)
DocID028370 Rev 5 65/108
LSM6DS3H Register description
108
9.22 MASTER_CONFIG (1Ah)
Master configuration register (r/w).
Table 74. MASTER_CONFIG register
DRDY_ON
_INT1
DATA_VALID
_SEL_FIFO 0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
START_
CONFIG
PULL_UP
_EN
PASS_
THROUGH
_MODE
IRON_EN MASTER_
ON
Table 75. MASTER_CONFIG register description
DRDY_ON_
INT1
Manage the Master DRDY signal on INT1 pad. Default: 0
(0: disable Master DRDY on INT1; 1: enable Master DRDY on INT1)
DATA_VALID_
SEL_FIFO
Selection of FIFO data-valid signal. Default value: 0
(0: data-valid signal used to write data in FIFO is the XL/Gyro data-ready or step
detection(1);
1: data-valid signal used to write data in FIFO is the sensor hub data-ready)
1. If the TIMER_PEDO_FIFO_DRDY bit in FIFO_CTRL2 (07h) is set to 0, the trigger for writing data in FIFO
is XL/Gyro data-ready, otherwise it's the step detection.
START_
CONFIG
Sensor hub trigger signal selection. Default value: 0
(0: Sensor hub signal is the XL/Gyro data-ready;
1: Sensor hub signal external from INT2 pad.)
PULL_UP_EN
Auxiliary I2C pull-up. Default value: 0
(0: internal pull-up on auxiliary I2C line disabled;
1: internal pull-up on auxiliary I2C line enabled)
PASS_THROUGH
_MODE
I2C interface pass-through. Default value: 0
(0: through disabled; 1: through enabled)
IRON_EN
Enable hard-iron correction algorithm for magnetometer. Default value: 0
(0:hard-iron correction algorithm disabled;
1: hard-iron correction algorithm enabled)
MASTER_ON Sensor hub I2C master enable. Default: 0
(0: master I2C of sensor hub disabled; 1: master I2C of sensor hub enabled)
Register description LSM6DS3H
66/108 DocID028370 Rev 5
9.23 WAKE_UP_SRC (1Bh)
Wake up interrupt source register (r).
9.24 TAP_SRC (1Ch)
Tap source register (r).
Table 76. WAKE_UP_SRC register
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
0(1) FF_IA SLEEP_
STATE_IA WU_IA X_WU Y_WU Z_WU
Table 77. WAKE_UP_SRC register description
FF_IA Free-fall event detection status. Default: 0
(0: free-fall event not detected; 1: free-fall event detected)
SLEEP_
STATE_IA
Sleep event status. Default value: 0
(0: sleep event not detected; 1: sleep event detected)
WU_IA Wakeup event detection status. Default value: 0
(0: wakeup event not detected; 1: wakeup event detected.)
X_WU Wakeup event detection status on X-axis. Default value: 0
(0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected)
Y_WU Wakeup event detection status on Y-axis. Default value: 0
(0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected)
Z_WU Wakeup event detection status on Z-axis. Default value: 0
(0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected)
Table 78. TAP_SRC register
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
TAP_IA SINGLE_
TAP
DOUBLE_
TAP TAP_SIGN X_TAP Y_TAP Z_TAP
Table 79. TAP_SRC register description
TAP_IA Tap event detection status. Default: 0
(0: tap event not detected; 1: tap event detected)
SINGLE_TAP Single-tap event status. Default value: 0
(0: single tap event not detected; 1: single tap event detected)
DOUBLE_TAP Double-tap event detection status. Default value: 0
(0: double-tap event not detected; 1: double-tap event detected.)
TAP_SIGN
Sign of acceleration detected by tap event. Default: 0
(0: positive sign of acceleration detected by tap event;
1: negative sign of acceleration detected by tap event)
X_TAP Tap event detection status on X-axis. Default value: 0
(0: tap event on X-axis not detected; 1: tap event on X-axis detected)
Y_TAP Tap event detection status on Y-axis. Default value: 0
(0: tap event on Y-axis not detected; 1: tap event on Y-axis detected)
Z_TAP Tap event detection status on Z-axis. Default value: 0
(0: tap event on Z-axis not detected; 1: tap event on Z-axis detected)
DocID028370 Rev 5 67/108
LSM6DS3H Register description
108
9.25 D6D_SRC (1Dh)
Portrait, landscape, face-up and face-down source register (r)
Table 80. D6D_SRC register
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
D6D_IA ZH ZL YH YL XH XL
Table 81. D6D_SRC register description
D6D_
IA
Interrupt active for change position portrait, landscape, face-up, face-down. Default value: 0
(0: change position not detected; 1: change position detected)
ZH Z-axis high event (over threshold). Default value: 0
(0: event not detected; 1: event (over threshold) detected)
ZL Z-axis low event (under threshold). Default value: 0
(0: event not detected; 1: event (under threshold) detected)
YH Y-axis high event (over threshold). Default value: 0
(0: event not detected; 1: event (over-threshold) detected)
YL Y-axis low event (under threshold). Default value: 0
(0: event not detected; 1: event (under threshold) detected)
X_H X-axis high event (over threshold). Default value: 0
(0: event not detected; 1: event (over threshold) detected)
X_L X-axis low event (under threshold). Default value: 0
(0: event not detected; 1: event (under threshold) detected)
Register description LSM6DS3H
68/108 DocID028370 Rev 5
9.26 STATUS_REG/STATUS_SPIAux (1Eh)
The STATUS_REG register is read by the primary interface SPI/I2C.
The STATUS_SPIAux register is read by the auxiliary SPI.
9.27 OUT_TEMP_L (20h), OUT_TEMP (21h)
Temperature data output register (r). L and H registers together express a 16-bit word in two’s
complement.
Table 82. STATUS_REG register
0 0 0 0 0 TDA GDA XLDA
Table 83. STATUS_REG register description
TDA
Temperature new data available. Default: 0
(0: no set of data is available at temperature sensor output;
1: a new set of data is available at temperature sensor output)
GDA
Gyroscope new data available. Default value: 0
(0: no set of data available at gyroscope output;
1: a new set of data is available at gyroscope output)
XLDA
Accelerometer new data available. Default value: 0
(0: no set of data available at accelerometer output;
1: a new set of data is available at accelerometer output)
Table 84. STATUS_SPIAux register
00000
GYRO_
SETTING GDA 0
Table 85. STATUS_SPIAux description
GYRO_
SETTING High when the gyroscope output is in the setting phase
GDA Gyroscope data available (reset when one of the high parts of output data is read)
Table 86. OUT_TEMP_L register
Temp7 Temp6 Temp5 Temp4 Temp3 Temp2 Temp1 Temp0
Table 87. OUT_TEMP_H register
Temp15 Temp14 Temp13 Temp12 Temp11 Temp10 Temp9 Temp8
Table 88. OUT_TEMP register description
Temp[15:0] Temperature sensor output data
The value is expressed as two’s complement sign extended on the MSB.
DocID028370 Rev 5 69/108
LSM6DS3H Register description
108
9.28 OUTX_L_G (22h)
Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as
a 16-bit word in two’s complement.
If this register is read by the primary interface, data are according to the full scale and ODR
settings (CTRL2_G (11h)) of gyro user interface.
If this register is read by the auxiliary interface, data are according to the full scale (250 dps)
and ODR (3.33 kHz) settings of the OIS gyro.
9.29 OUTX_H_G (23h)
Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as
a 16-bit word in two’s complement.
If this register is read by the primary interface, data are according to the full scale and ODR
settings (CTRL2_G (11h)) of gyro user interface.
If this register is read by the auxiliary interface, data are according to the full scale (250 dps)
and ODR (3.33 kHz) settings of the OIS gyro.
Table 89. OUTX_L_G register
D7 D6 D5 D4 D3 D2 D1 D0
Table 90. OUTX_L_G register description
D[7:0]
Pitch axis (X) angular rate value (LSbyte)
D[15:0] expressed in two’s complement and its value depends on the interface used:
SPI1/I2C: Gyro UI chain pitch axis output
SPI2: Gyro OIS chain pitch axis output
Table 91. OUTX_H_G register
D15 D14 D13 D12 D11 D10 D9 D8
Table 92. OUTX_H_G register description
D[15:8]
Pitch axis (X) angular rate value (MSbyte)
D[15:0] expressed in two’s complement and its value depends on the interface used:
SPI1/I2C: Gyro UI chain pitch axis output
SPI2: Gyro OIS chain pitch axis output
Register description LSM6DS3H
70/108 DocID028370 Rev 5
9.30 OUTY_L_G (24h)
Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a
16-bit word in two’s complement.
If this register is read by the primary interface, data are according to the full scale and ODR
settings (CTRL2_G (11h)) of gyro user interface.
If this register is read by the auxiliary interface, data are according to the full scale (250 dps)
and ODR (3.33 kHz) settings of the OIS gyro.
9.31 OUTY_H_G (25h)
Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a
16-bit word in two’s complement.
If this register is read by the primary interface, data are according to the full scale and ODR
settings (CTRL2_G (11h)) of gyro user interface.
