This is information on a product in full production.
May 2017 DocID15275 Rev 16 1/88
STM8L101x1 STM8L101x2
STM8L101x3
8-bit ultra-low power microcontroller with up to 8 Kbytes Flash,
multifunction timers, comparators, USART, SPI, I2C
Datasheet - production data
Features
Main microcontroller features
Supply voltage range 1.65 V to 3.6 V
Low power consumption (Halt: 0.3 µA,
Active-halt: 0.8 µA, Dynamic Run:
150 µA/MHz)
STM8 Core with up to 16 CISC MIPS
throughput
Temp. range: -40 to 85 °C and 125 °C
Memories
Up to 8 Kbytes of Flash program including
up to 2 Kbytes of data EEPROM
Error correction code (ECC)
Flexible write and read protection modes
In-application and in-circuit programming
Data EEPROM capability
1.5 Kbytes of static RAM
Clock management
Internal 16 MHz RC with fast wakeup time
(typ. 4 µs)
Internal low consumption 38 kHz RC
driving both the IWDG and the AWU
Reset and supply management
Ultra-low power POR/PDR
Three low-power modes: Wait, Active-halt,
Halt
Interrupt management
Nested interrupt controller with software
priority control
Up to 29 external interrupt sources
I/Os
Up to 30 I/Os, all mappable on external
interrupt vectors
I/Os with programmable input pull-ups, high
sink/source capability and one LED driver
infrared output
Peripherals
Two 16-bit general purpose timers (TIM2
and TIM3) with up and down counter and 2
channels (used as IC, OC, PWM)
One 8-bit timer (TIM4) with 7-bit prescaler
Infrared remote control (IR)
Independent watchdog
Auto-wakeup unit
Beeper timer with 1, 2 or 4 kHz frequencies
SPI synchronous serial interface
Fast I2C Multimaster/slave 400 kHz
USART with fractional baud rate generator
2 comparators with 4 inputs each
Development support
Hardware single wire interface module
(SWIM) for fast on-chip programming and
non intrusive debugging
In-circuit emulation (ICE)
96-bit unique ID
Table 1. Device summary
Reference Part numbers
STM8L101x1 STM8L101F1
STM8L101x2 STM8L101F2, STM8L101G2
STM8L101x3 STM8L101F3, STM8L101G3,
STM8L101K3
UFQFPN20
UFQFPN32
TSSOP20
5 x 5 mm
LQFP32
7x7 mm
UFQFPN28
4 x 4 mm
3 x 3 mm 6.5 x 6.4 mm
www.st.com
Contents STM8L101x1 STM8L101x2 STM8L101x3
2/88 DocID15275 Rev 16
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.2 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.3 Single wire data interface (SWIM) and debug module . . . . . . . . . . . . . . . .11
3.4 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.5 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.7 Voltage regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.8 Clock control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.9 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.10 Auto-wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.11 General purpose and basic timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.12 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.13 Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.14 Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.15 USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.16 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.17 I²C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8 Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
DocID15275 Rev 16 3/88
STM8L101x1 STM8L101x2 STM8L101x3 Contents
4
9 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.3.2 Power-up / power-down operating conditions . . . . . . . . . . . . . . . . . . . . 41
9.3.3 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.3.4 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.3.6 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.3.7 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.3.8 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.3.9 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.1 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.2 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
10.3 UFQFPN28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.4 UFQFPN20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.5 TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
11 Device ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
12 STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
12.1 Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . 80
12.2 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
12.2.1 STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
12.2.2 C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
12.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Contents STM8L101x1 STM8L101x2 STM8L101x3
4/88 DocID15275 Rev 16
13 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
DocID15275 Rev 16 5/88
STM8L101x1 STM8L101x2 STM8L101x3 List of tables
5
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM8L101xx device feature summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3. Legend/abbreviation for table 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 4. STM8L101xx pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 5. Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 6. I/O Port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 7. General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 8. CPU/SWIM/debug module/interrupt controller registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 9. Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 10. Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 11. Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 12. Unique ID registers (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 13. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 14. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 15. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 16. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 17. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 18. Total current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 19. Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 20. Total current consumption and timing in Halt and Active-halt mode at
VDD = 1.65 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 21. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 22. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 23. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 24. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 25. Flash program memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 26. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 27. Output driving current (High sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 28. Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 29. Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 51
Table 30. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 31. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 32. I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 33. Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 34. EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 35. EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 36. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 37. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 38. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 39. UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package (5 x 5),
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 40. LQFP32- 32-pin low profile quad flat package (7x7), package mechanical data . . . . . . . . 68
Table 41. UFQFPN28 - 28-lead ultra thin fine pitch quad flat no-lead package (4 x 4),
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 42. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 43. TSSOP20 - 20-lead thin shrink small package mechanical data . . . . . . . . . . . . . . . . . . . . 76
Table 44. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
List of figures STM8L101x1 STM8L101x2 STM8L101x3
6/88 DocID15275 Rev 16
List of figures
Figure 1. STM8L101xx device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2. Standard 20-pin UFQFPN package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 3. 20-pin UFQFPN package pinout for STM8L101F1U6ATR,
STM8L101F2U6ATR and STM8L101F3U6ATR part numbers. . . . . . . . . . . . . . . . . . . . . . 16
Figure 4. 20-pin TSSOP package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 5. Standard 28-pin UFQFPN package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 6. 28-pin UFQFPN package pinout for STM8L101G3U6ATR and
STM8L101G2U6ATR part numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 7. 32-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 8. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 9. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 10. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 11. IDD(RUN) vs. VDD, fCPU = 2 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 12. IDD(RUN) vs. VDD, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 13. IDD(WAIT) vs. VDD, fCPU = 2 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 14. IDD(WAIT) vs. VDD, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 15. Typ. IDD(Halt) vs. VDD, fCPU = 2 MHz and 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 16. Typical HSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 17. Typical HSI accuracy vs. temperature, VDD = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 18. Typical HSI accuracy vs. temperature, VDD = 1.65 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . 46
Figure 19. Typical LSI RC frequency vs. VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 20. Typical VIL and VIH vs. VDD (High sink I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 21. Typical VIL and VIH vs. VDD (true open drain I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 22. Typical pull-up resistance RPU vs. VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 23. Typical pull-up current IPU vs. VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 24. Typ. VOL at VDD = 3.0 V (High sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 25. Typ. VOL at VDD = 1.8 V (High sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 26. Typ. VOL at VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 27. Typ. VOL at VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 28. Typ. VDD - VOH at VDD = 3.0 V (High sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 29. Typ. VDD - VOH at VDD = 1.8 V (High sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 30. Typical NRST pull-up resistance RPU vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 31. Typical NRST pull-up current Ipu vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 32. Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 33. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 34. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 35. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 36. Typical application with I2C bus and timing diagram 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 37. UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package outline (5 x 5). . . . . . 64
Figure 38. UFQFPN32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 39. UFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 40. LQFP32 - 32-pin low profile quad flat package outline (7 x 7) . . . . . . . . . . . . . . . . . . . . . . 67
Figure 41. LQFP32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 42. LQFP32 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 43. UFQFPN28 - 28-lead ultra thin fine pitch quad flat no-lead package outline (4 x 4 mm) . . 70
Figure 44. UFQFPN28 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 45. UFQFPN28 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 46. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
DocID15275 Rev 16 7/88
STM8L101x1 STM8L101x2 STM8L101x3 List of figures
7
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 47. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 48. UFQFPN20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 49. TSSOP20 - 20-lead thin shrink small package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 50. TSSOP20 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 51. TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 52. STM8L101xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Introduction STM8L101x1 STM8L101x2 STM8L101x3
8/88 DocID15275 Rev 16
1 Introduction
This datasheet provides the STM8L101x1 STM8L101x2 STM8L101x3 pinout, ordering
information, mechanical and electrical device characteristics.
For complete information on the STM8L101x1 STM8L101x2 STM8L101x3 microcontroller
memory, registers and peripherals, please refer to the STM8L reference manual.
The STM8L101x1 STM8L101x2 STM8L101x3devices are members of the STM8L low-
power 8-bit family. They are
referred to as low-density devices in the STM8L101x1 STM8L101x2 STM8L101x3
microcontroller family reference manual (RM0013) and in the STM8L Flash programming
manual (PM0054).
All devices of the SM8L product line provide the following benefits:
Reduced system cost
Up to 8 Kbytes of low-density embedded Flash program memory including up to
2 Kbytes of data EEPROM
High system integration level with internal clock oscillators and watchdogs.
Smaller battery and cheaper power supplies.
Low power consumption and advanced features
Up to 16 MIPS at 16 MHz CPU clock frequency
Less than 150 µA/MH, 0.8 µA in Active-halt mode, and 0.3 µA in Halt mode
Clock gated system and optimized power management
Short development cycles
Application scalability across a common family product architecture with
compatible pinout, memory map and modular peripherals.
Full documentation and a wide choice of development tools
Product longevity
Advanced core and peripherals made in a state-of-the art technology
Product family operating from 1.65 V to 3.6 V supply.
DocID15275 Rev 16 9/88
STM8L101x1 STM8L101x2 STM8L101x3 Description
22
2 Description
The STM8L101x1 STM8L101x2 STM8L101x3 low-power family features the enhanced
STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while
maintaining the advantages of a CISC architecture with improved code density, a 24-bit
linear addressing space and an optimized architecture for low power operations.
The family includes an integrated debug module with a hardware interface (SWIM) which
allows non-intrusive in-application debugging and ultrafast Flash programming.
All STM8L101xx microcontrollers feature low power low-voltage single-supply program
Flash memory. The 8-Kbyte devices embed data EEPROM.
The STM8L101xx low power family is based on a generic set of state-of-the-art peripherals.
The modular design of the peripheral set allows the same peripherals to be found in
different ST microcontroller families including 32-bit families. This makes any transition to a
different family very easy, and simplified even more by the use of a common set of
development tools.
All STM8L low power products are based on the same architecture with the same memory
mapping and a coherent pinout.
Table 2. STM8L101xx device feature summary
Features STM8L101xx
Flash 2 Kbytes of Flash program
memory
4 Kbytes of Flash program
memory
8 Kbytes of Flash program
memory including up to
2 Kbytes of Data EEPROM
RAM 1.5 Kbytes
Peripheral functions
Independent watchdog (IWDG), Auto-wakeup unit (AWU), Beep,
Serial peripheral interface (SPI), Inter-integrated circuit (I²C),
Universal synchronous / asynchronous receiver / transmitter (USART),
2 comparators, Infrared (IR) interface
Timers Two 16-bit timers, one 8-bit timer
Operating voltage 1.65 to 3.6 V
Operating temperature -40 to +85 °C -40 to +85 °C or
-40 to +125 °C
Packages UFQFPN20 3x3
UFQFPN28 4x 4
UFQFPN20 3x3
TSSOP20 4.4 x 6.4
UFQFPN28 4x4
UFQFPN20 3x3
UFQFPN32
LQFP32
Product overview STM8L101x1 STM8L101x2 STM8L101x3
10/88 DocID15275 Rev 16
3 Product overview
Figure 1. STM8L101xx device block diagram
Legend:
AWU: Auto-wakeup unit
Int. RC: internal RC oscillator
I²C: Inter-integrated circuit multimaster interface
POR/PDR: Power on reset / power down reset
SPI: Serial peripheral interface
SWIM: Single wire interface module
USART: Universal synchronous / asynchronous receiver / transmitter
IWDG: Independent watchdog
069
0+]LQW5& &ORFN
FRQWUROOHU
&ORFNV
$:8
%HHSHU
$GGUHVVDQGGDWDEXV
N+]LQW5&
'HEXJPRGXOH
,ð&
63,
86$57
8SWR.E\WHV
)ODVKPHPRU\
FRQWUROOHU .E\WHV
WRFRUHDQG
SHULSKHUDOV
,:'*
ELW7LPHU
6:,0
1HVWHGLQWHUUXSW
XSWRH[WHUQDO
PXOWLPDVWHU
ELW7LPHU
65$0
LQWHUUXSWV
LQFOXGLQJ
XSWR.E\WHV
GDWD((3520
3RZHU
9ROWUHJ
1567
3253'5
5HVHW
&203
&203
3RUW$
3RUW%
3RUW&
3RUW'
5;7;&.
6'$6&/
3$>@
3%>@
3&>@
3'>@
026,0,62
6&.166
%((3
6:,0
&203B&+>@
&203B5()
,QIUDUHGLQWHUIDFH
,5B7,0
ELW7LPHU
7,0B&+>@
7,0B&+>@
7,0B75,*
7,0B75,*
&203B&+>@
9''
#9''
670
&RUH
XSWR0+]
9'' 9WR9
966
DocID15275 Rev 16 11/88
STM8L101x1 STM8L101x2 STM8L101x3 Product overview
22
3.1 Central processing unit STM8
The 8-bit STM8 core is designed for code efficiency and performance.
It features 21 internal registers, 20 addressing modes including indexed, indirect and
relative addressing, and 80 instructions.
3.2 Development tools
Development tools for the STM8 microcontrollers include:
The STice emulation system offering tracing and code profiling
The STVD high-level language debugger including C compiler, assembler and
integrated development environment
The STVP Flash programming software
The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit
debugging/programming tools.
3.3 Single wire data interface (SWIM) and debug module
The debug module with its single wire data interface (SWIM) permits non-intrusive real-time
in-circuit debugging and fast memory programming.
The Single wire interface is used for direct access to the debugging module and memory
programming. The interface can be activated in all device operation modes.
The non-intrusive debugging module features a performance close to a full-featured
emulator. Beside memory and peripherals, also CPU operation can be monitored in real-
time by means of shadow registers.
3.4 Interrupt controller
The STM8L101xx features a nested vectored interrupt controller:
Nested interrupts with 3 software priority levels
26 interrupt vectors with hardware priority
Up to 29 external interrupt sources on 10 vectors
Trap and reset interrupts.
Product overview STM8L101x1 STM8L101x2 STM8L101x3
12/88 DocID15275 Rev 16
3.5 Memory
The STM8L101xx devices have the following main features:
1.5 Kbytes of RAM
The EEPROM is divided into two memory arrays (see the STM8L reference manual for
details on the memory mapping):
Up to 8 Kbytes of low-density embedded Flash program including up to 2 Kbytes
of data EEPROM. Data EEPROM and Flash program areas can be write protected
independently by using the memory access security mechanism (MASS).
64 option bytes (one block) of which 5 bytes are already used for the device.
Error correction code is implemented on the EEPROM.
3.6 Low power modes
To minimize power consumption, the product features three low power modes:
Wait mode: CPU clock stopped, selected peripherals at full clock speed.
Active-halt mode: CPU and peripheral clocks are stopped. The programmable wakeup
time is controlled by the AWU unit.
Halt mode: CPU and peripheral clocks are stopped, the device remains powered on.
The RAM content is preserved. Wakeup is triggered by an external interrupt.
3.7 Voltage regulators
The STM8L101xx embeds an internal voltage regulator for generating the 1.8 V power
supply for the core and peripherals.
This regulator has two different modes: main voltage regulator mode (MVR) and low power
voltage regulator mode (LPVR). When entering Halt or Active-halt modes, the system
automatically switches from the MVR to the LPVR in order to reduce current consumption.
3.8 Clock control
The STM8L101xx embeds a robust clock controller. It is used to distribute the system clock
to the core and the peripherals and to manage clock gating for low power modes. This
system clock is a 16-MHz High Speed Internal RC oscillator (HSI RC), followed by a
programmable prescaler.
In addition, a 38 kHz low speed internal RC oscillator is used by the independent watchdog
(IWDG) and Auto-wakeup unit (AWU).
3.9 Independent watchdog
The independent watchdog (IWDG) peripheral can be used to resolve processor
malfunctions due to hardware or software failures.
It is clocked by the 38 kHz LSI internal RC clock source, and thus stays active even in case
of a CPU clock failure.
DocID15275 Rev 16 13/88
STM8L101x1 STM8L101x2 STM8L101x3 Product overview
22
3.10 Auto-wakeup counter
The auto-wakeup (AWU) counter is used to wakeup the device from Active-halt mode.
3.11 General purpose and basic timers
STM8L101xx devices contain two 16-bit general purpose timers (TIM2 and TIM3) and one
8-bit basic timer (TIM4).
16-bit general purpose timers
The 16-bit timers consist of 16-bit up/down auto-reload counters driven by a programmable
prescaler. They perform a wide range of functions, including:
Time base generation
Measuring the pulse lengths of input signals (input capture)
Generating output waveforms (output compare, PWM and One pulse mode)
Interrupt capability on various events (capture, compare, overflow, break, trigger)
8-bit basic timer
The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable
prescaler. It can be used for timebase generation with interrupt generation on timer
overflow.
3.12 Beeper
The STM8L101xx devices include a beeper function used to generate a beep signal in the
range of 1, 2 or 4 kHz when the LSI clock is operating at a frequency of 38 kHz.
3.13 Infrared (IR) interface
The STM8L101xx devices contain an infrared interface which can be used with an IR LED
for remote control functions. Two timer output compare channels are used to generate the
infrared remote control signals.
3.14 Comparators
The STM8L101xx features two zero-crossing comparators (COMP1 and COMP2) sharing
the same current bias and voltage reference. The voltage reference can be internal
(comparison with ground) or external (comparison to a reference pin voltage).
Each comparator is connected to 4 channels, which can be used to generate interrupt, timer
input capture or timer break. Their polarity can be inverted.
Product overview STM8L101x1 STM8L101x2 STM8L101x3
14/88 DocID15275 Rev 16
3.15 USART
The USART interface (USART) allows full duplex, asynchronous communications with
external devices requiring an industry standard NRZ asynchronous serial data format. It
offers a very wide range of baud rates.
3.16 SPI
The serial peripheral interface (SPI) provides half/ full duplex synchronous serial
communication with external devices. It can be configured as the master and in this case it
provides the communication clock (SCK) to the external slave device. The interface can
also operate in multi-master configuration.
3.17 I²C
The inter-integrated circuit (I2C) bus interface is designed to serve as an interface between
the microcontroller and the serial I2C bus. It provides multi-master capability, and controls all
I²C bus-specific sequencing, protocol, arbitration and timing. It manages standard and fast
speed modes.
DocID15275 Rev 16 15/88
STM8L101x1 STM8L101x2 STM8L101x3 Pin description
22
4 Pin description
Figure 2. Standard 20-pin UFQFPN package pinout
1. HS corresponds to 20 mA high sink/source capability.
2. High sink LED driver capability available on PA0. Refer to the description of the IR_CR register in the
STM8L reference manual (RM0013).
Note: The COMP_REF pin is not available in this standard 20-pin UFQFPN package. It is
available on Port A6 in the Figure 3: 20-pin UFQFPN package pinout for
STM8L101F1U6ATR, STM8L101F2U6ATR and STM8L101F3U6ATR part numbers.
069








