This is information on a product in full production.
September 2012 Doc ID 5560 Rev 4 1/16
16
TS921
Rail-to-rail high output current single operational amplifier
Datasheet production data
Features
Rail-to-rail input and output
Low noise: 9 nV/
Hz
Low distortion
High output current: 80 mA (able to drive 32 Ω
loads)
High-speed: 4 MHz, 1 V/μs
Operating from 2.7 V to 12 V
ESD internal protection: 1.5 kV
Latch-up immunity
Macromodel included in this specification
Applications
Headphone amplifier
Piezoelectric speaker driver
Sound cards, multimedia systems
Line driver, actuator driver
Servo amplifier
Mobile phone and portable communication
sets
Instrumentation with low noise as key factor
N
DIP8
(plastic package)
Pin connections (top view)
D
SO-8
(plastic micropackage)
P
TSSOP8
(thin shrink small outline package)
Table 1. Device summary
Order code Temperature
range Package Packing Marking
TS921IN -40 °C, +125 °C DIP8 Tube TS921IN
TS921ID/IDT SO-8 Tube or tape and reel
921I
TS921IPT TSSOP8
(thin shrink outline package) Tape and reel
www.st.com
Description TS921
2/16 Doc ID 5560 Rev 4
1 Description
The TS921 device is a rail-to-rail single BiCMOS operational amplifier optimized and fully
specified for 3 V and 5 V operation.
Its high output current allows low load impedances to be driven.
The TS921 device exhibits very low noise, low distortion and low offset. It has a high output
current capability which makes this device an excellent choice for high quality, low voltage or
battery operated audio systems.
The device is stable for capacitive loads up to 500 pF.
TS921 Absolute maximum ratings
Doc ID 5560 Rev 4 3/16
2 Absolute maximum ratings
Table 2. Key parameters and their absolute maximum ratings
Symbol Parameter Condition Value Unit
VCC Supply voltage(1) 14 V
Vid Differential input voltage(2) ±1 V
ViInput voltage VDD - 0.3 to VCC + 0.3 V
Tstg Storage temperature -65 to +150 °C
TjMaximum junction temperature 150 °C
Rthja Thermal resistance junction-to-ambient
SO-8
TSSOP8
DIP8
125
120
85
°C/W
Rthjc Thermal resistance junction-to-case
SO-8
TSSOP8
DIP8
40
37
41
°C/W
ESD Electrostatic discharge
HBM
Human body model(3) 1.5 kV
MM
Machine model(4) 100 V
CDM
Charged device model 1.5 kV
Output short-circuit duration See(5)
Latch-up immunity 200 mA
Soldering temperature
10 sec.,
standard package 250 °C
10 sec.,
lead-free package 260
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If Vid > ±1 V, the
maximum input current must not exceed ±1 mA. In this case (Vid > ±1 V) an input serie resistor must be added to limit input
current.
3. Human body model, 100 pF discharged through a 1.5 kΩ resistor into pin of device.
4. Machine model ESD, a 200 pF cap is charged to the specified voltage, then discharged directly into the IC with no external
series resistor (internal resistor < 5 Ω), into pin to pin of device.
5. There is no short-circuit protection inside the device: short-circuits from the output to VCC can cause excessive heating. The
maximum output current is approximately 80 mA, independent of the magnitude of VCC. Destructive dissipation can result
from simultaneous short-circuits on all amplifiers.
Table 3. Operating conditions
Symbol Parameter Value Unit
VCC Supply voltage 2.7 to 12 V
Vicm Common mode input voltage range VDD - 0.2 to VCC + 0.2 V
Toper Operating free air temperature range -40 to +125 °C
Electrical characteristics TS921
4/16 Doc ID 5560 Rev 4
3 Electrical characteristics
Table 4. Electrical characteristics for VCC =3 V, V
DD =0 V, V
icm =V
CC/2, RL connected to
VCC/2, Tamb = 25 °C (unless otherwise specified)
Symbol Parameter Conditions Min. Typ. Max. Unit
Vio Input offset voltage
at Tmin
.
Tamb
Tmax
3
5mV
ΔVio Input offset voltage drift 2 μV/°C
Iio Input offset current Vout = 1.5 V 1 30 nA
Iib Input bias current Vout = 1.5 V 15 100 nA
VOH High level output voltage RL= 600 Ω
RL= 32 Ω
2.87
2.63 V
VOL Low level output voltage RL= 600 Ω
RL= 32 Ω180
100 mV
Avd Large signal voltage gain Vout = 2 Vpk-pk
RL= 600 Ω
RL= 32 Ω
35
16
V/mV
GBP Gain bandwidth product RL = 600 Ω4MHz
ICC Supply current No load, Vout = VCC/2 1 1.5 mA
CMR Common mode rejection ratio 60 80 dB
SVR Supply voltage rejection ratio VCC = 2.7 to 3.3 V 60 80 dB
IoOutput short-circuit current 50 80 mA
SR Slew rate 0.7 1.3 V/μs
Pm Phase margin at unit gain RL = 600 Ω, CL =100 pF 68 Degrees
GM Gain margin RL = 600 Ω, CL =100 pF 12 dB
enEquivalent input noise voltage f = 1 kHz 9
THD Total harmonic distortion Vout =2 V
pk-pk, f = 1 kHz,
Av=1, R
L= 600 Ω0.005 %
nV
Hz
------------
TS921 Electrical characteristics
Doc ID 5560 Rev 4 5/16
Table 5. Electrical characteristics for VCC = 5 V, VDD = 0 V, Vicm = VCC/2, RL connected to VCC/2,
Tamb = 25 °C (unless otherwise specified)
Symbol Parameter Conditions Min. Typ. Max. Unit
Vio Input offset voltage
at Tmin.
Tamb
Tmax
3
5mV
ΔVio Input offset voltage drift 2μV/°C
Iio Input offset current Vout = 1.5 V 1 30 nA
Iib Input bias current Vout = 1.5 V 15 100 nA
VOH High level output voltage
RL = 600 Ω
RL = 32 Ω
4.85
4.4 V
VOL Low level output voltage RL = 600 Ω
RL = 32 Ω300
120 mV
Avd Large signal voltage gain Vout = 2 Vpk-pk
RL = 600 Ω
RL = 32 Ω
35
16
V/mV
GBP Gain bandwidth product RL = 600 Ω4MHz
ICC Supply current No load, Vout = VCC/2 1 1.5 mA
CMR Common mode rejection ratio 60 80 dB
SVR Supply voltage rejection ratio VCC = 4.5 to 5.5 V 60 80 dB
IoOutput short-circuit current 50 80 mA
SR Slew rate 0.7 1.3 V/μs
Pm Phase margin at unit gain RL = 600 Ω, CL =100 pF 68 Degrees
GM Gain margin RL = 600 Ω, CL =100 pF 12 dB
enEquivalent input noise voltage f = 1 kHz 9
THD Total harmonic distortion Vout = 2 Vpk-pk, f = 1 kHz,
Av=1, R
L= 600 Ω0.005 %
nV
Hz
------------
Electrical characteristics TS921
6/16 Doc ID 5560 Rev 4
Figure 1. Output short-circuit vs. output
voltage (VCC = 5 V, VDD = 0 V)
Figure 2. Voltage gain and phase vs.
frequency (RL = 10 kΩ, CL = 100 pF)
Figure 3. Output short-circuit vs. output
voltage (VCC = 3 V, VDD = 0 V)
Figure 4. Equivalent input noise voltage vs.
frequency (VCC = ±1.5 V, RL = 100 Ω)
Figure 5. Output supply current vs. supply
voltage
Figure 6. THD + noise vs. frequency (R
L
= 2 k
Ω,
V
o
= 10 Vpp, V
CC
= ±6 V, A
v
= 1)
0123
-120
-100
-80
-60
-40
-20
0
20
40
60
80
100
Output voltage (V)
Output short-circuit current (mA)
Source
Sink
1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
-20
0
20
40
60
-60
0
60
120
180
Frequency (Hz)
Gain (dB)
Phase (deg.)
Gain
Phase
L
L
0 0,5 1 1,5 2 2,5 3
-100
-80
-60
-40
-20
0
20
40
60
80
100
Output voltage (V)
Output short-circu it curr e nt (mA)
Source
Sink
0.01 0.1 1 10 100
Frequenc
y
(kHz)
0
5
10
15
20
25
30
Equivalent input noise(nV/sqrt(Hz)
0.01 0.1 1 10 100
Frequency (kHz)
0
0.005
0.01
0.015
0.02
THD + noise(%)
TS921 Electrical characteristics
Doc ID 5560 Rev 4 7/16
Figure 7. THD + noise vs. frequency
(RL = 32 Ω, Vo = 4 Vpp,
VCC = ±2.5 V, Av = 1)
Figure 8. THD + noise vs. output voltage
(RL = 600 Ω, f = 1 kHz,
VCC = 0/3 V, Av = -1)
Figure 9. THD + noise vs. frequency
(RL = 32 Ω, Vo = 2 Vpp,
VCC = ±1.5 V, Av = 10)
Figure 10. THD + noise vs. output voltage
(RL = 32 Ω, f = 1 kHz,
VCC = ±1.5 V, Av = -1)
Figure 11. THD + noise vs. output voltage
(RL = 2 kΩ, f = 1 kHz,
VCC = ±1.5 V, Av = -1)
Figure 12. Open loop gain and phase
vs. frequency (CL = 500 pF)
0.01 0.1 1 10 100
Frequenc
y
(kHz)
0
0.008
0.016
0.024
0.032
0.04
THD + noise(%)
0 0.2 0.4 0.6 0.81
0.01
0.1
1
10
THD + noise(%)
0.01 0.1 1 10 100
Frequency (kHz)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
THD + noise(%)
0 0.2 0.4 0.6 0.81 1.2
0.001
0.01
0.1
1
10
THD + noise(%)
0 0,2 0,4 0,6 0,811,2
0,001
0,010
0,100
1,000
10,000
THD + noise(%)
1E+2 1E+31E+4 1E+5 1E+6 1E+7 1E+8
Frequency (Hz)
0
10
20
30
40
50
Gain (dB)
0
60
120
180
Phase(de
g
.)
Macromodel TS921
8/16 Doc ID 5560 Rev 4
4 Macromodel
4.1 Important note concerning this macromodel
Please consider following remarks before using this macromodel:
All models are a trade-off between accuracy and complexity (i.e. simulation time).
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of
a design approach and help to select surrounding component values.
A macromodel emulates the NOMINAL performance of a TYPICAL device within
SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus
the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the
main parameters of the product.
Data issued from macromodels used outside of its specified conditions
(VCC, temperature, etc.) or even worse: outside of the device operating conditions
(VCC, Vicm, etc.) are not reliable in any way.
In Section 4.3, the electrical characteristics resulting from the use of these macromodels are
presented.
4.2 Electrical characteristics from macromodelization
Table 6. Electrical characteristics resulting from macromodel simulation at VCC = 3 V,
VDD = 0 V, RL, CL connected to VCC/2, Tamb = 25 °C (unless otherwise specified)
Symbol Conditions Value Unit
Vio 0mV
Avd RL = 10 kΩ200 V/mV
ICC No load, per operator 1.2 mA
Vicm -0.2 to 3.2 V
VOH RL = 10 kΩ2.95 V
VOL RL = 10 kΩ25 mV
Isink VO = 3 V 80 mA
Isource VO = 0 V 80 mA
GBP RL = 600 kΩ4MHz
SR RL = 10 kΩ, CL = 100 pF 1.3 V/μs
φmR
L = 600 kΩ68 Degrees
TS921 Macromodel
Doc ID 5560 Rev 4 9/16
4.3 Macromodel code
** Standard Linear Ics Macromodels, 1996.
** CONNECTIONS:
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TS921 1 3 2 4 5 (analog)
********************************************************* .MODEL MDTH D
IS=1E-8 KF=2.664234E-16 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 8.125000E+00
RIN 15 16 8.125000E+00
RIS 11 15 2.238465E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 153.5u
VOFN 13 14 DC 0
IPOL 13 5 3.200000E-05
CPS 11 15 1e-9
DINN 17 13 MDTH 400E-12
VIN 17 5 -0.100000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 0.400000E+00
FCP 4 5 VOFP 1.865000E+02
FCN 5 4 VOFN 1.865000E+02
FIBP 2 5 VOFP 6.250000E-03
FIBN 5 1 VOFN 6.250000E-03
* GM1 STAGE ***************
FGM1P 119 5 VOFP 1.1
FGM1N 119 5 VOFN 1.1
RAP 119 4 2.6E+06
RAN 119 5 2.6E+06
* GM2 STAGE ***************
G2P 19 5 119 5 1.92E-02
G2N 19 5 119 4 1.92E-02
R2P 19 4 1E+07
R2N 19 5 1E+07
**************************
VINT1 500 0 5
Macromodel TS921
10/16 Doc ID 5560 Rev 4
GCONVP 500 501 119 4 19.38!send ds VP, I(VP)=(V119-V4)/2/Ut VP 501 0 0
GCONVN 500 502 119 5 19.38!send ds VN, I(VN)=(V119-V5)/2/Ut VN 502 0 0
********* orientation isink isource *******
VINT2 503 0 5
FCOPY 503 504 VOUT 1
DCOPYP 504 505 MDTH 400E-9
VCOPYP 505 0 0
DCOPYN 506 504 MDTH 400E-9
VCOPYN 0 506 0
***************************
F2PP 19 5 poly(2) VCOPYP VP 0 0 0 0 0.5!multiply I(vout)*I(VP)=Iout*(V119-
V4)/2/Ut
F2PN 19 5 poly(2) VCOPYP VN 0 0 0 0 0.5 !multiply I(vout)*I(VN)=Iout*(V119-
V5)/2/Ut
F2NP 19 5 poly(2) VCOPYN VP 0 0 0 0 1.75 !multiply I(vout)*I(VP)=Iout*(V119-
V4)/2/Ut
F2NN 19 5 poly(2) VCOPYN VN 0 0 0 0 1.75 !multiply I(vout)*I(VN)=Iout*(V119-
V5)/2/Ut
* COMPENSATION ************
CC 19 119 25p
* OUTPUT***********
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 6.250000E+02
VIPM 28 4 5.000000E+01
HONM 21 27 VOUT 6.250000E+02
VINM 5 27 5.000000E+01
VOUT 3 23 0
ROUT 23 19 6
COUT 3 5 1.300000E-10
DOP 19 25 MDTH 400E-12
VOP 4 25 1.052
DON 24 19 MDTH 400E-12
VON 24 5 1.052
.ENDS
TS921 Package information
Doc ID 5560 Rev 4 11/16
5 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com. ECOPACK
is an ST trademark.
Package information TS921
12/16 Doc ID 5560 Rev 4
Figure 13. DIP8 package outline
Table 7. DIP8 package mechanical data
Symbol
Dimensions
mm inch
Min. Typ. Max. Min. Typ. Max.
A 3.3 0.130
a1 0.7 0.028
B 1.39 1.65 0.055 0.065
B1 0.91 1.04 0.036 0.041
b 0.5 0.020
b1 0.38 0.5 0.015 0.020
D 9.8 0.386
E 8.8 0.346
e 2.54 0.100
e3 7.62 0.300
e4 7.62 0.300
F 7.1 0.280
I 4.8 0.189
L 3.3 0.130
Z 0.44 1.6 0.017 0.063
TS921 Package information
Doc ID 5560 Rev 4 13/16
Figure 14. SO-8 package outline
Table 8. SO-8 package mechanical data
Symbol
Dimensions
mm inch
Min. Typ. Max. Min. Typ. Max.
A 1.35 1.75 0.053 0.069
A1 0.10 0.25 0.04 0.010
A2 1.10 1.65 0.043 0.065
B 0.33 0.51 0.013 0.020
C 0.19 0.25 0.007 0.010
D 4.80 5.00 0.189 0.197
E 3.80 4.00 0.150 0.157
e 1.27 0.050
H 5.80 6.20 0.228 0.244
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
k 8° (max.)
ddd 0.1 0.04
00160 23/C
Package information TS921
14/16 Doc ID 5560 Rev 4
Figure 15. TSSOP8 package outline
Table 9. TSSOP8 package mechanical data
Symbol
Dimensions
mm inch
Min. Typ. Max. Min. Typ. Max.
A 1.2 0.047
A1 0.05 0.15 0.002 0.006
A2 0.80 1.00 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.008
D 2.90 3.00 3.10 0.114 0.118 0.122
E 6.20 6.40 6.60 0.244 0.252 0.260
E1 4.30 4.40 4.50 0.169 0.173 0.177
e 0.65 0.0256
K 0° 8°
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1 0.039
0079397/D
TS921 Revision history
Doc ID 5560 Rev 4 15/16
6 Revision history
Table 10. Document revision history
Date Revision Changes
Feb. 2001 1Initial release - Product in full production.
Dec. 2004 2 Modifications on AMR table page 2 (explanation of Vid and Vi limits,
ESD, MM and CDM values added, Rthja added)
Nov. 2005 3
The following changes were made in this revision:
PPAP references inserted in the datasheet see Table 1.
Data in tables Electrical characteristics on page 4 reformatted for
easier use.
Thermal Resistance Junction to Case added in Table 2 on page 3.
19-Sep-2012 4
Updated Figure on page 1(replaced VCC- by VDD).
Updated (renamed) Ta bl e 1 , removed TS921IYD/IYDT devices from
Ta b le 1 .
Moved Description to page 2.
Updated Figure 1 to Figure 4, Figure 6 to Figure 12 (added
conditions to titles).
Updated ECOPACK text and reformatted Section 5 (added Ta b le 7 to
Ta b le 9 , reversed order of figures and tables).
Minor corrections throughout document.
TS921
16/16 Doc ID 5560 Rev 4
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at an
y
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com