If this register is read by the auxiliary interface, data are according to the full scale (250 dps)
and ODR (3.33 kHz) settings of the OIS gyro.
Table 93. OUTY_L_G register
D7 D6 D5 D4 D3 D2 D1 D0
Table 94. OUTY_L_G register description
D[7:0]
Roll axis (Y) angular rate value (LSbyte)
D[15:0] expressed in two’s complement and its value depends on the interface used:
SPI1/I2C: Gyro UI chain roll axis output
SPI2: Gyro OIS chain roll axis output
Table 95. OUTY_H_G register
D15 D14 D13 D12 D11 D10 D9 D8
Table 96. OUTY_H_G register description
D[15:8]
Roll axis (Y) angular rate value (MSbyte)
D[15:0] expressed in two’s complement and its value depends on the interface used:
SPI1/I2C: Gyro UI chain roll axis output
SPI2: Gyro OIS chain roll axis output
DocID028370 Rev 5 71/108
LSM6DS3H Register description
108
9.32 OUTZ_L_G (26h)
Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as
a 16-bit word in two’s complement.
If this register is read by the primary interface, data are according to the full scale and ODR
settings (CTRL2_G (11h)) of gyro user interface.
If this register is read by the auxiliary interface, data are according to the full scale (250 dps)
and ODR (3.33 kHz) settings of the OIS gyro.
9.33 OUTZ_H_G (27h)
Angular rate sensor Yaw axis (Z) angular rate output register (r). The value is expressed as
a 16-bit word in two’s complement.
If this register is read by the primary interface, data are according to the full scale and ODR
settings (CTRL2_G (11h)) of gyro user interface.
If this register is read by the auxiliary interface, data are according to the full scale (250 dps)
and ODR (3.33 kHz) settings of the OIS gyro.
9.34 OUTX_L_XL (28h)
Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit
word in two’s complement.
Table 97. OUTZ_L_G register
D7 D6 D5 D4 D3 D2 D1 D0
Table 98. OUTZ_L_G register description
D[7:0]
Yaw axis (Z) angular rate value (LSbyte)
D[15:0] expressed in two’s complement and its value depends on the interface used:
SPI1/I2C: Gyro UI chain yaw axis output
SPI2: Gyro OIS chain yaw axis output
Table 99. OUTZ_H_G register
D15 D14 D13 D12 D11 D10 D9 D8
Table 100. OUTZ_H_G register description
D[15:8]
Yaw axis (Z) angular rate value (MSbyte)
D[15:0] expressed in two’s complement and its value depends on the interface used:
SPI1/I2C: Gyro UI chain yaw axis output
SPI2: Gyro OIS chain yaw axis output
Table 101. OUTX_L_XL register
D7 D6 D5 D4 D3 D2 D1 D0
Table 102. OUTX_L_XL register description
D[7:0] X-axis linear acceleration value (LSbyte)
Register description LSM6DS3H
72/108 DocID028370 Rev 5
9.35 OUTX_H_XL (29h)
Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit
word in two’s complement.
9.36 OUTY_L_XL (2Ah)
Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit
word in two’s complement.
9.37 OUTY_H_XL (2Bh)
Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit
word in two’s complement.
9.38 OUTZ_L_XL (2Ch)
Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit
word in two’s complement.
Table 103. OUTX_H_XL register
D15 D14 D13 D12 D11 D10 D9 D8
Table 104. OUTX_H_XL register description
D[15:8] X-axis linear acceleration value (MSbyte)
Table 105. OUTY_L_XL register
D7 D6 D5 D4 D3 D2 D1 D0
Table 106. OUTY_L_XL register description
D[7:0] Y-axis linear acceleration value (LSbyte)
Table 107. OUTY_H_G register
D15 D14 D13 D12 D11 D10 D9 D8
Table 108. OUTY_H_G register description
D[15:8] Y-axis linear acceleration value (MSbyte)
Table 109. OUTZ_L_XL register
D7 D6 D5 D4 D3 D2 D1 D0
Table 110. OUTZ_L_XL register description
D[7:0] Z-axis linear acceleration value (LSbyte)
DocID028370 Rev 5 73/108
LSM6DS3H Register description
108
9.39 OUTZ_H_XL (2Dh)
Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit
word in two’s complement.
9.40 SENSORHUB1_REG (2Eh)
First byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).
9.41 SENSORHUB2_REG (2Fh)
Second byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operations configurations (for external sensors from x = 0 to x = 3).
9.42 SENSORHUB3_REG (30h)
Third byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operations configurations (for external sensors from x = 0 to x = 3).
Table 111. OUTZ_H_XL register
D15 D14 D13 D12 D11 D10 D9 D8
Table 112. OUTZ_H_XL register description
D[15:8] Z-axis linear acceleration value (MSbyte)
Table 113. SENSORHUB1_REG register
SHub1_7 SHub1_6 SHub1_5 SHub1_4 SHub1_3 SHub1_2 SHub1_1 SHub1_0
Table 114. SENSORHUB1_REG register description
SHub1_[7:0] First byte associated to external sensors
Table 115. SENSORHUB2_REG register
SHub2_7 SHub2_6 SHub2_5 SHub2_4 SHub2_3 SHub2_2 SHub2_1 SHub2_0
Table 116. SENSORHUB2_REG register description
SHub2_[7:0] Second byte associated to external sensors
Table 117. SENSORHUB3_REG register
SHub3_7 SHub3_6 SHub3_5 SHub3_4 SHub3_3 SHub3_2 SHub3_1 SHub3_0
Table 118. SENSORHUB3_REG register description
SHub3_[7:0] Third byte associated to external sensors
Register description LSM6DS3H
74/108 DocID028370 Rev 5
9.43 SENSORHUB4_REG (31h)
Fourth byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).
9.44 SENSORHUB5_REG (32h)
Fifth byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).
9.45 SENSORHUB6_REG (33h)
Sixth byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).
9.46 SENSORHUB7_REG (34h)
Seventh byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 119. SENSORHUB4_REG register
SHub4_7 SHub4_6 SHub4_5 SHub4_4 SHub4_3 SHub4_2 SHub4_1 SHub4_0
Table 120. SENSORHUB4_REG register description
SHub4_[7:0] Fourth byte associated to external sensors
Table 121. SENSORHUB5_REG register
SHub5_7 SHub5_6 SHub5_5 SHub5_4 SHub5_3 SHub5_2 SHub5_1 SHub5_0
Table 122. SENSORHUB5_REG register description
SHub5_[7:0] Fifth byte associated to external sensors
Table 123. SENSORHUB6_REG register
SHub6_7 SHub6_6 SHub6_5 SHub6_4 SHub6_3 SHub6_2 SHub6_1 SHub6_0
Table 124. SENSORHUB6_REG register description
SHub6_[7:0] Sixth byte associated to external sensors
Table 125. SENSORHUB7_REG register
SHub7_7 SHub7_6 SHub7_5 SHub7_4 SHub7_3 SHub7_2 SHub7_1 SHub7_0
Table 126. SENSORHUB7_REG register description
SHub7_[7:0] Seventh byte associated to external sensors
DocID028370 Rev 5 75/108
LSM6DS3H Register description
108
9.47 SENSORHUB8_REG(35h)
Eighth byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).
9.48 SENSORHUB9_REG (36h)
Ninth byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).
9.49 SENSORHUB10_REG (37h)
Tenth byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).
9.50 SENSORHUB11_REG (38h)
Eleventh byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 127. SENSORHUB8_REG register
SHub8_7 SHub8_6 SHub8_5 SHub8_4 SHub8_3 SHub8_2 SHub8_1 SHub8_0
Table 128. SENSORHUB8_REG register description
SHub8_[7:0] Eighth byte associated to external sensors
Table 129. SENSORHUB9_REG register
SHub9_7 SHub9_6 SHub9_5 SHub9_4 SHub9_3 SHub9_2 SHub9_1 SHub9_0
Table 130. SENSORHUB9_REG register description
SHub9_[7:0] Ninth byte associated to external sensors
Table 131. SENSORHUB10_REG register
SHub10_7 SHub10_6 SHub10_5 SHub10_4 SHub10_3 SHub10_2 SHub10_1 SHub10_0
Table 132. SENSORHUB10_REG register description
SHub10_[7:0] Tenth byte associated to external sensors
Table 133. SENSORHUB11_REG register
SHub11_7 SHub11_6 SHub11_5 SHub11_4 SHub11_3 SHub11_2 SHub11_1 SHub11_0
Table 134. SENSORHUB11_REG register description
SHub11_[7:0] Eleventh byte associated to external sensors
Register description LSM6DS3H
76/108 DocID028370 Rev 5
9.51 SENSORHUB12_REG(39h)
Twelfth byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).
9.52 FIFO_STATUS1 (3Ah)
FIFO status control register (r). For a proper reading of the register it is suggested to set BDU bit in
CTRL3_C (12h) to 0.