3%+6
3%+6
3%+6
3%+6
3&
3&
3'+6
3%+6
3%+6
3%+6
3%+6
3$+6
3$+6
15673$+6
966
9''
3&+6
3&+6
3&+6
3$+6
Pin description STM8L101x1 STM8L101x2 STM8L101x3
16/88 DocID15275 Rev 16
Figure 3. 20-pin UFQFPN package pinout for STM8L101F1U6ATR,
STM8L101F2U6ATR and STM8L101F3U6ATR part numbers
1. Please refer to the warning below.
2. HS corresponds to 20 mA high sink/source capability.
3. High sink LED driver capability available on PA0. Refer to the description of the IR_CR register in the
STM8L reference manual (RM0013).
Warning: For the STM8L101F1U6ATR, STM8L101F2U6ATR and
STM8L101F3U6ATR part numbers (devices with COMP_REF
pin), all ports available on 32-pin packages must be
considered as active ports. To avoid spurious effects, the
user has to configure them as input pull-up. A small increase
in consumption (typ. < 300 µA) may occur during the power
up and reset phase until these ports are properly configured.
069








3%+6
3%+6
3%+6
3%+6
3&
3&
3'+6
3%+6
3%+6
3%+6
3%+6
3$+6
3$+6
15673$+6
966
9''
3&+6
3&+6
3&+6
3$+6
DocID15275 Rev 16 17/88
STM8L101x1 STM8L101x2 STM8L101x3 Pin description
22
Figure 4. 20-pin TSSOP package pinout
1. HS corresponds to 20 mA high sink/source capability.
2. High sink LED driver capability available on PA0. Refer to the description of the IR_CR register in the
STM8L reference manual (RM0013).
Figure 5. Standard 28-pin UFQFPN package pinout
1. HS corresponds to 20 mA high sink/source capability.
2. High sink LED driver capability available on PA0. Refer to the description of the IR_CR register in the
STM8L reference manual (RM0013).
Note: The COMP_REF pin is not available in this standard 28-pin UFQFPN package. It is
available on Port A6 in the Figure 6: 28-pin UFQFPN package pinout for
STM8L101G3U6ATR and STM8L101G2U6ATR part numbers.
0! ( 3
0! ( 3
.2340!(3
0!(3
0#(3
633
0#(3
0#
0#
0"
0"(3
0"(3
0"(3
0"(3
0"(3
0"(3
6$$
0$(3
0"(3
0#(3















069
069
3'+6
3%+6
3%+6
3%+6
3'+6
3'+6
3'+6
3$+6
15673$+6
3$+6
3$+6
3$+6 3%+6
3%+6
3%+6
3%+6
3&
3'+6
3%+6
3&+6
3&+6
3&+6
3&
3$+6
3&+6
3&+6








     
966
9''
Pin description STM8L101x1 STM8L101x2 STM8L101x3
18/88 DocID15275 Rev 16
Figure 6. 28-pin UFQFPN package pinout for STM8L101G3U6ATR and
STM8L101G2U6ATR part numbers
1. HS corresponds to 20 mA high sink/source capability.
2. High sink LED driver capability available on PA0. Refer to the description of the IR_CR register in the
STM8L reference manual (RM0013).
Warning: For the STM8L101G3U6ATR and STM8L101G2U6ATR part
numbers (devices with COMP_REF pin), all ports available on
32-pin packages must be considered as active ports. To
avoid spurious effects, the user has to configure them as
input pull-up. A small increase in consumption (typ. < 300 µA)
may occur during the power up and reset phase until these
ports are properly configured.
069
3'+6
3%+6
3%+6
3%+6
3'+6
3'+6
3'+6
3$+6
15673$+6
3$+6
3$+6
3$+6 3%+6
3%+6
3%+6
3%+6
3&
3'+6
3%+6
3&+6
3&+6
3&+6
3&
3$+6
3&+6
3&+6








     
966
9''
DocID15275 Rev 16 19/88
STM8L101x1 STM8L101x2 STM8L101x3 Pin description
22
Figure 7. 32-pin package pinout
1. Example given for the UFQFPN32 package. The pinout is the same for the LQFP32 package.
2. HS corresponds to 20 mA high sink/source capability.
3. High sink LED driver capability available on PA0. Refer to the description of the IR_CR register in the
STM8L reference manual (RM0013).
069
3'+6
3'+6
3%+6
3%+6
3%+6
3'+6
3'+6
3%+6
3$+6
3$+6
15673$+6
3$+6
3$+6
3$+6
3'+6
3'+6
3'+6
3%+6
3%+6
3%+6
3%+6
3'+6
3&
3&








3&+6
3&+6
3&+6
3$+6
3&+6
3&+6
966
9''
       

