LF411JAN Low Offset, Low Drift JFET Input Operational Amplifier General Description Features This device is a low cost, high speed, JFET input operational amplifier with very low input offset voltage and guaranteed input offset voltage drift. It requires low supply current yet maintains a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF411 is pin compatible with the standard LM741 allowing designers to immediately upgrade the overall performance of existing designs. This amplifier may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage and drift, low input bias current, high input impedance, high slew rate and wide bandwidth. n n n n n n n n n Internally trimmed offset voltage: 0.5 mV(Typ) Input offset voltage drift: 30 V/C Low input bias current: 50 pA Low input noise current: 0.01 pA/Hz Wide gain bandwidth: 3 MHz Typ. High slew rate: 7V/s (min.) Low supply current: 1.8 mA High input impedance: 1012 Low total harmonic distortion: AV = 10, RL = 10K, < 0.02% VO = 20VP-P, BW = 20Hz - 20KHz n Low 1/f noise corner: 50 Hz n Fast settling time to 0.01%: 1.5 s Ordering Information NS Part Number JAN Part Number JL411BPA JM38510/11904BPA Connection Diagram NS Package Number J08A Package Description 8LD CERDIP Typical Connection 8LD Ceramic Dual-in Line Package 20152407 Top View See NS Package Number J08A 20152401 BI-FET IITM is a trademark of National Semiconductor Corporation. (c) 2005 National Semiconductor Corporation DS201524 www.national.com LF411JAN Low Offset, Low Drift JFET Input Operational Amplifier October 2005 LF411JAN Simplified Schematic 20152406 Detailed Schematic 20152434 www.national.com 2 LF411JAN Absolute Maximum Ratings (Note 1) Input Voltage Range (Note 4) 18V 30V 15V Output Short Circuit Duration Continuous Supply Voltage Differential Input Voltage Power Dissipation (Note 2), (Note 3) 400mW TJmax 175C Thermal Resistance JA Still Air 162C/W 400LF/Min Air Flow 65C/W JC 20C/W Operating Temperature Range -55C TA 125C Storage Temperature Range -65C TA 150C Lead Temperature (Soldering, 10 seconds) 300C Package Weight (Typical) TBD ESD Tolerance (Note 5) 750V Quality Conformance Inspection Mil-Std-883, Method 5005 - Group A Subgroup Description Temp C 1 Static tests at 25 2 Static tests at 125 3 Static tests at -55 4 Dynamic tests at 25 5 Dynamic tests at 125 6 Dynamic tests at -55 7 Functional tests at 25 8A Functional tests at 125 8B Functional tests at -55 9 Switching tests at 25 10 Switching tests at 125 11 Switching tests at -55 12 Settling time at 25 13 Settling time at 125 14 Settling time at -55 3 www.national.com LF411JAN Electrical Characteristics DC Parameters The following conditions apply to all the following parameters, unless otherwise specified. DC: VCC = 15V, VCM = 0V Symbol VIO IIB IIO Parameter Input Offset Voltage Input Bias Current Input Offset Current Conditions Notes Subgroups Min Max Unit +VCC = 26V, -VCC = -4V, VCM = -11V -5.0 5.0 mV 1 -7.0 7.0 mV 2, 3 +VCC = 4V, -VCC = -26V, VCM = 11V -5.0 5.0 mV 1 -7.0 7.0 mV 2, 3 -5.0 5.0 mV 1 -7.0 7.0 mV 2, 3 VCC = 5V -5.0 5.0 mV 1 -7.0 7.0 mV 2, 3 +VCC = 26V, -VCC = -4V, VCM = -11V, t 25mS -0.4 0.2 nA 1 -10 50 nA 2 t 25mS -0.2 0.2 nA 1 -10 50 nA 2 +VCC = 4V, -VCC = -26V, VCM = 11V, t 25mS -0.2 1.2 nA 1 -10 70 nA 2 t 25mS -0.1 0.1 nA 1 -20 20 nA 2 +PSRR Power Supply Rejection Ratio +VCC = 10V to 20V, -VCC = -15V 80 dB 1, 2, 3 -PSRR Power Supply Rejection Ratio +VCC = 15V, -VCC = -10V to -20V 80 dB 1, 2, 3 CMR Input Voltage Common Mode Rejection VCM = -11V to +11V 80 dB 1, 2, 3 VIO Adj+ Adjustment for Input Offset Voltage 8.0 mV 1, 2, 3 VIO Adj- Adjustment for Input Offset Voltage mV 1, 2, 3 IOS+ Output Short Circuit Current t 25mS IOS- Output Short Circuit Current t 25mS ICC Supply Current 4.0 mA 3 VIO / T Input Offset Voltage 25C TA +125C (Note 6) -30 30 V/C 2 -55C TA 25C (Note 6) -30 30 V/C 3 +VOP Output Voltage Swing RL = 10K 12 V 4, 5, 6 RL = 2K 10 V 4, 5, 6 -VOP Output Voltage Swing RL = 10K -12 V 4, 5, 6 RL = 2K -10 V 4, 5, 6 +AVS -AVS AVS Open Loop Voltage Gain Open Loop Voltage Gain Open Loop Voltage Gain www.national.com -8.0 -80 mA 1, 2, 3 80 mA 1, 2, 3 3.5 mA 1, 2 RL = 2K, VO = 0 to 10V (Note 7) 50 K 4 (Note 7) 25 K 5, 6 RL = 2K, VO = 0 to -10V (Note 7) 50 K 4 (Note 7) 25 K 5, 6 RL = 10K, VO = 2V, VCC = 5V (Note 7) 20 K 4, 5, 6 4 LF411JAN Electrical Characteristics (Continued) AC Parameters The following conditions apply to all the following parameters, unless otherwise specified. AC: VCC = 15V, VCM = 0V Symbol SR+ Parameter Conditions Notes VI = -5V to +5V Slew Rate Min Max Unit Subgroups 7.0 V/S 7 5.0 V/S 8A, 8B 7.0 V/S 7 SR- Slew Rate VI = +5V to -5V V/S 8A, 8B TRTR Transient Response Rise Time AV = 1, VI = 50mV, CL = 100pF, RL = 2K 200 nS 7, 8A, 8B TROS Transient Response Overshoot AV = 1, VI = 50mV, CL = 100pF, RL = 2K 40 % 7, 8A, 8B 5.0 NIBB Noise Broadband BW of 10Hz to 15KHz 15 VRMS 7 NIPC Noise Popcorn BW of 10Hz to 15KHz, RS = 100K 80 VPK 7 +tS Settling Time AV = 1 1,500 nS 12 -tS Settling Time AV = 1 1,500 nS 12 Min Max Unit Subgroups DC Drift Parameters The following conditions apply to all the following parameters, unless otherwise specified. DC: VCC = 15V, VCM = 0V Delta Calculations performed at Group B, subgroup 5, Only Symbol Parameter Conditions Notes VIO Input Offset Voltage -1.0 1.0 mV 1 IIB Input Bias Current -0.1 0.1 nA 1 Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature), JA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is PDmax = (TJmax - TA)/JA or the number given in the Absolute Maximum Ratings, whichever is lower. Note 3: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits. Note 4: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage. Note 5: Human body model, 100pF discharged through 1.5K. Note 6: Calculated parameter. For calculation use VIO test at VCC = 15V Note 7: Datalog in K = V/mV. 5 www.national.com LF411JAN Typical Performance Characteristics Input Bias Current Input Bias Current 20152411 20152412 Positive Common-Mode Input Voltage Limit Supply Current 20152413 20152414 Negative Common-Mode Input Voltage Limit Positive Current Limit 20152415 www.national.com 20152416 6 LF411JAN Typical Performance Characteristics (Continued) Negative Current Limit Output Voltage Swing 20152417 20152418 Output Voltage Swing Gain Bandwidth 20152419 20152420 Bode Plot Slew Rate 20152422 20152421 7 www.national.com LF411JAN Typical Performance Characteristics (Continued) Undistorted Output Voltage Swing Distortion vs Frequency 20152423 20152424 Open Loop Frequency Response Common-Mode Rejection Ratio 20152425 20152426 Power Supply Rejection Ratio Equivalent Input Noise Voltage 20152427 www.national.com 20152428 8 LF411JAN Typical Performance Characteristics (Continued) Open Loop Voltage Gain Output Impedance 20152429 20152430 Inverter Settling Time 20152431 Pulse Response RL=2 k, CL10 pF Small Signal Non-Inverting Small Signal Inverting 20152440 20152439 9 www.national.com LF411JAN Pulse Response RL=2 k, CL10 Large Signal Non-Inverting pF (Continued) Large Signal Inverting 20152442 20152441 Current Limit (RL=100) 20152443 The LF411 is biased by a zener reference which allows normal circuit operation on 4.5V power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate. The LF411 will drive a 2 k load resistance to 10V over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings. Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit. As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground. A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the ex- Application Hints The LF411JAN series of internally trimmed JFET input op amps ( BI-FET IITM ) provide very low input offset voltage and guaranteed input offset voltage drift. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit. Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode. Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier may be forced to a high state. The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur. www.national.com 10 added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant. (Continued) pected 3 dB frequency, a lead capacitor should be placed from the output to the input of the op amp. The value of the Typical Applications High Speed Current Booster 20152409 PNP=2N2905 NPN=2N2219 unless noted TO-5 heat sinks for Q6-Q7 11 www.national.com LF411JAN Application Hints LF411JAN Typical Applications (Continued) 10-Bit Linear DAC with No VOS Adjust 20152432 where AN=1 if the AN digital input is high AN=0 if the AN digital input is low Single Supply Analog Switch with Buffered Output 20152433 www.national.com 12 LF411JAN Revision History Date Released 10/11/05 Revision A Section Originator New Release to corporate format L. Lytle 13 Changes 1 MDS data sheet was converted into the corporate data sheet format. MDS MJLF411-X Rev 0C1 will be archived. www.national.com LF411JAN Low Offset, Low Drift JFET Input Operational Amplifier Physical Dimensions inches (millimeters) unless otherwise noted Ceramic Dual-in-Line Package (J) NS Package Number J08A National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. For the most current product information visit us at www.national.com. LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. BANNED SUBSTANCE COMPLIANCE National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no ``Banned Substances'' as defined in CSP-9-111S2. Leadfree products are RoHS compliant. National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 www.national.com National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Francais Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560