Table 137. FIFO_STATUS1 register
Table 138. FIFO_STATUS1 register description
9.53 FIFO_STATUS2 (3Bh)
FIFO status control register (r). For a proper reading of the register it is recommended to set the
BDU bit in CTRL3_C (12h) to 0.
Table 139. FIFO_STATUS2 register
Table 140. FIFO_STATUS2 register description
Table 135. SENSORHUB12_REG register
SHub12_7 SHub12_6 SHub12_5 SHub12_4 SHub12_3 SHub12_2 SHub12_1 SHub12_0
Table 136. SENSORHUB12_REG register description
SHub12[7:0] Twelfth byte associated to external sensors
DIFF_
FIFO_7
DIFF_
FIFO_6
DIFF_
FIFO_5
DIFF_
FIFO_4
DIFF_
FIFO_3
DIFF_
FIFO_2
DIFF_
FIFO_1
DIFF_
FIFO_0
DIFF_FIFO_[7:0] Number of unread words (16-bit axes) stored in FIFO(1).
1. For a complete number of unread samples, consider DIFF_FIFO [11:8] in FIFO_STATUS2 (3Bh)
FTH FIFO_
OVER_RUN
FIFO_
FULL
FIFO_
EMPTY
DIFF_
FIFO_11
DIFF_
FIFO_10
DIFF_
FIFO_9
DIFF_
FIFO_8
FTH FIFO watermark status. Default value: 0
(0: FIFO filling is lower than watermark level(1);
1: FIFO filling is equal to or higher than the watermark level)
1. FIFO watermark level is set in FTH_[11:0] in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h)
FIFO_OVER_RUN FIFO overrun status. Default value: 0
(0: FIFO is not completely filled; 1: FIFO is completely filled)
FIFO_FULL FIFO full status. Default value: 0
(0: FIFO is not full; 1: FIFO will be full at the next ODR)
FIFO_EMPTY FIFO empty bit. Default value: 0
(0: FIFO contains data; 1: FIFO is empty)
DIFF_FIFO_[7:0] Number of unread words (16-bit axes) stored in FIFO(2).
2. For a complete number of unread samples, consider DIFF_FIFO [11:8] in FIFO_STATUS1 (3Ah)
DocID028370 Rev 5 77/108
LSM6DS3H Register description
108
9.54 FIFO_STATUS3 (3Ch)
FIFO status control register (r). For a proper reading of the register it is recommended to set the
BDU bit in CTRL3_C (12h) to 0.
Table 141. FIFO_STATUS3 register
Table 142. FIFO_STATUS3 register description
9.55 FIFO_STATUS4 (3Dh)
FIFO status control register (r). For a proper reading of the register it is recommended to set
the BDU bit in CTRL3_C (12h) to 0.
Table 143. FIFO_STATUS4 register
Table 144. FIFO_STATUS4 register description
9.56 FIFO_DATA_OUT_L (3Eh)
FIFO data output register (r). For a proper reading of the register it is recommended to set
the BDU bit in CTRL3_C (12h) to 0.
FIFO_
PATTERN
_7
FIFO_
PATTERN
_6
FIFO_
PATTERN
_5
FIFO_
PATTERN
_4
FIFO_
PATTERN
_3
FIFO_
PATTERN
_2
FIFO_
PATTERN
_1
FIFO_
PATTERN
_0
FIFO_
PATTERN_[7:0] Word of recursive pattern read at the next reading.
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
0(1) 0(1) 0(1) 0(1) 0(1) FIFO_
PATTERN_9
FIFO_
PATTERN_8
FIFO_
PATTERN_[9:8] Word of recursive pattern read at the next reading.
Table 145. FIFO_DATA_OUT_L register
DATA_
OUT_
FIFO_L_7
DATA_
OUT_
FIFO_L_6
DATA_
OUT_
FIFO_L_5
DATA_
OUT_
FIFO_L_4
DATA_
OUT_
FIFO_L_3
DATA_
OUT_
FIFO_L_2
DATA_
OUT_
FIFO_L_1
DATA_
OUT_
FIFO_L_0
Table 146. FIFO_DATA_OUT_L register description
DATA_OUT_FIFO_L_[7:0] FIFO data output (first byte)
Register description LSM6DS3H
78/108 DocID028370 Rev 5
9.57 FIFO_DATA_OUT_H (3Fh)
FIFO data output register (r). For a proper reading of the register it is suggested to set BDU
bit in CTRL3_C (12h) to 0.
9.58 TIMESTAMP0_REG (40h)
Timestamp first byte data output register (r). The value is expressed as a 24-bit word and
the bit resolution is defined by setting the value in WAKE_UP_DUR (5Ch).
9.59 TIMESTAMP1_REG (41h)
Timestamp second byte data output register (r). The value is expressed as a 24-bit word
and the bit resolution is defined by setting value in WAKE_UP_DUR (5Ch).
9.60 TIMESTAMP2_REG (42h)
Timestamp third byte data output register (r/w). The value is expressed as a 24-bit word and
the bit resolution is defined by setting the value in WAKE_UP_DUR (5Ch). To reset the
timer, the AAh value has to be stored in this register.
Table 147. FIFO_DATA_OUT_H register
DATA_
OUT_
FIFO_H_7
DATA_
OUT_
FIFO_H_6
DATA_
OUT_
FIFO_H_5
DATA_
OUT_
FIFO_H_4
DATA_
OUT_
FIFO_H_3
DATA_
OUT_
FIFO_H_2
DATA_
OUT_
FIFO_H_1
DATA_
OUT_
FIFO_H_0
Table 148. FIFO_DATA_OUT_H register description
DATA_OUT_FIFO_H_[7:0] FIFO data output (second byte)
Table 149. TIMESTAMP0_REG register
TIMESTA
MP0_7
TIMESTA
MP0_6
TIMESTA
MP0_5
TIMESTA
MP0_4
TIMESTA
MP0_3
TIMESTA
MP0_2
TIMESTA
MP0_1
TIMESTA
MP0_0
Table 150. TIMESTAMP0_REG register description
TIMESTAMP0_[7:0] TIMESTAMP first byte data output
Table 151. TIMESTAMP1_REG register
TIMESTA
MP1_7
TIMESTA
MP1_6
TIMESTA
MP1_5
TIMESTA
MP1_4
TIMESTA
MP1_3
TIMESTA
MP1_2
TIMESTA
MP1_1
TIMESTA
MP1_0
Table 152. TIMESTAMP1_REG register description
TIMESTAMP1_[7:0] TIMESTAMP second byte data output
Table 153. TIMESTAMP2_REG register
TIMESTA
MP2_7
TIMESTA
MP2_6
TIMESTA
MP2_5
TIMESTA
MP2_4
TIMESTA
MP2_3
TIMESTA
MP2_2
TIMESTA
MP2_1
TIMESTA
MP2_0
Table 154. TIMESTAMP2_REG register description
TIMESTAMP2_[7:0] TIMESTAMP third byte data output
DocID028370 Rev 5 79/108
LSM6DS3H Register description
108
9.61 STEP_TIMESTAMP_L (49h)
Step counter timestamp information register (r). When a step is detected, the value of
TIMESTAMP_REG1 register is copied in STEP_TIMESTAMP_L.
9.62 STEP_TIMESTAMP_H (4Ah)
Step counter timestamp information register (r). When a step is detected, the value of
TIMESTAMP_REG2 register is copied in STEP_TIMESTAMP_H.
9.63 STEP_COUNTER_L (4Bh)
Step counter output register (r).
9.64 STEP_COUNTER_H (4Ch)
Step counter output register (r).
Table 155. STEP_TIMESTAMP_L register
STEP_
TIMESTA
MP_L_7
STEP_
TIMESTA
MP_L_6
STEP_
TIMESTA
MP_L_5
STEP_
TIMESTA
MP_L_4
STEP_
TIMESTA
MP_L_3
STEP_
TIMESTA
MP_L_2
STEP_
TIMESTA
MP_L_1
STEP_
TIMESTA
MP_L_0
Table 156. STEP_TIMESTAMP_L register description
STEP_TIMESTAMP_L[7:0] Timestamp of last step detected.
Table 157. STEP_TIMESTAMP_H register
STEP_
TIMESTA
MP_H_7
STEP_
TIMESTA
MP_H_6
STEP_
TIMESTA
MP_H_5
STEP_
TIMESTA
MP_H_4
STEP_
TIMESTA
MP_H_3
STEP_
TIMESTA
MP_H_2
STEP_
TIMESTA
MP_H_1
STEP_
TIMESTA
MP_H_0
Table 158. STEP_TIMESTAMP_H register description
STEP_TIMESTAMP_H[7:0] Timestamp of last step detected.