Pin description STM8L101x1 STM8L101x2 STM8L101x3
20/88 DocID15275 Rev 16
Table 3. Legend/abbreviation for table 4
Type I= input, O = output, S = power supply
Level
Input CM = CMOS
Output HS = high sink/source (20 mA)
Port and control
configuration
Input float = floating, wpu = weak pull-up
Output T = true open drain, OD = open drain, PP = push pull
Reset state
Bold X (pin state after reset release).
Unless otherwise specified, the pin state is the same during the reset phase (i.e.
“under reset”) and after internal reset release (i.e. at reset state).
Table 4. STM8L101xx pin description
Pin number
Pin name
Type
Input Output
Main function
(after reset)
Alternate function
standard UFQFPN20
UFQFPN20 with COMP_REF(1)
TSSOP20
standard UFQFPN28
UFQFPN28 with COMP_REF(1)
UFQFPN32 or LQFP32
floating
wpu
Ext. interrupt
High sink/source
OD
PP
1 14111NRST/PA1
(2) I/O - X-HS- XReset PA1
2 25222PA2 I/OXXXHSXXPort A2 -
3 - 6333PA3 I/OXXXHSXXPort A3 -
- - - 4 4 4 PA4/TIM2_BKIN I/O XXXHSXXPort A4 Timer 2 - break input
- - - 5 - 5 PA5/TIM3_BKIN I/O XXXHSXXPort A5 Timer 3 - break input
- 3 - - 5 6 PA6/COMP_REF I/O XXXHSXXPort A6 Comparator external
reference
4 47667V
SS S - - - - - - Ground
5 58778V
DD S - - - - - - Power supply
6 69889PD0/TIM3_CH2/
COMP1_CH3 I/O XXXHSXXPort D0
Timer 3 - channel 2 /
Comparator 1 -
channel 3
---9910
PD1/TIM3_ETR/
COMP1_CH4 I/O XXXHSXXPort D1
Timer 3 - trigger /
Comparator 1 -
channel 4
---101011
PD2/
COMP2_CH3 I/O XXXHSXXPort D2 Comparator 2 -
channel 3
---111112
PD3/
COMP2_CH4 I/O XXXHSXXPort D3 Comparator 2 -
channel 4
DocID15275 Rev 16 21/88
STM8L101x1 STM8L101x2 STM8L101x3 Pin description
22
7 7 10 12 12 13 PB0/TIM2_CH1/
COMP1_CH1 (3) I/O X(3) X(3) XHSX XPort B0
Timer 2 - channel 1 /
Comparator 1 -
channel 1
8 8 11 13 13 14 PB1/TIM3_CH1/
COMP1_CH2 I/O XXXHSXXPort B1
Timer 3 - channel 1 /
Comparator 1 -
channel 2
9 9 12 14 14 15 PB2/ TIM2_CH2/
COMP2_CH1/ I/O XXXHSXXPort B2
Timer 2 - channel 2 /
Comparator 2 -
channel 1
10 10 13 15 15 16 PB3/TIM2_ETR/
COMP2_CH2 I/O XXXHSXXPort B3
Timer 2 - trigger /
Comparator 2 -
channel 2
11 11 14 16 16 17 PB4/SPI_NSS(3) I/O X(3) X(3) XHSX XPort B4 SPI master/slave
select
12 12 15 17 17 18 PB5/SPI_SCK I/O XXXHSXXPort B5 SPI clock
13 13 16 18 18 19 PB6/SPI_MOSI I/O XXXHSXXPort B6 SPI master out/ slave
in
14 14 17 19 19 20 PB7/SPI_MISO I/O XXXHSXXPort B7 SPI master in/ slave
out
- - - 202021PD4 I/O XXXHSXXPort D4 -
- ----22PD5 I/OXXXHSXXPort D5 -
- ----23PD6 I/OXXXHSXXPort D6 -
- ----24PD7 I/OXXXHSXXPort D7 -
15 15 18 21 21 25 PC0/I2C_SDA I/O X-X- T
(4) Port C0 I2C data
16 16 19 22 22 26 PC1/I2C_SCL I/O X-X- T
(4) Port C1 I2C clock
17 17 20 23 23 27 PC2/USART_RX I/O XXXHSXXPort C2 USART receive
18 18 1 24 24 28 PC3/USART_TX I/O XXXHSXXPort C3 USART transmit
19 19 2 25 25 29 PC4/USART_CK/
CCO I/O XXXHSXXPort C4
USART synchronous
clock / Configurable
clock output
Table 4. STM8L101xx pin description (continued)
Pin number
Pin name
Type
Input Output
Main function
(after reset)
Alternate function
standard UFQFPN20
UFQFPN20 with COMP_REF(1)
TSSOP20
standard UFQFPN28
UFQFPN28 with COMP_REF(1)
UFQFPN32 or LQFP32
floating
wpu
Ext. interrupt
High sink/source
OD
PP
Pin description STM8L101x1 STM8L101x2 STM8L101x3
22/88 DocID15275 Rev 16
Warning: For the STM8L101F1U6ATR, STM8L101F2U6ATR,
STM8L101F3U6ATR, STM8L101G2U6ATR and
STM8L101G3U6ATR part numbers (devices with COMP_REF
pin), all ports available on 32-pin packages must be
considered as active ports. To avoid spurious effects, the
user has to configure them as input pull-up. A small increase
in consumption (typ. < 300 µA) may occur during the power
up and reset phase until these ports are properly configured.
- - - 262630PC5 I/O XXXHSXXPort C5 -
- - - 272731PC6 I/O XXXHSXXPort C6 -
20 20 3 28 28 32 PA0(5)/SWIM/
BEEP/IR_TIM (6) I/O X X(5) XHS
(6) XXPort A0
SWIM input and
output /Beep
output/Timer Infrared
output
1. Please refer to the warning below.
2. At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be
configured only as a general purpose pin (PA1), it can be configured only as output push-pull, not neither as output open-
drain nor as a general purpose input. Refer to Section Configuring NRST/PA1 pin as general purpose output in the STM8L
reference manual (RM0013).
3. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.
4. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to VDD are
not implemented).
5. The PA0 pin is in input pull-up during the reset phase and after reset release.
6. High sink LED driver capability available on PA0.
Slope control of all GPIO pins can be programmed except true open drain pins and by
default is limited to 2 MHz.
Table 4. STM8L101xx pin description (continued)
Pin number
Pin name
Type
Input Output
Main function
(after reset)
Alternate function
standard UFQFPN20
UFQFPN20 with COMP_REF(1)
TSSOP20
standard UFQFPN28
UFQFPN28 with COMP_REF(1)
UFQFPN32 or LQFP32
floating
wpu
Ext. interrupt
High sink/source
OD
PP
DocID15275 Rev 16 23/88
STM8L101x1 STM8L101x2 STM8L101x3 Memory and register map
33
5 Memory and register map
Figure 8. Memory map
1. Table 5 lists the boundary addresses for each memory size. The top of the stack is at the RAM end
address.
2. Refer to Table 7 for an overview of hardware register mapping, to Table 6 for details on I/O port hardware
registers, and to Table 8 for information on CPU/SWIM/debug module controller registers.
*3,2DQGSHULSKHUDOUHJLVWHUV
[
5HVHUYHG
)ODVKSURJUDPPHPRU\
XSWR.E\WHV
,QWHUUXSWYHFWRUV
[
[))
5$0
[))
.E\WHV
XSWR E\WHV
[
2SWLRQE\WHV
[
[))
[
[)))
[
[)))
[
[))
[))
[())
[
[)
&386:,0'HEXJ,7&
5HJLVWHUV
[)
5HVHUYHG
5HVHUYHG
LQFOXGLQJ
6WDFN
LQFOXGLQJ
'DWD((3520
XSWR.E\WHV
[
[
[
[
8QLTXH,'
5HVHUYHG
/RZGHQVLW\
069
Memory and register map STM8L101x1 STM8L101x2 STM8L101x3
24/88 DocID15275 Rev 16
Note: 2 Kbytes of Data EEPROM is only available on devices with 8 Kbytes flash program memory.
Table 5. Flash and RAM boundary addresses
Memory area Size Start address End address
RAM 1.5 Kbytes 0x00 0000 0x00 05FF
Flash program memory
2 Kbytes 0x00 8000 0x00 87FF
4 Kbytes 0x00 8000 0x00 8FFF
8 Kbytes 0x00 8000 0x00 9FFF
Table 6. I/O Port hardware register map
Address Block Register label Register name Reset
status
0x00 5000
Port A
PA_ODR Port A data output latch register 0x00
0x00 5001 PA_IDR Port A input pin value register 0xxx
0x00 5002 PA_DDR Port A data direction register 0x00
0x00 5003 PA_CR1 Port A control register 1 0x00
0x00 5004 PA_CR2 Port A control register 2 0x00
0x00 5005
Port B
PB_ODR Port B data output latch register 0x00
0x00 5006 PB_IDR Port B input pin value register 0xxx
0x00 5007 PB_DDR Port B data direction register 0x00
0x00 5008 PB_CR1 Port B control register 1 0x00
0x00 5009 PB_CR2 Port B control register 2 0x00
0x00 500A
Port C
PC_ODR Port C data output latch register 0x00
0x00 500B PC_IDR Port C input pin value register 0xxx
0x00 500C PC_DDR Port C data direction register 0x00
0x00 500D PC_CR1 Port C control register 1 0x00
0x00 500E PC_CR2 Port C control register 2 0x00
0x00 500F
Port D
PD_ODR Port D data output latch register 0x00
0x00 5010 PD_IDR Port D input pin value register 0xxx
0x00 5011 PD_DDR Port D data direction register 0x00
0x00 5012 PD_CR1 Port D control register 1 0x00
0x00 5013 PD_CR2 Port D control register 2 0x00
DocID15275 Rev 16 25/88
STM8L101x1 STM8L101x2 STM8L101x3 Memory and register map
33
Table 7. General hardware register map
Address Block Register label Register name Reset
status
0x00 5050
Flash
FLASH_CR1 Flash control register 1 0x00
0x00 5051 FLASH_CR2 Flash control register 2 0x00
0x00 5052 FLASH _PUKR Flash Program memory unprotection
register 0x00
0x00 5053 FLASH _DUKR Data EEPROM unprotection register 0x00
0x00 5054 FLASH _IAPSR Flash in-application programming status
register 0xX0
0x00 5055
to
0x00 509F
Reserved area (75 bytes)
0x00 50A0
ITC-EXTI
EXTI_CR1 External interrupt control register 1 0x00
0x00 50A1 EXTI_CR2 External interrupt control register 2 0x00
0x00 50A2 EXTI_CR3 External interrupt control register 3 0x00
0x00 50A3 EXTI_SR1 External interrupt status register 1 0x00
0x00 50A4 EXTI_SR2 External interrupt status register 2 0x00
0x00 50A5 EXTI_CONF External interrupt port select register 0x00
0x00 50A6
WFE
WFE_CR1 WFE control register 1 0x00
0x00 50A7 WFE_CR2 WFE control register 2 0x00
0x00 50A8
to
0x00 50AF
Reserved area (8 bytes)
0x00 50B0
RST
RST_CR Reset control register 0x00
0x00 50B1 RST_SR Reset status register 0x01
0x00 50B2
to
0x00 50BF
Reserved area (14 bytes)
0x00 50C0
CLK
CLK_CKDIVR Clock divider register 0x03
0x00 50C1
to
0x00 50C2
Reserved area (2 bytes)
0x00 50C3 CLK_PCKENR Peripheral clock gating register 0x00
0x00 50C4 Reserved (1 byte)
0x00 50C5 CLK_CCOR Configurable clock control register 0x00
0x00 50C6
to
0x00 50DF
Reserved area (25 bytes)
Memory and register map STM8L101x1 STM8L101x2 STM8L101x3
26/88 DocID15275 Rev 16
0x00 50E0
IWDG
IWDG_KR IWDG key register 0xXX
0x00 50E1 IWDG_PR IWDG prescaler register 0x00
0x00 50E2 IWDG_RLR IWDG reload register 0xFF
0x00 50E3
to
0x00 50EF
Reserved area (13 bytes)
0x00 50F0
AWU
AWU_CSR AWU control/status register 0x00
0x00 50F1 AWU_APR AWU asynchronous prescaler buffer
register 0x3F
0x00 50F2 AWU_TBR AWU timebase selection register 0x00
0x00 50F3 BEEP BEEP_CSR BEEP control/status register 0x1F
0x00 50F4
to
0x00 51FF
Reserved area (268 bytes)
0x00 5200
SPI
SPI_CR1 SPI control register 1 0x00
0x00 5201 SPI_CR2 SPI control register 2 0x00
0x00 5202 SPI_ICR SPI interrupt control register 0x00
0x00 5203 SPI_SR SPI status register 0x02
0x00 5204 SPI_DR SPI data register 0x00
0x00 5205
to
0x00 520F
Reserved area (11 bytes)
0x00 5210
I2C
I2C_CR1 I2C control register 1 0x00
0x00 5211 I2C_CR2 I2C control register 2 0x00
0x00 5212 I2C_FREQR I2C frequency register 0x00
0x00 5213 I2C_OARL I2C own address register low 0x00
0x00 5214 I2C_OARH I2C own address register high 0x00
0x00 5215 Reserved area (1 byte)
0x00 5216 I2C_DR I2C data register 0x00
0x00 5217 I2C_SR1 I2C status register 1 0x00
0x00 5218 I2C_SR2 I2C status register 2 0x00
0x00 5219 I2C_SR3 I2C status register 3 0x00
0x00 521A I2C_ITR I2C interrupt control register 0x00
0x00 521B I2C_CCRL I2C Clock control register low 0x00
0x00 521C I2C_CCRH I2C Clock control register high 0x00
0x00 521D I2C_TRISER I2C TRISE register 0x02
Table 7. General hardware register map (continued)
Address Block Register label Register name Reset
status
DocID15275 Rev 16 27/88
STM8L101x1 STM8L101x2 STM8L101x3 Memory and register map
33
0x00 521E
to
0x00 522F
Reserved area (18 bytes)
0x00 5230
USART
USART_SR USART status register 0xC0
0x00 5231 USART_DR USART data register 0xXX
0x00 5232 USART_BRR1 USART baud rate register 1 0x00
0x00 5233 USART_BRR2 USART baud rate register 2 0x00
0x00 5234 USART_CR1 USART control register 1 0x00
0x00 5235 USART_CR2 USART control register 2 0x00
0x00 5236 USART_CR3 USART control register 3 0x00
0x00 5237 USART_CR4 USART control register 4 0x00
0x00 5238
to
0x00 524F
Reserved area (18 bytes)
Table 7. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8L101x1 STM8L101x2 STM8L101x3
28/88 DocID15275 Rev 16
0x00 5250
TIM2
TIM2_CR1 TIM2 control register 1 0x00
0x00 5251 TIM2_CR2 TIM2 control register 2 0x00
0x00 5252 TIM2_SMCR TIM2 slave mode control register 0x00
0x00 5253 TIM2_ETR TIM2 external trigger register 0x00
0x00 5254 TIM2_IER TIM2 interrupt enable register 0x00
0x00 5255 TIM2_SR1 TIM2 status register 1 0x00
0x00 5256 TIM2_SR2 TIM2 status register 2 0x00
0x00 5257 TIM2_EGR TIM2 event generation register 0x00
0x00 5258 TIM2_CCMR1 TIM2 capture/compare mode register 1 0x00
0x00 5259 TIM2_CCMR2 TIM2 capture/compare mode register 2 0x00
0x00 525A TIM2_CCER1 TIM2 capture/compare enable register 1 0x00
0x00 525B TIM2_CNTRH TIM2 counter high 0x00
0x00 525C TIM2_CNTRL TIM2 counter low 0x00
0x00 525D TIM2_PSCR TIM2 prescaler register 0x00
0x00 525E TIM2_ARRH TIM2 auto-reload register high 0xFF
0x00 525F TIM2_ARRL TIM2 auto-reload register low 0xFF
0x00 5260 TIM2_CCR1H TIM2 capture/compare register 1 high 0x00
0x00 5261 TIM2_CCR1L TIM2 capture/compare register 1 low 0x00
0x00 5262 TIM2_CCR2H TIM2 capture/compare register 2 high 0x00
0x00 5263 TIM2_CCR2L TIM2 capture/compare register 2 low 0x00
0x00 5264 TIM2_BKR TIM2 break register 0x00
0x00 5265 TIM2_OISR TIM2 output idle state register 0x00
0x00 5266
to
0x00 527F
Reserved area (26 bytes)
Table 7. General hardware register map (continued)
Address Block Register label Register name Reset
status
DocID15275 Rev 16 29/88
STM8L101x1 STM8L101x2 STM8L101x3 Memory and register map
33
0x00 5280
TIM3
TIM3_CR1 TIM3 control register 1 0x00
0x00 5281 TIM3_CR2 TIM3 control register 2 0x00
0x00 5282 TIM3_SMCR TIM3 slave mode control register 0x00
0x00 5283 TIM3_ETR TIM3 external trigger register 0x00
0x00 5284 TIM3_IER TIM3 interrupt enable register 0x00
0x00 5285 TIM3_SR1 TIM3 status register 1 0x00
0x00 5286 TIM3_SR2 TIM3 status register 2 0x00
0x00 5287 TIM3_EGR TIM3 event generation register 0x00
0x00 5288 TIM3_CCMR1 TIM3 capture/compare mode register 1 0x00
0x00 5289 TIM3_CCMR2 TIM3 capture/compare mode register 2 0x00
0x00 528A TIM3_CCER1 TIM3 capture/compare enable register 1 0x00
0x00 528B TIM3_CNTRH TIM3 counter high 0x00
0x00 528C TIM3_CNTRL TIM3 counter low 0x00
0x00 528D TIM3_PSCR TIM3 prescaler register 0x00
0x00 528E TIM3_ARRH TIM3 auto-reload register high 0xFF
0x00 528F TIM3_ARRL TIM3 auto-reload register low 0xFF
0x00 5290 TIM3_CCR1H TIM3 capture/compare register 1 high 0x00
0x00 5291 TIM3_CCR1L TIM3 capture/compare register 1 low 0x00
0x00 5292 TIM3_CCR2H TIM3 capture/compare register 2 high 0x00
0x00 5293 TIM3_CCR2L TIM3 capture/compare register 2 low 0x00
0x00 5294 TIM3_BKR TIM3 break register 0x00
0x00 5295 TIM3_OISR TIM3 output idle state register 0x00
0x00 5296
to
0x00 52DF
Reserved area (74 bytes)
0x00 52E0
TIM4
TIM4_CR1 TIM4 control register 1 0x00
0x00 52E1 TIM4_CR2 TIM4 control register 2 0x00
0x00 52E2 TIM4_SMCR TIM4 Slave mode control register 0x00
0x00 52E3 TIM4_IER TIM4 interrupt enable register 0x00
0x00 52E4 TIM4_SR1 TIM4 Status register 1 0x00
0x00 52E5 TIM4_EGR TIM4 event generation register 0x00
0x00 52E6 TIM4_CNTR TIM4 counter 0x00
0x00 52E7 TIM4_PSCR TIM4 prescaler register 0x00
0x00 52E8 TIM4_ARR TIM4 auto-reload register low 0xFF
Table 7. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8L101x1 STM8L101x2 STM8L101x3
30/88 DocID15275 Rev 16
0x00 52E9
to
0x00 52FE
Reserved area (23 bytes)
0x00 52FF IRTIM IR_CR Infra-red control register 0x00
0x00 5300
COMP
COMP_CR Comparator control register 0x00
0x00 5301 COMP_CSR Comparator status register 0x00
0x00 5302 COMP_CCS Comparator channel selection register 0x00
Table 8. CPU/SWIM/debug module/interrupt controller registers
Address Block Register label Register name Reset
status
0x00 7F00
CPU
A Accumulator 0x00
0x00 7F01 PCE Program counter extended 0x00
0x00 7F02 PCH Program counter high 0x80
0x00 7F03 PCL Program counter low 0x00
0x00 7F04 XH X index register high 0x00
0x00 7F05 XL X index register low 0x00
0x00 7F06 YH Y index register high 0x00
0x00 7F07 YL Y index register low 0x00
0x00 7F08 SPH Stack pointer high 0x05
0x00 7F09 SPL Stack pointer low 0xFF
0x00 7F0A CC Condition code register 0x28
0x00 7F0B
to
0x00 7F5F
Reserved area (85 bytes)
0x00 7F60 CFG CFG_GCR Global configuration register 0x00
0x00 7F61
0x00 7F6F Reserved area (15 bytes)
0x00 7F70
ITC-SPR
(1)
ITC_SPR1 Interrupt Software priority register 1 0xFF
0x00 7F71 ITC_SPR2 Interrupt Software priority register 2 0xFF
0x00 7F72 ITC_SPR3 Interrupt Software priority register 3 0xFF
0x00 7F73 ITC_SPR4 Interrupt Software priority register 4 0xFF
0x00 7F74 ITC_SPR5 Interrupt Software priority register 5 0xFF
0x00 7F75 ITC_SPR6 Interrupt Software priority register 6 0xFF
0x00 7F76 ITC_SPR7 Interrupt Software priority register 7 0xFF
0x00 7F77 ITC_SPR8 Interrupt Software priority register 8 0xFF
Table 7. General hardware register map (continued)
Address Block Register label Register name Reset
status
DocID15275 Rev 16 31/88
STM8L101x1 STM8L101x2 STM8L101x3 Memory and register map
33
0x00 7F78
to
0x00 7F79
Reserved area (2 bytes)
0x00 7F80 SWIM SWIM_CSR SWIM control status register 0x00
0x00 7F81
to
0x00 7F8F
Reserved area (15 bytes)
0x00 7F90
DM
DM_BK1RE Breakpoint 1 register extended byte 0xFF
0x00 7F91 DM_BK1RH Breakpoint 1 register high byte 0xFF
0x00 7F92 DM_BK1RL Breakpoint 1 register low byte 0xFF
0x00 7F93 DM_BK2RE Breakpoint 2 register extended byte 0xFF
0x00 7F94 DM_BK2RH Breakpoint 2 register high byte 0xFF
0x00 7F95 DM_BK2RL Breakpoint 2 register low byte 0xFF
0x00 7F96 DM_CR1 Debug module control register 1 0x00
0x00 7F97 DM_CR2 Debug module control register 2 0x00
0x00 7F98 DM_CSR1 Debug module control/status register 1 0x10
0x00 7F99 DM_CSR2 Debug module control/status register 2 0x00
0x00 7F9A DM_ENFCTR Enable function register 0xFF
1. Refer to Table 7: General hardware register map on page 25 (addresses 0x00 50A0 to 0x00 50A5) for a list
of external interrupt registers.
Table 8. CPU/SWIM/debug module/interrupt controller registers (continued)
Address Block Register label Register name Reset
status
Interrupt vector mapping STM8L101x1 STM8L101x2 STM8L101x3
32/88 DocID15275 Rev 16
6 Interrupt vector mapping
Table 9. Interrupt mapping
IRQ
No.
Source
block Description
Wakeup
from Halt
mode
Wakeup
from
Active-halt
mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from Wait
(WFE
mode)
Vector
address
- RESET Reset Yes Yes Yes Yes 0x00 8000
- TRAP Software interrupt - - - - 0x00 8004
0 - Reserved - - - - 0x00 8008
1 FLASH EOP/WR_PG_DIS - - Yes Yes(1) 0x00 800C
2-3-Reserved ----
0x00 8010
-0x00 8017
4 AWU Auto wakeup from Halt - Yes Yes Yes(1) 0x00 8018
5 - Reserved - - - - 0x00 801C
6 EXTIB External interrupt port B Yes Yes Yes Yes 0x00 8020
7 EXTID External interrupt port D Yes Yes Yes Yes 0x00 8024
8 EXTI0 External interrupt 0 Yes Yes Yes Yes 0x00 8028
9 EXTI1 External interrupt 1 Yes Yes Yes Yes 0x00 802C
10 EXTI2 External interrupt 2 Yes Yes Yes Yes 0x00 8030
11 EXTI3 External interrupt 3 Yes Yes Yes Yes 0x00 8034
12 EXTI4 External interrupt 4 Yes Yes Yes Yes 0x00 8038
13 EXTI5 External interrupt 5 Yes Yes Yes Yes 0x00 803C
14 EXTI6 External interrupt 6 Yes Yes Yes Yes 0x00 8040
15 EXTI7 External interrupt 7 Yes Yes Yes Yes 0x00 8044
16 - Reserved - - - - 0x00 8048
17 - Reserved - - - - 0x00 804C
-0x00 804F
18 COMP Comparators - - Yes Yes(1) 0x00 8050
19 TIM2 Update
/Overflow/Trigger/Break - - Yes Yes 0x00 8054
20 TIM2 Capture/Compare - - Yes Yes 0x00 8058
21 TIM3 Update /Overflow/Break - - Yes Yes(1) 0x00 805C
22 TIM3 Capture/Compare - - Yes Yes(1) 0x00 8060
23-
24 -Reserved ----
0x00 8064-
0x00 806B
25 TIM4 Update /Trigger - - Yes Yes(1) 0x00 806C
26 SPI End of Transfer Yes Yes Yes Yes(1) 0x00 8070
DocID15275 Rev 16 33/88
STM8L101x1 STM8L101x2 STM8L101x3 Interrupt vector mapping
33
27 USART
Transmission
complete/transmit data
register empty
--YesYes
(1) 0x00 8074
28 USART
Receive Register DATA
FULL/overrun/idle line
detected/parity error
--YesYes
(1) 0x00 8078
29 I2C I2C interrupt(2) Yes Yes Yes Yes(1) 0x00 807C
1. In WFE mode, this interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes
back to WFE mode. Refer to Section Wait for event (WFE) mode in the RM0013 reference manual.
2. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.
Table 9. Interrupt mapping (continued)
IRQ
No.
Source
block Description
Wakeup
from Halt
mode
Wakeup
from
Active-halt
mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from Wait
(WFE
mode)
Vector
address
Option bytes STM8L101x1 STM8L101x2 STM8L101x3
34/88 DocID15275 Rev 16
7 Option bytes
Option bytes contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated row of the memory.
All option bytes can be modified only in ICP mode (with SWIM) by accessing the EEPROM
address. See Table 10 for details on option byte addresses.
Refer to the STM8L Flash programming manual (PM0054) and STM8 SWIM and Debug
Manual (UM0470) for information on SWIM programming procedures.
Table 10. Option bytes
Addr. Option name
Option
byte
No.
Option bits Factory
default
setting
7654 3 2 1 0
0x4800
Read-out
protection
(ROP)
OPT1 ROP[7:0] 0x00
0x4807 - - Must be programmed to 0x00 0x00
0x4802 UBC (User
Boot code size) OPT2 UBC[7:0] 0x00
0x4803 DATASIZE OPT3 DATASIZE[7:0] 0x00
0x4808
Independent
watchdog
option
OPT4
[1:0] Reserved IWDG
_HALT
IWDG
_HW 0x00
Table 11. Option byte description
OPT1
ROP[7:0] Memory readout protection (ROP)
0xAA: Enable readout protection (write access via SWIM protocol)
Refer to Read-out protection section in the STM8L reference manual
(RM0013) for details.
OPT2
UBC[7:0] Size of the user boot code area
0x00: no UBC
0x01-0x02: UBC contains only the interrupt vectors.
0x03: Page 0 and 1 reserved for the interrupt vectors. Page 2 is available to
store user boot code. Memory is write protected
...
0x7F - Page 0 to 126 reserved for UBC, memory is write protected
Refer to User boot area (UBC) section in the STM8L reference manual
(RM0013) for more details.
UBC[7] is forced to 0 internally by HW.
DocID15275 Rev 16 35/88
STM8L101x1 STM8L101x2 STM8L101x3 Option bytes
35
Caution: After a device reset, read access to the program memory is not guaranteed if address
0x4807 is not programmed to 0x00.
OPT3
DATASIZE[7:0] Size of the data EEPROM area
0x00: no data EEPROM area (1)
0x01: 1 page reserved for data storage from 0x9FC0 to 0x9FFF(1)
0x02: 2 pages reserved for data storage from 0x9F80 to 0x9FFF(1)
... (1)
0x20: 32 pages reserved for data storage from 0x9800 to 0x9FFF(1)
Refer to Data EEPROM (DATA) section in the STM8L reference manual
(RM0013) for more details.
DATASIZE[7:6] are forced to 0 internal by HW.
OPT4
IWDG_HW: Independent watchdog
0: Independent watchdog activated by software
1: Independent watchdog activated by hardware
IWDG_HALT: Independent window watchdog reset on Halt/Active-halt
0: Independent watchdog continues running in Halt/Active-halt mode
1: Independent watchdog stopped in Halt/Active-halt mode
1. 0x00 is the only allowed value for 4 Kbyte STM8L101xx devices.
Table 11. Option byte description (continued)
Unique ID STM8L101x1 STM8L101x2 STM8L101x3
36/88 DocID15275 Rev 16
8 Unique ID
STM8L101xx devices feature a 96-bit unique device identifier which provides a reference
number that is unique for any device and in any context. The 96 bits of the identifier can
never be altered by the user.
The unique device identifier can be read in single bytes and may then be concatenated
using a custom algorithm.
The unique device identifier is ideally suited:
For use as serial numbers
For use as security keys to increase the code security in the program memory while
using and combining this unique ID with software cryptographic primitives and
protocols before programming the internal memory
To activate secure boot processes.
Table 12. Unique ID registers (96 bits)
Address Content
description
Unique ID bits
76543 2 1 0
0x4925 X co-ordinate on
the wafer
U_ID[7:0]
0x4926 U_ID[15:8]
0x4927 Y co-ordinate on
the wafer
U_ID[23:16]
0x4928 U_ID[31:24]
0x4929 Wafer number U_ID[39:32]
0x492A
Lot number
U_ID[47:40]
0x492B U_ID[55:48]
0x492C U_ID[63:56]
0x492D U_ID[71:64]
0x492E U_ID[79:72]
0x492F U_ID[87:80]
0x4930 U_ID[95:88]
DocID15275 Rev 16 37/88
STM8L101x1 STM8L101x2 STM8L101x3 Electrical parameters
63
9 Electrical parameters
9.1 Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
9.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA= 25 °C and TA = TA max (given by
the selected temperature range).
Note: The values given at 85 °C <TA 125 °C are only valid for suffix 3 versions.
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
9.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3 V. They are given
only as design guidelines and are not tested.
9.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
9.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 9.
Figure 9. Pin loading conditions
 P&
34-,0).
069
Electrical parameters STM8L101x1 STM8L101x2 STM8L101x3
38/88 DocID15275 Rev 16
9.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 10.
Figure 10. Pin input voltage
9.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 13: Voltage characteristics,
Table 14: Current characteristics and Table 15: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. The device mission profile is compliant with
the JEDEC JESD47 qualification standard; extended mission profiles are available on
demand.
069
6).
34-,0).
Table 13. Voltage characteristics
Symbol Ratings Min Max Unit
VDD- VSS External supply voltage -0.3 4.0
V
VIN
Input voltage on true open drain pins
(PC0 and PC1)(1)
1. Positive injection is not possible on these I/Os. VIN maximum must always be respected. IINJ(PIN) must
never be exceeded. A negative injection is induced by VIN<VSS.
VSS-0.3 VDD + 4.0
Input voltage on any other pin (2)
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS.
VSS-0.3 4.0
VESD Electrostatic discharge voltage
see Absolute maximum
ratings (electrical sensitivity)
on page 61
-
DocID15275 Rev 16 39/88
STM8L101x1 STM8L101x2 STM8L101x3 Electrical parameters
63
Table 14. Current characteristics
Symbol Ratings Max. Unit
IVDD Total current into VDD power line (source) 80
mA
IVSS Total current out of VSS ground line (sink) 80
IIO
Output current sunk by IR_TIM pin (with high sink LED
driver capability) 80
Output current sunk by any other I/O and control pin 25
Output current sourced by any I/Os and control pin -25
IINJ(PIN) Injected current on true open-drain pins (PC0 and PC1)(1)
1. Positive injection is not possible on these I/Os. VIN maximum must always be respected. IINJ(PIN) must
never be exceeded. A negative injection is induced by VIN<VSS.
-5
Injected current on any other pin (2)
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS.
±5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins) (3)
3. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values). These results are based on characterization
with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.
±25
Table 15. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range -65 to +150
° C
TJMaximum junction temperature 150
Electrical parameters STM8L101x1 STM8L101x2 STM8L101x3
40/88 DocID15275 Rev 16
9.3 Operating conditions
Subject to general operating conditions for VDD and TA.
9.3.1 General operating conditions
Table 16. General operating conditions
Symbol Parameter Conditions Min Max Unit
fMASTER(1) Master clock frequency 1.65 V VDD < 3.6 V 2 16 MHz
VDD Standard operating voltage - 1.65 3.6 V
PD(2)
Power dissipation at TA= 85 °C
for suffix 6 devices
LQFP32 - 288
mW
UFQFPN32 - 288
UFQFPN28 - 250
TSSOP20 - 181
UFQFPN20 - 196
Power dissipation at TA= 125 °C
for suffix 3 devices
LQFP32 - 83
UFQFPN32 - 185
UFQFPN28 - 62
TSSOP20 - 45
UFQFPN20 - 49
TATemperature range
1.65 V VDD < 3.6 V
(6 suffix version) 40 85
°C
1.65 V VDD < 3.6 V
(3 suffix version) 40 125
TJJunction temperature range
-40 °C TA 85 °C
(6 suffix version) - 40 105 °C
-40 °C TA 125 °C
(3 suffix version) 40 130 °C
1. fMASTER = fCPU
2. To calculate PDmax(TA) use the formula given in thermal characteristics PDmax=(TJmax -TA)/Θ
JA with TJmax in this table and
Θ
JA in table “Thermal characteristics”
DocID15275 Rev 16 41/88
STM8L101x1 STM8L101x2 STM8L101x3 Electrical parameters
63
9.3.2 Power-up / power-down operating conditions
9.3.3 Supply current characteristics
Total current consumption
The MCU is placed under the following conditions:
All I/O pins in input mode with a static value at VDD or VSS (no load)
All peripherals are disabled except if explicitly mentioned.
Subject to general operating conditions for VDD and TA.
Table 17. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Typ Max Unit
tVDD VDD rise time rate - 20 - 1300 µs/V
tTEMP Reset release delay VDD rising - 1 - ms
VPOR(1)(2)
1. Guaranteed by characterization results.
2. Correct device reset during power on sequence is guaranteed when tVDD[max] is respected. External reset
circuit is recommended to ensure correct device reset during power down, when VPDR < VDD < VDD[min].
Power on reset
threshold - 1.35 - 1.65(3)
3. Tested in production.
V
VPDR(1)(2) Power down reset
threshold - 1.40 - 1.60 V
Electrical parameters STM8L101x1 STM8L101x2 STM8L101x3
42/88 DocID15275 Rev 16
1. Typical current consumption measured with code executed from Flash.
Table 18. Total current consumption in Run mode (1)
1. Based on characterization results, unless otherwise specified.
Symbol Parameter Conditions(2)
2. All peripherals off, VDD from 1.65 V to 3.6 V, HSI internal RC osc., fCPU=fMASTER
Typ Max(3)
3. Maximum values are given for TA = 40 to 125 °C.
Unit
IDD (Run)
Supply
current in
Run
mode(4) (5)
4. CPU executing typical data processing.
5. An approximate value of IDD(Run) can be given by the following formula:
IDD(Run) = fMASTER x 150 µA/MHz +215 µA.
Code executed from
RAM
fMASTER = 2 MHz 0.39 0.60
mA
fMASTER = 4 MHz 0.55 0.70
fMASTER = 8 MHz 0.90 1.20
fMASTER = 16 MHz 1.60 2.10(6)
6. Tested in production.
Code executed from
Flash
fMASTER = 2 MHz 0.55 0.70
fMASTER = 4 MHz 0.88 1.80
fMASTER = 8 MHz 1.50 2.50
fMASTER = 16 MHz 2.70 3.50
Figure 11. IDD(RUN) vs. VDD, fCPU = 2 MHz Figure 12. IDD(RUN) vs. VDD, fCPU = 16 MHz
DocID15275 Rev 16 43/88
STM8L101x1 STM8L101x2 STM8L101x3 Electrical parameters
63
1. Typical current consumption measured with code executed from Flash.
Table 19. Total current consumption in Wait mode(1)
1. Based on characterization results, unless otherwise specified.
Symbol Parameter Conditions Typ Max(2)
2. Maximum values are given for TA = -40 to 125 °C.
Unit
IDD (Wait) Supply
current in
Wait mode
CPU not clocked,
all peripherals off,
HSI internal RC osc.
fMASTER = 2 MHz 245 400
µA
fMASTER = 4 MHz 300 450
fMASTER = 8 MHz 380 600
fMASTER = 16 MHz 510 800
Figure 13. IDD(WAIT) vs. VDD, fCPU = 2 MHz Figure 14. IDD(WAIT) vs. VDD, fCPU = 16 MHz
Electrical parameters STM8L101x1 STM8L101x2 STM8L101x3
44/88 DocID15275 Rev 16
Figure 15. Typ. IDD(Halt) vs. VDD, fCPU = 2 MHz and 16 MHz
1. Typical current consumption measured with code executed from Flash.
Table 20. Total current consumption and timing in Halt and Active-halt mode at
VDD = 1.65 V to 3.6 V (1)(2)
1. TA = -40 to 125 °C, no floating I/O, unless otherwise specified.
2. Guaranteed by characterization results.
Symbol Parameter Conditions Typ Max Unit
IDD(AH)
Supply current in Active-halt
mode
LSI RC osc.
(at 37 kHz)
TA = -40 °C to 25 °C 0.8 2 μA
TA = 55 °C 1 2.5 μA
TA = 85 °C 1.4 3.2 μA
TA = 105 °C 2.9 7.5 μA
TA = 125 °C 5.8 13 μA
IDD(WUFAH)
Supply current during
wakeup time from Active-halt
mode
--2-mA
tWU(AH)(3)
3. Measured from interrupt event to interrupt vector fetch.
To get tWU for another CPU frequency use tWU(FREQ) = tWU(16 MHz) + 1.5 (TFREQ-T16 MHz).
The first word of interrupt routine is fetched 5 CPU cycles after tWU.
Wakeup time from Active-
halt mode to Run mode fCPU= 16 MHz 4 6.5 μs
IDD(Halt) Supply current in Halt mode
TA = -40 °C to 25 °C 0.35 1.2(4) μA
TA = 55 °C 0.6 1.8 μA
TA = 85 °C 1 2.5(4)
4. Tested in production.
μA
TA = 105 °C 2.5 6.5 μA
TA = 125 °C 5.4 12(4) μA
IDD(WUFH)
Supply current during
wakeup time from Halt mode 2-mA
tWU(Halt)(3) Wakeup time from Halt mode
to Run mode fCPU = 16 MHz 4 6.5 μs
DocID15275 Rev 16 45/88
STM8L101x1 STM8L101x2 STM8L101x3 Electrical parameters
63
Current consumption of on-chip peripherals
Measurement made for fMASTER = from 2 MHz to 16 MHz
9.3.4 Clock and timing characteristics
Internal clock sources
Subject to general operating conditions for VDD and TA.
High speed internal RC oscillator (HSI)
Table 21. Peripheral current consumption
Symbol Parameter Typ. VDD = 3.0 V Unit
IDD(TIM2) TIM2 supply current (1)
1. Data based on a differential IDD measurement between all peripherals off and a timer counter running at
16 MHz. The CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pin toggling. Not tested in
production.
9
µA/MHz
IDD(TIM3) TIM3 supply current (1) 9
IDD(TIM4) TIM4 timer supply current (1) 4
IDD(USART) USART supply current (2)
2. Data based on a differential IDD measurement between the on-chip peripheral when kept under reset and
not clocked and the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in
both cases. No I/O pin toggling. Not tested in production.
7
IDD(SPI) SPI supply current (2) 4
IDD(I²C1) I2C supply current (2) 4
IDD(COMP) Comparator supply current (2) 20 µA
Table 22. HSI oscillator characteristics (1)
1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency VDD = 3.0 V - 16 - MHz
ACCHSI Accuracy of HSI
oscillator
(factory calibrated)
VDD = 3.0 V, TA = 25 °C -1 - 1 %
VDD = 3.0 V, -10 °C TA 85 °C -2.5(2) -2
(2) %
VDD = 3.0 V, -10 °C TA 125 °C -4.5(2) -2
(2) %
VDD = 3.0 V, 0 °C TA 55 °C -1.5(2)
2. Guaranteed by characterization results.
-1.5
(2) %
VDD = 3.0 V, -10 °C TA 70 °C -2(2) -2
(2) %
1.65 V VDD 3.6 V,
-40 °C TA 125 °C -4.5(2) -3
(2) %
IDD(HSI)
HSI oscillator power
consumption - - 70 100(2) µA
Electrical parameters STM8L101x1 STM8L101x2 STM8L101x3
46/88 DocID15275 Rev 16
Figure 16. Typical HSI frequency vs. VDD
Figure 17. Typical HSI accuracy vs. temperature, VDD = 3 V
Figure 18. Typical HSI accuracy vs. temperature, VDD = 1.65 V to 3.6 V
DocID15275 Rev 16 47/88
STM8L101x1 STM8L101x2 STM8L101x3 Electrical parameters
63
Low speed internal RC oscillator (LSI)
Figure 19. Typical LSI RC frequency vs. VDD
9.3.5 Memory characteristics
TA = -40 to 125 °C unless otherwise specified.
Table 23. LSI oscillator characteristics (1)
1. VDD = 1.65 V to 3.6 V, TA = -40 to 125 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fLSI Frequency - 26 38 56 kHz
fdrift(LSI)
LSI oscillator frequency
drift(2)
2. For each individual part, this value is the frequency drift from the initial measured frequency.
0 °C TA 85 °C -12 - 11 %
Table 24. RAM and hardware registers
Symbol Parameter Conditions Min Typ Max Unit
VRM Data retention mode (1)
1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware
registers (only in Halt mode). Guaranteed by characterization results.
Flash memory
Halt mode (or Reset) 1.4 - - V
Table 25. Flash program memory
Symbol Parameter Conditions Min Typ Max
(1) Unit
VDD
Operating voltage
(all modes, read/write/erase) fMASTER = 16 MHz 1.65 - 3.6 V
tprog
Programming time for 1- or 64-byte (block)
erase/write cycles (on programmed byte) --6-ms
Programming time for 1- to 64-byte (block)
write cycles (on erased byte) --3-ms
Electrical parameters STM8L101x1 STM8L101x2 STM8L101x3
48/88 DocID15275 Rev 16
9.3.6 I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or
an external pull-up or pull-down resistor.
Iprog Programming/ erasing consumption
TA=+25 °C, VDD = 3.0 V -
0.7
-
mA
TA=+25 °C, VDD = 1.8 V - -
tRET
Data retention (program memory)
after 10k erase/write cycles
at TA = +85 °C
TRET = 55 °C 20(1) --
years
Data retention (data memory)
after 10k erase/write cycles
at TA = +85 °C
TRET = 55 °C 20(1) --
Data retention (data memory)
after 300k erase/write cycles
at TA = +125 °C
TRET = 85 °C 1(1) --
NRW
Erase/write cycles (program memory) See notes (1)(2) 10(1) --
kcycles
Erase/write cycles (data memory) See notes (1)(3) 300(1)(4) --
1. Guaranteed by characterization results.
2. Retention guaranteed after cycling is 10 years at 55 °C.
3. Retention guaranteed after cycling is 1 year at 55 °C.
4. Data based on characterization performed on the whole data memory (2 Kbytes).
Table 25. Flash program memory (continued)
Symbol Parameter Conditions Min Typ Max
(1) Unit
Table 26. I/O static characteristics (1)
Symbol Parameter Conditions Min Typ Max Unit
VIL Input low level voltage(2) Standard I/Os VSS-0.3 - 0.3 x VDD V
True open drain I/Os VSS-0.3 - 0.3 x VDD
VIH Input high level voltage (2)
Standard I/Os 0.70 x VDD -V
DD+0.3
V
True open drain I/Os
VDD < 2 V
0.70 x VDD -
5.2
True open drain I/Os
VDD 2 V 5.5
Vhys Schmitt trigger voltage hysteresis (3) Standard I/Os - 200 -
mV
True open drain I/Os - 250 -
DocID15275 Rev 16 49/88
STM8L101x1 STM8L101x2 STM8L101x3 Electrical parameters
63
Figure 20. Typical VIL and VIH vs. VDD (High sink I/Os)
Ilkg Input leakage current (4)
VSS VIN VDD
Standard I/Os - - 50 (5)
nA
VSS VIN VDD
True open drain I/Os - - 200(5)
VSS VIN VDD
PA0 with high sink LED
driver capability
- - 200(5)
RPU Weak pull-up equivalent resistor(6) VIN = VSS 30 45 60 kΩ
CIO(7) I/O pin capacitance - - 5 - pF
1. VDD = 3.0 V, TA = -40 to 85 °C unless otherwise specified.
2. Guaranteed by characterization results.
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Not tested in production.
6. RPU pull-up equivalent resistor based on a resistive transistor (corresponding IPU current characteristics described in
Figure 22).
7. Guaranteed by design.
Table 26. I/O static characteristics (1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical parameters STM8L101x1 STM8L101x2 STM8L101x3
50/88 DocID15275 Rev 16
Figure 21. Typical VIL and VIH vs. VDD (true open drain I/Os)
Figure 22. Typical pull-up resistance RPU vs. VDD with VIN=VSS
Figure 23. Typical pull-up current IPU vs. VDD with VIN=VSS
DocID15275 Rev 16 51/88
STM8L101x1 STM8L101x2 STM8L101x3 Electrical parameters
63
Output driving current
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 27. Output driving current (High sink ports)
I/O
Type Symbol Parameter Conditions Min Max Unit
Standard
VOL (1)
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 14 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin
IIO = +2 mA,
VDD = 3.0 V -0.45V
IIO = +2 mA,
VDD = 1.8 V -0.45V
IIO = +10 mA,
VDD = 3.0 V -1.2V
VOH (2)
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 14 and the
sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin
IIO = -2 mA,
VDD = 3.0 V VDD-0.45 - V
IIO = -1 mA,
VDD = 1.8 V VDD-0.45 - V
IIO = -10 mA,
VDD = 3.0 V VDD-1.2 - V
Table 28. Output driving current (true open drain ports)
I/O
Type Symbol Parameter Conditions Min Max Unit
Open drain
VOL (1)
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 14 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin
IIO = +3 mA,
VDD = 3.0 V -0.45V
IIO = +1 mA,
VDD = 1.8 V -0.45V
Table 29. Output driving current (PA0 with high sink LED driver capability)
I/O
Type Symbol Parameter Conditions Min Max Unit
IR
VOL (1)
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 14 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin IIO = +20 mA,
VDD = 2.0 V -0.9V
Electrical parameters STM8L101x1 STM8L101x2 STM8L101x3
52/88 DocID15275 Rev 16
Figure 24. Typ. VOL at VDD = 3.0 V (High sink
ports)
Figure 25. Typ. VOL at VDD = 1.8 V (High sink
ports)
Figure 26. Typ. VOL at VDD = 3.0 V (true open
drain ports)
Figure 27. Typ. VOL at VDD = 1.8 V (true open
drain ports)
Figure 28. Typ. VDD - VOH at VDD = 3.0 V (High
sink ports)
Figure 29. Typ. VDD - VOH at VDD = 1.8 V (High
sink ports)
DocID15275 Rev 16 53/88
STM8L101x1 STM8L101x2 STM8L101x3 Electrical parameters
63
NRST pin
The NRST pin input driver is CMOS. A permanent pull-up is present.
RPU(NRST) has the same value as RPU (see Table 26 on page 48).
Subject to general operating conditions for VDD and TA unless otherwise specified.
Figure 30. Typical NRST pull-up resistance RPU vs. VDD
Table 30. NRST pin characteristics
Symbol Parameter Conditions Min Typ (1) Max Unit
VIL(NRST) NRST input low level voltage (1)
1. Guaranteed by characterization results.
-V
SS -0.8
VVIH(NRST) NRST input high level voltage (1) -1.4-V
DD
VOL(NRST) NRST output low level voltage IOL = 2 mA - - VDD-0.8
RPU(NRST) NRST pull-up equivalent resistor (2)
2. The RPU pull-up equivalent resistor is based on a resistive transistor (Figure 30). Corresponding IPU current
characteristics are described in Figure 31.
-304560kΩ
VF(NRST) NRST input filtered pulse (3)
3. Guaranteed by design.
---50ns
tOP(NRST) NRST output pulse width - 20 - - ns
VNF(NRST) NRST input not filtered pulse (3) - 300 - - ns
Electrical parameters STM8L101x1 STM8L101x2 STM8L101x3
54/88 DocID15275 Rev 16
Figure 31. Typical NRST pull-up current Ipu vs. VDD
The reset network shown in Figure 32 protects the device against parasitic resets. The user
must ensure that the level on the NRST pin can go below the VIL max. level specified in
Table 30. Otherwise the reset is not taken into account internally. For power consumption-
sensitive applications, the capacity of the external reset capacitor can be reduced to limit the
charge/discharge current. If the NRST signal is used to reset the external circuitry, the user
must pay attention to the charge/discharge time of the external capacitor to meet the reset
timing conditions of the external devices. The minimum recommended capacity is 10 nF.
Figure 32. Recommended NRST pin configuration
1. Correct device reset during power on sequence is guaranteed when tVDD[max] is respected.
2. External reset circuit is recommended to ensure correct device reset during power down, when VPDR <
VDD < VDD[min].
M)
(;7(51$/
5(6(7
&,5&8,7
670/
&ILTER
205
6$$
).4%2.!,2%3%4
567,1
069
DocID15275 Rev 16 55/88
STM8L101x1 STM8L101x2 STM8L101x3 Electrical parameters
63
9.3.7 Communication interfaces
Serial peripheral interface (SPI)
Unless otherwise specified, the parameters given in Table 31 are derived from tests
performed under ambient temperature, fMASTER frequency and VDD supply voltage
conditions summarized in Section 9.3.1. Refer to I/O port characteristics for more details on
the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 31. SPI characteristics
Symbol Parameter Conditions(1) Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode 0 8
MHz
Slave mode 0 8
tr(SCK)
tf(SCK)
SPI clock rise and fall time Capacitive load: C = 30 pF - 30
ns
tsu(NSS)(2) NSS setup time Slave mode 4 x TMASTER -
th(NSS)(2) NSS hold time Slave mode 80 -
tw(SCKH)(2)
tw(SCKL)(2) SCK high and low time Master mode,
fMASTER = 8 MHz, fSCK= 4 MHz 105 145
tsu(MI) (2)
tsu(SI)(2) Data input setup time
Master mode 30 -
Slave mode 3 -
th(MI) (2)
th(SI)(2) Data input hold time
Master mode 15 -
Slave mode 0 -
ta(SO)(2)(3) Data output access time Slave mode - 3x TMASTER
tdis(SO)(2)(4) Data output disable time Slave mode 30 -
tv(SO) (2) Data output valid time Slave mode (after enable edge) - 60
tv(MO)(2) Data output valid time Master mode
(after enable edge) -20
th(SO)(2)
Data output hold time
Slave mode (after enable edge) 15 -
th(MO)(2) Master mode
(after enable edge) 1-
1. Parameters are given by selecting 10-MHz I/O output frequency.
2. Values based on design simulation and/or characterization results, and not tested in production.
3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.
4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.
Electrical parameters STM8L101x1 STM8L101x2 STM8L101x3
56/88 DocID15275 Rev 16
Figure 33. SPI timing diagram - slave mode and CPHA = 0
Figure 34. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DocID15275 Rev 16 57/88
STM8L101x1 STM8L101x2 STM8L101x3 Electrical parameters
63
Figure 35. SPI timing diagram - master mode(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
AI6
3#+/UTPUT
#0(!
-/3)
/54054
-)3/
).0 54
#0(!
-3 ").
- 3"/54
") 4).
,3"/54
,3").
#0/,
#0/,
" ) 4/54
.33INPUT
TC3#+
TW3#+(
TW3#+,
TR3#+
TF3#+
TH-)
(IGH
3#+/UTPUT
#0(!
#0(!
#0/,
#0/,
TSU-)
TV-/ TH-/
Electrical parameters STM8L101x1 STM8L101x2 STM8L101x3
58/88 DocID15275 Rev 16
Inter IC control interface (I2C)
Subject to general operating conditions for VDD, fMASTER, and TA unless otherwise
specified.
The STM8L I2C interface meets the requirements of the Standard I2C communication
protocol described in the following table with the restriction mentioned below:
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (SDA and SCL).
Note: For speeds around 200 kHz, achieved speed can have
±
5% tolerance
For other speed ranges, achieved speed can have
±
2% tolerance
The above variations depend on the accuracy of the external components used.
Table 32. I2C characteristics
Symbol Parameter
Standard mode
I2C Fast mode I2C(1)
1. fSCK must be at least 8 MHz to achieve max fast I2C speed (400 kHz).
Unit
Min(2)
2. Data based on standard I2C protocol requirement, not tested in production.
Max (2) Min (2) Max (2)
tw(SCLL) SCL clock low time 4.7 - 1.3 -
μs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time 0 (3)
3. The maximum hold time of the START condition has only to be met if the interface does not stretch the low
period of SCL signal.
-0
(4)
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL).
900 (3)
tr(SDA)
tr(SCL)
SDA and SCL rise time - 1000 - 300
tf(SDA)
tf(SCL)
SDA and SCL fall time - 300 - 300
th(STA) START condition hold time 4.0 - 0.6 -
μs
tsu(STA)
Repeated START condition setup
time 4.7 - 0.6 -
tsu(STO) STOP condition setup time 4.0 - 0.6 - μs
tw(STO:STA)
STOP to START condition time
(bus free) 4.7 - 1.3 - μs
CbCapacitive load for each bus line - 400 - 400 pF
DocID15275 Rev 16 59/88
STM8L101x1 STM8L101x2 STM8L101x3 Electrical parameters
63
Figure 36. Typical application with I2C bus and timing diagram 1)
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD.
9.3.8 Comparator characteristics
5(3($7(' 67$57
67$57
6723
67$57
W
I6'$
W
U6'$
W
VX6'$
W
K6'$
W
I6&/
W
U6&/
W
Z6&//
W
Z6&/+
W
K67$
W
VX672
W
VX67$
W
Z67267$
6'$
6&/
 N 6'$
670/
6&/
9
''


9
''
N
,
&%86
069
Table 33. Comparator characteristics
Symbol Parameter Conditions Min (1) Typ Max(1) Unit
VIN(COMP_REF) Comparator external reference - -0.1 - VDD-1.25 V
VIN Comparator input voltage range - -0.25 - VDD+0.25 V
Voffset(2) Comparator offset error - - - ± 20 mV
tSTART Startup time (after BIAS_EN) - - - 3(1) µs
IDD(COMP)
Analog comparator consumption - - - 25(1) µA
Analog comparator consumption
during power-down ---60
(1) nA
tpropag(2) Comparator propagation delay
100-mV input step
with 5-mV overdrive,
input rise time = 1 ns
--2
(1) µs
1. Guaranteed by design.
2. The comparator accuracy depends on the environment. In particular, the following cases may reduce the accuracy of the
comparator and must be avoided:
- Negative injection current on the I/Os close to the comparator inputs
- Switching on I/Os close to the comparator inputs
- Negative injection current on not used comparator input.
- Switching with a high dV/dt on not used comparator input.
These phenomena are even more critical when a big external serial resistor is added on the inputs.
Electrical parameters STM8L101x1 STM8L101x2 STM8L101x3
60/88 DocID15275 Rev 16
9.3.9 EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),
the product is stressed by two electromagnetic events until a failure occurs (indicated by the
LEDs).
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 61000-4-2
standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Prequalification trials:
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring. Refer to application note Software techniques for
improving microcontrollers EMC performance (AN1015).
Table 34. EMS data
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance LQFP32, VDD = 3.3 V 3B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
LQFP32, VDD = 3.3 V, fHSI 3B
LQFP32, VDD = 3.3 V, fHSI/2 4A
DocID15275 Rev 16 61/88
STM8L101x1 STM8L101x2 STM8L101x3 Electrical parameters
63
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O
ports), the product is monitored in terms of emission. This emission test is in line with the
norm SAE J 1752/3 which specifies the board and the loading of each pin.
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin).
This test conforms to the JESD22-A114A/A115A standard.
Table 35. EMI data (1)
1. Not tested in production.
Symbol Parameter Conditions Monitored
frequency band
Max vs.
Unit
16 MHz
SEMI Peak level
VDD = 3.6 V,
TA = +25 °C,
LQFP32
conforming to
IEC61967-2
0.1 MHz to 30 MHz -3
dBμV30 MHz to 130 MHz -6
130 MHz to 1 GHz -5
SAE EMI Level 1 -
Table 36. ESD absolute maximum ratings
Symbol Ratings Conditions Maximum
value (1)
1. Guaranteed by characterization results.
Unit
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = +25 °C
2000
V
VESD(CDM)
Electrostatic discharge voltage
(charge device model) 500
Electrical parameters STM8L101x1 STM8L101x2 STM8L101x3
62/88 DocID15275 Rev 16
Static latch-up
LU: 2 complementary static tests are required on 10 parts to assess the latch-up
performance. A supply overvoltage (applied to each power supply pin) and a current
injection (applied to each input, output and configurable I/O pin) are performed on each
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details,
refer to the application note AN1181.
9.4 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 16: General operating conditions on page 40.
The maximum chip-junction temperature, TJmax, in degrees Celsius, may be calculated
using the following equation:
TJmax = TAmax + (PDmax x Θ
JA)
Where:
TAmax is the maximum ambient temperature in °C
•Θ
JA is the package junction-to-ambient thermal resistance in °C/W
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)
PINTmax is the product of IDD and VDD, expressed in watts. This is the maximum chip
internal power.
PI/Omax represents the maximum power dissipation on output pins
where:
PI/Omax = Σ (VOL*IOL) + Σ((VDD-VOH)*IOH),
taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high level in
the application.
Table 37. Electrical sensitivities
Symbol Parameter Class
LU Static latch-up class II
DocID15275 Rev 16 63/88
STM8L101x1 STM8L101x2 STM8L101x3 Electrical parameters
63
Table 38. Thermal characteristics(1)
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection
environment.
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
LQFP 32 - 7 x 7 mm 60 °C/W
Thermal resistance junction-ambient
UFQFPN 32 - 5 x 5 mm 25 °C/W
Thermal resistance junction-ambient
UFQFPN 28 - 4 x 4 mm 80 °C/W
Thermal resistance junction-ambient
UFQFPN 20 - 3 x 3 mm - 0.6 mm 102 °C/W
Thermal resistance junction-ambient
TSSOP 20 110 °C/W
Package information STM8L101x1 STM8L101x2 STM8L101x3
64/88 DocID15275 Rev 16
10 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
10.1 UFQFPN32 package information
Figure 37. UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package outline
(5 x 5)
1. Drawing is not to scale.
2. All leads/pads should be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
!/"?-%
DocID15275 Rev 16 65/88
STM8L101x1 STM8L101x2 STM8L101x3 Package information
79
Figure 38. UFQFPN32 recommended footprint
1. Dimensions are in millimeters.
Table 39. UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package (5 x 5),
package mechanical data
Dim.
mm inches(1)
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.0500 0 0.0008 0.0020
A3 - 0.152 - - 0.0060 -
b 0.180 0.230 0.280 0.0071 0.0091 0.0110
D 4.900 5.000 5.100 0.1929 0.1969 0.2008
D2 - 3.500 - - 0.1378 -
E 4.900 5.000 5.100 0.1929 0.1969 0.2008
E2 3.400 3.500 3.600 0.1339 0.1378 0.1417
e - 0.500 - - 0.0197 -
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
ddd 0.080 0.0031
- Number of pins
N32
1. Values in inches are converted from mm and rounded to 4 decimal digits.
$%B)3B9
















Package information STM8L101x1 STM8L101x2 STM8L101x3
66/88 DocID15275 Rev 16
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 39. UFQFPN32 marking example (package top view)
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
/.
5
< ::
06Y9
3LQ
LQGHQWLILHU
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
5HYLVLRQFRGH
DocID15275 Rev 16 67/88
STM8L101x1 STM8L101x2 STM8L101x3 Package information
79
10.2 LQFP32 package information
Figure 40. LQFP32 - 32-pin low profile quad flat package outline (7 x 7)
1. Drawing is not to scale.
$
$
$
%
%
%





!
,
,
+
!
!
!
C
B
'!5'%0,!.%
MM
3%!4).'
0,!.%
#
0).
)$%.4)&)#!4)/.
CCC #
7@.&@7
E
Package information STM8L101x1 STM8L101x2 STM8L101x3
68/88 DocID15275 Rev 16
Table 40. LQFP32- 32-pin low profile quad flat package (7x7), package mechanical data
Dim.
mm inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.300 0.370 0.450 0.0118 0.0146 0.0177
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.600 - - 0.2205 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.600 - - 0.2205 -
e - 0.800 - - 0.0315 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
K 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc - 0.100 - - 0.0039 -
- Number of pins
N32
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID15275 Rev 16 69/88
STM8L101x1 STM8L101x2 STM8L101x3 Package information
79
Figure 41. LQFP32 recommended footprint
1. Dimensions are expressed in millimeters.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 42. LQFP32 marking example (package top view)
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
6?&0?6
















06Y9
5HYLVLRQFRGH
670/
.7
< ::
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
3LQLQGHQWLILHU
5
Package information STM8L101x1 STM8L101x2 STM8L101x3
70/88 DocID15275 Rev 16
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
10.3 UFQFPN28 package information
Figure 43. UFQFPN28 - 28-lead ultra thin fine pitch quad flat no-lead package outline
(4 x 4 mm)
4E
B
3EATING
0LANE
! !
#OX
0INCORNER
,
,
2O4YP

$ETAIL:
$
$
%
%
0IN)$
3EATING
0LANE
"
!
$ETAIL:
!"?-%?6
DocID15275 Rev 16 71/88
STM8L101x1 STM8L101x2 STM8L101x3 Package information
79
Figure 44. UFQFPN28 recommended footprint
1. Dimensions are expressed in millimeters.
Table 41. UFQFPN28 - 28-lead ultra thin fine pitch quad flat no-lead package (4 x 4),
package mechanical data
Dim.
mm inches(1)
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0 0.020 0.050 0 0.0008 0.002
A3 - 0.152 - - 0.0060 -
b 0.180 0.250 0.300 0.0071 0.0098 0.0118
D - 4.000 - - 0.1575 -
E - 4.000 - - 0.1575 -
e - 0.500 - - 0.0197 -
L1 0.250 0.350 0.450 0.0098 0.0138 0.0177
L2 0.300 0.400 0.500 0.0118 0.0157 0.0197
ddd - 0.080 - - 0.0031 -
- Number of pins
N28
1. Values in inches are converted from mm and rounded to 4 decimal digits.






 


!"?&0?6
Package information STM8L101x1 STM8L101x2 STM8L101x3
72/88 DocID15275 Rev 16
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 45. UFQFPN28 marking example (package top view)
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
06Y9
< ::
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
3LQ
LQGHQWLILHU
5
/
DocID15275 Rev 16 73/88
STM8L101x1 STM8L101x2 STM8L101x3 Package information
79
10.4 UFQFPN20 package information
Figure 46. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline
1. Drawing is not to scale.
$$B0(B9



'
H
EH
(
$
$
GGG
/

/
$
/
'
(
7239,(:
6,'(9,(:%277209,(:
3LQ
/
(
'
Package information STM8L101x1 STM8L101x2 STM8L101x3
74/88 DocID15275 Rev 16
Figure 47. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package recommended footprint
1. Dimensions are expressed in millimeters.
Table 42. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
A3 - 0.152 - - 0.060 -
D 2.900 3.000 3.100 0.1142 0.1181 0.1220
D1 - 2.000 - - 0.0790 -
E 2.900 3.000 3.100 0.1142 0.1181 0.1220
E1 - 2.000 - - 0.0790 -
L1 0.500 0.550 0.600 0.0197 0.0217 0.0236
L2 0.300 0.350 0.400 0.0118 0.0138 0.0157
L3 - 0.200 - - 0.0079 -
L5 - 0.150 - - 0.0059 -
b 0.180 0.250 0.300 0.0071 0.0098 0.0118
e - 0.500 - - 0.0197 -
ddd - - 0.050 - - 0.0020
!!?&0?6
DocID15275 Rev 16 75/88
STM8L101x1 STM8L101x2 STM8L101x3 Package information
79
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 48. UFQFPN20 marking example (package top view)
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
06Y9
/)
< :: 5
5HYLVLRQFRGH
'DWHFRGH
3URGXFW
LGHQWLILFDWLRQ
3LQ
LQGHQWLILFDWLRQ
Package information STM8L101x1 STM8L101x2 STM8L101x3
76/88 DocID15275 Rev 16
10.5 TSSOP20 package information
Figure 49. TSSOP20 - 20-lead thin shrink small package outline
1. Drawing is not to scale.
9!?-%?6

#
C
,
%%
$
!
!
K
EB


!
,
AAA
3%!4).'
0,!.%
#'!5'%0,!.%
MM
0).
)$%.4)&)#!4)/.
Table 43. TSSOP20 - 20-lead thin shrink small package mechanical data
Dim.
mm inches(1)
Min Typ Max Min Typ Max
A - - 1.200 - - 0.0472
A1 0.050 - 0.150 0.0020 - 0.0059
A2 0.800 1.000 1.050 0.0315 0.0394 0.0413
b 0.190 - 0.300 0.0075 - 0.0118
CP - - 0.100 - - 0.0039
c 0.090 - 0.200 0.0035 - 0.0079
D(2) 6.400 6.500 6.600 0.2520 0.2559 0.2598
E 6.200 6.400 6.600 0.2441 0.2520 0.2598
E1(3) 4.300 4.400 4.500 0.1693 0.1732 0.1772
e - 0.650 - 0.1693 0.0256 -
L 0.450 0.600 0.750 0.1693 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
DocID15275 Rev 16 77/88
STM8L101x1 STM8L101x2 STM8L101x3 Package information
79
Figure 50. TSSOP20 recommended footprint
1. Dimensions are in millimeters.
k0°-8°0°-8°
aaa - - 0.100 - - 0.0039
Number of pins 20
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15mm per side.
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per
side.
Table 43. TSSOP20 - 20-lead thin shrink small package mechanical data (continued)
Dim.
mm inches(1)
Min Typ Max Min Typ Max
Package information STM8L101x1 STM8L101x2 STM8L101x3
78/88 DocID15275 Rev 16
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 51. TSSOP20 marking example (package top view)
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
/)3
06Y9
3LQ
LQGHQWLILFDWLRQ 5HYLVLRQFRGH
'DWHFRGH
3URGXFW
LGHQWLILFDWLRQ
< :: 5
DocID15275 Rev 16 79/88
STM8L101x1 STM8L101x2 STM8L101x3 Device ordering information
79
11 Device ordering information
Figure 52. STM8L101xx ordering information scheme
1. For a list of available options (e.g. memory size, package) and order-able part numbers or for further
information on any aspect of this device, please go to www.st.com or contact the ST Sales Office nearest to
you.
34- ,  & 5 ! 42
0RODUCTCLASS
34-MICROCONTROLLER
0INCOUNT
+PINS
'PINS
&PINS
0ACKAGE
55&1&0.
4,1&0
0433/0
%XAMPLE
3UBFAMILYTYPE
SUBFAMILY
&AMILYTYPE
,,OWPOWER
4EMPERATURERANGE
#TO#
#TO#
0ROGRAMMEMORYSIZE
+BYTES
+BYTES
+BYTES
#/-0?2%&AVAILABILITYON5&1&0.AND5&1&0.
!#/-0?2%&AVAILABLE
"LANK#/-0?2%&NOTAVAILABLE
3HIPPING
424APEANDREEL
"LANK4RAY
STM8 development tools STM8L101x1 STM8L101x2 STM8L101x3
80/88 DocID15275 Rev 16
12 STM8 development tools
Development tools for the STM8 microcontrollers include the full-featured STice emulation
system supported by a complete software tool package including C compiler, assembler and
integrated development environment with high-level language debugger. In addition, the
STM8 is to be supported by a complete range of tools including starter kits, evaluation
boards and a low-cost in-circuit debugger/programmer.
12.1 Emulation and in-circuit debugging tools
The STice emulation system offers a complete range of emulation and in-circuit debugging
features on a platform that is designed for versatility and cost-effectiveness. In addition,
STM8 application development is supported by a low-cost in-circuit debugger/programmer.
The STice is the fourth generation of full featured emulators from STMicroelectronics. It
offers new advanced debugging capabilities including profiling and coverage to help detect
and eliminate bottlenecks in application execution and dead code when fine tuning an
application.
In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via
the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an
application while it runs on the target microcontroller.
For improved cost effectiveness, STice is based on a modular design that allows the users
to order exactly what they need to meet their development requirements and to adapt their
emulation system to support existing and future ST microcontrollers.
STice key features
Occurrence and time profiling and code coverage (new features)
Program and data trace recording up to 128 KB records
Read/write on the fly of memory during emulation
In-circuit debugging/programming via SWIM protocol
8-bit probe analyzer
Power supply follower managing application voltages between 1.62 to 5.5 V
Modularity that allows the users to specify the components that they need to meet their
development requirements and adapt to future requirements
Supported by free software tools that include integrated development environment
(IDE), programming software interface and assembler for STM8.
DocID15275 Rev 16 81/88
STM8L101x1 STM8L101x2 STM8L101x3 STM8 development tools
81
12.2 Software tools
STM8 development tools are supported by a complete, free software package from
STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual
Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic
and Raisonance C compilers for STM8. A free version that outputs up to 32 Kbytes of code
is available.
12.2.1 STM8 toolset
STM8 toolset with STVD integrated development environment and STVP programming
software is available for free download at www.st.com. This package includes:
ST Visual Develop – Full-featured integrated development environment from ST, featuring
Seamless integration of C and ASM toolsets
Full-featured debugger
Project management
Syntax highlighting editor
Integrated programming interface
Support of advanced emulation features for STice such as code profiling and coverage
ST Visual Programmer (STVP) – Easy-to-use, unlimited graphical interface allowing read,
write and verify of the STM8 microcontroller Flash program memory, data EEPROM and
option bytes. STVP also offers project mode for saving programming configurations and
automating programming sequences.
12.2.2 C and assembly toolchains
Control of C and assembly toolchains is seamlessly integrated into the STVD integrated
development environment, making it possible to configure and control the building of user
application directly from an easy-to-use graphical interface.
Available toolchains include:
Cosmic C compiler for STM8 – One free version that outputs up to 32 Kbytes of code
is available. For more information, see www.cosmic-software.com.
Raisonance C compiler for STM8 – One free version that outputs up to 32 Kbytes of
code. For more information, see www.raisonance.com.
STM8 assembler linker – Free assembly toolchain included in the STVD toolset,
which allows the user to assemble and link their application source code.
12.3 Programming tools
During the development cycle, STice provides in-circuit programming of the STM8 Flash
microcontroller on the user’s application board via the SWIM protocol. Additional tools are to
include a low-cost in-circuit programmer as well as ST socket boards, which provide
dedicated programming platforms with sockets for programming the STM8.
For production environments, programmers will include a complete range of gang and
automated programming solutions from third-party tool developers already supplying
programmers for the STM8 family.
Revision history STM8L101x1 STM8L101x2 STM8L101x3
82/88 DocID15275 Rev 16
13 Revision history
Table 44. Document revision history
Date Revision Changes
19-Dec-2008 1 Initial release.
22-Apr-2009 2
Added TSSOP28 package
Modified packages on first page
COMPx_OUT pins removed
Added Figure 6: 28-pin TSSOP package pinout on page 17
Modified Section 9: Electrical parameters on page 38.
Updated UBC[7:0] description in Section 7: Option bytes.
Updated low power current consumption on cover page.
Updated Table 13: Voltage characteristics, Table 20: Total current
consumption and timing in Halt and Active-halt mode at VDD = 1.65
V to 3.6 V, Table 26: I/O static characteristics, Table 30: NRST pin
characteristics, and Section 9.3.9: EMC characteristics.
Updated PA1/NRST, PC0 and PC1 in Table 4: STM8L101xx pin
description.
Added ECC feature.
Changed internal RC frequency to 38 kHz.
Updated electrical characteristics in Table 16, Table 18, Table 19,
Table 20, Table 22, Table 23, and Table 26.
24-Apr-2009 3
Corrected title on cover page.
Changed VFQFPN32 to WFQFPN32 and updated Table 39:
UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package
(5 x 5), package mechanical data.
Updated Table 13, Table 26, and Table 33.
14-May-2009 4
Replaced WFQFPN20 3 x 3 mm 0.8 mm package by UFQFPN20
3 x 3 mm 0.6 mm package (first page, Table 16: General operating
conditions on page 40, Table 38: Thermal characteristics on
page 63, Section 10.2: Package mechanical data on page 67)
Added one UFQFPN20 version with COMP_REF
Modified Figure 40: LQFP32 recommended footprint(1) on page 69
Added IPROG values in Table 25: Flash program memory on page 47
Updated Table 31: SPI characteristics on page 55
15-May-2009 5
Added STM8L101F3U6ATR part number in Section 4: Pin
description on page 15 and in Figure 47: STM8L101xx ordering
information scheme on page 74
DocID15275 Rev 16 83/88
STM8L101x1 STM8L101x2 STM8L101x3 Revision history
87
12-Jun-2009 6
Removed TSSOP28 package
Modified consumption value on first page
Added BEEP_CSR (address 00 50F3h) in Table 7: General
hardware register map on page 25
TIM2_PSCRL replaced with TIM2_PSCR and CLK_PCKEN
replaced with CLK_PCKENR in Table 7: General hardware register
map on page 25
Added graphs in Section 9: Electrical parameters on page 38
Added tWU(AH) and tWU(Halt) max values in Table 20: Total current
consumption and timing in Halt and Active-halt mode at VDD = 1.65
V to 3.6 V on page 44
Modified Table 20: Total current consumption and timing in Halt and
Active-halt mode at VDD = 1.65 V to 3.6 V on page 44
Updated Table 22: HSI oscillator characteristics on page 45,
Table 23: LSI oscillator characteristics on page 47 and Table 24:
RAM and hardware registers on page 47
Modified Table 27: Output driving current (High sink ports) on
page 51
Removed note 1 in Table 37: Electrical sensitivities on page 62
Added note to Table 39: UFQFPN32 - 32-lead ultra thin fine pitch
quad flat no-lead package (5 x 5), package mechanical data on
page 67 and
Table 41: UFQFPN28 - 28-lead ultra thin fine pitch quad flat no-lead
package (4 x 4), package mechanical data on page 70
Table 44. Document revision history (continued)
Date Revision Changes
Revision history STM8L101x1 STM8L101x2 STM8L101x3
84/88 DocID15275 Rev 16
07-Sep-2009 7
Added STM8L101F2U6ATR, STM8L101G2U6ATR and
STM8L101G3U6ATR part numbers
Modified Section 2: Description on page 9.
Modified Table 2: STM8L101xx device feature summary on page 9
(Flash)
Modified Figure 1: STM8L101xx device block diagram on page 10
Modified Section 3.5: Memory on page 12
Added note below Figure 2: Standard 20-pin UFQFPN package
pinout on page 15 and Figure 5: Standard 28-pin UFQFPN package
pinout on page 17
Added Figure 6: 28-pin UFQFPN package pinout for
STM8L101G3U6ATR and STM8L101G2U6ATR part numbers on
page 18
Modified reset values for Px_IDR registers in Table 6: I/O Port
hardware register map on page 24
Added Section 6: Interrupt vector mapping on page 32
Modified OPT numbers in Section 7: Option bytes
Modified OPT2 in Table 10: Option bytes
Added Section 8: Unique ID on page 36
TIM_IR pin replaced with IR_TIM pin
Modified Table 20: Total current consumption and timing in Halt and
Active-halt mode at VDD = 1.65 V to 3.6 V on page 44
Modified Figure 15: Typ. IDD(Halt) vs. VDD, fCPU = 2 MHz and
16 MHz on page 44 and Figure 19: Typical LSI RC frequency vs.
VDD on page 47
Modified Table 27: Output driving current (High sink ports) on
page 51
Updated Table 29: Output driving current (PA0 with high sink LED
driver capability) on page 51
Modified : Functional EMS (electromagnetic susceptibility) on
page 60
Modified conditions in Table 35: EMI data on page 61
Added note to Figure 37: UFQFPN32 - 32-lead ultra thin fine pitch
quad flat no-lead package outline (5 x 5) on page 67
Modified Figure 41: UFQFPN28 - 28-lead ultra thin fine pitch quad
flat no-lead package outline (4 x 4)(1) on page 70
Added Figure 44: UFQFPN20 recommended footprint (1) on page 71
Added Figure 46: TSSOP20 recommended footprint (1) on page 72
CMP replaced with COMP
Table 44. Document revision history (continued)
Date Revision Changes
DocID15275 Rev 16 85/88
STM8L101x1 STM8L101x2 STM8L101x3 Revision history
87
29-Nov-2009 8
Modified status of the document (datasheet instead of preliminary
data)
Replaced WFQFPN32 with UFQFPN32 and WFQFPN28 with
UFQFPN28.
Modified title of the reference manual mentioned in Section 2:
Description on page 9
Added references to “low-density” in Section 2: Description on
page 9, Section 3.5: Memory on page 12 and in Figure 8: Memory
map on page 23
Modified Figure 8: Memory map on page 23 (unique ID are added)
Table 7: General hardware register map on page 25: Modified
reserved areas and IR block replaced with IRTIM block
Modified tTEMP in Table 17: Operating conditions at power-up /
power-down on page 41
Modified Table 23: LSI oscillator characteristics on page 47
Modified Table 25: Flash program memory on page 47 (tPROG)
Modified Table 16: General operating conditions on page 40 and
Table 38: Thermal characteristics on page 63
Modified Section 13: Revision history on page 82
18-Jun-2010 9
Modified Introduction and Description
Modified one reserved area (0x00 5055 to 0x00 509F) in Table 7:
General hardware register map
ModifiedTable 4: STM8L101xx pin description: modified note 2 and
removed “wpu” for PC0 and PC1
Removed one note to Table 22: HSI oscillator characteristics on
page 45
Modified first paragraph in Section : NRST pin
Modified OPT3 description in Table 11: Option byte description
Added note 5 to Table 18: Total current consumption in Run mode
Modified VESD(CDM) in Table 36: ESD absolute maximum ratings on
page 61
Modified Figure 36: Typical application with I2C bus and timing
diagram 1) on page 59
Modified COMP_REF availability information in Figure 52:
STM8L101xx ordering information scheme on page 79
Modified Section 12.2: Software tools on page 78
21-Jul-2010 10
Modified Table 3: Legend/abbreviation for table 4 on page 20 and
Table 4: STM8L101xx pin description on page 20 (for PA0, PA1, PB0
and PB4)
Modified Table 13: Voltage characteristics on page 38 and Table 14:
Current characteristics on page 39
Modified VIH in Table 26: I/O static characteristics on page 48
Added notes below UFQFPN32 package
Table 44. Document revision history (continued)
Date Revision Changes
Revision history STM8L101x1 STM8L101x2 STM8L101x3
86/88 DocID15275 Rev 16
14-Oct-2010 11
Added STM8L101F1 devices:
Modified Table 1: Device summary on page 1, Table 2:
STM8L101xx device feature summary on page 9 and Table 5:
Flash and RAM boundary addresses on page 24
Modified warning below Figure 3 on page 16 and belowTable 4:
STM8L101xx pin description on page 20
Modified Figure 52: STM8L101xx ordering information scheme on
page 79
Modified text above Figure 32: Recommended NRST pin
configuration on page 54
Modified Figure 32 on page 54
02-Aug-2013 12
Added “The RAM content is preserved” in halt mode Section 3.6:
Low power modes
Reformatted Figure 2: Standard 20-pin UFQFPN package pinout,
Figure 3: 20-pin UFQFPN package pinout for STM8L101F1U6ATR,
STM8L101F2U6ATR and STM8L101F3U6ATR part numbers,
Figure 4: 20-pin TSSOP package pinout, Figure 4: 20-pin TSSOP
package pinout, Figure 5: Standard 28-pin UFQFPN package pinout,
Figure 6: 28-pin UFQFPN package pinout for STM8L101G3U6ATR
and STM8L101G2U6ATR part numbers and Figure 7: 32-pin
package pinout
Corrected NRST/PA1 pin OD output capability in Table 4:
STM8L101xx pin description and corrected note 2. and 4.
Added note “Slope control of all GPIO can be programmed except...”
in Table 4: STM8L101xx pin description
Added note under Table 5: Flash and RAM boundary addresses
Replaced UM0320 with UM0470 in Section 7: Option bytes
Updated OPT2 and OPT3 in Table 10: Option bytes
Added additional note 2. references in Table 22: HSI oscillator
characteristics
Added note 2. under Table 17: Operating conditions at power-up /
power-down and under Figure 32: Recommended NRST pin
configuration
Corrected ‘SCK output’ in Figure 35: SPI timing diagram - master
mode(1)
Added top view in Figure 43: UFQFPN20 3 x 3 mm 0.6 mm package
outline
Repositioned the package layout and footprint for all packages.
Replaced “Standard ports” with “High sink ports”
Replaced “TIMx_TRIG” with “TIMx_ETR”
Replaced all ‘"Data guaranteed, each individual device tested in
production” notes with “Tested in production”
31-Mar-2014 13 Updated L3 value on Table 42, added note 2) and 3) on Table 43
18-Dec-2014 14
Updated:
Figure 46: UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin
fine pitch quad flat package outline,
Table 42: UFQFPN20 - 20-lead ultra thin fine pitch quad flat
package (3 x 3 mm) mechanical data.
Table 44. Document revision history (continued)
Date Revision Changes
DocID15275 Rev 16 87/88
STM8L101x1 STM8L101x2 STM8L101x3 Revision history
87
02-Aug-2016 15
Added:
Figure 39: UFQFPN32 marking example (package top view)
Figure 42: LQFP32 marking example (package top view)
Figure 45: UFQFPN28 marking example (package top view)
Figure 48: UFQFPN20 marking example (package top view)
Figure 51: TSSOP20 marking example (package top view)
Updated:
Section 9.2: Absolute maximum ratings.
12-May-2017 16
Updated:
All table footnotes from “Data guaranteed by design, not tested in
production” to “Guaranteed by design” and “Data based on
characterization results, not tested in production” to “Guaranteed
by characterization results”
Section : Device marking on page 66
Section : Device marking on page 69
Section : Device marking on page 72
Section : Device marking on page 75
Section : Device marking on page 78
Figure 46: UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin
fine pitch quad flat package outline
Table 42: UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin
fine pitch quad flat package mechanical data
Table 44. Document revision history (continued)
Date Revision Changes
STM8L101x1 STM8L101x2 STM8L101x3
88/88 DocID15275 Rev 16
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved