This is information on a product in full production.
April 2016 DocID018576 Rev 8 1/103
STM8S003F3 STM8S003K3
Value line, 16 MHz STM8S 8-bit MCU, 8 Kbyte Flash, 128 byte data
EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C
Datasheet - production data
Features
Core
16 MHz advanced STM8 core with Harvard
architecture and 3-stage pipeline
Extended instruction set
Memories
Program memory: 8 Kbyte Flash memory; data
retention 20 years at 55 °C after 100 cycles
RAM: 1 Kbyte
Data memory: 128 bytes true data EEPROM;
endurance up to 100 k write/erase cycles
Clock, reset and supply management
2.95 V to 5.5 V operating voltage
Flexible clock control, 4 master clock sources
Low-power crystal resonator oscillator
External clock input
Internal, user-trimmable 16 MHz RC
Internal low-power 128 kHz RC
Clock security system with clock monitor
Power management
Low-power modes (wait, active-halt, halt)
Switch-off peripheral clocks individually
Permanently active, low-consumption
power-on and power-down reset
Interrupt management
Nested interrupt controller with 32 interrupts
Up to 27 external interrupts on 6 vectors
Timers
Advanced control timer: 16-bit, 4 CAPCOM
channels, 3 complementary outputs, dead-time
insertion and flexible synchronization
16-bit general purpose timers, with 3 CAPCOM
channels (IC, OC or PWM)
8-bit basic timer with 8-bit prescaler
Auto wakeup timer
Window and independent watchdog timers
Communications interfaces
UART with clock output for synchronous
operation, SmartCard, IrDA, LIN master mode
SPI interface up to 8 Mbit/s
I2C interface up to 400 Kbit/s
Analog to digital converter (ADC)
10-bit ADC, ± 1 LSB ADC with up to 5
multiplexed channels, scan mode and analog
watchdog
I/Os
Up to 28 I/Os on a 32-pin package including 21
high-sink outputs
Highly robust I/O design, immune against
current injection
Development support
Embedded single-wire interface module
(SWIM) for fast on-chip programming and non-
intrusive debugging
LQFP32
7x7 mm
TSSOP20
6.5x6.4 mm
UFQFPN20
3x3 mm
www.st.com
Contents STM8S003F3 STM8S003K3
2/103 DocID018576 Rev 8
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 13
4.3 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Flash program memory and data EEPROM . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.7 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.8 Auto wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.9 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.10 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.11 TIM2 - 16-bit general purpose timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.12 TIM4 - 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.13 Analog-to-digital converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.14 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.14.1 UART1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.14.2 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.14.3 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1 STM8S003K3 LQFP32 pinout and pin description . . . . . . . . . . . . . . . . . . 22
5.2 STM8S003F3 TSSOP20/UFQFPN20 pinout and pin description . . . . . . 25
5.3 Alternate function remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
DocID018576 Rev 8 3/103
STM8S003F3 STM8S003K3 Contents
4
6.2.1 I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2.2 General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.3 CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . 39
7 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.1 Alternate function remapping bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.3.1 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.3.2 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.3.3 External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 61
9.3.4 Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 63
9.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.3.6 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.3.7 Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.3.8 SPI serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.3.9 I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.3.10 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.1 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.2 TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.3 UFQFPN20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
10.4.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
10.4.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 98
Contents STM8S003F3 STM8S003K3
4/103 DocID018576 Rev 8
11 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
12 STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
12.1 Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . 100
12.2 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12.2.1 STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12.2.2 C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
13 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
DocID018576 Rev 8 5/103
STM8S003F3 STM8S003K3 List of tables
6
List of tables
Table 1. STM8S003F3/K3 value line features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers. . . . . . . . . . . . . . . 15
Table 3. TIM timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4. Legend/abbreviations for STM8S003F3/K3 pin description tables. . . . . . . . . . . . . . . . . . . 21
Table 5. STM8S003K3 descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 6. STM8S003F3 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 7. Flash, Data EEPROM and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 8. I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 9. General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 10. CPU/SWIM/debug module/interrupt controller registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 11. Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 12. Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 13. Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 14. STM8S003K3 alternate function remapping bits for 32-pin devices . . . . . . . . . . . . . . . . . . 44
Table 15. STM8S003F3 alternate function remapping bits for 20-pin devices . . . . . . . . . . . . . . . . . . 45
Table 16. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 17. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 18. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 19. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 20. Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 21. Total current consumption with code execution in run mode at VDD = 5 V . . . . . . . . . . . . 52
Table 22. Total current consumption with code execution in run mode at VDD = 3.3 V . . . . . . . . . . . 53
Table 23. Total current consumption in wait mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 24. Total current consumption in wait mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 25. Total current consumption in active halt mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . 55
Table 26. Total current consumption in active halt mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . 55
Table 27. Total current consumption in halt mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 28. Total current consumption in halt mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 29. Wakeup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 30. Total current consumption and timing in forced reset state . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 31. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 32. HSE user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 33. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 34. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 35. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 36. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 37. Flash program memory and data EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 38. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 39. Output driving current (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 40. Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 41. Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 42. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 43. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 44. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 45. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 46. ADC accuracy with RAIN < 10 kΩ , VDD = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 47. ADC accuracy with RAIN < 10 kΩ RAIN, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 48. EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
List of tables STM8S003F3 STM8S003K3
6/103 DocID018576 Rev 8
Table 49. EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 50. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 51. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 52. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . . 89
Table 53. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 54. UFQFPN20 - 20-lead, 3 x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 55. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 56. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
DocID018576 Rev 8 7/103
STM8S003F3 STM8S003K3 List of figures
8
List of figures
Figure 1. STM8S003F3/K3 value line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2. Flash memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 3. STM8S003K3 LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 4. STM8S003F3 TSSOP20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 5. STM8S003F3 UFQFPN20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 6. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 7. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 8. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 9. fCPUmax versus VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 10. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 11. Typ. IDD(RUN) vs VDD, HSE user external clock, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . 58
Figure 12. Typ. IDD(RUN) vs fCPU, HSE user external clock, VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 13. Typ. IDD(RUN) vs VDD, HSI RC osc, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 14. Typ. IDD(WFI) vs. VDD HSE user external clock, fCPU = 16MHz . . . . . . . . . . . . . . . . . . . . . 59
Figure 15. Typ. IDD(WFI) vs. fCPU, HSE user external clock, VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 16. Typ. IDD(WFI) vs VDD, HSI RC osc, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 17. HSE external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 18. HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 19. Typical HSI frequency variation vs VDD at 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 20. Typical LSI frequency variation vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 21. Typical VIL and VIH vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 22. Typical pull-up resistance vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 23. Typical pull-up current vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 24. Typ. VOL @ VDD = 5 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 25. Typ. VOL @ VDD = 3.3 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 26. Typ. VOL @ VDD = 5 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 27. Typ. VOL @ VDD = 3.3 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 28. Typ. VOL @ VDD = 5 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 29. Typ. VOL @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 30. Typ. VDD - VOH @ VDD = 5 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 31. Typ. VDD - VOH @ VDD = 3.3 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 32. Typ. VDD - VOH @ VDD = 5 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 33. Typ. VDD - VOH @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 34. Typical NRST VIL and VIH vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 35. Typical NRST pull-up resistance vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 36. Typical NRST pull-up current vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 37. Recommended reset pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 38. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 39. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 40. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 41. Typical application with I2C bus and timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 42. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 43. Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 44. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 88
Figure 45. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . . 89
Figure 46. LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 47. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
List of figures STM8S003F3 STM8S003K3
8/103 DocID018576 Rev 8
Figure 48. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 49. TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 50. UFQFPN20 - 20-lead, 3 x 3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 51. UFQFPN20 - 20-lead, 3 x 3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 52. UFQFPN20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 53. STM8S003F3/K3 value line ordering information scheme(1) . . . . . . . . . . . . . . . . . . . . . . . 99
DocID018576 Rev 8 9/103
STM8S003F3 STM8S003K3 Introduction
29
1 Introduction
This datasheet contains the description of the STM8S003F3/K3 value line features, pinout,
electrical characteristics, mechanical data and ordering information.
For complete information on the STM8S microcontroller memory, registers and
peripherals, please refer to the STM8S and STM8A microcontroller families reference
manual (RM0016).
For information on programming, erasing and protection of the internal Flash memory
please refer to the PM0051 (How to program STM8S and STM8A Flash program
memory and data EEPROM).
For information on the debug and SWIM (single wire interface module) refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 core, please refer to the STM8 CPU programming manual
(PM0044).
Description STM8S003F3 STM8S003K3
10/103 DocID018576 Rev 8
2 Description
The STM8S003F3/K3 value line 8-bit microcontrollers offer 8 Kbytes of Flash program
memory, plus integrated true data EEPROM. They are referred to as low-density devices in
the STM8S microcontroller family reference manual (RM0016).
TheSTM8S003F3/K3 value line devices provide the following benefits: performance,
robustness and reduced system cost.
Device performance and robustness are ensured by true data EEPROM supporting up to
100000 write/erase cycles, advanced core and peripherals made in a state-of-the-art
technology at 16 MHz clock frequency, robust I/Os, independent watchdogs with separate
clock source, and a clock security system.
The system cost is reduced thanks to a high system integration level with internal clock
oscillators, watchdog, and brown-out reset.
Full documentation is offered as well as a wide choice of development tools.
Table 1. STM8S003F3/K3 value line features
Features STM8S003K3 STM8S003F3
Pin count 32 20
Max. number of GPIOs (I/O) 28 16
External interrupt pins 27 16
Timer CAPCOM channels 7 7
Timer complementary outputs 3 2
A/D converter channels 4 5
High-sink I/Os 21 12
Low-density Flash program
memory (byte) 8 K 8 K
RAM (byte) 1 K 1 K
True data EEPROM (byte) 128(1)
1. Without read-while-write capability.
128(1)
Peripheral set Multi purpose timer (TIM1), SPI, I2C, UART, Window WDG,
independent WDG, ADC, PWM timer (TIM2), 8-bit timer (TIM4)
DocID018576 Rev 8 11/103
STM8S003F3 STM8S003K3 Block diagram
29
3 Block diagram
Figure 1. STM8S003F3/K3 value line block diagram
XTAL 1-16 MHz
RC int. 16 MHz
RC int. 128 kHz
STM8 core
Debug/SWIM
UART1
I2C
SPI
AWU timer
Reset block
Reset
POR BOR
Clock controller
Detector
Clock to peripherals and core
400 Kbit/s
8Mbit/s
up to 5
Address and data bus
Window WDG
8 Kbyte
128 byte
1 Kbyte RAM
ADC1
Reset
Single wire
debug interface
program Flash
data EEPROM
16-bit general purpose
16-bit advanced control
timer (TIM1)
timer (TIM2)
8-bit basic timer
(TIM4)
Beeper
1/2/4 kHz beep
Independent WDG
4 CAPCOM
channels
Up to
3 CAPCOM
channels
Up to
+ 3 complementary
outputs
LIN master
channels
SPI emul.
Product overview STM8S003F3 STM8S003K3
12/103 DocID018576 Rev 8
4 Product overview
The following section intends to give an overview of the basic features of the
STM8S003F3/K3 value line functional modules and peripherals.
For more detailed information please refer to the corresponding family reference manual
(RM0016).
4.1 Central processing unit STM8
The 8-bit STM8 core is designed for code efficiency and performance.
It contains six internal registers which are directly addressable in each execution context, 20
addressing modes including indexed indirect and relative addressing and 80 instructions.
Architecture and registers
Harvard architecture
3-stage pipeline
32-bit wide program memory bus - single cycle fetching for most instructions
X and Y 16-bit index registers - enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations
8-bit accumulator
24-bit program counter - 16-Mbyte linear memory space
16-bit stack pointer - access to a 64 K-level stack
8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing
20 addressing modes
Indexed indirect addressing mode for look-up tables located anywhere in the address
space
Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
80 instructions with 2-byte average instruction size
Standard data movement and logic/arithmetic functions
8-bit by 8-bit multiplication
16-bit by 8-bit and 16-bit by 16-bit division
Bit manipulation
Data transfer between stack and accumulator (push/pop) with direct stack access
Data transfer using the X and Y registers or direct memory-to-memory transfers
DocID018576 Rev 8 13/103
STM8S003F3 STM8S003K3 Product overview
29
4.2 Single wire interface module (SWIM) and debug module (DM)
The single wire interface module and debug module permits non-intrusive, real-time in-
circuit debugging and fast memory programming.
SWIM
Single wire interface module for direct access to the debug module and memory
programming. The interface can be activated in all device operation modes. The maximum
data transmission speed is 145 byte/ms.
Debug module
The non-intrusive debugging module features a performance close to a full-featured
emulator. Beside memory and peripherals, also CPU operation can be monitored in real-
time by means of shadow registers.
R/W to RAM and peripheral registers in real-time
R/W access to all resources by stalling the CPU
Breakpoints on all program-memory instructions (software breakpoints)
Two advanced breakpoints, 23 predefined configurations
4.3 Interrupt controller
Nested interrupts with three software priority levels
32 interrupt vectors with hardware priority
Up to 27 external interrupts on six vectors including TLI
Trap and reset interrupts
4.4 Flash program memory and data EEPROM
8 Kbyte of Flash program single voltage Flash memory
128 byte true data EEPROM
User option byte area
Write protection (WP)
Write protection of Flash program memory and data EEPROM is provided to avoid
unintentional overwriting of memory that could result from a user software malfunction.
There are two levels of write protection. The first level is known as MASS (memory access
security system). MASS is always enabled and protects the main Flash program memory,
data EEPROM and option bytes.
To perform in-application programming (IAP), this write protection can be removed by
writing a MASS key sequence in a control register. This allows the application to modify the
content of main program memory and data EEPROM, or to reprogram the device option
bytes.
A second level of write protection, can be enabled to further protect a specific area of
memory known as UBC (user boot code). Refer to Figure 2.
Product overview STM8S003F3 STM8S003K3
14/103 DocID018576 Rev 8
The size of the UBC is programmable through the UBC option byte (Table 13), in increments
of 1 page (64-byte block) by programming the UBC option byte in ICP mode.
This divides the program memory into two areas:
Main program memory: 8 Kbyte minus UBC
User-specific boot code (UBC): Configurable up to 8 Kbyte
The UBC area remains write-protected during in-application programming. This means that
the MASS keys do not unlock the UBC area. It protects the memory used to store the boot
program, specific code libraries, reset and interrupt vectors, the reset routine and usually
the IAP and communication routines.
Figure 2. Flash memory organization
Read-out protection (ROP)
The read-out protection blocks reading and writing from/to the Flash program memory and
data EEPROM memory in ICP mode (and debug mode). Once the read-out protection is
activated, any attempt to toggle its status triggers a global erase of the program memory.
Even if no protection can be considered as totally unbreakable, the feature provides a very
high level of protection for a general purpose microcontroller.
069
/RZGHQVLW\
)ODVKSURJUDP
PHPRU\
.E\WHV
3URJUDPPDEOH
DUHDIURPE\WHV
SDJHXSWR
.E\WHV
LQSDJHVWHSV
3URJUDPPHPRU\DUHD
:ULWHDFFHVVSRVVLEOHIRU,$3
8%&DUHD
5HPDLQVZULWHSURWHFWHGGXULQJ,$3
'DWD((3520E\WHV
2SWLRQE\WHV
DocID018576 Rev 8 15/103
STM8S003F3 STM8S003K3 Product overview
29
4.5 Clock controller
The clock controller distributes the system clock (fMASTER) coming from different oscillators
to the core and the peripherals. It also manages clock gating for low power modes and
ensures clock robustness.
Features
Clock prescaler: To get the best compromise between speed and current
consumption the clock frequency to the CPU and peripherals can be adjusted by a
programmable prescaler.
Safe clock switching: Clock sources can be changed safely on the fly in run mode
through a configuration register. The clock signal is not switched until the new clock
source is ready. The design guarantees glitch-free switching.
Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
Master clock sources: Four different clock sources can be used to drive the master
clock:
1-16 MHz high-speed external crystal (HSE)
Up to 16 MHz high-speed user-external clock (HSE user-ext)
16 MHz high-speed internal RC oscillator (HSI)
128 kHz low-speed internal RC (LSI)
Startup clock: After reset, the microcontroller restarts by default with an internal
2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the
application program as soon as the code execution starts.
Clock security system (CSS): This feature can be enabled by software. If an HSE
clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS
and an interrupt can optionally be generated.
Configurable main clock output (CCO): This outputs an external clock for use by the
application.
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers
Bit Peripheral
clock Bit Peripheral
clock Bit Peripheral
clock Bit Peripheral
clock
PCKEN17 TIM1 PCKEN13 UART1 PCKEN27 Reserved PCKEN23 ADC
PCKEN16 Reserved PCKEN12 Reserved PCKEN26 Reserved PCKEN22 AWU
PCKEN15 TIM2 PCKEN11 SPI PCKEN25 Reserved PCKEN21 Reserved
PCKEN14 TIM4 PCKEN10 I2C PCKEN24 Reserved PCKEN20 Reserved
Product overview STM8S003F3 STM8S003K3
16/103 DocID018576 Rev 8
4.6 Power management
For efficient power management, the application can be put in one of four different low-
power modes. You can configure each mode to obtain the best compromise between the
lowest power consumption, the fastest start-up time and available wakeup sources.
Wait mode: In this mode, the CPU is stopped, but peripherals are kept running. The
wakeup is performed by an internal or external interrupt or reset.
Active halt mode with regulator on: In this mode, the CPU and peripheral clocks are
stopped. An internal wakeup is generated at programmable intervals by the auto wake
up unit (AWU). The main voltage regulator is kept powered on, so current consumption
is higher than in active halt mode with regulator off, but the wakeup time is faster.
Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.
Active halt mode with regulator off: This mode is the same as active halt with
regulator on, except that the main voltage regulator is powered off, so the wake up time
is slower.
Halt mode: In this mode the microcontroller uses the least power. The CPU and
peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is
triggered by external event or reset.
4.7 Watchdog timers
The watchdog system is based on two independent timers providing maximum security to
the applications.
Activation of the watchdog timers is controlled by option bytes or by software. Once
activated, the watchdogs cannot be disabled by the user program without performing a
reset.
Window watchdog timer
The window watchdog is used to detect the occurrence of a software fault, usually
generated by external interferences or by unexpected logical conditions, which cause the
application program to abandon its normal sequence.
The window function can be used to trim the watchdog behavior to match the application
perfectly.
The application software must refresh the counter before time-out and during a limited time
window.
A reset is generated in two situations:
1. Timeout: at 16 MHz CPU clock the time-out period can be adjusted between 75 µs up
to 64 ms.
2. Refresh out of window: the down-counter is refreshed before its value is lower than the
one stored in the window register.
DocID018576 Rev 8 17/103
STM8S003F3 STM8S003K3 Product overview
29
Independent watchdog timer
The independent watchdog peripheral can be used to resolve processor malfunctions due to
hardware or software failures.
It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case
of a CPU clock failure
The IWDG time base spans from 60 µs to 1 s.
4.8 Auto wakeup counter
Used for auto wakeup from active halt mode
Clock source: internal 128 kHz internal low frequency RC oscillator or external clock
LSI clock can be internally connected to TIM1 input capture channel 1 for calibration
4.9 Beeper
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in
the range of 1, 2 or 4 kHz.
The beeper output port is only available through the alternate function remap option bit
AFR7.
4.10 TIM1 - 16-bit advanced control timer
This is a high-end timer designed for a wide range of control applications. With its
complementary outputs, dead-time control and center-aligned PWM capability, the field of
applications is extended to motor control, lighting and half-bridge driver
16-bit up, down and up/down autoreload counter with 16-bit prescaler
Four independent capture/compare channels (CAPCOM) configurable as input
capture, output compare, PWM generation (edge and center aligned mode) and single
pulse mode output
Synchronization module to control the timer with external signals
Break input to force the timer outputs into a defined state
Three complementary outputs with adjustable dead time
Encoder mode
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break
4.11 TIM2 - 16-bit general purpose timer
16-bit autoreload (AR) up-counter
15-bit prescaler adjustable to fixed power of 2 ratios 1…32768
3 individually configurable capture/compare channels
PWM mode
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update
Product overview STM8S003F3 STM8S003K3
18/103 DocID018576 Rev 8
4.12 TIM4 - 8-bit basic timer
8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128
Clock source: CPU clock
Interrupt source: 1 x overflow/update
4.13 Analog-to-digital converter (ADC1)
STM8S003F3/K3 value line products contain a 10-bit successive approximation A/D
converter (ADC1) with up to 5 external multiplexed input channels and the following main
features:
Input voltage range: 0 to VDDA
Conversion time: 14 clock cycles
Single and continuous, buffered continuous conversion modes
Buffer size (10 x 10 bits)
Scan mode for single and continuous conversion of a sequence of channels
Analog watchdog capability with programmable upper and lower thresholds
Analog watchdog interrupt
External trigger input
Trigger from TIM1 TRGO
End of conversion (EOC) interrupt
Note: Additional AIN12 analog input is not selectable in ADC scan mode or with analog watchdog.
Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL registers.
4.14 Communication interfaces
The following communication interfaces are implemented:
UART1: full feature UART, synchronous mode, SPI master mode, SmartCard mode,
IrDA mode, LIN2.1 master capability
SPI: full and half-duplex, 8 Mbit/s
I²C: up to 400 Kbit/s
Table 3. TIM timer features
Timer
Counter
size
(bits)
Prescaler Counting
mode
CAPCOM
channels
Complem.
outputs
Ext.
trigger
Timer
synchr-
onization/
chaining
TIM1 16 Any integer from 1 to 65536 Up/down 4 3 Yes
No
TIM2 16 Any power of 2 from 1 to 32768 Up 3 0 No
TIM4 8 Any power of 2 from 1 to 128 Up 0 0 No
DocID018576 Rev 8 19/103
STM8S003F3 STM8S003K3 Product overview
29
4.14.1 UART1
Main features
1 Mbit/s full duplex SCI
SPI emulation
High precision baud rate generator
Smartcard emulation
IrDA SIR encoder decoder
LIN master mode
Single wire half duplex mode
Asynchronous communication (UART mode)
Full duplex communication - NRZ standard format (mark/space)
Programmable transmit and receive baud rates up to 1 Mbit/s (fCPU/16) and capable of
following any standard baud rate regardless of the input frequency
Separate enable bits for transmitter and receiver
Two receiver wakeup modes:
Address bit (MSB)
Idle line (interrupt)
Transmission error detection with interrupt generation
Parity control
Synchronous communication
Full duplex synchronous transfers
SPI master operation
8-bit data communication
Maximum speed: 1 Mbit/s at 16 MHz (fCPU/16)
LIN master mode
Emission: generates 13-bit synch. break frame
Reception: detects 11-bit break frame
4.14.2 SPI
Maximum speed: 8 Mbit/s (fMASTER/2) both for master and slave
Full duplex synchronous transfers
Simplex synchronous transfers on two lines with a possible bidirectional data line
Master or slave operation - selectable by hardware or software
CRC calculation
1 byte Tx and Rx buffer
Slave/master selection input pin
Product overview STM8S003F3 STM8S003K3
20/103 DocID018576 Rev 8
4.14.3 I2C
I2C master features
Clock generation
Start and stop generation
I2C slave features
Programmable I2C address detection
Stop bit detection
Generation and detection of 7-bit/10-bit addressing and general call
Supports different communication speeds
Standard speed (up to 100 kHz)
Fast speed (up to 400 kHz)
DocID018576 Rev 8 21/103
STM8S003F3 STM8S003K3 Pinouts and pin descriptions
29
5 Pinouts and pin descriptions
Table 4. Legend/abbreviations for STM8S003F3/K3 pin description tables
Type I = input, O = output, S = power supply
Level
Input CM = CMOS
Output HS = high sink
Output speed
O1 = slow (up to 2 MHz)
O2 = fast (up to 10 MHz)
O3 = fast/slow programmability with slow as default state after reset
O4 = fast/slow programmability with fast as default state after reset
Port and control
configuration
Input float = floating, wpu = weak pull-up
Output T = true open drain, OD = open drain, PP = push pull
Reset state
Bold x (pin state after internal reset release)
Unless otherwise specified, the pin state is the same during the reset phase
and after the internal reset release.
Pinouts and pin descriptions STM8S003F3 STM8S003K3
22/103 DocID018576 Rev 8
5.1 STM8S003K3 LQFP32 pinout and pin description
Figure 3. STM8S003K3 LQFP32 pinout
Table 5. STM8S003K3 descriptions
LQFP32
Pin name
Type
Input Output
Main function
(after reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
floating
wpu
Ext. interrupt
High sink(1)
Speed
OD
PP
1 NRST I/O - X- - - - - Reset -
2 PA1/OSCIN(2) I/O XXX-O1XXPort A1 Resonator/
crystal in -
069
7,0B&+1$,1+63%
7,0B&+1$,1+63%
3%
3%
       









9&$3
>63,B166@7,0B&++63$
3)
1567
26&,13$
26&2873$
966
3&+67,0B&+
3&+663,B0,62
3&+663,B026,
3&+663,B6&.
3&+67,0B&+&/.B&&2
3'+67,0B&+$'&B(75
3'+6>7,0B&+@
3'+66:,0
3'+67,0B%.,1>&/.B&&2@
3'+68$57B5;
3'+68$57B7;
3'+6%((37,0B&+
3&+67,0B&+8$57B&.
3(+663,B166
3&+67,0B&+
,&B6'$73%
,&B6&/73%
7,0B(75$,1+63%
7,0B&+1$,1+63%
9''
3'+67/,>7,0B&+@
DocID018576 Rev 8 23/103
STM8S003F3 STM8S003K3 Pinouts and pin descriptions
29
3 PA2/OSCOUT I/O XXX -O1XXPort A2 Resonator/
crystal out -
4V
SS S - - - - - - - Digital ground -
5 VCAP S - - - - - - - 1.8 V regulator capacitor -
6V
DD S - - - - - - - Digital power supply -
7PA3/TIM2_CH3
[SPI_NSS] I/O XXXHSO3XXPort A3 Timer 2
channel 3
SPI master/
slave select
[AFR1]
8PF4 I/OXX--O1XXPort F4 --
9 PB7 I/O XX--O1XXPort B7 --
10 PB6 I/O XX--O1XXPort B6 --
11 PB5/I2C_SDA I/O X-X-O1T
(3) -Port B5 I2C data -
12 PB4/I2C_SCL I/O X-X-O1T
(3) -Port B4 I2C clock -
13 PB3/AIN3
[TIM1_ETR] I/O XXXHSO3XXPort B3
Analog
input 3/Timer 1
external trigger
-
14 PB2/AIN2
[TIM1_CH3N] I/O XXXHSO3XXPort B2
Analog
input 2/Timer 1
- inverted
channel 3
-
15 PB1/AIN1
[TIM1_CH2N] I/O XXXHSO3XXPort B1
Analog
input 1/Timer 1
- inverted
channel 2
-
16 PB0/AIN0
[TIM1_CH1N] I/O XXXHSO3XXPort B0
Analog
input 0/Timer 1
- inverted
channel 1
-
17 PE5/SPI_NSS I/O XXXHSO3XXPort E5
SPI
master/slave
select
-
18 PC1/TIM1_CH1/
UART1_CK I/O XXXHSO3XXPort C1
Timer 1 -
channel 1
UART1 clock
-
19 PC2/TIM1_CH2 I/O XXXHSO3XXPort C2 Timer 1-
channel 2 -
20 PC3/TIM1_CH3 I/O XXXHSO3XXPort C3 Timer 1 -
channel 3 -
Table 5. STM8S003K3 descriptions (continued)
LQFP32
Pin name
Type
Input Output
Main function
(after reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
floating
wpu
Ext. interrupt
High sink(1)
Speed
OD
PP
Pinouts and pin descriptions STM8S003F3 STM8S003K3
24/103 DocID018576 Rev 8
21 PC4/TIM1_CH4/C
LK_CCO I/O XXXHSO3XXPort C4
Timer 1 -
channel
4/configurable
clock output
-
22 PC5/SPI_SCK I/O XXXHSO3XXPort C5 SPI clock -
23 PC6/SPI_MOSI I/O XXXHSO3XXPort C6 SPI master
out/slave in -
24 PC7/SPI_MISO I/O XXXHSO3XXPort C7 SPI master in/
slave out -
25 PD0/[TIM1_BKIN
[CLK_CCO] I/O XXXHSO3XXPort D0 Timer 1 - break
input
Configurable
clock output
[AFR5]
26 PD1/SWIM(4) I/O X XXHSO4X XPort D1 SWIM data
interface -
27 PD2
[TIM2_CH3] I/O XXXHSO3XXPort D2 -
Timer 2 -
channel 3
[AFR1]
28 PD3/TIM2_CH2
[ADC_ETR] I/O XXXHSO3XXPort D3
Timer 2 -
channel 2/ADC
external trigger
-
29 PD4/BEEP/
TIM2_CH1 I/O XXXHSO3XXPort D4
Timer 2 -
channel
1/BEEP output
-
30 PD5/ UART1_TX I/O XXXHSO3XXPort D5 UART1 data
transmit -
31 PD6/ UART1_RX I/O XXXHSO3XXPort D6 UART1 data
receive -
32 PD7/TLI
[TIM1_CH4] I/O XXXHSO3XXPort D7 Top level
interrupt
Timer 1 -
channel 4
[AFR6]
1. I/O pins used simultaneously for high-current source/sink must be uniformly spaced around the package. In
addition, the total driven current must respect the absolute maximum ratings given in Section 9: Electrical
characteristics.
2. When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and
cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is
recommended to use PA1 only in input mode if Halt/Active-halt is used in the application.
3. In the open-drain output column, "T" defines a true open-drain I/O (P-buffer, weak pull-up, and protection
diode to VDD are not implemented).
4. The PD1 pin is in input pull-up during the reset phase and after the internal reset release.
Table 5. STM8S003K3 descriptions (continued)
LQFP32
Pin name
Type
Input Output
Main function
(after reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
floating
wpu
Ext. interrupt
High sink(1)
Speed
OD
PP
DocID018576 Rev 8 25/103
STM8S003F3 STM8S003K3 Pinouts and pin descriptions
29
5.2 STM8S003F3 TSSOP20/UFQFPN20 pinout and pin
description
Figure 4. STM8S003F3 TSSOP20 pinout
1. HS high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).
3. [ ] alternate function remapping option (If the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function).








8$57B&.7,0B&+%((3+63'
1567
9''
9&$3
966
26&2873$
3'+6$,17,0B&+$'&B(75
3'+66:,0
3&+67,0B&+&/.B&&2$,1>7,0B&+1@
3&+663,B6&.>7,0B&+@



>63,B166@7,0B&++63$
3'+6$,1>7,0B&+@
26&,13$
8$57B7;$,1+63'
8$57B5;$,1+63'
3&+663,B026,>7,0B&+@
3&+663,B0,62>7,0B&+@
069
3%7,&B6'$>7,0B%.,1@
3%7,&B6&/>$'&B(75@
3&+67,0B&+>7/,@>7,0B&+1@
Pinouts and pin descriptions STM8S003F3 STM8S003K3
26/103 DocID018576 Rev 8
Figure 5. STM8S003F3 UFQFPN20 pinout
1. HS high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).
3. [ ] alternate function remapping option (If the same alternate function is shown twice, it indicates an
exclusive choice not a duplication of the function).
069







9&$3
966
26&2873$
26&,13$
>63,B166@7,0B&++63$
1567
3'+6%((37,0B&+8$57B&.
3'+6$,18$57B7;
3'+6$,17,0B&+$'&B(75
3'+6$,1^7,0B&+@
3&+67,0B&+&/.B&&2$,1>7,0B&+1@
3&+663,B6&.>7,0B&+@
3&+663,B026,>7,0B&+@
3&+663,B0,62>7,0B&+@
3'+66:,0
>7,0B%.,1@,&B6'$73%

>7,0B&+1@>7/,@7,0B&++63&
3'+6$,18$57B5;

9''
>$'&B(75@,&B6&/73%
DocID018576 Rev 8 27/103
STM8S003F3 STM8S003K3 Pinouts and pin descriptions
29
Table 6. STM8S003F3 pin description
Pin
no.
Pin name Type
Input Output
Main
function
(after
reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
TSSOP20
UFQFPN20
floating
wpu
Ext. interr.
High
sink(1)
Speed
OD PP
118
PD4/ BEEP/
TIM2_ CH1/
UART1 _CK
I/O X X X HS O3 X X Port D4
Timer 2 -
channel
1/BEEP
output/
UART1 clock
-
219
PD5/ AIN5/
UART1 _TX I/O XXX HS O3 XX Port D5
Analog input
5/ UART1
data transmit
-
320
PD6/ AIN6/
UART1 _RX I/O XXX HS O3 XX Port D6
Analog input
6/ UART1
data receive
-
4 1 NRST I/O - X- - ---Reset -
5 2 PA1/ OSCIN(2) I/O X X X - O1 X X Port A1 Resonator/
crystal in -
6 3 PA2/ OSCOUT I/O X X X - O1 X X Port A2 Resonator/
crystal out -
7 4 VSS S - - - - - - - Digital ground -
8 5 VCAP S - - - - - - - 1.8 V regulator
capacitor -
9 6 VDD S - - - - - - - Digital power supply -
10 7PA3/ TIM2_ CH3
[SPI_ NSS] I/O X X X HS O3 X X Port A3 Timer 2
channel 3
SPI master/
slave select
[AFR1]
11 8PB5/ I2C_ SDA
[TIM1_ BKIN] I/O X- X - O1 T
(3) - Port B5 I2C data
Timer 1 -
break input
[AFR4]
12 9 PB4/ I2C_ SCL I/O X- X - O1 T
(3) - Port B4 I2C clock
ADC
external
trigger
[AFR4]
13 10
PC3/ TIM1_CH3
[TLI]
[TIM1_ CH1N]
I/O X X X HS O3 X X Port C3 Timer 1 -
channel 3
Top level
interrupt
[AFR3]
Timer 1 -
inverted
channel 1
[AFR7]
Pinouts and pin descriptions STM8S003F3 STM8S003K3
28/103 DocID018576 Rev 8
14 11
PC4/ CLK_CCO/
TIM1_
CH4/AIN2/
[TIM1_ CH2N]
I/O X X X HS O3 X X Port C4
Configurable
clock
output/Timer
1 - channel
4/Analog
input 2
Timer 1 -
inverted
channel 2
[AFR7]
15 12 PC5/ SPI_SCK
[TIM2_ CH1] I/O X X X HS O3 X X Port C5 SPI clock
Timer 2 -
channel 1
[AFR0]
16 13 PC6/ SPI_MOSI
[TIM1_ CH1] I/O X X X HS O3 X X Port C6 SPI master
out/slave in
Timer 1 -
channel 1
[AFR0]
17 14 PC7/ SPI_MISO
[TIM1_ CH2] I/O X X X HS O3 X X Port C7 SPI master
in/ slave out
Timer 1 -
channel 2
[AFR0]
18 15 PD1/ SWIM(4) I/O X X X HS O4 X X Port D1 SWIM data
interface -
19 16 PD2/AIN3/
[TIM2_ CH3] I/O X X X HS O3 X X Port D2 Analog input
3
Timer 2 -
channel 3
[AFR1]
20 17
PD3/ AIN4/
TIM2_ CH2/
ADC_ ETR
I/O X X X HS O3 X X Port D3
Analog input
4/ Timer 2 -
channel
2/ADC
external
trigger
-
1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the
total driven current must respect the absolute maximum ratings.
2. When the MCU is in halt/active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for
waking up the device. In this mode, the output state of PA1 is not driven. It is recommended d to use PA1 only in input mode
if halt/active-halt is used in the application.
3. In the open-drain output column, "T" defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are
not implemented).
4. The PD1 pin is in input pull-up during the reset phase and after internal reset release.
Table 6. STM8S003F3 pin description (continued)
Pin
no.
Pin name Type
Input Output
Main
function
(after
reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
TSSOP20
UFQFPN20
floating
wpu
Ext. interr.
High
sink(1)
Speed
OD PP
DocID018576 Rev 8 29/103
STM8S003F3 STM8S003K3 Pinouts and pin descriptions
29
5.3 Alternate function remapping
As shown in the rightmost column of the pin description table, some alternate functions can
be remapped at different I/O ports by programming one of eight AFR (alternate function
remap) option bits. Refer to Section 8: Option bytes. When the remapping option is active,
the default alternate function is no longer available.
To use an alternate function, the corresponding peripheral must be enabled in the peripheral
registers.
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the
GPIO section of the family reference manual, RM0016).
Memory and register map STM8S003F3 STM8S003K3
30/103 DocID018576 Rev 8
6 Memory and register map
6.1 Memory map
Figure 6. Memory map
[)))
)ODVKSURJUDPPHPRU\
.E\WH
[
5$0
[))
.E\WH
E\WHVWDFN
5HVHUYHG
5HVHUYHG
[$
[)))
[))
[ LQWHUUXSWYHFWRUV
[)
*3,2DQGSHULSKUHJ
[
[))
[
[)))
[%
[)))
[())
&386:,0GHEXJ,7&
UHJLVWHUV
[)
5HVHUYHG
2SWLRQE\WHV
[$
[
[
[
5HVHUYHG
[)
'DWD((3520
[
5HVHUYHG
069
DocID018576 Rev 8 31/103
STM8S003F3 STM8S003K3 Memory and register map
41
Table 7 lists the boundary addresses for each memory size. The top of the stack is at the
RAM end address in each case.
6.2 Register map
6.2.1 I/O port hardware register map
Table 7. Flash, Data EEPROM and RAM boundary addresses
Memory area Size (byte) Start address End address
Flash program memory 8 K 0x00 8000 0x00 9FFF
RAM 1 K 0x00 0000 0x00 03FF
Data EEPROM 128 0x00 4000 0x00 407F
Table 8. I/O port hardware register map
Address Block Register label Register name Reset
status
0x00 5000
Port A
PA_ODR Port A data output latch register 0x00
0x00 5001 PA_IDR Port A input pin value register 0xXX(1)
0x00 5002 PA_DDR Port A data direction register 0x00
0x00 5003 PA_CR1 Port A control register 1 0x00
0x00 5004 PA_CR2 Port A control register 2 0x00
0x00 5005
Port B
PB_ODR Port B data output latch register 0x00
0x00 5006 PB_IDR Port B input pin value register 0xXX(1)
0x00 5007 PB_DDR Port B data direction register 0x00
0x00 5008 PB_CR1 Port B control register 1 0x00
0x00 5009 PB_CR2 Port B control register 2 0x00
0x00 500A
Port C
PC_ODR Port C data output latch register 0x00
0x00 500B PB_IDR Port C input pin value register 0xXX(1)
0x00 500C PC_DDR Port C data direction register 0x00
0x00 500D PC_CR1 Port C control register 1 0x00
0x00 500E PC_CR2 Port C control register 2 0x00
0x00 500F
Port D
PD_ODR Port D data output latch register 0x00
0x00 5010 PD_IDR Port D input pin value register 0xXX(1)
0x00 5011 PD_DDR Port D data direction register 0x00
0x00 5012 PD_CR1 Port D control register 1 0x02
0x00 5013 PD_CR2 Port D control register 2 0x00
Memory and register map STM8S003F3 STM8S003K3
32/103 DocID018576 Rev 8
6.2.2 General hardware register map
0x00 5014
Port E
PE_ODR Port E data output latch register 0x00
0x00 5015 PE_IDR Port E input pin value register 0xXX(1)
0x00 5016 PE_DDR Port E data direction register 0x00
0x00 5017 PE_CR1 Port E control register 1 0x00
0x00 5018 PE_CR2 Port E control register 2 0x00
0x00 5019
Port F
PF_ODR Port F data output latch register 0x00
0x00 501A PF_IDR Port F input pin value register 0xXX(1)
0x00 501B PF_DDR Port F data direction register 0x00
0x00 501C PF_CR1 Port F control register 1 0x00
0x00 501D PF_CR2 Port F control register 2 0x00
1. Depends on the external circuitry.
Table 8. I/O port hardware register map (continued)
Address Block Register label Register name Reset
status
DocID018576 Rev 8 33/103
STM8S003F3 STM8S003K3 Memory and register map
41
Table 9. General hardware register map
Address Block Register label Register name Reset
status
0x00 501E to
0x00 5059 Reserved area (60 byte)
0x00 505A
Flash
FLASH_CR1 Flash control register 1 0x00
0x00 505B FLASH_CR2 Flash control register 2 0x00
0x00 505C FLASH_NCR2 Flash complementary control register 2 0xFF
0x00 505D FLASH _FPR Flash protection register 0x00
0x00 505E FLASH _NFPR Flash complementary protection register 0xFF
0x00 505F FLASH _IAPSR Flash in-application programming status
register 0x00
0x00 5060 to
0x00 5061 Reserved area (2 byte)
0x00 5062 Flash FLASH _PUKR Flash Program memory unprotection
register 0x00
0x00 5063 Reserved area (1 byte)
0x00 5064 Flash FLASH _DUKR Data EEPROM unprotection register 0x00
0x00 5065 to
0x00 509F Reserved area (59 byte)
0x00 50A0
ITC
EXTI_CR1 External interrupt control register 1 0x00
0x00 50A1 EXTI_CR2 External interrupt control register 2 0x00
0x00 50A2 to
0x00 50B2 Reserved area (17 byte)
0x00 50B3 RST RST_SR Reset status register 0xXX(1)
0x00 50B4 to
0x00 50BF Reserved area (12 byte)
0x00 50C0
CLK
CLK_ICKR Internal clock control register 0x01
0x00 50C1 CLK_ECKR External clock control register 0x00
0x00 50C2 Reserved area (1 byte)
0x00 50C3
CLK
CLK_CMSR Clock master status register 0xE1
0x00 50C4 CLK_SWR Clock master switch register 0xE1
0x00 50C5 CLK_SWCR Clock switch control register 0xXX
0x00 50C6 CLK_CKDIVR Clock divider register 0x18
0x00 50C7 CLK_PCKENR1 Peripheral clock gating register 1 0xFF
0x00 50C8 CLK_CSSR Clock security system register 0x00
0x00 50C9 CLK_CCOR Configurable clock control register 0x00
0x00 50CA CLK_PCKENR2 Peripheral clock gating register 2 0xFF
0x00 50CB Reserved area (1 byte)
Memory and register map STM8S003F3 STM8S003K3
34/103 DocID018576 Rev 8
0x00 50CC
CLK
CLK_HSITRIMR HSI clock calibration trimming register 0x00
0x00 50CD CLK_SWIMCCR SWIM clock control register 0bXXXX
XXX0
0x00 50CE to
0x00 50D0 Reserved area (3 byte)
0x00 50D1
WWDG
WWDG_CR WWDG control register 0x7F
0x00 50D2 WWDG_WR WWDR window register 0x7F
0x00 50D3 to
0x00 50DF Reserved area (13 byte)
0x00 50E0
IWDG
IWDG_KR IWDG key register 0xXX(2)
0x00 50E1 IWDG_PR IWDG prescaler register 0x00
0x00 50E2 IWDG_RLR IWDG reload register 0xFF
0x00 50E3 to
0x00 50EF Reserved area (13 byte)
0x00 50F0
AWU
AWU_CSR1 AWU control/status register 1 0x00
0x00 50F1 AWU_APR AWU asynchronous prescaler buffer register 0x3F
0x00 50F2 AWU_TBR AWU timebase selection register 0x00
0x00 50F3 BEEP BEEP_CSR BEEP control/status register 0x1F
0x00 50F4 to
0x00 50FF Reserved area (12 byte)
0x00 5200
SPI
SPI_CR1 SPI control register 1 0x00
0x00 5201 SPI_CR2 SPI control register 2 0x00
0x00 5202 SPI_ICR SPI interrupt control register 0x00
0x00 5203 SPI_SR SPI status register 0x02
0x00 5204 SPI_DR SPI data register 0x00
0x00 5205 SPI_CRCPR SPI CRC polynomial register 0x07
0x00 5206 SPI_RXCRCR SPI Rx CRC register 0x00
0x00 5207 SPI_TXCRCR SPI Tx CRC register 0x00
0x00 5208 to
0x00 520F Reserved area (8 byte)
0x00 5210
I2C
I2C_CR1 I2C control register 1 0x00
0x00 5211 I2C_CR2 I2C control register 2 0x00
0x00 5212 I2C_FREQR I2C frequency register 0x00
0x00 5213 I2C_OARL I2C own address register low 0x00
0x00 5214 I2C_OARH I2C own address register high 0x00
0x00 5215 Reserved
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
DocID018576 Rev 8 35/103
STM8S003F3 STM8S003K3 Memory and register map
41
0x00 5216
I2C
I2C_DR I2C data register 0x00
0x00 5217 I2C_SR1 I2C status register 1 0x00
0x00 5218 I2C_SR2 I2C status register 2 0x00
0x00 5219 I2C_SR3 I2C status register 3 0x00
0x00 521A I2C_ITR I2C interrupt control register 0x00
0x00 521B I2C_CCRL I2C clock control register low 0x00
0x00 521C I2C_CCRH I2C clock control register high 0x00
0x00 521D I2C_TRISER I2C TRISE register 0x02
0x00 521E I2C_PECR I2C packet error checking register 0x00
0x00 521F to
0x00 522F Reserved area (17 byte)
0x00 5230
UART1
UART1_SR UART1 status register 0xC0
0x00 5231 UART1_DR UART1 data register 0xXX
0x00 5232 UART1_BRR1 UART1 baud rate register 1 0x00
0x00 5233 UART1_BRR2 UART1 baud rate register 2 0x00
0x00 5234 UART1_CR1 UART1 control register 1 0x00
0x00 5235 UART1_CR2 UART1 control register 2 0x00
0x00 5236 UART1_CR3 UART1 control register 3 0x00
0x00 5237 UART1_CR4 UART1 control register 4 0x00
0x00 5238 UART1_CR5 UART1 control register 5 0x00
0x00 5239 UART1_GTR UART1 guard time register 0x00
0x00 523A UART1_PSCR UART1 prescaler register 0x00
0x00 523B to
0x00523F Reserved area (21 byte)
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8S003F3 STM8S003K3
36/103 DocID018576 Rev 8
0x00 5250
TIM1
TIM1_CR1 TIM1 control register 1 0x00
0x00 5251 TIM1_CR2 TIM1 control register 2 0x00
0x00 5252 TIM1_SMCR TIM1 slave mode control register 0x00
0x00 5253 TIM1_ETR TIM1 external trigger register 0x00
0x00 5254 TIM1_IER TIM1 Interrupt enable register 0x00
0x00 5255 TIM1_SR1 TIM1 status register 1 0x00
0x00 5256 TIM1_SR2 TIM1 status register 2 0x00
0x00 5257 TIM1_EGR TIM1 event generation register 0x00
0x00 5258 TIM1_CCMR1 TIM1 capture/compare mode register 1 0x00
0x00 5259 TIM1_CCMR2 TIM1 capture/compare mode register 2 0x00
0x00 525A TIM1_CCMR3 TIM1 capture/compare mode register 3 0x00
0x00 525B TIM1_CCMR4 TIM1 capture/compare mode register 4 0x00
0x00 525C TIM1_CCER1 TIM1 capture/compare enable register 1 0x00
0x00 525D TIM1_CCER2 TIM1 capture/compare enable register 2 0x00
0x00 525E TIM1_CNTRH TIM1 counter high 0x00
0x00 525F TIM1_CNTRL TIM1 counter low 0x00
0x00 5260 TIM1_PSCRH TIM1 prescaler register high 0x00
0x00 5261 TIM1_PSCRL TIM1 prescaler register low 0x00
0x00 5262 TIM1_ARRH TIM1 auto-reload register high 0xFF
0x00 5263 TIM1_ARRL TIM1 auto-reload register low 0xFF
0x00 5264 TIM1_RCR TIM1 repetition counter register 0x00
0x00 5265 TIM1_CCR1H TIM1 capture/compare register 1 high 0x00
0x00 5266 TIM1_CCR1L TIM1 capture/compare register 1 low 0x00
0x00 5267 TIM1_CCR2H TIM1 capture/compare register 2 high 0x00
0x00 5268 TIM1_CCR2L TIM1 capture/compare register 2 low 0x00
0x00 5269 TIM1_CCR3H TIM1 capture/compare register 3 high 0x00
0x00 526A TIM1_CCR3L TIM1 capture/compare register 3 low 0x00
0x00 526B TIM1_CCR4H TIM1 capture/compare register 4 high 0x00
0x00 526C TIM1_CCR4L TIM1 capture/compare register 4 low 0x00
0x00 526D TIM1_BKR TIM1 break register 0x00
0x00 526E TIM1_DTR TIM1 dead-time register 0x00
0x00 526F TIM1_OISR TIM1 output idle state register 0x00
0x00 5270 to
0x00 52FF Reserved area (147 byte)
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
DocID018576 Rev 8 37/103
STM8S003F3 STM8S003K3 Memory and register map
41
0x00 5300
TIM2
TIM2_CR1 TIM2 control register 1 0x00
0x00 5301 Reserved
0x00 5302 Reserved
0x00 5303 TIM2_IER TIM2 interrupt enable register 0x00
0x00 5304 TIM2_SR1 TIM2 status register 1 0x00
0x00 5305 TIM2_SR2 TIM2 status register 2 0x00
0x00 5306 TIM2_EGR TIM2 event generation register 0x00
0x00 5307 TIM2_CCMR1 TIM2 capture/compare mode register 1 0x00
0x00 5308 TIM2_CCMR2 TIM2 capture/compare mode register 2 0x00
0x00 5309 TIM2_CCMR3 TIM2 capture/compare mode register 3 0x00
0x00 530A TIM2_CCER1 TIM2 capture/compare enable register 1 0x00
0x00 530B TIM2_CCER2 TIM2 capture/compare enable register 2 0x00
0x00 530C TIM2_CNTRH TIM2 counter high 0x00
0x00 530D TIM2_CNTRL TIM2 counter low 0x00
0x00 530E TIM2_PSCR TIM2 prescaler register 0x00
0x00 530F TIM2_ARRH TIM2 auto-reload register high 0xFF
0x00 5310 TIM2_ARRL TIM2 auto-reload register low 0xFF
0x00 5311 TIM2_CCR1H TIM2 capture/compare register 1 high 0x00
0x00 5312 TIM2_CCR1L TIM2 capture/compare register 1 low 0x00
0x00 5313 TIM2_CCR2H TIM2 capture/compare reg. 2 high 0x00
0x00 5314 TIM2_CCR2L TIM2 capture/compare register 2 low 0x00
0x00 5315 TIM2_CCR3H TIM2 capture/compare register 3 high 0x00
0x00 5316 TIM2_CCR3L TIM2 capture/compare register 3 low 0x00
0x00 5317 to
0x00 533F Reserved area (43 byte)
0x00 5340
TIM4
TIM4_CR1 TIM4 control register 1 0x00
0x00 5341 Reserved
0x00 5342 Reserved
0x00 5343 TIM4_IER TIM4 interrupt enable register 0x00
0x00 5344 TIM4_SR TIM4 status register 0x00
0x00 5345 TIM4_EGR TIM4 event generation register 0x00
0x00 5346 TIM4_CNTR TIM4 counter 0x00
0x00 5347 TIM4_PSCR TIM4 prescaler register 0x00
0x00 5348 TIM4_ARR TIM4 auto-reload register 0xFF
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8S003F3 STM8S003K3
38/103 DocID018576 Rev 8
0x00 5349 to
0x00 53DF Reserved area (153 byte)
0x00 53E0 to
0x00 53F3 ADC1 ADC_DBxR ADC data buffer registers 0x00
0x00 53F4 to
0x00 53FF Reserved area (12 byte)
0x00 5400
ADC1
ADC _CSR ADC control/status register 0x00
0x00 5401 ADC_CR1 ADC configuration register 1 0x00
0x00 5402 ADC_CR2 ADC configuration register 2 0x00
0x00 5403 ADC_CR3 ADC configuration register 3 0x00
0x00 5404 ADC_DRH ADC data register high 0xXX
0x00 5405 ADC_DRL ADC data register low 0xXX
0x00 5406 ADC_TDRH ADC Schmitt trigger disable register high 0x00
0x00 5407 ADC_TDRL ADC Schmitt trigger disable register low 0x00
0x00 5408 ADC_HTRH ADC high threshold register high 0x03
0x00 5409 ADC_HTRL ADC high threshold register low 0xFF
0x00 540A ADC_LTRH ADC low threshold register high 0x00
0x00 540B ADC_LTRL ADC low threshold register low 0x00
0x00 540C ADC_AWSRH ADC analog watchdog status register high 0x00
0x00 540D ADC_AWSRL ADC analog watchdog status register low 0x00
0x00 540E ADC_AWCRH ADC analog watchdog control register high 0x00
0x00 540F ADC_AWCRL ADC analog watchdog control register low 0x00
0x00 5410 to
0x00 57FF Reserved area (1008 byte)
1. Depends on the previous reset source.
2. Write only register.
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
DocID018576 Rev 8 39/103
STM8S003F3 STM8S003K3 Memory and register map
41
6.2.3 CPU/SWIM/debug module/interrupt controller registers
Table 10. CPU/SWIM/debug module/interrupt controller registers
Address Block Register Label Register Name Reset
Status
0x00 7F00
CPU(1)
A Accumulator 0x00
0x00 7F01 PCE Program counter extended 0x00
0x00 7F02 PCH Program counter high 0x00
0x00 7F03 PCL Program counter low 0x00
0x00 7F04 XH X index register high 0x00
0x00 7F05 XL X index register low 0x00
0x00 7F06 YH Y index register high 0x00
0x00 7F07 YL Y index register low 0x00
0x00 7F08 SPH Stack pointer high 0x03
0x00 7F09 SPL Stack pointer low 0xFF
0x00 7F0A CCR Condition code register 0x28
0x00 7F0B to
0x00 7F5F Reserved area (85 byte)
0x00 7F60 CPU CFG_GCR Global configuration register 0x00
0x00 7F70
ITC
ITC_SPR1 Interrupt software priority register 1 0xFF
0x00 7F71 ITC_SPR2 Interrupt software priority register 2 0xFF
0x00 7F72 ITC_SPR3 Interrupt software priority register 3 0xFF
0x00 7F73 ITC_SPR4 Interrupt software priority register 4 0xFF
0x00 7F74 ITC_SPR5 Interrupt software priority register 5 0xFF
0x00 7F75 ITC_SPR6 Interrupt software priority register 6 0xFF
0x00 7F76 ITC_SPR7 Interrupt software priority register 7 0xFF
0x00 7F77 ITC_SPR8 Interrupt software priority register 8 0xFF
0x00 7F78 to
0x00 7F79 Reserved area (2 byte)
0x00 7F80 SWIM SWIM_CSR SWIM control status register 0x00
0x00 7F81 to
0x00 7F8F Reserved area (15 byte)
Memory and register map STM8S003F3 STM8S003K3
40/103 DocID018576 Rev 8
0x00 7F90
DM
DM_BK1RE DM breakpoint 1 register extended byte 0xFF
0x00 7F91 DM_BK1RH DM breakpoint 1 register high byte 0xFF
0x00 7F92 DM_BK1RL DM breakpoint 1 register low byte 0xFF
0x00 7F93 DM_BK2RE DM breakpoint 2 register extended byte 0xFF
0x00 7F94 DM_BK2RH DM breakpoint 2 register high byte 0xFF
0x00 7F95 DM_BK2RL DM breakpoint 2 register low byte 0xFF
0x00 7F96 DM_CR1 DM debug module control register 1 0x00
0x00 7F97 DM_CR2 DM debug module control register 2 0x00
0x00 7F98 DM_CSR1 DM debug module control/status register 1 0x10
0x00 7F99 DM_CSR2 DM debug module control/status register 2 0x00
0x00 7F9A DM_ENFCTR DM enable function register 0xFF
0x00 7F9B to
0x00 7F9F Reserved area (5 byte)
1. Accessible by debug module only
Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)
Address Block Register Label Register Name Reset
Status
DocID018576 Rev 8 41/103
STM8S003F3 STM8S003K3 Interrupt vector mapping
41
7 Interrupt vector mapping
Table 11. Interrupt mapping
IRQ
no.
Source
block Description Wakeup from
Halt mode
Wakeup from
Active-halt mode Vector address
- RESET Reset Yes Yes 0x00 8000
- TRAP Software interrupt - - 0x00 8004
0 TLI External top level interrupt - - 0x00 8008
1 AWU Auto wake up from halt - Yes 0x00 800C
2 CLK Clock controller - - 0x00 8010
3 EXTI0 Port A external interrupts Yes(1) Yes(1) 0x00 8014
4 EXTI1 Port B external interrupts Yes Yes 0x00 8018
5 EXTI2 Port C external interrupts Yes Yes 0x00 801C
6 EXTI3 Port D external interrupts Yes Yes 0x00 8020
7 EXTI4 Port E external interrupts Yes Yes 0x00 8024
8 - Reserved 0x00 8028
9 - Reserved 0x00 802C
10 SPI End of transfer Yes Yes 0x00 8030
11 TIM1 TIM1 update/overflow/underflow/
trigger/break - - 0x00 8034
12 TIM1 TIM1 capture/compare - - 0x00 8038
13 TIM2 TIM2 update /overflow - - 0x00 803C
14 TIM2 TIM2 capture/compare - - 0x00 8040
15 - Reserved 0x00 8044
16 - Reserved 0x00 8048
17 UART1 Tx complete - - 0x00 804C
18 UART1 Receive register DATA FULL - - 0x00 8050
19 I2CI
2C interrupt Yes Yes 0x00 8054
20 - Reserved 0x00 8058
21 - Reserved 0x00 805C
22 ADC1 ADC1 end of conversion/analog
watchdog interrupt - - 0x00 8060
23 TIM4 TIM4 update/overflow - - 0x00 8064
24 Flash EOP/WR_PG_DIS - - 0x00 8068
Reserved 0x00 806C to
0x00 807C
1. Except PA1
Option bytes STM8S003F3 STM8S003K3
42/103 DocID018576 Rev 8
8 Option bytes
Option bytes contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated block of the memory. Except for the
ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form
(OPTx) and a complemented one (NOPTx) for redundancy.
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address
shown in Table 12: Option bytes below. Option bytes can also be modified ‘on the fly’ by the
application in IAP mode, except the ROP option that can only be modified in ICP mode (via
SWIM).
Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM
communication protocol and debug module user manual (UM0470) for information on SWIM
programming procedures.
Table 12. Option bytes
Addr. Option
name
Option
byte no.
Option bits Factory
default
setting
76543210
0x4800
Read-out
protection
(ROP)
OPT0 ROP[7:0] 0x00
0x4801 User boot code
(UBC)
OPT1 UBC[7:0] 0x00
0x4802 NOPT1 NUBC[7:0] 0xFF
0x4803 Alternate
function
remapping
(AFR)
OPT2 AFR7 AFR6 AFR5 AFR4 AFR3 AFR2 AFR1 AFR0 0x00
0x4804 NOPT2 NAFR7 NAFR6 NAFR5 NAFR4 NAFR3 NAFR2 NAFR1 NAFR0 0xFF
0x4805
Misc. option
OPT3 Reserved HSITRIM LSI
_EN
IWDG
_HW
WWDG
_HW
WWDG
_HALT 0x00
0x4806 NOPT3 Reserved NHSI
TRIM
NLSI
_EN
NIWDG
_HW
NWWDG
_HW
NWWDG
_HALT 0xFF
0x4807
Clock option
OPT4 Reserved EXT
CLK
CKAWU
SEL
PRS
C1
PRS
C0 0x00
0x4808 NOPT4 Reserved NEXT
CLK
NCKAW
USEL
NPR
SC1
NPR
SC0 0xFF
0x4809 HSE clock
startup
OPT5 HSECNT[7:0] 0x00
0x480A NOPT5 NHSECNT[7:0] 0xFF
Table 13. Option byte description
Option byte no. Description
OPT0
ROP[7:0] Memory readout protection (ROP)
0xAA: Enable readout protection (write access via SWIM protocol)
Note: Refer to the family reference manual (RM0016) section on
Flash/EEPROM memory readout protection for details.
DocID018576 Rev 8 43/103
STM8S003F3 STM8S003K3 Option bytes
45
OPT1
UBC[7:0] User boot code area
0x00: no UBC, no write-protection
0x01: Pages 0 defined as UBC, memory write-protected
0x02: Pages 0 to 1 defined as UBC, memory write-protected
Page 0 and page 1 contain the interrupt vectors.
...
0x7F: Pages 0 to 126 defined as UBC, memory write-protected
Other values: Pages 0 to 127 defined as UBC, memory-write protected.
Note: Refer to the family reference manual (RM0016) section on
Flash/EEPROM write protection for more details.
OPT2
AFR[7:0]
Refer to the following section for alternate function remapping descriptions
of bits [7:2] and [1:0] respectively.
OPT3
HSITRIM: high-speed internal clock trimming register size
0: 3-bit trimming supported in CLK_HSITRIMR register
1: 4-bit trimming supported in CLK_HSITRIMR register
LSI_EN: Low speed internal clock enable
0: LSI clock is not available as CPU clock source
1: LSI clock is available as CPU clock source
IWDG_HW: Independent watchdog
0: IWDG Independent watchdog activated by software
1: IWDG Independent watchdog activated by hardware
WWDG_HW: Window watchdog activation
0: WWDG window watchdog activated by software
1: WWDG window watchdog activated by hardware
WWDG_HALT: Window watchdog reset on halt
0: No reset generated on halt if WWDG active
1: Reset generated on halt if WWDG active
OPT4
EXTCLK: External clock selection
0: External crystal connected to OSCIN/OSCOUT
1: External clock signal on OSCIN
CKAWUSEL: Auto wakeup unit/clock
0: LSI clock source selected for AWU
1: HSE clock with prescaler selected as clock source for for AWU
PRSC[1:0] AWU clock prescaler
0x: 16 MHz to 128 kHz prescaler
10: 8 MHz to 128 kHz prescaler
11: 4 MHz to 128 kHz prescaler
OPT5
HSECNT[7:0]: HSE crystal oscillator stabilization time
This configures the stabilization time.
0x00: 2048 HSE cycles
0xB4: 128 HSE cycles
0xD2: 8 HSE cycles
0xE1: 0.5 HSE cycles
Table 13. Option byte description (continued)
Option byte no. Description
Option bytes STM8S003F3 STM8S003K3
44/103 DocID018576 Rev 8
8.1 Alternate function remapping bits
Table 14. STM8S003K3 alternate function remapping bits for 32-pin devices
Option byte number Description(1)
1. Do not use more than one remapping option in the same port. It is forbidden to enable both AFR1 and
AFR0
OPT2
AFR7Alternate function remapping option 7
Reserved.
AFR6 Alternate function remapping option 6
0: AFR6 remapping option inactive: default alternate function(2)
1: Port D7 alternate function = TIM1_CH4.
AFR5 Alternate function remapping option 5
0: AFR5 remapping option inactive: default alternate function(2)
1: Port D0 alternate function = CLK_CCO.
AFR[4:2] Alternate function remapping option 4:2
Reserved.
AFR1 Alternate function remapping option 1
0: AFR1 remapping option inactive: default alternate function(2)
1: Port A3 alternate function = SPI_NSS; port D2 alternate function
TIM2_CH3
AFR0 Alternate function remapping option 0
Reserved.
2. Refer to the pinout description.
DocID018576 Rev 8 45/103
STM8S003F3 STM8S003K3 Option bytes
45
Table 15. STM8S003F3 alternate function remapping bits for 20-pin devices
Option byte number Description
OPT2
AFR7Alternate function remapping option 7
0: AFR7 remapping option inactive: default alternate function(1)
1: Port C3 alternate function = TIM1_CH1N; port C4 alternate function =
TIM1_CH2N.
AFR6 Alternate function remapping option 6
Reserved.
AFR5 Alternate function remapping option 5
Reserved.
AFR4 Alternate function remapping option 4
0: AFR4 remapping option inactive: default alternate function(1).
1: Port B4 alternate function = ADC_ETR; port B5 alternate function =
TIM1_BKIN.
AFR3 Alternate function remapping option 3
0: AFR3 remapping option inactive: default alternate function(1)
1: Port C3 alternate function = TLI.
AFR2 Alternate function remapping option 2
Reserved.
AFR1 Alternate function remapping option 1 (2)
0: AFR1 remapping option inactive: default alternate function(1)
1: Port A3 alternate function = SPI_NSS; port D2 alternate function =
TIM2_CH3.
AFR0 Alternate function remapping option 0(2)
0: AFR0 remapping option inactive: Default alternate functions(1)
1: Port C5 alternate function = TIM2_CH1; port C6 alternate function =
TIM1_CH1; port C7 alternate function = TIM1_CH2.
1. Refer to the pinout description.
2. Do not use more than one remapping option in the same port. It is forbidden to enable both AFR1 and
AFR0.
Electrical characteristics STM8S003F3 STM8S003K3
46/103 DocID018576 Rev 8
9 Electrical characteristics
9.1 Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
9.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ± 3 Σ).
9.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 5 V. They are given
only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ± 2 Σ).
9.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
9.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 7.
Figure 7. Pin loading conditions
9.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 8.
50 pF
STM8 pin
DocID018576 Rev 8 47/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
Figure 8. Pin input voltage
9.2 Absolute maximum ratings
Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
VIN
STM8 pin
Table 16. Voltage characteristics
Symbol Ratings Min Max Unit
VDDx - VSS Supply voltage(1)
1. All power (VDD) and ground (VSS) pins must always be connected to the external power supply
-0.3 6.5
V
VIN
Input voltage on true open drain pins(2)
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads,
there is no positive injection current, and the corresponding VIN maximum must always be respected
VSS - 0.3 6.5
Input voltage on any other pin(2) VSS - 0.3 VDD + 0.3
|VDDx - VDD| Variations between different power pins - 50
mV
|VSSx - VSS| Variations between all the different ground pins - 50
VESD Electrostatic discharge voltage
see Absolute maximum
ratings (electrical
sensitivity) on page 86
-
Electrical characteristics STM8S003F3 STM8S003K3
48/103 DocID018576 Rev 8
Table 17. Current characteristics
Symbol Ratings Max.(1)
1. Data based on characterization results, not tested in production.
Unit
IVDD Total current into VDD power lines (source)(2)
2. All power (VDD) and ground (VSS) pins must always be connected to the external supply.
100
mA
IVSS Total current out of VSS ground lines (sink)(2) 80
IIO
Output current sunk by any I/O and control pin 20
Output current source by any I/Os and control pin -20
IINJ(PIN)(3)(4)
3. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads,
there is no positive injection current, and the corresponding VIN maximum must always be respected
4. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins
should be avoided as this significantly reduces the accuracy of the conversion being performed on another
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and
ΣIINJ(PIN) in the I/O port pin characteristics section does not affect the ADC accuracy.
Injected current on NRST pin ±4
Injected current on OSCIN pin ±4
Injected current on any other pin(5)
5. When several inputs are submitted to a current injection, the maximum
Σ
IINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values). These results are based on characterization
with
Σ
IINJ(PIN) maximum current injection on four I/O port pins of the device.
±4
ΣIINJ(PIN)(3) Total injected current (sum of all I/O and control pins)(5) ±20
Table 18. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range -65 to 150
°C
TJMaximum junction temperature 150
DocID018576 Rev 8 49/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
9.3 Operating conditions
The device must be used in operating conditions that respect the parameters in Table 19. In
addition, full account must be taken of all physical capacitor characteristics and tolerances.
Figure 9. fCPUmax versus VDD
Table 19. General operating conditions
Symbol Parameter Conditions Min Max Unit
fCPU Internal CPU clock frequency - 0 16 MHz
VDD Standard operating voltage - 2.95 5.5 V
VCAP(1)
1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter
dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum
values must be respected for the full application range.
CEXT
: capacitance of external
capacitor - 470 3300 nF
ESR of external capacitor
At 1 MHz(2)
2. This frequency of 1 MHz as a condition for VCAP parameters is given by the design of the internal regulator.
-0.3ohm
ESL of external capacitor - 15 nH
PD(3)
3. To calculate PDmax(TA), use the formula PDmax = (TJmax - TA)/Θ
JA (see Section 10.4: Thermal
characteristics on page 97) with the value for TJmax given in Table 19 above and the value for Θ
JA given in
Table 55: Thermal characteristics.
Power dissipation at
TA = 85° C for suffix 6
TSSOP20 - 238
mWUFQFPN20 - 220
LQFP32 - 330
TA
Ambient temperature for 6
suffix version Maximum power dissipation -40 85
°C
TJ
Junction temperature range
for 6 suffix version - -40 105


   
I&380+]
)XQFWLRQDOLW\JXDUDQWHHG
#7$WR&
6XSSO\YROWDJH
069
)XQFWLRQDOLW\
QRWJXDUDQWHHG
LQWKLVDUHD
Electrical characteristics STM8S003F3 STM8S003K3
50/103 DocID018576 Rev 8
Table 20. Operating conditions at power-up/power-down
Symbol Parameter Conditions Min Typ Max Unit
tVDD
VDD rise time rate - 2 -
µs/V
VDD fall time rate(1)
1. Reset is always generated after a tTEMP delay. The application must ensure that VDD is still above the
minimum operating voltage (VDD min) when the tTEMP delay has elapsed.
-2-
tTEMP
Reset release
delay VDD rising - - 1.7 ms
VIT+
Power-on reset
threshold -2.62.72.85V
VIT-
Brown-out reset
threshold - 2.5 2.65 2.8 V
VHYS(BOR)
Brown-out reset
hysteresis --70-mV
DocID018576 Rev 8 51/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
9.3.1 VCAP external capacitor
Stabilization for the main regulator is achieved connecting an external capacitor CEXT to the
VCAP pin. CEXT is specified in Table 19. Care should be taken to limit the series inductance
to less than 15 nH.
Figure 10. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.
9.3.2 Supply current characteristics
The current consumption is measured as described in Section 9.1.5: Pin input voltage.
Total current consumption in run mode
The MCU is placed under the following conditions:
All I/O pins in input mode with a static value at VDD or VSS (no load)
All peripherals are disabled (clock stopped by Peripheral Clock Gating registers)
except if explicitly mentioned.
Subject to general operating conditions for VDD and TA.
06Y9
(65
5/HDN
(6/
&
Electrical characteristics STM8S003F3 STM8S003K3
52/103 DocID018576 Rev 8
Table 21. Total current consumption with code execution in run mode at VDD = 5 V
Symbol Parameter Conditions Typ Max (1) Unit
IDD(RUN)
Supply
current in
run mode,
code
executed
from RAM
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 2.3 -
mA
HSE user ext. clock (16 MHz) 2 2.35
HSI RC osc. (16 MHz) 1.7 2
fCPU = fMASTER/128 = 125 kHz
HSE user ext. clock (16 MHz) 0.86 -
HSI RC osc. (16 MHz) 0.7 0.87
fCPU = fMASTER/128 =
15.625 kHz HSI RC osc. (16 MHz/8) 0.46 0.58
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.41 0.55
Supply
current in
run mode,
code
executed
from Flash
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 4.5 -
HSE user ext. clock (16 MHz) 4.3 4.75
HSI RC osc.(16 MHz) 3.7 4.5
fCPU = fMASTER = 2 MHz HSI RC osc. (16 MHz/8)(2) 0.84 1.05
fCPU = fMASTER/128 = 125 kHz HSI RC osc. (16 MHz) 0.72 0.9
fCPU = fMASTER/128 =
15.625 kHz HSI RC osc. (16 MHz/8) 0.46 0.58
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.42 0.57
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
DocID018576 Rev 8 53/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
Table 22. Total current consumption with code execution in run mode at VDD = 3.3 V
Symbol Parameter Conditions Typ Max(1) Unit
IDD(RUN)
Supply
current in
run mode,
code
executed
from RAM
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 1.8 -
mA
HSE user ext. clock (16 MHz) 2 2.3
HSI RC osc. (16 MHz) 1.5 2
fCPU = fMASTER/128 = 125 kHz
HSE user ext. clock (16 MHz) 0.81 -
HSI RC osc. (16 MHz) 0.7 0.87
fCPU = fMASTER/128 =
15.625 kHz HSI RC osc. (16MHz/8) 0.46 0.58
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.41 0.55
Supply
current in
run mode,
code
executed
from Flash
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 4 -
HSE user ext. clock (16 MHz) 3.9 4.7
HSI RC osc. (16 MHz) 3.7 4.5
fCPU = fMASTER = 2 MHz HSI RC osc. (16 MHz/8)(2) 0.84 1.05
fCPU = fMASTER/128 = 125 kHz HSI RC osc. (16 MHz) 0.72 0.9
fCPU = fMASTER/128 =
15.625 kHz HSI RC osc. (16 MHz/8) 0.46 0.58
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.42 0.57
1. Data based on characterization results, not tested in production.
2. Default clock configuration, measured with all peripherals off.
Electrical characteristics STM8S003F3 STM8S003K3
54/103 DocID018576 Rev 8
Total current consumption in wait mode
Table 23. Total current consumption in wait mode at VDD = 5 V
Symbol Parameter Conditions Typ Max(1) Unit
IDD(WFI)
Supply
current in
wait mode
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 1.6 -
mA
HSE user ext. clock (16 MHz) 1.1 1.3
HSI RC osc. (16 MHz) 0.89 1.1
fCPU = fMASTER/128 = 125 kHz HSI RC osc. (16 MHz) 0.7 0.88
fCPU = fMASTER/128 =
15.625 kHz HSI RC osc. (16 MHz/8)(2) 0.45 0.57
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.4 0.54
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
Table 24. Total current consumption in wait mode at VDD = 3.3 V
Symbol Parameter Conditions Typ Max(1) Unit
IDD(WFI)
Supply
current in
wait mode
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 1.1 -
mA
HSE user ext. clock (16 MHz) 1.1 1.3
HSI RC osc. (16 MHz) 0.89 1.1
fCPU = fMASTER/128 = 125 kHz HSI RC osc. (16 MHz) 0.7 0.88
fCPU = fMASTER/128 =
15.625 kHz HSI RC osc. (16 MHz/8)(2) 0.45 0.57
fCPU = fMASTER/128 =
15.625 kHz LSI RC osc. (128 kHz) 0.4 0.54
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
DocID018576 Rev 8 55/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
Total current consumption in active halt mode
Table 25. Total current consumption in active halt mode at VDD = 5 V
Symbol Parameter
Conditions
Typ Max at
85°C(1) Unit
Main voltage
regulator
(MVR)(2)
Flash mode(3) Clock source
IDD(AH)
Supply current in
active halt mode
On
Operating mode
HSE crystal oscillator
(16 MHz) 1030 -
µA
LSI RC oscillator
(128 kHz) 200 260
Power-down mode
HSE crystal oscillator
(16 MHz) 970 -
LSI RC oscillator
(128 kHz) 150 200
Off
Operating mode LSI RC oscillator
(128 kHz)
66 85
Power-down mode 10 20
1. Data based on characterization results, not tested in production.
2. Configured by the REGAH bit in the CLK_ICKR register.
3. Configured by the AHALT bit in the FLASH_CR1 register.
Table 26. Total current consumption in active halt mode at VDD = 3.3 V
Symbol Parameter
Conditions
Typ
Max
at
85° C
(1)
Unit
Main voltage
regulator
(MVR)(2)
Flash mode(3) Clock source
IDD(AH)
Supply current
in active halt
mode
On
Operating mode
HSE crystal osc. (16 MHz) 550 -
µA
LSI RC osc. (128 kHz) 200 260
Power-down mode
HSE crystal osc. (16 MHz) 970 -
LSI RC osc. (128 kHz) 150 200
Off
Operating mode
LSI RC osc. (128 kHz)
66 80
Power-down mode 10 18
1. Data based on characterization results, not tested in production.
2. Configured by the REGAH bit in the CLK_ICKR register.
3. Configured by the AHALT bit in the FLASH_CR1 register.
Electrical characteristics STM8S003F3 STM8S003K3
56/103 DocID018576 Rev 8
Total current consumption in halt mode
Low-power mode wakeup times
Table 27. Total current consumption in halt mode at VDD = 5 V
Symbol Parameter Conditions Typ Max at
85°C(1) Unit
IDD(H) Supply current in halt mode
Flash in operating mode, HSI
clock after wakeup 63 75
µA
Flash in power-down mode, HSI
clock after wakeup 6.0 20
1. Data based on characterization results, not tested in production.
Table 28. Total current consumption in halt mode at VDD = 3.3 V
Symbol Parameter Conditions Typ Max at
85° C(1) Unit
IDD(H) Supply current in halt mode
Flash in operating mode, HSI clock
after wakeup 60 75
µA
Flash in power-down mode, HSI
clock after wakeup 4.5 17
1. Data based on characterization results, not tested in production.
Table 29. Wakeup times
Symbol Parameter Conditions Typ Max(1) Unit
tWU(WFI)
Wakeup time from wait
mode to run mode(3)
0 to 16 MHz - -(2)
µs
fCPU = fMASTER = 16 MHz. 0.56 -
tWU(AH)
Wakeup time active halt
mode to run mode.(3)
MVR voltage
regulator on(4)
Flash in operating
mode(5)
HSI (after
wakeup)
1(6) 2(6)
Flash in power-down
mode(5) 3(6) -
MVR voltage
regulator off(4)
Flash in operating
mode(5) 48(6) -
Flash in power-down
mode(5) 50(6) -
tWU(H)
Wakeup time from halt
mode to run mode(3)
Flash in operating mode(5) 52 -
Flash in power-down mode(5) 54 -
1. Data guaranteed by design, not tested in production.
2. tWU(WFI) = 2 x 1/fmaster + 7 x 1/fCPU
3. Measured from interrupt event to interrupt vector fetch.
4. Configured by the REGAH bit in the CLK_ICKR register.
5. Configured by the AHALT bit in the FLASH_CR1 register.
6. Plus 1 LSI clock depending on synchronization.
DocID018576 Rev 8 57/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
Total current consumption and timing in forced reset state
Current consumption of on-chip peripherals
Subject to general operating conditions for VDD and TA.
HSI internal RC/fCPU = fMASTER = 16 MHz, VDD = 5 V.
Table 30. Total current consumption and timing in forced reset state
Symbol Parameter Conditions Typ Max(1) Unit
IDD(R) Supply current in reset state (2) VDD = 5 V 400 -
µA
VDD = 3.3 V 300 -
tRESETBL Reset pin release to vector fetch - - 150 µs
1. Data guaranteed by design, not tested in production.
2. Characterized with all I/Os tied to VSS.
Table 31. Peripheral current consumption
Symbol Parameter Typ. Unit
IDD(TIM1) TIM1 supply current (1)
1. Data based on a differential IDD measurement between reset configuration and timer counter running at
16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.
210
µA
IDD(TIM2) TIM2 supply current (1) 130
IDD(TIM4) TIM4 timer supply current (1) 50
IDD(UART1) UART1 supply current(1) 120
IDD(SPI) SPI supply current(1) 45
IDD(I2C) I2C supply current (1) 65
IDD(ADC1) ADC1 supply current when converting(1) 1000
Electrical characteristics STM8S003F3 STM8S003K3
58/103 DocID018576 Rev 8
Current consumption curves
The following figures show the typical current consumption measured with code executing in
RAM.
Figure 11. Typ. IDD(RUN) vs VDD, HSE user external clock, fCPU = 16 MHz
Figure 12. Typ. IDD(RUN) vs fCPU, HSE user external clock, VDD = 5 V
DocID018576 Rev 8 59/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
Figure 13. Typ. IDD(RUN) vs VDD, HSI RC osc, fCPU = 16 MHz
Figure 14. Typ. IDD(WFI) vs. VDD HSE user external clock, fCPU = 16MHz
Electrical characteristics STM8S003F3 STM8S003K3
60/103 DocID018576 Rev 8
Figure 15. Typ. IDD(WFI) vs. fCPU, HSE user external clock, VDD = 5 V
Figure 16. Typ. IDD(WFI) vs VDD, HSI RC osc, fCPU = 16 MHz
DocID018576 Rev 8 61/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
9.3.3 External clock sources and timing characteristics
HSE user external clock
Subject to general operating conditions for VDD and TA.
Figure 17. HSE external clock source
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterization results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and start-up stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Table 32. HSE user external clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
User external clock source
frequency
-
0-16MHz
VHSEH(1)
1. Data based on characterization results, not tested in production.
OSCIN input pin high level
voltage 0.7 x VDD -V
DD + 0.3 V
V
VHSEL(1) OSCIN input pin low level
voltage VSS - 0.3 x VDD
ILEAK_HSE
OSCIN input leakage
current VSS < VIN < VDD -1 - +1 µA
+6(+
+6(/
([WHUQDOFORFN
VRXUFH 26&,1
I+6(
670
069
Electrical characteristics STM8S003F3 STM8S003K3
62/103 DocID018576 Rev 8
Figure 18. HSE oscillator circuit diagram
Table 33. HSE oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE
External high speed oscillator
frequency -1-16MHz
RFFeedback resistor - - 220 - kΩ
C(1) Recommended load capacitance (2) ---20pF
IDD(HSE) HSE oscillator power consumption
C = 20 pF,
fOSC = 16 MHz --6 (startup)
1.6 (stabilized)(3)
mA
C = 10 pF,
fOSC = 16 MHz --6 (startup)
1.2 (stabilized)(3)
gmOscillator transconductance - 5 - - mA/V
tSU(HSE)(4) Startup time VDD is stabilized - 1 - ms
1. C is approximately equivalent to 2 x crystal Cload.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.
Refer to crystal manufacturer for more details
3. Data based on characterization results, not tested in production.
4. tSU(HSE) is the start-up time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation is
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
26&287
26&,1
I
+6(
WRFRUH
&
/
5
)
670
5HVRQDWRU
&RQVXPSWLRQ
FRQWURO
JP
5P
&P
/P
5HVRQDWRU
&
/
&
2
069
DocID018576 Rev 8 63/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
HSE oscillator critical gm formula
Rm: Notional resistance (see crystal specification)
Lm: Notional inductance (see crystal specification)
Cm: Notional capacitance (see crystal specification)
Co: Shunt capacitance (see crystal specification)
CL1=CL2=C: Grounded external capacitance
gm >> gmcrit
9.3.4 Internal clock sources and timing characteristics
Subject to general operating conditions for VDD and TA.
High speed internal RC oscillator (HSI)
gmcrit 2Π× fHSE
×()
2Rm
×2Co C+()
2
=
Table 34. HSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 16 - MHz
ACCHSI
Accuracy of HSI oscillator
User-trimmed with the
CLK_HSITRIMR register
for given VDD and TA
conditions(1)
1. See the application note.
--1.0
(2)
%
Accuracy of HSI oscillator
(factory calibrated)
VDD = 5 V, TA = 25 °C - 5 -
VDD = 5 V,
-40 °C TA 85 °C -5 - 5
tsu(HSI)
HSI oscillator wakeup
time including calibration - - - 1.0(2)
2. Guaranteed by design, not tested in production.
µs
IDD(HSI)
HSI oscillator power
consumption - - 170 250(3)
3. Data based on characterization results, not tested in production
µA
Electrical characteristics STM8S003F3 STM8S003K3
64/103 DocID018576 Rev 8
Figure 19. Typical HSI frequency variation vs VDD at 4 temperatures
Low speed internal RC oscillator (LSI)
Subject to general operating conditions for VDD and TA.
Figure 20. Typical LSI frequency variation vs VDD @ 4 temperatures
Table 35. LSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSI Frequency - - 128 - kHz
tsu(LSI) LSI oscillator wakeup time - - - 7(1)
1. Guaranteed by design, not tested in production.
µs
IDD(LSI) LSI oscillator power consumption - - 5 - µA
DocID018576 Rev 8 65/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
9.3.5 Memory characteristics
RAM and hardware registers
Flash program memory and data EEPROM
General conditions: TA = -40 to 85 °C.
Table 36. RAM and hardware registers
Symbol Parameter Conditions Min Unit
VRM Data retention mode(1)
1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware
registers (only in halt mode). Guaranteed by design, not tested in production.
Halt mode (or reset) VIT-max(2)
2. Refer to Table 20 on page 50 for the value of VIT-max.
V
Table 37. Flash program memory and data EEPROM
Symbol Parameter Conditions Min(1)
1. Data based on characterization results, not tested in production.
Typ Max Unit
VDD
Operating voltage
(all modes, execution/write/erase) fCPU 16 MHz 2.95 - 5.5 V
tprog
Standard programming time (including
erase) for byte/word/block
(1 byte/4 bytes/64 bytes)
--6.06.6ms
Fast programming time for 1 block (64
bytes) --3.03.3ms
terase Erase time for 1 block (64 bytes) - - 3.0 3.3 ms
NRW
Erase/write cycles(2)
(program memory)
2. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a
write/erase operation addresses a single byte.
TA = 85 °C
100 - -
cycles
Erase/write cycles(2)
(data memory) 100 k - -
tRET
Data retention (program memory)
after 100 erase/write cycles at
TA = 85 °C TRET = 55° C
20 - -
yearsData retention (data memory) after
10 k erase/write cycles at TA = 85 °C 20 - -
Data retention (data memory) after
100 k erase/write cycles at TA = 85 °C TRET = 85° C 1.0 - -
IDD
Supply current (Flash programming or
erasing for 1 to 128 bytes) --2.0-mA
Electrical characteristics STM8S003F3 STM8S003K3
66/103 DocID018576 Rev 8
9.3.6 I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or
an external pull-up or pull-down resistor.
Table 38. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
Input low level
voltage
VDD = 5 V
-0.3 - 0.3 x VDD V
VIH
Input high level
voltage 0.7 x VDD -V
DD + 0.3 V V
Vhys Hysteresis(1) -700- mV
Rpu Pull-up resistor VDD = 5 V, VIN = VSS 30 55 80 kΩ
tR, tF
Rise and fall time
(10% - 90%)
Fast I/Os
Load = 50 pF --20
(2) ns
Standard and high sink I/Os
Load = 50 pF - - 125(2) ns
Ilkg
Input leakage
current,
analog and digital
VSS VIN VDD --±1µA
Ilkg ana
Analog input
leakage current VSS VIN VDD --±250
(3) nA
Ilkg(inj)
Leakage current in
adjacent I/O Injection current ±4 mA - - ±1(3) µA
1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.
2. Data guaranteed by design, not tested in production.
3. Data based on characterization results, not tested in production.
DocID018576 Rev 8 67/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
Figure 21. Typical VIL and VIH vs VDD @ 4 temperatures
Figure 22. Typical pull-up resistance vs VDD @ 4 temperatures
Electrical characteristics STM8S003F3 STM8S003K3
68/103 DocID018576 Rev 8
Figure 23. Typical pull-up current vs VDD @ 4 temperatures
1. The pull-up is a pure resistor (slope goes through 0).
Table 39. Output driving current (standard ports)
Symbol Parameter Conditions Min Max Unit
VOL
Output low level with 8 pins sunk IIO = 10 mA, VDD = 5 V - 2
V
Output low level with 4 pins sunk IIO = 4 mA, VDD = 3.3 V - 1(1)
VOH
Output high level with 8 pins sourced IIO = 10 mA, VDD = 5 V 2.8 -
V
Output high level with 4 pins sourced IIO = 4 mA, VDD = 3.3 V 2.1(1) -
1. Data based on characterization results, not tested in production
Table 40. Output driving current (true open drain ports)
Symbol Parameter Conditions Max Unit
VOL Output low level with 2 pins sunk
IIO = 10 mA, VDD = 5 V 1
VIIO = 10 mA, VDD = 3.3 V 1.5(1)
IIO = 20 mA, VDD = 5 V 2(1)
1. Data based on characterization results, not tested in production
DocID018576 Rev 8 69/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
Typical output level curves
Figure 25 to Figure 32 show typical output level curves measured with output on a single
pin.
Figure 24. Typ. VOL @ VDD = 5 V (standard ports)
Table 41. Output driving current (high sink ports)
Symbol Parameter Conditions Min Max Unit
VOL
Output low level with 8 pins sunk IIO = 10 mA, VDD = 5 V - 0.8
V
Output low level with 4 pins sunk IIO = 10 mA, VDD = 3.3 V - 1.0(1)
Output low level with 4 pins sunk IIO = 20 mA, VDD = 5 V - 1.5(1)
VOH
Output high level with 8 pins sourced IIO = 10 mA, VDD = 5 V 4.0 -
Output high level with 4 pins sourced IIO = 10 mA, VDD = 3.3 V 2.1(1) -
Output high level with 4 pins sourced IIO = 20 mA, VDD = 5 V 3.3(1) -
1. Data based on characterization results, not tested in production
Electrical characteristics STM8S003F3 STM8S003K3
70/103 DocID018576 Rev 8
Figure 25. Typ. VOL @ VDD = 3.3 V (standard ports)
Figure 26. Typ. VOL @ VDD = 5 V (true open drain ports)
DocID018576 Rev 8 71/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
Figure 27. Typ. VOL @ VDD = 3.3 V (true open drain ports)
Figure 28. Typ. VOL @ VDD = 5 V (high sink ports)
Electrical characteristics STM8S003F3 STM8S003K3
72/103 DocID018576 Rev 8
Figure 29. Typ. VOL @ VDD = 3.3 V (high sink ports)
Figure 30. Typ. VDD - VOH @ VDD = 5 V (standard ports)
DocID018576 Rev 8 73/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
Figure 31. Typ. VDD - VOH @ VDD = 3.3 V (standard ports)
Figure 32. Typ. VDD - VOH @ VDD = 5 V (high sink ports)
Electrical characteristics STM8S003F3 STM8S003K3
74/103 DocID018576 Rev 8
Figure 33. Typ. VDD - VOH @ VDD = 3.3 V (high sink ports)
DocID018576 Rev 8 75/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
9.3.7 Reset pin characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified.
Figure 34. Typical NRST VIL and VIH vs VDD @ 4 temperatures
Table 42. NRST pin characteristics
Symbol Parameter Conditions Min Typ 1) Max Unit
VIL(NRST) NRST input low level voltage (1) - -0.3 V - 0.3 x VDD
VVIH(NRST) NRST input high level voltage (1) - 0.7 x VDD -V
DD + 0.3
VOL(NRST) NRST output low level voltage (1) IOL= 2 mA - - 0.5
RPU(NRST) NRST pull-up resistor (2) -305580kΩ
tIFP(NRST) NRST input filtered pulse (3) ---75ns
tINFP(NRST) NRST Input not filtered pulse (3) -500--ns
tOP(NRST) NRST output pulse (1) -20--µs
1. Data based on characterization results, not tested in production.
2. The RPU pull-up equivalent resistor is based on a resistive transistor
3. Data guaranteed by design, not tested in production.
Electrical characteristics STM8S003F3 STM8S003K3
76/103 DocID018576 Rev 8
Figure 35. Typical NRST pull-up resistance vs VDD @ 4 temperatures
Figure 36. Typical NRST pull-up current vs VDD @ 4 temperatures
The reset network shown in Figure 37 protects the device against parasitic resets. The user
must ensure that the level on the NRST pin can go below the VIL max. level specified in
Table 38. Otherwise the reset is not taken into account internally. For power consumption
sensitive applications, the capacity of the external reset capacitor can be reduced to limit
charge/discharge current. If the NRST signal is used to reset the external circuitry, care
must be taken of the charge/discharge time of the external capacitor to fulfill the external
device’s reset timing conditions. The minimum recommended capacity is 10 nF.
DocID018576 Rev 8 77/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
Figure 37. Recommended reset pin protection
9.3.8 SPI serial peripheral interface
Unless otherwise specified, the parameters given in Table 43 are derived from tests
performed under ambient temperature, fMASTER frequency and VDD supply voltage
conditions. tMASTER = 1/fMASTER.
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (NSS, SCK, MOSI, MISO).
06Y9
([WHUQDO
UHVHW
FLUFXLW
ȝ)
1567 )LOWHU
670
2SWLRQDO
9''
538
Table 43. SPI characteristics
Symbol Parameter Conditions Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode 0 8
MHz
Slave mode 0 7
tr(SCK)
tf(SCK)
SPI clock rise and fall time Capacitive load: C = 30 pF - 25
ns
tsu(NSS)(1) NSS setup time Slave mode 4 x tMASTER -
th(NSS)(1) NSS hold time Slave mode 70 -
tw(SCKH)(1)
tw(SCKL)(1) SCK high and low time Master mode tSCK/2 - 15 tSCK/2 + 15
tsu(MI) (1)
tsu(SI)(1) Data input setup time
Master mode 5 -
Slave mode 5 -
th(MI) (1)
th(SI)(1) Data input hold time
Master mode 7 -
Slave mode 10 -
ta(SO)(1)(2) Data output access time Slave mode - 3 x tMASTER
tdis(SO)(1)(3) Data output disable time Slave mode 25 -
tv(SO) (1) Data output valid time Slave mode (after enable edge) - 65
tv(MO)(1) Data output valid time Master mode (after enable edge) - 30
th(SO)(1)
Data output hold time
Slave mode (after enable edge) 27 -
th(MO)(1) Master mode (after enable edge) 11 -
1. Values based on design simulation and/or characterization results, and not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
Electrical characteristics STM8S003F3 STM8S003K3
78/103 DocID018576 Rev 8
Figure 38. SPI timing diagram - slave mode and CPHA = 0
Figure 39. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.
DLE
166LQSXW
W68166 WF6&. WK166
6&.LQSXW
&3+$ 
&32/ 
&3+$ 
&32/ 
WZ6&.+
WZ6&./
WD62 WY62 WK62 WU6&.
WI6&. WGLV62
0,62
287387
026,
,1387
WVX6, WK6,
06%287
06%,1
%,7287 /6%287
/6%,1
%,7,1
DocID018576 Rev 8 79/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
Figure 40. SPI timing diagram - master mode(1)
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
Electrical characteristics STM8S003F3 STM8S003K3
80/103 DocID018576 Rev 8
9.3.9 I2C interface characteristics
Table 44. I2C characteristics
Symbol Parameter
Standard mode I2CFast mode I
2C(1)
1. fMASTER, must be at least 8 MHz to achieve max fast I2C speed (400kHz)
Unit
Min(2)
2. Data based on standard I2C protocol requirement, not tested in production
Max(2) Min(2) Max(2)
tw(SCLL) SCL clock low time 4.7 - 1.3 -
µs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time 0(3)
3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low
time
-0
(4)
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time - 1000 - 300
tf(SDA)
tf(SCL)
SDA and SCL fall time - 300 - 300
th(STA) START condition hold time 4.0 - 0.6 -
µs
tsu(STA) Repeated START condition setup time 4.7 - 0.6 -
tsu(STO) STOP condition setup time 4.0 - 0.6 - µs
tw(STO:STA)
STOP to START condition time
(bus free) 4.7 - 1.3 - µs
CbCapacitive load for each bus line - 400 - 400 pF
DocID018576 Rev 8 81/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
Figure 41. Typical application with I2C bus and timing diagram
1. Measurement points are made at CMOS levels: 0.3 x VDD and 0.7 x VDD
DL9
67$57
6' $
,ð&EXV
9''
9''
670
6'$
6&/
WI6'$ WU6'$
6&/
WK67$
WZ6&/+
WZ6&//
WVX6'$
WU6&/ WI6&/
WK6'$
6 7$575(3($7('
67$57
WVX67$
WVX672
6723 WVX67$672
N N


Electrical characteristics STM8S003F3 STM8S003K3
82/103 DocID018576 Rev 8
9.3.10 10-bit ADC characteristics
Subject to general operating conditions for VDDA, fMASTER, and TA unless otherwise
specified.
Table 45. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
fADC ADC clock frequency
VDDA = 3 to 5.5 V 1 - 4
MHz
VDDA = 4.5 to 5.5 V 1 - 6
VAIN Conversion voltage range(1)
1. During the sample time the input capacitance CAIN (3 pF max) can be charged/discharged by the external
source. The internal resistance of the analog source must allow the capacitance to reach its final voltage
level within tS. After the end of the sample time tS, changes of the analog input voltage have no effect on
the conversion result. Values for the sample clock tS depend on programming.
-V
SS -V
DD V
CADC
Internal sample and hold
capacitor --3-pF
tS(1) Sampling time
fADC = 4 MHz - 0.75 -
µs
fADC = 6 MHz - 0.5 -
tSTAB Wakeup time from standby - - 7 - µs
tCONV
Total conversion time (including
sampling time, 10-bit resolution)
fADC = 4 MHz 3.5 µs
fADC = 6 MHz 2.33 µs
-141/f
ADC
Table 46. ADC accuracy with RAIN < 10 kΩ , VDD = 5 V
Symbol Parameter Conditions Typ Max(1) Unit
|ET| Total unadjusted error (2)
fADC = 2 MHz 1.6 3.5
LSB
fADC = 4 MHz 2.2 4
fADC = 6 MHz 2.4 4.5
|EO| Offset error (2)
fADC = 2 MHz 1.1 2.5
fADC = 4 MHz 1.5 3
fADC = 6 MHz 1.8 3
|EG| Gain error (2)
fADC = 2 MHz 1.5 3
fADC = 4 MHz 2.1 3
fADC = 6 MHz 2.2 4
|ED| Differential linearity error (2)
fADC = 2 MHz 0.7 1.5
fADC = 4 MHz 0.7 1.5
fADC = 6 MHz 0.7 1.5
|EL| Integral linearity error (2)
fADC = 2 MHz 0.6 1.5
fADC = 4 MHz 0.8 2
fADC = 6 MHz 0.8 2
DocID018576 Rev 8 83/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
1. Data based on characterization results, not tested in production.
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins
should be avoided as this significantly reduces the accuracy of the conversion being performed on another
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and
ΣIINJ(PIN) in Section 9.3.6 does not affect the ADC accuracy.
Table 47. ADC accuracy with RAIN < 10 kΩ RAIN, VDD = 3.3 V
Symbol Parameter Conditions Typ Max(1)
1. Data based on characterization results, not tested in production.
Unit
|ET| Total unadjusted error(2)
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins
should be avoided as this significantly reduces the accuracy of the conversion being performed on another
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and
ΣIINJ(PIN) in Section 9.3.6 does not affect the ADC accuracy.
fADC = 2 MHz 1.6 3.5
LSB
fADC = 4 MHz 1.9 4
|EO| Offset error(2) fADC = 2 MHz 1 2.5
fADC = 4 MHz 1.5 2.5
|EG| Gain error(2) fADC = 2 MHz 1.3 3
fADC = 4 MHz 2 3
|ED| Differential linearity error(2) fADC = 2 MHz 0.7 1.0
fADC = 4 MHz 0.7 1.5
|EL| Integral linearity error(2) fADC = 2 MHz 0.6 1.5
fADC = 4 MHz 0.8 2
Electrical characteristics STM8S003F3 STM8S003K3
84/103 DocID018576 Rev 8
Figure 42. ADC accuracy characteristics
1. Example of an actual transfer curve.
2. The ideal transfer curve
3. End point correlation line
ET = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset error: deviation between the first actual transition and the first ideal one.
EG = Gain error: deviation between the last ideal transition and the last actual one.
ED = Differential linearity error: maximum deviation between actual steps and the ideal one.
EL = Integral linearity error: maximum deviation between any actual transition and the end point correlation
line.
Figure 43. Typical application with ADC
EO
EG
1LSB
IDEAL
1LSBIDEAL
VDDA VSSA
1024
-----------------------------------------=
1023
1022
1021
5
4
3
2
1
0
7
6
1234567 1021102210231024
(1)
(2)
ET
ED
EL
(3)
V
DDA
VSSA
AINx
STM8
VDD
IL
±1µA
VT
0.6V
VT
0.6V CADC
VAIN
RAIN 10-bit A/D
conversion
CAIN
DocID018576 Rev 8 85/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
9.3.11 EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
While executing a simple application (toggling 2 LEDs through I/O ports), the product is
stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 61000-4-2
standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 48. EMS data
Symbol Parameter Conditions Level/class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, TA = 25 °C,
fMASTER = 16 MHz,
conforming to IEC 61000-4-2
2B(1)
1. Data obtained with HSI clock configuration, after applying HW recommendations described in AN2860 -
EMC guidelines for STM8Smicrocontrollers.
VEFTB
Fast transient voltage burst limits to be
applied through 100pF on VDD and VSS pins
to induce a functional disturbance
VDD = 3.3 V, TA = 25 °C,
fMASTER = 16 MHz,
conforming to IEC 61000-4-4
4A(1)
Electrical characteristics STM8S003F3 STM8S003K3
86/103 DocID018576 Rev 8
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling two LEDs through the I/O
ports), the product is monitored in terms of emission. Emission tests conform to the IEC
61967-2 standard for test software, board layout and pin loading.
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, DLU and LU) using specific measurement methods,
the product is stressed in order to determine its performance in terms of electrical sensitivity.
For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (one positive then one negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). One model
can be simulated: the Human Body Model (HBM). This test conforms to the JESD22-
A114A/A115A standard. For more details, refer to the application note AN1181.
Table 49. EMI data
Symbol Parameter
Conditions
Unit
General conditions Monitored
frequency band
Max fHSE/fCPU(1)
1. Data based on characterization results, not tested in production.
16 MHz/
8 MHz
16 MHz/
16 MHz
SEMI
Peak level
VDD = 5 V
TA = 25 °C
LQFP32 package
conforming to IEC
61967-2
0.1 MHz to 30 MHz 5 5
dBµV30 MHz to 130 MHz 4 5
130 MHz to 1 GHz 5 5
EMI level - 2.5 2.5 -
Table 50. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1)
1. Data based on characterization results, not tested in production.
Unit
VESD(HBM)
Electrostatic discharge voltage
(Human body model)
TA = 25°C, conforming to
JESD22-A114 A 4000 V
VESD(CDM)
Electrostatic discharge voltage
(Charge device model)
TA= 25°C, conforming to
JESD22-C101 IV 1000 V
DocID018576 Rev 8 87/103
STM8S003F3 STM8S003K3 Electrical characteristics
87
Static latch-up
Two complementary static tests are required on 10 parts to assess the latch-up
performance:
A supply overvoltage (applied to each power supply pin)
A current injection (applied to each input, output and configurable I/O pin) is performed
on each sample.
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the
application note AN1181.
Table 51. Electrical sensitivities
Symbol Parameter Conditions Class(1)
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the
JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B
class strictly covers all the JEDEC criteria (international standard).
LU Static latch-up class
TA = 25 °C A
TA = 85 °C A
Package information STM8S003F3 STM8S003K3
88/103 DocID018576 Rev 8
10 Package information
To meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at www.st.com.
ECOPACK® is an ST trademark.
10.1 LQFP32 package information
Figure 44. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline
1. Drawing is not to scale.
$
$
$
%
%
%





!
,
,
+
!
!
!
C
B
'!5'%0,!.%
MM
3%!4).'
0,!.%
#
0).
)$%.4)&)#!4)/.
CCC #
7@.&@7
E
DocID018576 Rev 8 89/103
STM8S003F3 STM8S003K3 Package information
98
Figure 45. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint
1. Dimensions are expressed in millimeters.
Table 52. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.300 0.370 0.450 0.0118 0.0146 0.0177
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.600 - - 0.2205 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.600 - - 0.2205 -
e - 0.800 - - 0.0315 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.100 - - 0.0039
6?&0?6
















Package information STM8S003F3 STM8S003K3
90/103 DocID018576 Rev 8
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 46. LQFP32 marking example (package top view)
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
069
3URGXFW
LGHQWLILFDWLRQ
3LQLGHQWLILHU 5HYLVLRQFRGH
'DWHFRGH
:88
3
6WDQGDUG67ORJR
45.4
,5$
DocID018576 Rev 8 91/103
STM8S003F3 STM8S003K3 Package information
98
10.2 TSSOP20 package information
Figure 47.TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package outline
1. Drawing is not to scale.
Table 53. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 1.200 - - 0.0472
A1 0.050 - 0.150 0.0020 - 0.0059
A2 0.800 1.000 1.050 0.0315 0.0394 0.0413
b 0.190 - 0.300 0.0075 - 0.0118
c 0.090 - 0.200 0.0035 - 0.0079
D(2) 6.400 6.500 6.600 0.2520 0.2559 0.2598
E 6.200 6.400 6.600 0.2441 0.2520 0.2598
E1(3) 4.300 4.400 4.500 0.1693 0.1732 0.1772
e - 0.650 - - 0.0256 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
zͺDͺsϯ
ϭ
ϮϬ
Đ
>
ϭ
Ϯ
Ŭ
Ğď
ϭϬ
ϭϭ
ϭ
ĂĂĂ
^d/E'
W>E
'h'W>E
ϬϮϱŵŵ
W/Eϭ
/Ed/&/d/KE
Package information STM8S003F3 STM8S003K3
92/103 DocID018576 Rev 8
Figure 48. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package footprint
1. Dimensions are expressed in millimeters.
k - -
aaa - - 0.100 - - 0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs
shall not exceed 0.15mm per side.
3. Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not
exceed 0.25mm per side.
Table 53. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
9!?&0?6
 




 



DocID018576 Rev 8 93/103
STM8S003F3 STM8S003K3 Package information
98
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 49. TSSOP20 marking example (package top view)
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
069
3URGXFW
LGHQWLILFDWLRQ
3LQLGHQWLILHU 5HYLVLRQFRGH
'DWHFRGH
:883
6WDQGDUG67ORJR
4'1
Package information STM8S003F3 STM8S003K3
94/103 DocID018576 Rev 8
10.3 UFQFPN20 package information
Figure 50. UFQFPN20 - 20-lead, 3 x 3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline
1. Drawing is not to scale.
!!?-%?6


$
E
B
E
%
!
!
DDD
,

,
!
,
,
$
%
4/06)%7
3)$%6)%7
"/44/-6)%7
0IN
,
DocID018576 Rev 8 95/103
STM8S003F3 STM8S003K3 Package information
98
Figure 51. UFQFPN20 - 20-lead, 3 x 3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package recommended footprint
1. Dimensions are expressed in millimeters.
Table 54. UFQFPN20 - 20-lead, 3 x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
A3 - 0.152 - - 0.060 -
D - 3.000 - - 0.1181 -
E - 3.000 - - 0.1181 -
L1 0.500 0.550 0.600 0.0197 0.0217 0.0236
L2 0.300 0.350 0.400 0.0118 0.0138 0.0157
L3 - 0.375 - 0.0148
L4 - 0.200 - 0.0079
L5 - 0.150 - 0.0059
b 0.180 0.250 0.300 0.0071 0.0098 0.0118
e - 0.500 - - 0.0197 -
ddd - - 0.050 - - 0.0020
!!?&0?6
Package information STM8S003F3 STM8S003K3
96/103 DocID018576 Rev 8
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 52. UFQFPN20 marking example (package top view)
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
069
3URGXFW
LGHQWLILFDWLRQ
'RWSLQ
5HYLVLRQFRGH
'DWHFRGH
:883
4
DocID018576 Rev 8 97/103
STM8S003F3 STM8S003K3 Package information
98
10.4 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 19: General operating conditions.
The maximum chip-junction temperature, TJmax, in degrees Celsius, may be calculated
using the following equation:
TJmax = TAmax + (PDmax x Θ
JA)
Where:
TAmax is the maximum ambient temperature in °C
•Θ
JA is the package junction-to-ambient thermal resistance in ° C/W
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)
PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/Omax represents the maximum power dissipation on output pins, where:
PI/Omax = Σ (VOL*IOL) + Σ((VDD-VOH)*IOH), and taking account of the actual VOL/IOL and
VOH/IOH of the I/Os at low and high level in the application.
10.4.1 Reference document
JESD51-2 integrated circuits thermal test method environment conditions - natural
convection (still air). Available from www.jedec.org.
Table 55. Thermal characteristics(1)
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection
environment.
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
LQFP 32 - 7 x 7 mm 60
°C/W
Thermal resistance junction-ambient
TSSOP20 - 4.4 mm 84
Thermal resistance junction-ambient
UFQFPN20 -3 x 3 mm 90
Package information STM8S003F3 STM8S003K3
98/103 DocID018576 Rev 8
10.4.2 Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the order code (see
Figure 53: STM8S003F3/K3 value line ordering information scheme(1)).
The following example shows how to calculate the temperature range needed for a given
application.
Assuming the following application conditions:
Maximum ambient temperature TAmax= 75 °C (measured according to JESD51-2)
IDDmax = 8 mA, VDD = 5.0 V
Maximum 20 I/Os used at the same time in output at low level with
IOL = 8 mA, VOL= 0.4 V
PINTmax = 8 mA x 5.0 V = 400 mW
PDmax = 400 mW + 64 mW
Thus: PDmax = 464 mW
Using the values obtained in Section Table 55.: Thermal characteristics TJmax is calculated
as follows for LQFP32 7 x 7 mm = 60 °C/W:
TJmax = 75 °C + (60 °C/W x 464 mW) = 75 °C + 27.8 °C = 102.8 °C
This is within the range of the suffix 6 version parts (-40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6.
DocID018576 Rev 8 99/103
STM8S003F3 STM8S003K3 Part numbering
99
11 Part numbering
Figure 53. STM8S003F3/K3 value line ordering information scheme(1)
1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further
information on any aspect of this device, please go to www.st.com or contact the ST Sales Office nearest
to you.
2. Refer to Table 1: STM8S003F3/K3 value line features for detailed description.
3. TSSOP and UFQFPN packages.
4. LQFP package.
STM8 S 003 K 3 T 6 TR
Product class
STM8 microcontroller
Pin count
F = 20 pins
K = 32 pins
Package type
T = LQFP
P = TSSOP
U = UFQFPN
Example:
Sub-family type(2)
00x = Value line sub-family
003 = low density
Family type
S = standard
Temperature range
6 = -40 °C to 85 °C
Program memory size
3 = 8 Kbyte
Package pitch
No character = 0.5 mm or 0.65 mm(3)
C = 0.8 mm(4)
Packing
No character = Tray or tube
TR = Tape and reel
STM8 development tools STM8S003F3 STM8S003K3
100/103 DocID018576 Rev 8
12 STM8 development tools
Development tools for the STM8 microcontrollers include the full-featured STice emulation
system supported by a complete software tool package including C compiler, assembler and
integrated development environment with high-level language debugger. In addition, the
STM8 is to be supported by a complete range of tools including starter kits, evaluation
boards and a low-cost in-circuit debugger/programmer.
12.1 Emulation and in-circuit debugging tools
The STice emulation system offers a complete range of emulation and in-circuit debugging
features on a platform that is designed for versatility and cost-effectiveness. In addition,
STM8 application development is supported by a low-cost in-circuit debugger/programmer.
The STice is the fourth generation of full featured emulators from STMicroelectronics. It
offers new advanced debugging capabilities including profiling and coverage to help detect
and eliminate bottlenecks in application execution and dead code when fine tuning an
application.
In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via
the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an
application while it runs on the target microcontroller.
For improved cost effectiveness, STice is based on a modular design that allows users to
order exactly what they need to meet their development requirements and to adapt their
emulation system to support existing and future ST microcontrollers.
STice key features
Occurrence and time profiling and code coverage (new features)
Advanced breakpoints with up to 4 levels of conditions
Data breakpoints
Program and data trace recording up to 128 KB records
Read/write on the fly of memory during emulation
In-circuit debugging/programming via SWIM protocol
8-bit probe analyzer
1 input and 2 output triggers
Power supply follower managing application voltages between 1.62 to 5.5 V
Modularity that allows users to specify the components users need to meet their
development requirements and adapt to future requirements
Supported by free software tools that include integrated development environment
(IDE), programming software interface and assembler for STM8.
DocID018576 Rev 8 101/103
STM8S003F3 STM8S003K3 STM8 development tools
101
12.2 Software tools
STM8 development tools are supported by a complete, free software package from
STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual
Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic
and Raisonance C compilers for STM8. A free version that outputs up to 16 Kbytes of code
is available.
12.2.1 STM8 toolset
STM8 toolset with STVD integrated development environment and STVP programming
software is available for free download at www.st.com. This package includes:
ST Visual Develop – Full-featured integrated development environment from ST, featuring
Seamless integration of C and ASM toolsets
Full-featured debugger
Project management
Syntax highlighting editor
Integrated programming interface
Support of advanced emulation features for STice such as code profiling and coverage
ST Visual Programmer (STVP) – Easy-to-use, unlimited graphical interface allowing read,
write and verify the user STM8 microcontroller Flash program memory, data EEPROM and
option bytes. STVP also offers project mode for saving programming configurations and
automating programming sequences.
12.2.2 C and assembly toolchains
Control of C and assembly toolchains is seamlessly integrated into the STVD integrated
development environment, making it possible to configure and control the building of user
application directly from an easy-to-use graphical interface.
Available toolchains include:
Cosmic C compiler for STM8 – One free version that outputs up to 16 Kbytes of code
is available. For more information, see www.cosmic-software.com.
Raisonance C compiler for STM8 – One free version that outputs up to 16 Kbytes of
code. For more information, see www.raisonance.com.
STM8 assembler linker – Free assembly toolchain included in the STVD toolset,
which allows users to assemble and link the user application source code.
12.3 Programming tools
During the development cycle, STice provides in-circuit programming of the STM8 Flash
microcontroller on user application board via the SWIM protocol. Additional tools are to
include a low-cost in-circuit programmer as well as ST socket boards, which provide
dedicated programming platforms with sockets for programming the user STM8.
For production environments, programmers will include a complete range of gang and
automated programming solutions from third-party tool developers already supplying
programmers for the STM8 family.
Revision history STM8S003F3 STM8S003K3
102/103 DocID018576 Rev 8
13 Revision history
Table 56. Document revision history
Date Revision Changes
12-Jul-2011 1 Initial release.
09-Jan-2012 2
Added NRW and tRET for data EEPROM in Table:
Flash program memory and data EEPROM.
Updated RPU in Table: NRST pin characteristics
and Table: I/O static characteristics.
Updated notes related to VCAP in Table: General
operating conditions.
12-Jun-2012 3
Updated temperature condition for factory calibrated
ACCHSI in Table: HSI oscillator characteristics.
Changed SCK input to SCK output in Figure: SPI timing
diagram - master mode.
Modified Figure: 20-lead, ultra thin, fine pitch quad flat
no-lead package outline (3 x 3) to add the package top
view.
18-Dec-2014 4 Updated the package information for the 20-pin TSSOP
and the 20-pin UFQFPN.
21-Apr-2015 5
Added package marking examples in Section: Package
information:
Figure: LQFP32 marking example (package top view),
Figure: TSSOP20 marking example (package top
view),
Figure: UFQFPN20 marking example (package top
view).
26-Jun-2015 6
Addition of the footnotes about D and E1 dimensions to
Table 53: TSSOP20 – 20-lead thin shrink small outline,
6.5 x 4.4 mm, 0.65 mm pitch, package mechanical data.
Update of the standard for EMI characteristics in
Section : Electromagnetic interference (EMI).
23-Sep-2015 7 Correction of UART peripheral in Figure 1:
STM8S003F3/K3 value line block diagram.
20-Apr-2016 8
Corrected text strings in Figure 10: External capacitor
CEXT and Figure 37: Recommended reset pin
protection
PB4 line PP column value corrected in Table 5:
STM8S003K3 descriptions
PD1 line “floating” and “wpu” column values corrected in
Table 6: STM8S003F3 pin description
SPI_RXCRCR and SPI_TXCRCR reset values
corrected in Table 9: General hardware register map
DocID018576 Rev 8 103/103
STM8S003F3 STM8S003K3
103
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
STMicroelectronics:
STM8S003F3P6 STM8S003F3U6TR STM8S003K3T6C STM8S003F3P6TR STM8S003K3T6CTR