Table 159. STEP_COUNTER_L register
STEP_CO
UNTER_L
_7
STEP_CO
UNTER_L
_6
STEP_CO
UNTER_L
_5
STEP_CO
UNTER_L
_4
STEP_CO
UNTER_L
_3
STEP_CO
UNTER_L
_2
STEP_CO
UNTER_L
_1
STEP_CO
UNTER_L
_0
Table 160. STEP_COUNTER_L register description
STEP_COUNTER_L_[7:0] Step counter output (LSbyte)
Table 161. STEP_COUNTER_H register
STEP_CO
UNTER_H
_7
STEP_CO
UNTER_H
_6
STEP_CO
UNTER_H
_5
STEP_CO
UNTER_H
_4
STEP_CO
UNTER_H
_3
STEP_CO
UNTER_H
_2
STEP_CO
UNTER_H
_1
STEP_CO
UNTER_H
_0
Table 162. STEP_COUNTER_H register description
STEP_COUNTER_H_[7:0] Step counter output (MSbyte)
Register description LSM6DS3H
80/108 DocID028370 Rev 5
9.65 SENSORHUB13_REG (4Dh)
Thirteenth byte associated to external sensors. The content of the register is consistent with
the SLAVEx_CONFIG number of read operation configurations (for external sensors from
x = 0 to x = 3).
9.66 SENSORHUB14_REG (4Eh)
Fourteenth byte associated to external sensors. The content of the register is consistent
with the SLAVEx_CONFIG number of read operation configurations (for external sensors
from x = 0 to x = 3).
9.67 SENSORHUB15_REG (4Fh)
Fifteenth byte associated to external sensors. The content of the register is consistent with
the SLAVEx_CONFIG number of read operation configurations (for external sensors from x
= 0 to x = 3).
9.68 SENSORHUB16_REG (50h)
Sixteenth byte associated to external sensors. The content of the register is consistent with
the SLAVEx_CONFIG number of read operation configurations (for external sensors from
x = 0 to x = 3).
Table 163. SENSORHUB13_REG register
SHub13_7 SHub13_6 SHub13_5 SHub13_4 SHub13_3 SHub13_2 SHub13_1 SHub13_0
Table 164. SENSORHUB13_REG register description
SHub13_[7:0] Thirteenth byte associated to external sensors
Table 165. SENSORHUB14_REG register
SHub14_7 SHub14_6 SHub14_5 SHub14_4 SHub14_3 SHub14_2 SHub14_1 SHub14_0
Table 166. SENSORHUB14_REG register description
SHub14_[7:0] Fourteenth byte associated to external sensors
Table 167. SENSORHUB15_REG register
SHub15_7 SHub15_6 SHub15_5 SHub15_4 SHub15_3 SHub15_2 SHub15_1 SHub15_0
Table 168. SENSORHUB15_REG register description
SHub15_[7:0] Fifteenth byte associated to external sensors
Table 169. SENSORHUB16_REG register
SHub16_7 SHub16_6 SHub16_5 SHub16_4 SHub16_3 SHub16_2 SHub16_1 SHub16_0
Table 170. SENSORHUB16_REG register description
SHub16_[7:0] Sixteenth byte associated to external sensors
DocID028370 Rev 5 81/108
LSM6DS3H Register description
108
9.69 SENSORHUB17_REG (51h)
Seventeenth byte associated to external sensors. The content of the register is consistent
with the SLAVEx_CONFIG number of read operation configurations (for external sensors
from x = 0 to x = 3).
9.70 SENSORHUB18_REG (52h)
Eighteenth byte associated to external sensors. The content of the register is consistent with
the SLAVEx_CONFIG number of read operation configurations (for external sensors from
x = 0 to x = 3).
Table 171. SENSORHUB17_REG register
SHub17_7 SHub17_6 SHub17_5 SHub17_4 SHub17_3 SHub17_2 SHub17_1 SHub17_0
Table 172. SENSORHUB17_REG register description
SHub17_[7:0] Seventeenth byte associated to external sensors
Table 173. SENSORHUB18_REG register
SHub18_7 SHub18_6 SHub18_5 SHub18_4 SHub18_3 SHub18_2 SHub18_1 SHub18_0
Table 174. SENSORHUB18_REG register description
SHub18_[7:0] Eighteenth byte associated to external sensors
Register description LSM6DS3H
82/108 DocID028370 Rev 5
9.71 FUNC_SRC (53h)
Significant motion, tilt, step detector, hard/soft-iron and sensor hub interrupt source register
(r).
Table 175. FUNC_SRC register
STEP_COU
NT_DELTA_
IA
SIGN_
MOTION_IA TILT_IA STEP_
DETECTED
STEP_
OVERFLOW 0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
SI_END_
OP
SENSOR
HUB_
END_OP
Table 176. FUNC_SRC register description
STEP_COUNT
_DELTA_IA
Pedometer step recognition on delta time status. Default value: 0
(0: no step recognized during delta time; 1: at least one step recognized during
delta time)
SIGN_
MOTION_IA
Significant motion event detection status. Default value: 0
(0: significant motion event not detected; 1: significant motion event detected)
TILT_IA Tilt event detection status. Default value: 0
(0: tilt event not detected; 1: tilt event detected)
STEP_
DETECTED
Step detector event detection status. Default value: 0
(0: step detector event not detected; 1: step detector event detected)
STEP_
OVERFLOW
Step counter overflow status. Default value: 0
(0: step counter value < 216; 1: step counter value reached 216)
SI_END_OP Hard/soft-iron calculation status. Default value: 0
(0: Hard/soft-iron calculation not concluded; 1: Hard/soft-iron calculation concluded)
SENSORHUB
_END_OP
Sensor hub communication status. Default value: 0
(0: sensor hub communication not concluded;
1: sensor hub communication concluded)
DocID028370 Rev 5 83/108
LSM6DS3H Register description
108
9.72 TAP_CFG (58h)
Timestamp, pedometer, tilt, filtering, and tap recognition functions configuration register
(r/w).
9.73 TAP_THS_6D (59h)
Portrait/landscape position and tap function threshold register (r/w).
Table 177. TAP_CFG register
TIMER_
EN PEDO_EN TILT_EN SLOPE
_FDS TAP_X_EN TAP_Y_EN TAP_Z_EN LIR
Table 178. TAP_CFG register description
TIMER_EN
Timestamp count enable, output data are collected in TIMESTAMP0_REG (40h),
TIMESTAMP1_REG (41h), TIMESTAMP2_REG (42h) register. Default: 0
(0: timestamp count disabled; 1: timestamp count enabled)
PEDO_EN Pedometer algorithm enable. Default value: 0
(0: pedometer algorithm disabled; 1: pedometer algorithm enabled)
TILT_EN Tilt calculation enable. Default value: 0
(0: tilt calculation disabled; 1: tilt calculation enabled.)
SLOPE_FDS Enable accelerometer HP and LPF2 filters (refer to Figure 7). Default value: 0
(0: disable; 1: enable)
TAP_X_EN Enable X direction in tap recognition. Default value: 0
(0: X direction disabled; 1:X direction enabled)
TAP_Y_EN Enable Y direction in tap recognition. Default value: 0
(0: Y direction disabled; 1:Y direction enabled)
TAP_Z_EN Enable Z direction in tap recognition. Default value: 0
(0: Z direction disabled; 1:Z direction enabled)
LIR Latched Interrupt. Default value: 0
(0: interrupt request not latched; 1: interrupt request latched)
Table 179. TAP_THS_6D register
D4D_EN SIXD_THS
1
SIXD_THS
0
TAP_THS
4
TAP_THS
3
TAP_THS
2
TAP_THS
1
TAP_THS
0
Table 180. TAP_THS_6D register description
D4D_EN
4D orientation detection enable. Z-axis position detection is disabled.
Default value: 0
(0: enabled; 1: disabled)
SIXD_THS[1:0] Threshold for D6D function. Default value: 00
For details, refer to Table 181.
TAP_THS[4:0] Threshold for tap recognition. Default value: 00000
Register description LSM6DS3H
84/108 DocID028370 Rev 5
9.74 INT_DUR2 (5Ah)
Tap recognition function setting register (r/w).
Table 181. Threshold for D4D/D6D function
SIXD_THS[1:0] Threshold value
00 80 degrees
01 70 degrees
10 60 degrees
11 50 degrees
Table 182. INT_DUR2 register
DUR3 DUR2 DUR1 DUR0 QUIET1 QUIET0 SHOCK1 SHOCK0
Table 183. INT_DUR2 register description
DUR[3:0]
Duration of maximum time gap for double tap recognition. Default: 0000
When double tap recognition is enabled, this register expresses the maximum time
between two consecutive detected taps to determine a double tap event. The
default value of these bits is 0000b which corresponds to 16*ODR_XL time. If the
DUR[3:0] bits are set to a different value, 1LSB corresponds to 32*ODR_XL time.
QUIET[1:0]
Expected quiet time after a tap detection. Default value: 00
Quiet time is the time after the first detected tap in which there must not be any
overthreshold event. The default value of these bits is 00b which corresponds to
2*ODR_XL time. If the QUIET[1:0] bits are set to a different value, 1LSB
corresponds to 4*ODR_XL time.
SHOCK[1:0]
Maximum duration of overthreshold event. Default value: 00
Maximum duration is the maximum time of an overthreshold signal detection to be
recognized as a tap event. The default value of these bits is 00b which corresponds
to 4*ODR_XL time. If the SHOCK[1:0] bits are set to a different value, 1LSB
corresponds to 8*ODR_XL time.
DocID028370 Rev 5 85/108
LSM6DS3H Register description
108
9.75 WAKE_UP_THS (5Bh)
Single and double-tap function threshold register (r/w).
9.76 WAKE_UP_DUR (5Ch)
Free-fall, wakeup, timestamp and sleep mode functions duration setting register (r/w).
Table 184. WAKE_UP_THS register
SINGLE_
DOUBLE
_TAP
INACTIVITY WK_THS5 WK_THS4 WK_THS3 WK_THS2 WK_THS1 WK_THS0
Table 185. WAKE_UP_THS register description
SINGLE_
DOUBLE_TAP
Single/double-tap event enable. Default: 0
(0: only single-tap event enabled; 1: both single and double-tap events enabled)
INACTIVITY Inactivity event enable. Default value: 0
(0: sleep disabled; 1: sleep enabled)
WK_THS[5:0] Threshold for wakeup. Default value: 000000
Table 186. WAKE_UP_DUR register
FF_DUR5 WAKE_
DUR1
WAKE_
DUR0
TIMER_
HR
SLEEP_
DUR3
SLEEP_
DUR2
SLEEP_
DUR1
SLEEP_
DUR0
Table 187. WAKE_UP_DUR register description
FF_DUR5
Free fall duration event. Default: 0
For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in
FREE_FALL (5Dh) configuration.
WAKE_DUR[1:0] Wake up duration event. Default: 00
1LSB = 1 ODR_time
TIMER_HR Timestamp register resolution setting(1). Default value: 0
(0: 1LSB = 6.4 ms; 1: 1LSB = 25 μs)
1. Configuration of this bit affects TIMESTAMP0_REG (40h), TIMESTAMP1_REG (41h),
TIMESTAMP2_REG (42h), STEP_TIMESTAMP_L (49h), STEP_TIMESTAMP_H (4Ah), and
STEP_COUNT_DELTA (15h) registers.
SLEEP_DUR[3:0] Duration to go in sleep mode. Default value: 0000
1 LSB = 512 ODR
Register description LSM6DS3H
86/108 DocID028370 Rev 5
9.77 FREE_FALL (5Dh)
Free-fall function duration setting register (r/w).
Table 188. FREE_FALL register
FF_DUR4 FF_DUR3 FF_DUR2 FF_DUR1 FF_DUR0 FF_THS2 FF_THS1 FF_THS0
Table 189. FREE_FALL register description
FF_DUR[4:0]
Free-fall duration event. Default: 0
For the complete configuration of the free fall duration, refer to FF_DUR5 in
WAKE_UP_DUR (5Ch) configuration
FF_THS[2:0] Free fall threshold setting. Default: 000
For details refer to Table 190.
Table 190. Threshold for free-fall function
FF_THS[2:0] Threshold value
000 156 mg
001 219 mg
010 250 mg
011 312 mg
100 344 mg
101 406 mg
110 469 mg
111 500 mg
DocID028370 Rev 5 87/108
LSM6DS3H Register description
108
9.78 MD1_CFG (5Eh)
Functions routing on INT1 register (r/w).
Table 191. MD1_CFG register
INT1_
INACT_
STATE
INT1_
SINGLE_
TAP
INT1_WU INT1_FF
INT1_
DOUBLE_
TAP
INT1_6D INT1_TILT INT1_
TIMER
Table 192. MD1_CFG register description
INT1_INACT_
STATE
Routing on INT1 of inactivity mode. Default: 0
(0: routing on INT1 of inactivity disabled; 1: routing on INT1 of inactivity enabled)
INT1_SINGLE_
TAP
Single-tap recognition routing on INT1. Default: 0
(0: routing of single-tap event on INT1 disabled;
1: routing of single-tap event on INT1 enabled)
INT1_WU
Routing of wakeup event on INT1. Default value: 0
(0: routing of wakeup event on INT1 disabled;
1: routing of wakeup event on INT1 enabled)
INT1_FF
Routing of free-fall event on INT1. Default value: 0
(0: routing of free-fall event on INT1 disabled;
1: routing of free-fall event on INT1 enabled)
INT1_DOUBLE
_TAP
Routing of tap event on INT1. Default value: 0
(0: routing of double-tap event on INT1 disabled;
1: routing of double-tap event on INT1 enabled)
INT1_6D Routing of 6D event on INT1. Default value: 0
(0: routing of 6D event on INT1 disabled; 1: routing of 6D event on INT1 enabled)
INT1_TILT Routing of tilt event on INT1. Default value: 0
(0: routing of tilt event on INT1 disabled; 1: routing of tilt event on INT1 enabled)
INT1_TIMER
Routing of end counter event of timer on INT1. Default value: 0
(0: routing of end counter event of timer on INT1 disabled;
1: routing of end counter event of timer event on INT1 enabled)
Register description LSM6DS3H
88/108 DocID028370 Rev 5
9.79 MD2_CFG (5Fh)
Functions routing on INT2 register (r/w).
9.80 OUT_MAG_RAW_X_L (66h)
External magnetometer raw data (r).
Table 193. MD2_CFG register
INT2_
INACT_
STATE
INT2_
SINGLE_
TAP
INT2_WU INT2_FF
INT2_
DOUBLE_
TAP
INT2_6D INT2_TILT INT2_
IRON
Table 194. MD2_CFG register description
INT2_INACT_
STATE
Routing on INT2 of inactivity mode. Default: 0
(0: routing on INT2 of inactivity disabled; 1: routing on INT2 of inactivity enabled)
INT2_SINGLE_
TAP
Single-tap recognition routing on INT2. Default: 0
(0: routing of single-tap event on INT2 disabled;
1: routing of single-tap event on INT2 enabled)
INT2_WU
Routing of wakeup event on INT2. Default value: 0
(0: routing of wakeup event on INT2 disabled;
1: routing of wake-up event on INT2 enabled)
INT2_FF
Routing of free-fall event on INT2. Default value: 0
(0: routing of free-fall event on INT2 disabled;
1: routing of free-fall event on INT2 enabled)
INT2_DOUBLE
_TAP
Routing of tap event on INT2. Default value: 0
(0: routing of double-tap event on INT2 disabled;
1: routing of double-tap event on INT2 enabled)
INT2_6D Routing of 6D event on INT2. Default value: 0
(0: routing of 6D event on INT2 disabled; 1: routing of 6D event on INT2 enabled)
INT2_TILT Routing of tilt event on INT2. Default value: 0
(0: routing of tilt event on INT2 disabled; 1: routing of tilt event on INT2 enabled)
INT2_IRON
Routing of soft-iron/hard-iron algorithm end event on INT2. Default value: 0
(0: routing of soft-iron/hard-iron algorithm end event on INT2 disabled;
1: routing of soft-iron/hard-iron algorithm end event on INT2 enabled)
Table 195. OUT_MAG_RAW_X_L register
D7 D6 D5 D4 D3 D2 D1 D0
Table 196. OUT_MAG_RAW_X_L register description
D[7:0] X-axis external magnetometer value (LSbyte)
DocID028370 Rev 5 89/108
LSM6DS3H Register description
108
9.81 OUT_MAG_RAW_X_H (67h)
External magnetometer raw data (r).
9.82 OUT_MAG_RAW_Y_L (68h)
External magnetometer raw data (r).
9.83 OUT_MAG_RAW_Y_H (69h)
External magnetometer raw data (r).
9.84 OUT_MAG_RAW_Z_L (6Ah)
External magnetometer raw data (r).
Table 197. OUT_MAG_RAW_X_H register
D15 D14 D13 D12 D11 D10 D9 D8
Table 198. OUT_MAG_RAW_X_H register description
D[15:8] X-axis external magnetometer value (MSbyte)
Table 199. OUT_MAG_RAW_Y_L register
D7 D6 D5 D4 D3 D2 D1 D0
Table 200. OUT_MAG_RAW_Y_L register description
D[7:0] Y-axis external magnetometer value (LSbyte)
Table 201. OUT_MAG_RAW_Y_H register
D15 D14 D13 D12 D11 D10 D9 D8
Table 202. OUT_MAG_RAW_Y_H register description
D[15:8] Y-axis external magnetometer value (MSbyte)
Table 203. OUT_MAG_RAW_Z_L register
D7 D6 D5 D4 D3 D2 D1 D0
Table 204. OUT_MAG_RAW_Z_L register description
D[7:0] Z-axis external magnetometer value (LSbyte)
Register description LSM6DS3H
90/108 DocID028370 Rev 5
9.85 OUT_MAG_RAW_Z_H (6Bh)
External magnetometer raw data (r).
9.86 CTRL_SPIAux (70h)
Table 205. OUT_MAG_RAW_Z_H register
D15 D14 D13 D12 D11 D10 D9 D8
Table 206. OUT_MAG_RAW_Z_H register description
D[15:8] Z-axis external magnetometer value (MSbyte)
Table 207. CTRL_SPIAux register
BLE_SPI2 0(1)
1. This bit must be set to '0' for the correct operation of the device.
SPI_READ
_EN 0(1) 0(1) 0(1) 0(1) 3.3KHz_
SPI2_EN
Table 208. CTRL_SPIAux register description
BLE_SPI2 Big/little endian selection (same as primary interface bit)
SPI_READ_EN Enable Auxiliary SPI 3-wire interface. Default value: 0
(0: disable; 1: enable)
3.3KHz_SPI2_EN
Enable output @ 3.3 kHz and FS = 250 dps on output data registers (22h to 27h)
read by SPI2. Default value: 0
(0: disable; 1: enable)
DocID028370 Rev 5 91/108
LSM6DS3H Embedded functions register mapping
108
10 Embedded functions register mapping
The table given below provides a list of the registers for the embedded functions available in
the device and the corresponding addresses. Embedded functions registers are accessible
when FUNC_CFG_EN is set to ‘1’ in FUNC_CFG_ACCESS (01h).
Note: All modifications of the content of the embedded functions registers have to be performed
with the device in power-down mode.
Table 209. Registers address map - embedded functions
Name Type
Register address
Default Comment
Hex Binary
SLV0_ADD r/w 02 00000010 00000000
SLV0_SUBADD r/w 03 00000011 00000000
SLAVE0_CONFIG r/w 04 00000100 00000000
SLV1_ADD r/w 05 00000101 00000000
SLV1_SUBADD r/w 06 00000110 00000000
SLAVE1_CONFIG r/w 07 00000111 00000000
SLV2_ADD r/w 08 00001000 00000000
SLV2_SUBADD r/w 09 00001001 00000000
SLAVE2_CONFIG r/w 0A 00001010 00000000
SLV3_ADD r/w 0B 00001011 00000000
SLV3_SUBADD r/w 0C 00001100 00000000
SLAVE3_CONFIG r/w 0D 00001101 00000000
DATAWRITE_SRC_
MODE_SUB_SLV0 r/w 0E 00001110 00000000
PEDO_THS_REG r/w 0F 00001111 00010000
RESERVED - 10-12 - Reserved
SM_THS r/w 13 00010011 00000110
PEDO_DB_REG r/w 14 00010100 01101110
STEP_COUNT_DELTA r/w 15 00010101 00000000
MAG_SI_XX r/w 24 00100100 00001000
MAG_SI_XY r/w 25 00100101 00000000
MAG_SI_XZ r/w 26 00100110 00000000
MAG_SI_YX r/w 27 00100111 00000000
MAG_SI_YY r/w 28 00101000 00001000
MAG_SI_YZ r/w 29 00101001 00000000
MAG_SI_ZX r/w 2A 00101010 00000000
MAG_SI_ZY r/w 2B 00101011 00000000
Embedded functions register mapping LSM6DS3H
92/108 DocID028370 Rev 5
Registers marked as Reserved must not be changed. Writing to those registers may cause
permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibration values. Their content is automatically restored when the device is
powered up.
MAG_SI_ZZ r/w 2C 00101100 00001000
MAG_OFFX_L r/w 2D 00101101 00000000
MAG_OFFX_H r/w 2E 00101110 00000000
MAG_OFFY_L r/w 2F 00101111 00000000
MAG_OFFY_H r/w 30 00110000 00000000
MAG_OFFZ_L r/w 31 00110001 00000000
MAG_OFFZ_H r/w 32 00110010 00000000
Table 209. Registers address map - embedded functions (continued)
Name Type
Register address
Default Comment
Hex Binary
DocID028370 Rev 5 93/108
LSM6DS3H Embedded functions registers description
108
11 Embedded functions registers description
Note: All modifications of the content of the embedded functions registers have to be performed
with the device in power-down mode.
11.1 SLV0_ADD (02h)
I2C slave address of the first external sensor (Sensor1) register (r/w).
11.2 SLV0_SUBADD (03h)
Address of register on the first external sensor (Sensor1) register (r/w).
11.3 SLAVE0_CONFIG (04h)
First external sensor (Sensor1) configuration and sensor hub settings register (r/w).
Table 210. SLV0_ADD register
Slave0_
add6
Slave0_
add5
Slave0_
add4
Slave0_
add3
Slave0_
add2
Slave0_
add1
Slave0_
add0 rw_0
Table 211. SLV0_ADD register description
Slave0_add[6:0] I2C slave address of Sensor1 that can be read by sensor hub.
Default value: 0000000
rw_0 Read/write operation on Sensor1. Default value: 0
(0: write operation; 1: read operation)
Table 212. SLV0_SUBADD register
Slave0_
reg7
Slave0_
reg6
Slave0_
reg5
Slave0_
reg4
Slave0_
reg3
Slave0_
reg2
Slave0_
reg1
Slave0_
reg0
Table 213. SLV0_SUBADD register description
Slave0_reg[7:0] Address of register on Sensor1 that has to be read/write according to the rw_0 bit
value in SLV0_ADD (02h). Default value: 00000000
Table 214. SLAVE0_CONFIG register
Slave0_
rate1
Slave0_
rate0
Aux_sens
_on1
Aux_sens
_on0 Src_mode Slave0_
numop2
Slave0_
numop1
Slave0_
numop0
Embedded functions registers description LSM6DS3H
94/108 DocID028370 Rev 5
11.4 SLV1_ADD (05h)
I2C slave address of the second external sensor (Sensor2) register (r/w).
11.5 SLV1_SUBADD (06h)
Address of register on the second external sensor (Sensor2) register (r/w).
Table 215. SLAVE0_CONFIG register description
Slave0_rate[1:0]
Decimation of read operation on Sensor1 starting from the sensor hub trigger.
Default value: 00
(00: no decimation
01: update every 2 samples
10: update every 4 samples
11: update every 8 samples)
Aux_sens_on[1:0]
Number of external sensors to be read by sensor hub. Default value: 00
(00: one sensor
01: two sensors
10: three sensors
11: four sensors)
Src_mode Source mode conditioned read(1). Default value: 0
(0: source mode read disabled; 1: source mode read enabled)
Slave0_numop[2:0] Number of read operations on Sensor1.
1. Read conditioned by the content of the register at address specified in
DATAWRITE_SRC_MODE_SUB_SLV0 (0Eh) register. If the content is non-zero the operation continues
with the reading of the address specified in the SLV0_SUBADD (03h) register, else the operation is
interrupted.
Table 216. SLV1_ADD register
Slave1_
add6
Slave1_
add5
Slave1_
add4
Slave1_
add3
Slave1_
add2
Slave1_
add1
Slave1_
add0 r_1
Table 217. SLV1_ADD register description
Slave1_add[6:0] I2C slave address of Sensor2 that can be read by sensor hub.
Default value: 0000000
r_1 Read operation on Sensor2 enable. Default value: 0
(0: read operation disabled; 1: read operation enabled)
Table 218. SLV1_SUBADD register
Slave1_
reg7
Slave1_
reg6
Slave1_
reg5
Slave1_
reg4
Slave1_
reg3
Slave1_
reg2
Slave1_
reg1
Slave1_
reg0
Table 219. SLV1_SUBADD register description
Slave1_reg[7:0] Address of register on Sensor2 that has to be read according to the r_1 bit value
in SLV1_ADD (05h). Default value: 00000000
DocID028370 Rev 5 95/108
LSM6DS3H Embedded functions registers description
108
11.6 SLAVE1_CONFIG (07h)
Second external sensor (Sensor2) configuration register (r/w).
11.7 SLV2_ADD (08h)
I2C slave address of the third external sensor (Sensor3) register (r/w).
11.8 SLV2_SUBADD (09h)
Address of register on the third external sensor (Sensor3) register (r/w).
Table 220. SLAVE1_CONFIG register
Slave1_
rate1
Slave1_
rate0 0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
0(1) 0(1) Slave1_
numop2
Slave1_
numop1
Slave1_
numop0
Table 221. SLAVE1_CONFIG register description
Slave1_rate[1:0]
Decimation of read operation on Sensor2 starting from the sensor hub trigger.
Default value: 00
(00: no decimation
01: update every 2 samples
10: update every 4 samples
11: update every 8 samples)
Slave1_numop[2:0] Number of read operations on Sensor2.
Table 222. SLV2_ADD register
Slave2_
add6
Slave2_
add5
Slave2_
add4
Slave2_
add3
Slave2_
add2
Slave2_
add1
Slave2_
add0 r_2
Table 223. SLV2_ADD register description
Slave2_add[6:0] I2C slave address of Sensor3 that can be read by sensor hub.
Default value: 0000000
r_2 Read operation on Sensor3 enable. Default value: 0
(0: read operation disabled; 1: read operation enabled)
Table 224. SLV2_SUBADD register
Slave2_
reg7
Slave2_
reg6
Slave2_
reg5
Slave2_
reg4
Slave2_
reg3
Slave2_
reg2
Slave2_
reg1
Slave2_
reg0
Table 225. SLV2_SUBADD register description
Slave2_reg[7:0] Address of register on Sensor3 that has to be read according to the r_2 bit value
in SLV2_ADD (08h). Default value: 00000000
Embedded functions registers description LSM6DS3H
96/108 DocID028370 Rev 5
11.9 SLAVE2_CONFIG (0Ah)
Third external sensor (Sensor3) configuration register (r/w).
11.10 SLV3_ADD (0Bh)
I2C slave address of the fourth external sensor (Sensor4) register (r/w).
11.11 SLV3_SUBADD (0Ch)
Address of register on the fourth external sensor (Sensor4) register (r/w).
Table 226. SLAVE2_CONFIG register
Slave2_
rate1
Slave2_
rate0 0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
0(1) 0(1) Slave2_
numop2
Slave2_
numop1
Slave2_
numop0
Table 227. SLAVE2_CONFIG register description
Slave2_rate[1:0]
Decimation of read operation on Sensor3 starting from the sensor hub trigger.
Default value: 00
(00: no decimation
01: update every 2 samples
10: update every 4 samples
11: update every 8 samples)
Slave2_numop[2:0] Number of read operations on Sensor3.
Table 228. SLV3_ADD register
Slave3_
add6
Slave3_
add5
Slave3_
add4
Slave3_
add3
Slave3_
add2
Slave3_
add1
Slave3_
add0 r_3
Table 229. SLV3_ADD register description
Slave3_add[6:0] I2C slave address of Sensor4 that can be read by the sensor hub.
Default value: 0000000
r_3 Read operation on Sensor4 enable. Default value: 0
(0: read operation disabled; 1: read operation enabled)
Table 230. SLV3_SUBADD register
Slave3_
reg7
Slave3_
reg6
Slave3_
reg5
Slave3_
reg4
Slave3_
reg3
Slave3_
reg2
Slave3_
reg1
Slave3_
reg0
Table 231. SLV3_SUBADD register description
Slave3_reg[7:0] Address of register on Sensor4 that has to be read according to the r_3 bit value
in SLV3_ADD (0Bh). Default value: 00000000
DocID028370 Rev 5 97/108
LSM6DS3H Embedded functions registers description
108
11.12 SLAVE3_CONFIG (0Dh)
Fourth external sensor (Sensor4) configuration register (r/w).
11.13 DATAWRITE_SRC_MODE_SUB_SLV0 (0Eh)
Data to be written into the slave device register (r/w).
Table 232. SLAVE3_CONFIG register
Slave3_
rate1
Slave3_
rate0 0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
0(1) 0(1) Slave3_
numop2
Slave3_
numop1
Slave3_
numop0
Table 233. SLAVE3_CONFIG register description
Slave3_rate[1:0]
Decimation of read operation on Sensor4 starting from the sensor hub trigger.
Default value: 00
(00: no decimation
01: update every 2 samples
10: update every 4 samples
11: update every 8 samples)
Slave3_numop[2:0] Number of read operations on Sensor4.
Table 234. DATAWRITE_SRC_MODE_SUB_SLV0 register
Slave_
dataw7
Slave_
dataw6
Slave_
dataw5
Slave_
dataw4
Slave_
dataw3
Slave_
dataw2
Slave_
dataw1
Slave_
dataw0
Table 235. DATAWRITE_SRC_MODE_SUB_SLV0 register description
Slave_dataw[7:0]
Data to be written into the slave device according to the rw_0 bit in SLV0_ADD
(02h) register or address to be read in source mode.
Default value: 00000000
Embedded functions registers description LSM6DS3H
98/108 DocID028370 Rev 5
11.14 PEDO_THS_REG (0Fh)
Pedometer minimum threshold and internal full-scale configuration register (r/w).
11.15 SM_THS (13h)
Significant motion configuration register (r/w).
11.16 PEDO_DEB_REG (14h)
Pedometer debounce configuration register (r/w).
Table 236. PEDO_THS_REG register
PEDO_4G - - THS_MIN4 THS_MIN3 THS_MIN2 THS_MIN1 THS_MIN0
Table 237. PEDO_THS_REG register description
PEDO_4G
This bit sets the internal full scale used in pedometer functions. Using this bit,
saturation is avoided (e.g. FAST walk).
0: internal full scale = 2 g.
1: internal full scale 4 g (device full_scale @CTRL1_XL must be 4 g,
otherwise internal full scale is 2 g)
THS_MIN[4:0] Configurable minimum threshold. 1LSB = 16 mg @ PEDO_4G = 0,
1LSB = 32 mg @ PEDO_4G = 1
Table 238. SM_THS register
SM_THS_
7
SM_THS_
6
SM_THS_
5
SM_THS_
4
SM_THS_
3
SM_THS_
2
SM_THS_
1
SM_THS_
0
Table 239. SM_THS register description
SM_THS[7:0] Significant motion threshold. Default value: 00000110
Table 240. PEDO_DEB_REG register
DEB_
TIME4
DEB_
TIME3
DEB_
TIME2
DEB_
TIME1
DEB_
TIME0
DEB_
STEP2
DEB_
STEP1
DEB_
STEP0
Table 241. PEDO_DEB_REG register description
DEB_TIME[4:0] Debounce time. If the time between two consecutive steps is greater than
DEB_TIME*80ms, the debouncer is reactivated. Default value: 01101
DEB_STEP[2:0] Debounce threshold. Minimum number of steps to increment the step counter
(debounce). Default value: 110
DocID028370 Rev 5 99/108
LSM6DS3H Embedded functions registers description
108
11.17 STEP_COUNT_DELTA (15h)
Time period register for step detection on delta time (r/w).
11.18 MAG_SI_XX (24h)
Soft-iron matrix correction register (r/w).
11.19 MAG_SI_XY (25h)
Soft-iron matrix correction register (r/w).
11.20 MAG_SI_XZ (26h)
Soft-iron matrix correction register (r/w).
Table 242. STEP_COUNT_DELTA register
SC_
DELTA_7
SC_
DELTA_6
SC_
DELTA_5
SC_
DELTA_4
SC_
DELTA_3
SC_
DELTA_2
SC_
DELTA_1
SC_
DELTA_0
Table 243. STEP_COUNT_DELTA register description
SC_DELTA[7:0] Time period value(1) (1LSB = 1.6384 s)
1. This value is effective if the TIMER_EN bit of the TAP_CFG (58h) register is set to 1 and the TIMER_HR
bit of the WAKE_UP_DUR (5Ch) register is set to 0.
Table 244. MAG_SI_XX register
MAG_SI_
XX_7
MAG_SI_
XX_6
MAG_SI_
XX_5
MAG_SI_
XX_4
MAG_SI_
XX_3
MAG_SI_
XX_2
MAG_SI_
XX_1
MAG_SI_
XX_0
Table 245. MAG_SI_XX register description
MAG_SI_XX_[7:0] Soft-iron correction row1 col1 coefficient(1). Default value: 00001000
1. Value is expressed in sign-module format.
Table 246. MAG_SI_XY register
MAG_SI_
XY_7
MAG_SI_
XY_6
MAG_SI_
XY_5
MAG_SI_
XY_4
MAG_SI_
XY_3
MAG_SI_
XY_2
MAG_SI_
XY_1
MAG_SI_
XY_0
Table 247. MAG_SI_XY register description
MAG_SI_XY_[7:0] Soft-iron correction row1 col2 coefficient(1). Default value: 00000000
1. Value is expressed in sign-module format.
Table 248. MAG_SI_XZ register
MAG_SI_
XZ_7
MAG_SI_
XZ_6
MAG_SI_
XZ_5
MAG_SI_
XZ_4
MAG_SI_
XZ_3
MAG_SI_
XZ_2
MAG_SI_
XZ_1
MAG_SI_
XZ_0
Table 249. MAG_SI_XZ register description
MAG_SI_XZ_[7:0] Soft-iron correction row1 col3 coefficient(1). Default value: 00000000
1. Value is expressed in sign-module format.
Embedded functions registers description LSM6DS3H
100/108 DocID028370 Rev 5
11.21 MAG_SI_YX (27h)
Soft-iron matrix correction register (r/w).
11.22 MAG_SI_YY (28h)
Soft-iron matrix correction register (r/w).
11.23 MAG_SI_YZ (29h)
Soft-iron matrix correction register (r/w).
11.24 MAG_SI_ZX (2Ah)
Soft-iron matrix correction register (r/w).
Table 250. MAG_SI_YX register
MAG_SI_
YX_7
MAG_SI_
YX_6
MAG_SI_
YX_5
MAG_SI_
YX_4
MAG_SI_
YX_3
MAG_SI_
YX_2
MAG_SI_
YX_1
MAG_SI_
YX_0
Table 251. MAG_SI_YX register description
MAG_SI_YX_[7:0] Soft-iron correction row2 col1 coefficient(1). Default value: 00000000
1. Value is expressed in sign-module format.
Table 252. MAG_SI_YY register
MAG_SI_
YY_7
MAG_SI_
YY_6
MAG_SI_
YY_5
MAG_SI_
YY_4
MAG_SI_
YY_3
MAG_SI_
YY_2
MAG_SI_
YY_1
MAG_SI_
YY_0
Table 253. MAG_SI_YY register description
MAG_SI_YY_[7:0] Soft-iron correction row2 col2 coefficient(1). Default value: 00001000
1. Value is expressed in sign-module format.
Table 254. MAG_SI_YZ register
MAG_SI_
YZ_7
MAG_SI_
YZ_6
MAG_SI_
YZ_5
MAG_SI_
YZ_4
MAG_SI_
YZ_3
MAG_SI_
YZ_2
MAG_SI_
YZ_1
MAG_SI_
YZ_0
Table 255. MAG_SI_YZ register description
MAG_SI_YZ_[7:0] Soft-iron correction row2 col3 coefficient(1). Default value: 00000000
1. Value is expressed in sign-module format.
Table 256. MAG_SI_ZX register
MAG_SI_
ZX_7
MAG_SI_
ZX_6
MAG_SI_
ZX_5
MAG_SI_
ZX_4
MAG_SI_
ZX_3
MAG_SI_
ZX_2
MAG_SI_
ZX_1
MAG_SI_
ZX_0
Table 257. MAG_SI_ZX register description
MAG_SI_ZX_[7:0] Soft-iron correction row3 col1 coefficient(1). Default value: 00000000
1. Value is expressed in sign-module format.
DocID028370 Rev 5 101/108
LSM6DS3H Embedded functions registers description
108
11.25 MAG_SI_ZY (2Bh)
Soft-iron matrix correction register (r/w).
11.26 MAG_SI_ZZ (2Ch)
Soft-iron matrix correction register (r/w).
11.27 MAG_OFFX_L (2Dh)
Offset for X-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit
word in two’s complement.
11.28 MAG_OFFX_H (2Eh)
Offset for X-axis hard-iron compensation register (r/w).The value is expressed as a 16-bit
word in two’s complement.
Table 258. MAG_SI_ZY register
MAG_SI_
ZY_7
MAG_SI_
ZY_6
MAG_SI_
ZY_5
MAG_SI_
ZY_4
MAG_SI_
ZY_3
MAG_SI_
ZY_2
MAG_SI_
ZY_1
MAG_SI_
ZY_0
Table 259. MAG_SI_ZY register description
MAG_SI_ZY_[7:0] Soft-iron correction row3 col2 coefficient(1). Default value: 00000000
1. Value is expressed in sign-module format.
Table 260. MAG_SI_ZZ register
MAG_SI_
ZZ_7
MAG_SI_
ZZ_6
MAG_SI_
ZZ_5
MAG_SI_
ZZ_4
MAG_SI_
ZZ_3
MAG_SI_
ZZ_2
MAG_SI_
ZZ_1
MAG_SI_
ZZ_0
Table 261. MAG_SI_ZZ register description
MAG_SI_ZZ_[7:0] Soft-iron correction row3 col3 coefficient(1). Default value: 00001000
1. Value is expressed in sign-module format.
Table 262. MAG_OFFX_L register
MAG_OFF
X_L_7
MAG_OFF
X_L_6
MAG_OFF
X_L_5
MAG_OFF
X_L_4
MAG_OFF
X_L_3
MAG_OFF
X_L_2
MAG_OFF
X_L_1
MAG_OFF
X_L_0
Table 263. MAG_OFFX_L register description
MAG_OFFX_L_[7:0] Offset for X-axis hard-iron compensation. Default value: 00000000
Table 264. MAG_OFFX_H register
MAG_OFF
X_H_7
MAG_OFF
X_H_6
MAG_OFF
X_H_5
MAG_OFF
X_H_4
MAG_OFF
X_H_3
MAG_OFF
X_H_2
MAG_OFF
X_H_1
MAG_OFF
X_H_0
Table 265. MAG_OFFX_L register description
MAG_OFFX_H_[7:0] Offset for X-axis hard-iron compensation. Default value: 00000000
Embedded functions registers description LSM6DS3H
102/108 DocID028370 Rev 5
11.29 MAG_OFFY_L (2Fh)
Offset for Y-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit
word in two’s complement.
11.30 MAG_OFFY_H (30h)
Offset for Y-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit
word in two’s complement.
11.31 MAG_OFFZ_L (31h)
Offset for Z-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit
word in two’s complement.
11.32 MAG_OFFZ_H (32h)
Offset for Z-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit
word in two’s complement.
Table 266. MAG_OFFY_L register
MAG_OFF
Y_L_7
MAG_OFF
Y_L_6
MAG_OFF
Y_L_5
MAG_OFF
Y_L_4
MAG_OFF
Y_L_3
MAG_OFF
Y_L_2
MAG_OFF
Y_L_1
MAG_OFF
Y_L_0
Table 267. MAG_OFFY_L register description
MAG_OFFY_L_[7:0] Offset for Y-axis hard-iron compensation. Default value: 00000000
Table 268. MAG_OFFY_H register
MAG_OFF
Y_H_7
MAG_OFF
Y_H_6
MAG_OFF
Y_H_5
MAG_OFF
Y_H_4
MAG_OFF
Y_H_3
MAG_OFF
Y_H_2
MAG_OFF
Y_H_1
MAG_OFF
Y_H_0
Table 269. MAG_OFFY_L register description
MAG_OFFY_H_[7:0] Offset for Y-axis hard-iron compensation. Default value: 00000000
Table 270. MAG_OFFZ_L register
MAG_OFF
Z_L_7
MAG_OFF
Z_L_6
MAG_OFF
Z_L_5
MAG_OFF
Z_L_4
MAG_OFF
Z_L_3
MAG_OFF
Z_L_2
MAG_OFF
Z_L_1
MAG_OFF
Z_L_0
Table 271. MAG_OFFZ_L register description
MAG_OFFZ_L_[7:0] Offset for Z-axis hard-iron compensation. Default value: 00000000
Table 272. MAG_OFFZ_H register
MAG_OFF
Z_H_7
MAG_OFF
Z_H_6
MAG_OFF
Z_H_5
MAG_OFF
Z_H_4
MAG_OFF
Z_H_3
MAG_OFF
Z_H_2
MAG_OFF
Z_H_1
MAG_OFF
Z_H_0
Table 273. MAG_OFFX_L register description
MAG_OFFZ_H_[7:0] Offset for Z-axis hard-iron compensation. Default value: 00000000
DocID028370 Rev 5 103/108
LSM6DS3H Soldering information
108
12 Soldering information
The LGA package is compliant with the ECOPACK®, RoHS and "Green" standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Land pattern and soldering recommendations are available at www.st.com/mems.
Package information LSM6DS3H
104/108 DocID028370 Rev 5
13 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
13.1 LGA-14 package information
Figure 18. LGA-14 2.5x3x0.86 14L package outline and mechanical data
'LPHQVLRQVDUHLQPLOOLPHWHUXQOHVVRWKHUZLVHVSHFLILHG
*HQHUDOWROHUDQFHLVPPXQOHVVRWKHUZLVHVSHFLILHG
287(5',0(16,216
,7(0 ',0(16,21>PP@ 72/(5$1&(>PP@
@/>KWJQH/
@:>KWGL:
;$0@+>WKJLH+
B
DocID028370 Rev 5 105/108
LSM6DS3H Package information
108
13.2 LGA-14 packing information
Figure 19. Carrier tape information for LGA-14 package
Figure 20. LGA-14 package orientation in carrier tape
Package information LSM6DS3H
106/108 DocID028370 Rev 5
Figure 21. Reel information for carrier tape of LGA-14 package
Table 274. Reel dimensions for carrier tape of LGA-14 package
Reel dimensions (mm)
A (max) 330
B (min) 1.5
C 13 ±0.25
D (min) 20.2
N (min) 60
G 12.4 +2/-0
T (max) 18.4
$'
%
)X O O UDG L X V 7DSHVORW
LQFRUHIRU
WDSHVWDUW
PPPLQZLGWK
*PHDVXUHGDWKXE
&
1
PPPLQ
$FFHVVKROHDW
VORWORFDWLRQ
7
DocID028370 Rev 5 107/108
LSM6DS3H Revision history
108
14 Revision history
Table 275. Document revision history
Date Revision Changes
14-Sep-2015 1 Initial release
15-Sep-2015 2 Updated Features
14-Oct-2015 3
Updated Figure 7: Accelerometer composite filter
Updated description of HPCF_XL bits in Table 67: CTRL8_XL register description
Added Table 69: Accelerometer LPF2 cutoff frequency
Added PEDO_THS_REG (0Fh) and PEDO_DEB_REG (14h)
Added Section 13.2: LGA-14 packing information
03-Feb-2016 4
Document status promoted to “production data”
Updated Table 3: Mechanical characteristics
Updated Table 4: Electrical characteristics
Updated Table 8: Absolute maximum ratings
Updated Register description
29-Sep-2017 5
Specified SPI mode 3 in Section 4.4.1: SPI - serial peripheral interface and throughout
Section 6: Digital interfaces
Updated ORIENT_CFG_G (0Bh) and CTRL_SPIAux (70h)
LSM6DS3H
108/108 DocID028370 Rev 5
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved