MOTOROLA.COM/SEMICONDUCTORS
M68HC08
Microcontrollers
DRM007/D
2/2003
BLDC Motor
Designer Reference
Manual
Control Board
for Industrial
and Appliance
Applications
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA 3
BLDC Motor Control Board
for Industrial and Appliance
Applications Reference Design
By: Jorge Zambada
Email: jorge.zambada@motorola.com
Applications Engineer — Me xico Applications Lab
Diego Garay
Email: diego.garay@motorola.com
Applications Engineer — Me xico Applications Lab
Maurizio Acosta
Email: m.acosta.duran @motorola.com
Applications Engineer — Me xico Applications Lab
Motorola and the Stylized M Lo go are registered trademarks of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc.
This product incorporates SuperFlash® technology licensed from SST. © Motorola, Inc., 2003
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
4MOTOROLA
Revision History
To provide the most up-to-date information, the revision of our
documents on the World Wide Web will be the most current. Your printed
copy may be an earlier revision. To verify you have the latest information
available, refer to:
http://motorola.com/semiconductors
The following revision history table summarizes changes contained in
this document. For your convenience, the page number designators
have been linked to the appropriate location.
Revision History
Date Revision
Level Description Page
Number(s)
Fe b ruary, 2003 N/A Initial releas e N/A
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA List of Sections 5
Designer Reference Manual — BLDC Motor Control Board
List of Sections
Section 1. Introduction and Setup. . . . . . . . . . . . . . . . . .15
Section 2. Operational Description . . . . . . . . . . . . . . . . .37
Section 3. Schematics and Bill of Materials . . . . . . . . . .43
Section 4. Hardware Design Considerations . . . . . . . . .55
Section 5. Software Design Considerations. . . . . . . . . .71
Section 6. Practical Results . . . . . . . . . . . . . . . . . . . . . . .97
Section 7. Source Code . . . . . . . . . . . . . . . . . . . . . . . . .103
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
6 List of Sections MOTOROLA
List of Sections
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Table of Cont ents 7
Designer Reference Manual — BLDC Motor Control Board
Table of Contents
Section 1. Introduction and Setup
1.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
1.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
1.3 MC68HC908MR8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
1.4 MC68HC908MR8 Pulse-Width Modulator . . . . . . . . . . . . . . . .21
1.4.1 Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
1.4.2 PWM Output Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
1.4.3 PWM Counter Timebase . . . . . . . . . . . . . . . . . . . . . . . . . . .24
1.4.4 PWM Load Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
1.4.5 Direct Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
1.4.6 Deadtime Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
1.5 Brief Overview to Brushless DC Motors . . . . . . . . . . . . . . . . . .25
1.6 Washing Machine Application’s Overview . . . . . . . . . . . . . . . .28
1.6.1 Movement Patterns of the Washer. . . . . . . . . . . . . . . . . . . .28
1.6.2 Agitator Hits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
1.6.3 Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
1.6.4 User’s Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
1.6.5 Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
1.6.6 Target Washer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
1.7 System Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
1.8 Warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
1.9 Setup Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
1.9.1 Programming Mode Setup . . . . . . . . . . . . . . . . . . . . . . . . . .33
1.9.2 Running Mode Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
8 Table of Contents MOTOROLA
Table of Contents
Section 2. Operational Description
2.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
2.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
2.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
2.4 User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
2.5 Connectors Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .41
2.5.1 J1 — AC Jack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
2.5.2 J2 — 3-Phase Motor Connector. . . . . . . . . . . . . . . . . . . . . .41
2.5.3 J3 — Single Phase Motor 1 Connector . . . . . . . . . . . . . . . .41
2.5.4 J4 — Temperature Sensor Connector . . . . . . . . . . . . . . . . .41
2.5.5 J5 — RS-232 Interface Connector. . . . . . . . . . . . . . . . . . . .42
2.5.6 J6 — External 18 Vdc Source Connector. . . . . . . . . . . . . . .42
2.5.7 J7 — Single Phase Motor 2 Connector . . . . . . . . . . . . . . . .42
2.5.8 J8 — Motor Hall Effect Sensor Connector . . . . . . . . . . . . . .42
Section 3. Schematics and Bill of Materials
3.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
3.2 Schematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
3.3 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Section 4. Hardware Design Considerations
4.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
4.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
4.3 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
4.4 RS-232 interface and MON08 Hardware Interface. . . . . . . . . .58
4.5 Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
4.6 Hall-Effect Sensors Interface . . . . . . . . . . . . . . . . . . . . . . . . . .60
4.7 LCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
4.8 Reset Button. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
4.9 3-Phase H-Bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
4.10 Current Feedback and Cycle-by-Cycle Limiting . . . . . . . . . . . .64
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Table of Contents
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Table of Cont ents 9
4.11 Voltage Feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
4.12 Current and Voltage Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . .68
4.13 Heat Sink Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Section 5. Software Design Considerations
5.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
5.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
5.3 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
5.4 Speed Control Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
5.4.1 Motor Stalled Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . .79
5.5 Commutation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
5.6 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
5.6.1 Processes: Latest Position Capture,
Period Measuring, and Speed Calculation . . . . . . . . . . .84
5.6.2 Process Speed Controller . . . . . . . . . . . . . . . . . . . . . . . . . .84
5.6.3 Process MOSFET Gating Selection. . . . . . . . . . . . . . . . . . .84
5.6.4 Process Washing Machine. . . . . . . . . . . . . . . . . . . . . . . . . .86
5.7 Application State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
5.8 Drive State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
5.9 Description of Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
5.9.1 Main(void). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
5.9.1.1 Stop Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
5.9.1.2 Waiting for Command . . . . . . . . . . . . . . . . . . . . . . . . . . .89
5.9.1.3 Displaying Actual and Reference Speed . . . . . . . . . . . . .89
5.9.1.4 Wash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
5.9.1.5 Spin CW and Spin CCW . . . . . . . . . . . . . . . . . . . . . . . . .90
5.9.1.6 Fixed Reference Speed . . . . . . . . . . . . . . . . . . . . . . . . . .90
5.9.2 InitPLL(void). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
5.9.3 InitPWMMC(void). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
5.9.4 InitTimerA(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
5.9.5 InitTimerB(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
5.9.6 Byte ResolveButtons(void). . . . . . . . . . . . . . . . . . . . . . . . . .91
5.9.7 InitMotor(Byte Commanded_Operation) . . . . . . . . . . . . . . .91
5.9.8 TimerAOverflow_ISR(void). . . . . . . . . . . . . . . . . . . . . . . . . .91
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
10 Table of Contents MOTOROLA
Table of Contents
5.9.9 Signed Word 16 PIController(void). . . . . . . . . . . . . . . . . . . .92
5.9.10 MotorStalledProtection(void) . . . . . . . . . . . . . . . . . . . . . . . .92
5.9.11 HALLA_ISR(void) and HALLB_ISR(void). . . . . . . . . . . . . . .92
5.9.12 HALLC_ISR(void). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
5.9.13 Fault1_ISR(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
5.9.14 NextSequence(void). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
5.9.15 InitLCD(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
5.9.16 CtrlLCD(Byte ctrl). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
5.9.17 Ctrl8LCD(Byte ctrl). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
5.9.18 MovCursorLCD(Byte places, Byte dir) . . . . . . . . . . . . . . . . .93
5.9.19 DataLCD(Byte data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
5.9.20 StringLCD(Byte *msgLCD). . . . . . . . . . . . . . . . . . . . . . . . . .94
5.9.21 WaitMs(Byte milis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
5.9.22 Wait40ms(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
5.10 MCU Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Section 6. Practical Results
Section 7. Source Code
7.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
7.2 Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
7.2.1 MR8IO.H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
7.2.2 START08.H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
7.2.3 MAIN.H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
7.2.4 TIMER.H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
7.2.5 LCD.H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
7.2.6 TABLES.H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
7.3 Source Code Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
7.3.1 START08.C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
7.3.2 MAIN.C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
7.3.3 TIMER.C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
7.3.4 LCD.C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA List of Figures 11
Designer Reference Manual — BLDC Motor Control Board
List of Figures
Figure Title Page
1-1 MC68HC908MR8 Block Diagram. . . . . . . . . . . . . . . . . . . . . . .18
1-2 PWMMC Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . .22
1-3 BLDC Motor – Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . .25
1-4 BLDC Motor Commutation Signals. . . . . . . . . . . . . . . . . . . . . .27
1-5 BLDC Motor Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
1-6 System Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
1-7 Monitor Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
1-8 Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
3-1 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
3-2 MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
3-3 Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
3-4 3-Phase H-Bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
3-5 Current and Voltage Sense . . . . . . . . . . . . . . . . . . . . . . . . . . .48
4-1 V_BUS Power Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
4-2 15 Vdc and 5 Vdc Power Supplies . . . . . . . . . . . . . . . . . . . . . .57
4-3 RS-232 and MON08 Interfaces . . . . . . . . . . . . . . . . . . . . . . . .58
4-4 Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
4-5 Hall-Effect Sensors Interface . . . . . . . . . . . . . . . . . . . . . . . . . .60
4-6 LCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
4-7 Reset Button. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
4-8 External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
4-9 Phase C Output and Gate Driver . . . . . . . . . . . . . . . . . . . . . . .63
4-10 Current Differential Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . .65
4-11 Current Peak Detector for Current Sensing . . . . . . . . . . . . . . .65
4-12 Cycle-by-Cycle Current Limiter. . . . . . . . . . . . . . . . . . . . . . . . .66
4-13 Voltage Feedback and Fault Detector . . . . . . . . . . . . . . . . . . .67
4-14 Current and Voltage Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
12 List of Figures MOTOROLA
List of Figures
Figure Title Page
5-1 PI Controller Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
5-2 Speed Control Algorithm Flowchart . . . . . . . . . . . . . . . . . . . . .78
5-3 Motor Stalled Protection Flowchart. . . . . . . . . . . . . . . . . . . . . .79
5-4 3-Phase Voltage System Applies to BLDC Motor. . . . . . . . . . .81
5-5 Commutation Algorithm for Hall Sensors . . . . . . . . . . . . . . . . .82
5-6 Main Data Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
5-7 Software Deadtime Insertion . . . . . . . . . . . . . . . . . . . . . . . . . .85
5-8 Application State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
5-9 Drive State Machine and Transitions . . . . . . . . . . . . . . . . . . . .88
6-1 Power Output versus Torque Motor Characteristic. . . . . . . . . .97
6-2 Speed versus Torque Motor Characteristic . . . . . . . . . . . . . . .98
6-3 Current Waveform for Two MOSFET
Commutation Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
6-4 Current Waveform for Three MOSFET
Commutation Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
6-5 Torque Waveform for Two MOSFET
Commutation Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . .100
6-6 Torque Waveform for Three MOSFET
Commutation Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA List of Tables 13
Designer Reference Manual — BLDC Motor Control Board
List of Tables
Table Title Page
1-1 MC68HC908MR8 Peripherals and Memory. . . . . . . . . . . . . . .17
2-1 Electrical Characteristics for 127 Vac Board Version. . . . . . . .38
2-2 Electrical Characteristics for 230 Vac Board Version. . . . . . . .38
2-3 AC Jack Connector (J1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
2-4 3-Phase Motor Connector (J2) . . . . . . . . . . . . . . . . . . . . . . . . .41
2-5 Single-Phase Motor 1 Connector (J3) . . . . . . . . . . . . . . . . . . .41
2-6 Temperature Sensor Connector (J4) . . . . . . . . . . . . . . . . . . . .41
2-7 Optoisolated RS-232 DB-9 Connector (J5) . . . . . . . . . . . . . . .42
2-8 External 18 Vdc Source Connector (J6). . . . . . . . . . . . . . . . . .42
2-9 Single-Phase Motor 2 Connector (J7) . . . . . . . . . . . . . . . . . . .42
2-10 Motor Hall Effect Sensors Connector (J8) . . . . . . . . . . . . . . . .42
3-1 Bill of Materials for 127 Vac Board . . . . . . . . . . . . . . . . . . . . . .49
3-2 Bill of Material Changes for 230 Vac Board . . . . . . . . . . . . . . .53
4-1 PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
5-1 Commutation Sequence for Clockwise Rotation . . . . . . . . . . .80
5-2 Commutation Sequence for Counterclockwise Rotation . . . . .81
5-3 RAM and FLASH Memory Usage. . . . . . . . . . . . . . . . . . . . . . .95
6-1 Speed Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
14 List of Tables MOTOROLA
List of Tables
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Introductio n an d Set up 15
Designer Reference Manual — BLDC Motor Control Board
Section 1. Introduction and Setup
1.1 Contents
1.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
1.3 MC68HC908MR8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
1.4 MC68HC908MR8 Pulse-Width Modulator . . . . . . . . . . . . . . . .21
1.4.1 Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
1.4.2 PWM Output Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
1.4.3 PWM Counter Timebase . . . . . . . . . . . . . . . . . . . . . . . . . . .24
1.4.4 PWM Load Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
1.4.5 Direct Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
1.4.6 Deadtime Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
1.5 Brief Overview to Brushless DC Motors . . . . . . . . . . . . . . . . . .25
1.6 Washing Machine Application’s Overview . . . . . . . . . . . . . . . .28
1.6.1 Movement Patterns of the Washer. . . . . . . . . . . . . . . . . . . .28
1.6.2 Agitator Hits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
1.6.3 Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
1.6.4 User’s Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
1.6.5 Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
1.6.6 Target Washer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
1.7 System Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
1.8 Warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
1.9 Setup Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
1.9.1 Programming Mode Setup . . . . . . . . . . . . . . . . . . . . . . . . . .33
1.9.2 Running Mode Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
16 Introductio n an d Set up MOTOROL A
Introduction and Setup
1.2 Introduction
Motorola’s BLDC (brushless dc motor) control board for industrial and
appliance applications is a system for controlling a 3-phase BLDC
motors with three Hall-effect position sensors. The system consists of
hardware and software tools for controlling this type of motor.
Hardware consists of:
Three-phase inverter
Sensing circuitry for current, voltage, and temperature
User interface: 16 x 2 character display and two push buttons
On-board power supply: 15 Vdc or 5 Vdc
Optoisolated RS-232 interface for external microcontroller
communication and for in-application programming.
There are two board versions available, one for operating at
110–127 Vac and the other for operating at 220–240 Vac. The 3-phase
inverter of the 110–127 Vac board operates at a nominal voltage of
180 Vdc and 8 A RMS with 11 A peak. The inverter of the 220–240 Vac
board operates at a nominal voltage of 320 Vdc driving the same current.
The example software consists of the following, but may be easily
modified to perform other process cycles.
PI speed controller for closed loop control
Six-step BLDC commutation control based on three Hall-effect
position sensors
User interface control
Two washing machine process implementations: wash process
and spin process
The wash process consists of generating a sine wave of speed
references, including positive and negative reference speeds. The spin
process consists of generating a start up curve of reference speeds and
maintaining a fixed reference speed for a certain time. The PI speed
controller operates in the 200 rpm up to 4000 rpm range.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Introduction and Setup
MC68HC908MR8
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Introductio n an d Set up 17
1.3 MC68HC908MR8
Motorola offers several 8-bit and 16-bit microcontroller families that are
perfectly adapted to the requirements of modern industrial and
household applications, combining high-performance and low cost.
This development is based on an MC68HC908MR8 microcontroller, a
member of the M68HC08 Family. The MC68HC908MR8 incorporates a
fault tolerant and flexible 6-channel, 12-bit pulse-width modulator (PWM)
designed to support center and edge-aligned modes with automatic
deadtime insertion and patented deadtime compensation capability.
Write-once protection of key configuration parameters further enhances
motor and consumer safety, the MC68HC908MR8 is appropriate for cost
and space conscious applications including smart appliances, blowers,
fans, refrigeration compressors, office automation products, and electric
lawn equipment.
Refer to Figure 1-1 for a block diagram of the MC68HC908MR8.
Table 1-1 summarizes the MC68HC908MR8 peripherals and memory.
The MC68HC908MR8 is a member of the low-cost, high-performance
M68HC08 Family of 8-bit microcontroller units (MCU). The M68HC08
Family is based on the customer-specified integrated circuit (CSIC)
design strategy. All MCU’s in the family use the enhanced M68HC08
central processor unit (CPU08) and are available with a variety of
modules, memory sizes and types, and package types. The central
processor unit can address 64 Kbytes of memory space.
Table 1-1. MC68HC908MR8 Peripherals and Memory
RAM
(Bytes) FLASH
(Bytes) Timer I/O Serial A/D PWM Operating
Voltage Maximum Bus
Frequency
256 8 K 2-ch + 2-ch
16-bit IC,
OC, or PWM 14 SCI 4-ch to 7-ch
10 bit 6-ch
12 bit 5.0 V 8.0 MHz
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
18 Introductio n an d Set up MOTOROL A
Introduction and Setup
Figure 1-1. MC68HC908MR8 Block Diagram
M68HC08 CPU
CONTROL AND STATUS
USER FLASH — 7680 BYTES
USER RAM — 256 BYTES
MONITOR ROM — 313 BYTES
USER VECTOR SPACE — 46 BYTES
DDRB
PORTB
INTERNAL BUS
OSC1
OSC2
RST
PTA6/ATD6
PTA5/ATD5
PTA4/ATD4
PTA3/ATD3
PTA2/ATD2
PTA1/ATD1
PTA0/ATD0
PTB6/TCH1B
PTB5/TCH0B
PTB4/TCH1A
PTB3/TCH0A
PTB2TCLKA
PTB1/TxD
PTB0/RxD
POWER
VDDA
VDD
DDRA
PORTA
CLOCK GENERATOR
CPU
REGISTERS ARITHMETIC/LOGIC
UNIT (ALU)
SYSTEM INTEGRATION
MODULE
LOW-VOLTAGE INHIBIT
MODULE
COMPUTER OPERATING
PROPERLY MODULE
BREAK
MODULE
TIMER A AND TIMER B
INTERFACE MODULES
SERIAL COMMUNICATIONS
INTERFACE MODULE
MODULE
REGISTERS — 112 BYTES
CGMXFC
VSSA
VSS
IRQ IRQ
MODULE
VREFH ANALOG-TO-DIGITAL
CONVERTER MODULE
PULSE-WIDTH
MODULATOR MODULE
POWER-ON RESET
MODULE
PULSE-WIDTH
PWM6
PWM5
PWM4
PWM3
PWM2
PWM1
PTC1/FAULT4
MODULATOR
PTC1/FAULT4
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Introduction and Setup
MC68HC908MR8
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Introductio n an d Set up 19
Features of the MC68HC908MR8 include:
High-performance M68HC08 architecture
Fully upward-compatible object code with M6805, M146805, and
M68HC05 Families
8-MHz internal bus frequency
8 Kbytes of on-chip FLASH
On-chip programming firmware for use with host PC
On-chip random-access memory (RAM) 256 bytes
12-bit, 6-channel center-aligned or edge-aligned PWMMC
Serial communications interface module (SCI)
Two 16-bit, 2-channel timer interface modules (TIMA and TIMB)
Eight high current sink and source pins (PTA1/ATD1, PTA0/ATD0,
PTB6/TCH1B, PTB5/TCH0B, PTB4/TCH1A, PTB3/TCH0A,
PTB2/TCLKA, and PTB1/TxD)
Clock generator module (CGM)
Digitally filtered low-voltage inhibit (LVI), software selectable for
±5 percent or ±10 percent tolera nce
10-bit, 4- to7-channel analog-to-digital converter (ADC)
System protection features:
Optional computer operating properly (COP) reset
Low-voltage detection with optional reset
Illegal opcode detection with optional reset
Illegal address detection with optional reset
Fault detection with optional PWM disabling
Available packages:
32-pin low-profile quad flat pack (LQFP)
28-pin dual in-line package (PDIP)
28-pin small outline package (SOIC)
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
20 Introductio n an d Set up MOTOROL A
Introduction and Setup
Low-power design, fully static with stop and wait modes
Break (BRK) module allows single breakpoint setting during
in-circuit debugging
Master reset pin and power-on reset (POR)
Features of the CPU include:
Fully upward, object-code compatibility with M68HC05 Family
16-bit stack pointer with stack manipulation instructions
16-bit index register with X-register manipulation instructions
8-MHz CPU internal bus frequency
64-Kbyte program/data memory space
Sixteen addressing modes
Memory-to-memory data moves without using the accumulator
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions
Enhanced binary-coded decimal (BCD) data handling
Modular architecture with expandable internal bus definition for
extension of addressing range beyond 64 Kbytes
Low-power stop and wait modes
The MC68HC908MR8 PWM module can generate three complementary
PWM pairs or six independent PWM signals. These PWM signals can be
center-aligned or edge-aligned.
A 12-bit timer PWM counter is common to all six channels. PWM
resolution is one clock period for edge-aligned operation and two clock
periods for center-aligned operation. The clock period is dependent on
the internal operating frequency (fop of the MCU) and a programmable
prescaler.
The highest resolution for edge-aligned operation is 125 ns
(fop = 8 MHz). The highest resolution for center-aligned operation is
250 ns (fop = 8 MHz).
When generating complementary PWM signals, the module features
automatic deadtime insertion to the PWM output pairs.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Introduction and Setup
MC68HC908MR8 Pulse-Width Modulator
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Introductio n an d Set up 21
1.4 MC68HC908MR8 Pulse-Width Modulator
The pulse-width modulator module (PWMMC) resident on the
MC68HC908MR8 is specifically designed to provide pulse-width
modulated outputs to drive a power stage connected to a dc servo,
brushless dc, or 3-phase ac motor system. The PWMMC module can be
partitioned and configured in several ways, depending on the specific
motor control application. Figure 1-2 shows a block diagram of the
PWMMC module and is referenced throughout this explanation of the
PWMMC generator.
Features of the PWM include:
Three complementary PWM pairs or six independent PWM
signals
Complementary mode features include:
Deadtime insertion
Separate top/bottom pulse-width correction via current
sensing or programmable software bits
Edge-aligned PWM or center-aligned PWM signals
PWM signal polarity
20-mA current sink capability on all PWM outputs
Manual PWM output control through software
Programmable fault protection.
One of the most important features of the PWMMC is its ability to “shut
itself down” when a system fault is detected. When dealing with a system
that potentially could have hundreds of amps of peak current, reacting to
faults such as Overcurrent or Overvoltage conditions is an absolute
necessity. Fault protection is discussed first. Then, we will work our way
from the outputs of the PWM inward.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
22 Introductio n an d Set up MOTOROL A
Introduction and Setup
Figure 1-2. PWMMC Module Block Diagram
The six outputs of the PWMMC generator can be configured as
individual pulse-width modulated signals where each output can be
controlled as an independent output. Another option is to configure the
outputs in pairs, with the outputs complementary or not, so driving
complementary top and bottom transistors on a power stage becomes
an easy task. The outputs of the PWMMC are capable of sinking up to
20 mA. That drive capability allows for direct drive of optocouplers
without the need of additional drivers.
To prevent erroneous signals from being output from the PWMMC
module while loading new values, the bulk of the registers are double
buffered. New output is inhibited until the load okay (LDOK) bit in the
PWM control register is set indicating that it is okay to output the new
values.
PWM CONTROL
PWM
MODE SELECT
DEADTIME
INSERTION
DIRECT
OUTPUT CONTROL
DISTORTION
CORRECTION
FAULT
FAULT
PARTITIONING
FAULT
MODE SELECT
OUTPUT
POLARITY
CONTROL
HIGH CURRENT
DRIVERS
GENERATORS
COMPARATORS
DOUBLE
BUFFERED
REGISTERS
PROTECTION PWM1
PWM2
PWM3
PWM4
PWM5
PWM6
MOTOR CURRENT POLARITIES SYSTEM FAULTS
UP/DOWN
COUNTER
PRESCALER PRESCALER
÷ 1, 2, 3, OR 8 ÷ 1, 2, 3, OR 8
PWM RELOAD AND INTERRUPT
INTERRUPTS
OR
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Introduction and Setup
MC68HC908MR8 Pulse-Width Modulator
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Introductio n an d Set up 23
1.4.1 Fault Protection
Conditions can arise in the external drive circuitry, requiring that the
PWM signals become inactive immediately. These conditions include
Overcurrent, Overvoltage, Overtemperature, or other error conditions.
Upon detection of a fault, the two fault input pins on the
MC68HC908MR8’s PWMMC module can be configured to react in a
number of different ways.
Each fault input has its own interrupt vector. In all fault conditions, the
output of the PWM generator is forced to a known inactive state. A
number of fault control and recovery options are available to the systems
architect. In some cases, it may be desirable to selectively disable
PWM(s) solely with software. Manual and automatic recovery
mechanisms are available that allow certain acceptable fault situations
to occur, such as starting a motor and using a fault input to limit the
maximum startup current. The fault inputs can be partitioned if the
MC68HC908MR8 is used to control multiple motors.
1.4.2 PWM Output Alignment
Depending on the system design, there is a choice between edge- or
center-aligned PWM signals output from the MC68HC908MR32’s PWM
generator. The PWM counter uses the value in the timer modulus
register to determine its maximum count. In center-aligned mode, a
12-bit up/down counter is used to create the PWM period. The PWM
resolution in center-aligned mode is two clock periods (highest
resolution is 250 ns at a processor speed of 8 MHz). The PWM period
will be equal to:
[(Timer modulus) x (PWM clock period) x 2]
In edge-aligned mode, a 12-bit up-only counter is used to create the
PWM period. Therefore, the PWM resolution in edge-aligned mode is
one clock (highest resolution is 125 ns at a processor speed of 8 MHz).
Again, the timer modulus register is used to determine the maximum
count. The PWM period will be equal to:
[(Timer modulus) x (PWM clock period)]
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
24 Introductio n an d Set up MOTOROL A
Introduction and Setup
1.4.3 PWM Counter Timebase
To permit lower PWM frequencies, a prescaler is provided which will
divide the PWM clock frequency by 1, 2, 4, or 8. This prescaler is
buffered and will not be used by the PWM generator until the LDOK bit
located in a PWM control register is set and a new PWM reload cycle
begins.
1.4.4 PWM Load Operations
When generating sine waves to a motor, an interrupt routine is typically
used to step through a sine table located in FLASH memory, scale that
sine value, and output the result to the system from the PWM generator.
The rate at which the sine table is scanned can be derived from an
interrupt from the PWM generator. The PWM module can be
programmed to provide an interrupt rate of every 1, 2, 3, or 8 PWM
reload cycles.
1.4.5 Direct Output Control
In some cases, the user may desire to bypass the PWM generator and
directly control the PWM outputs. A mechanism exists to disconnect the
PWM generator from its outputs and directly control the six PWM
outputs. When this mode is used, the PWM generator continues to run;
however, it’s normal PWM output is disabled as it is overridden by direct
output.
1.4.6 Deadtime Insertion
When the PWM generator is used in complementary mode, automatic
deadtime insertion can be provided to prevent turning on both top and
bottom inverter transistors in the same phase leg at the same time.
When controlling dc-to-ac inverters, the top and bottom PWMs in one
pair must never be active at any given time.
CAUTION: If the top and bottom transistors are turned on simultaneously, large
currents will flow through the two transistors as they attempt to discharge
the bus supply voltage. The transistors could be weakened or destroyed.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Introduction and Setup
Brief Overview to Brushless DC Motors
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Introductio n an d Set up 25
Simply forcing the two PWMs to be inversions of each other is not always
sufficient. Since a time delay is associated with turning off the transistors
in the motor drive, there must be a “deadtime” between the deactivation
of one PWM power transistor and the activation of the opposite transistor
in a top and bottom pair. Deadtime can be specified in the deadtime
write-once register. This 8-bit value specifies the number of CPU clock
cycles to use for the deadtime.
1.5 Brief Overview to Brushless DC Motors
A brushless dc motor is a rotating electric machine where the stator is a
classic 3-phase stator like that of an induction motor and the rotor has
surface-mounted permanent magnets. There are no brushes on the
rotor and the commutation is performed electronically at certain rotor
positions. The stator is usually made from magnetic steel sheets. The
stator phase windings are inserted in the slots (distributed winding) as
shown on Figure 1-3.
Figure 1-3. BLDC Motor – Cross Section
Stator Stator windings
in slots
Permanent
magnets
Air gaps
Rotor
Shaft
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
26 Introductio n an d Set up MOTOROL A
Introduction and Setup
Brushless dc motors are named in different ways:
Permanent magnet synchronous motors
Brushless permanent magnet
Permanent magnet ac motors, etc.
A BLDC motor is equivalent to an inverted dc commutation motor, where
the magnet rotates while the conductors remain stationary. In the dc
commutation motor, the commutator and brushes reverse the current
polarity. But, in the brushless dc motor, a power transistor (which must
be switched in synchronization with the rotor position) performs the
polarity reversal. The BLDC motor often has either internal or external
position sensors to sense actual rotor position so that synchronization
can be performed.
The motor can have more than one pole-pair per phase. The pole-pair
per phase defines the ratio between the electrical revolution and the
mechanical revolution. For example, the BLDC motor shown in
Figure 1-3 has four pole-pairs per phase; which leads to four electrical
revolutions; per one mechanical revolution.
Advantages of the brushless dc motors are:
No electrical noise due to brushes and commutator
No tachometer needed for speed control
High starting torque and high no load speed
Good power output to size ratio
Higher efficiency than ac induction motors
Reversible
Precise speed control
Variable speed
Oil-less operation
Rapid acceleration and deceleration
Very low torque ripple
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Introduction and Setup
Brief Overview to Brushless DC Motors
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Introductio n an d Set up 27
The presented application uses three Hall effect sensors to sense actual
position. The Hall effect sensors’ signals together give the six output
values. These outputs are read by the microcontroller and the
corresponding output voltage is generated by PWM outputs, as shown
in Figure 1-4.
Figure 1-4. BLDC Motor Commutation Signals
These six PWM outputs are direct inputs to the 3-phase inverter. The
motor windings are connected to the inverter. The three Hall effect
sensors are connected to independent input capture channels of the
microcontroller. See Figure 1-5.
HALL A
HALL B
HALL C
PWM1
PWM2
PWM3
PWM4
PWM5
PWM6
15° 30° 45° 60° 75° 90°
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
28 Introductio n an d Set up MOTOROL A
Introduction and Setup
Figure 1-5. BLDC Motor Controller
1.6 Washing Machine Application’s Overview
This reference design has many possible applications and can be easily
reconfigured to suit industrial or appliance needs. The provided source
code example emulates a basic washing machine as discussed in the
following subsections.
1.6.1 Movement Patterns of the Washer
In washing machines there is a trade-off between clothes washability
and clothes damage. One important consideration in the design is the
agitator movement in the washer. The agitator movement pattern is
given by a look up table of desired speeds. This look up table could
PWM1 PWM3 PWM5
PWM2 PWM4 PWM6
BRUSHLESS
MOTOR
FILTERING
HALL A
HALL B
HALL C
TCH1A
TCH0B
TCH1B
PWM1
PWM2
PWM3
PWM4
PWM5
PWM6
CURRENT
PROCESSING
VOLTAGE
PROCESSING
ATD6
FAULT1
ATD5
SHUNT
RESISTOR
VBUS
VALUE
LIMIT
VALUE
MC68HC908MR8
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Introduction and Setup
Washing Machine Application’s Overview
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Introductio n an d Set up 29
follow different shapes, such as square, trapezoidal or sinusoidal
shapes. That is why the reference speeds in this design are taken from
a table, leaving the user to customize the movement and test different
patterns. From a mechanical point of view, a sinusoid agitator movement
has less clothes damage, due to the smooth movement of the washer.
1.6.2 Agitator Hits
When washing, there are two important design considerations on each
hit of the agitator:
One is the angular displacement of the agitator in each hit.
Modifying the reference speeds curve and calculating the integral
of the entire hit can change this displacement.
The other parameter is the frequency at which the table of
reference speeds is accessed, giving different hits per minute in
the washer.
1.6.3 Software
The software for this reference design drives a brushless dc motor in the
four quadrants, which means that the motor can be reversed without any
need of stopping the motor first. This driver capability is very useful in
washers because of the water inertia in the washing machine.
1.6.4 User’s Menu
A user menu with a 16 x 2 character display and two push buttons was
included in the reference design board. This menu provides useful
information during operation.
1.6.5 Control Scheme
The closed loop control scheme becomes necessary in this application
to have more robustness in the washer operation, such as load change,
input voltage variations, or mechanical degradations.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
30 Introductio n an d Set up MOTOROL A
Introduction and Setup
1.6.6 Target Washer
The targeted washers for this application example are direct drive
washing machines. These washers have the following advantages over
the classic ones:
No belts between the motor shaft and the agitator of the washer.
Different speed ranges, allowing different patterns of agitator
movement.
Powerful microcontroller, which makes possible the
implementation of digital controllers.
1.7 System Concept
The system is designed to drive a 4-pole 3-phase BLDC star connected
motor with a 5 to 1 speed gearbox. The microcontroller runs the main
control algorithm. According to the user interface input and feedback
signals, it generates 3-phase PWM output signals for the motor inverter.
The system incorporates all of the application in one board. Figure 1-6
shows the system concept, including the following hardware:
On-board power supply
Feedback network
Three-phase inverter
Microcontroller unit
User interface
Optoisolated RS-232 interface
The motor used for this application is based on a ½ HP BLDC and a
maximum speed of 4000 rpm.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Introduction and Setup
System Concep t
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Introductio n an d Set up 31
Figure 1-6. System Concept
The control process is as follows:
The state of the Hall sensor’s inputs is periodically scanned, while the
speed of the motor is measured on each new incoming edge from the
Hall sensors. According to the user menu, the speed reference is
calculated and controlled based upon the current and desired speed.
The comparison between the actual speed and the desired speed
generates a speed error. The speed error is brought to the speed PI
controller that generates a new corrected applied voltage. There are
two independent modules in software, one for commutating the motor
and other for controlling the speed, which gives us a four-quadrant
BLDC motor drive.
3-PHASE
INVERTER
SENSING CIRCUITRY
FOR I, V, AND T
3-PHASE
BLDC
MOTOR
PWMADCFAULT
120 / 230 VAC
WASH PROCESS
REQUIRED TABLE
SPEED PI
CONTROLLER
REQUIRED
SPEED
ACTUAL
SPEED
1/T POSITION,
DIRECTION
RECOGNITION
SIX-STEP VOLTAGE
GENERATOR
I/O
CURRENT
POSITION
REQUIRED VOLTAGE
HALL EFFECT
SENSOR SIGNALS
MC68HC908MR8
SCI I/OI/O
USER INTERFACE
16 x 2 LCD
RS-232
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
32 Introductio n an d Set up MOTOROL A
Introduction and Setup
The Hall sensor signals are scanned independently of the speed
controller. Each new incoming edge of any Hall sensor signal calls an
interrupt routine, which calculates a new voltage shape, applied to the
BLDC motor. This process is called commutation. The PWM
transistors work in complementary mode, when the upper transistor is
on, the lower transistor is off and vice versa.
1.8 Warnings
This reference board operates in an environment that includes
dangerous voltages and rotating machinery.
Due to the high-voltage power stage operating directly from an ac line,
oscilloscope grounds and power stage grounds are at different
potentials, unless the oscilloscope is floating. Note that probe grounds
and, therefore, the case of a floated oscilloscope, are subjected to
dangerous voltages.
Before moving scope probes, making connections, etc., you must
turn off the main switch.
Operation in lab setups that have grounded tables and/or chairs
should be avoided.
Wearing safety glasses, avoiding ties and jewelry, using shields,
and operation by personnel trained in high-voltage lab techniques
are advisable.
Never turn on the board in running mode if it is not known if the
code is downloaded.
To reduce the cost of the board, optoisolation circuitry was not
included: the microcontroller’s ground is tied to a power stage
ground. For this reason, special care must be taken when
handling the board. Touching its components when it is turned on
must be avoided.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Introduction and Setup
Setup Guide
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Introductio n an d Set up 33
1.9 Setup Guide
This board operates in two different modes: programming mode and
running mode. Programming mode allows downloading code to the
microcontroller. In running mode the microcontroller executes the
downloaded code.
Out of the box conditions suppose the board is programmed with “BLDC
CODE V1.s19”. Default position of Jumper JP1 is between 2 and 3 pins.
The board contains its own dc power supply for the power stage, besides
a 15 Vdc regulated power supply and a 5 Vdc regulated power supply.
The 15 Vdc and the 5 Vdc power supplies can be sourced by the dc
power supply for power stage or by and external source of 18 Vdc at
200 mA. Input for this external source is the connector labeled J6.
Selecting internal or external sourcing of 15 Vdc and 5 Vdc regulated
power supplies, is done by means of switch S5. Then, if the user wants
to use an external power supply, connect its terminals to connector J6
and slide the switch S5 to the position labeled “EXT”.
1.9.1 Programming Mode Setup
The following procedure describes programming mode setup. Before
starting you must turn off the main switch. Auxiliary external power
supply usage is recommended.
A PC computer is required having Metrowerks CodeWarrior
Development Studio for HC08 Microcontrollers or PEMICRO
PROG08SZ — FLASH programmer for M68HC908MR. The PC serial
port baud rate should be set up at 9600 bps with no DTR signal.
The reference board works as a Class III — direct serial to target with
MON08 serial port circuitry built in. The programmers software should be
configured to match this.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
34 Introductio n an d Set up MOTOROL A
Introduction and Setup
To program the MCU perform the following steps:
1. Unplug the active cord.
2. Install a shorting jumper on pins 1 and 2 of JP1 to enter the
microcontroller to monitor mode.
3. Connect a serial cable from a PC RS-232 serial port to the
reference board’s DB9 connector J5.
4. Connect external 18 Vdc power supply to J6 and slide switch S5
to position labeled “EXT”. Or, plug ac line cord into jack J1 and turn
on the main switch S4.
5. Continue with the FLASH programming procedure of the software
used by the computer.
Figure 1-7. Monitor Setup
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Introduction and Setup
Setup Guide
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Introductio n an d Set up 35
1.9.2 Running Mode Setup
Setup procedure for running mode is described here. This procedure
supposes the microcontroller is programmed with a valid version of
code. Before starting you must turn off the main switch S4.
1. Unplug the ac line cord.
2. Install a shorting jumper on pins 2 and 3 of JP1 to entry
microcontroller to user mode.
3. Connect motor phase terminals to connector J2 according to
labels near the connector.
4. Connect motor Hall sensor terminals to header J8 according to its
label.
5. Slide switch S5 to position labeled “INT”.
6. Plug ac line cord into jack J1.
7. Turn on the main switch S4.
Alternatively to steps 5 through 7, you can connect an external 18 Vdc
power supply to J6 and slide switch S5 to position labeled “EXT”.
The green LED, D21, must be turned on indicating that the 5 Vdc
regulated power supply is working properly.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
36 Introductio n an d Set up MOTOROL A
Introduction and Setup
Figure 1-8. Board Layout
A.C. JACK
RS-232
INTERFACE
SINGLE-PHASE
M1 CONNECTOR
SINGLE PHASE
M2 CONNECTOR
3-PHASE
MOTOR
CONNECTOR
HALL EFFECT
SENSORS CONNECTOR LCD
MAIN
EXTERNAL 18 VDC
SOURCE CONNECTOR TEMPERATURE
SENSOR
CONNECTOR
POWER ON
LED
ENTER
SWITCH
OPTIONS
SWITCH
RESET
SWITCH
EXTERN/INTERNAL
SOURCE SWITCH
SWITCH
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Operational Description 37
Designer Reference Manual — BLDC Motor Control Board
Section 2. Operational Description
2.1 Contents
2.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
2.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
2.4 User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
2.5 Connectors Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .41
2.5.1 J1 — AC Jack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
2.5.2 J2 — 3-Phase Motor Connector. . . . . . . . . . . . . . . . . . . . . .41
2.5.3 J3 — Single Phase Motor 1 Connector . . . . . . . . . . . . . . . .41
2.5.4 J4 — Temperature Sensor Connector . . . . . . . . . . . . . . . . .41
2.5.5 J5 — RS-232 Interface Connector. . . . . . . . . . . . . . . . . . . .42
2.5.6 J6 — External 18 Vdc Source Connector. . . . . . . . . . . . . . .42
2.5.7 J7 — Single Phase Motor 2 Connector . . . . . . . . . . . . . . . .42
2.5.8 J8 — Motor Hall Effect Sensor Connector . . . . . . . . . . . . . .42
2.2 Introduction
This section describes the electrical characteristics, user interfaces, and
connections for the BLDC (brushless dc motor) control board.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
38 Operational Description MOTOROLA
Operational Description
2.3 Electrical Characteristics
The electrical characteristics in Table 2-1 and Table 2-2 apply to
operation of the BLDC reference board at 25°C.
Table 2-1. Electrical Characteristics for 127 Vac Boar d Version
Inputs Min Typ Max Unit
AC input voltage 110 120 127 V RMS
AC input current 9 A RMS
Au xiliary dc input voltage 16 18 20 V
Au xiliary dc input current 150 mA
Minimum logic 1 input voltage 3.5 V
Maximum logic 0 input voltage 1.5 V
Motor output voltage 180 V RMS
Motor outp ut current 8 A RMS
RS-232 connection speed 9504 9600 9696 Baud
Table 2-2. Electrical Characteristics for 230 Vac Boar d Version
Inputs Min Typ Max Unit
AC input voltage 210 220 230 V RMS
AC input current 9 A RMS
Au xiliary dc input voltage 16 18 20 V
Au xiliary dc input current 150 mA
Minimum logic 1 input voltage 3.5 V
Maximum logic 0 input voltage 1.5 V
Motor output voltage 320 V RMS
Motor outp ut current 8 A RMS
RS-232 connection data rate 9504 9600 9696 Baud
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Operational Description
User Interfaces
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Operational Description 39
2.4 User Interfaces
The BLDC board user interface consists of a 16 x 2 line character liquid
crystal display (LCD), a LCD contrast potentiometer, a reset switch, a
jumper, two push buttons, a slide switch, an indicator light-emitting diode
(LED), and an optoisolated RS-232 interface.
D21: PWR ON — D21, labeled PWR ON, illuminates when power
is applied to the board.
JP1 — Jumper JP1 is a 3-position jumper header. When shorted
between position 1 and 2 the microcontroller is set to enter the
HC08 monitor mode. For more detailed information, refer to the
MC68HC908MR8 Technical Data (Motorola document order
number MC68HC908MR8/D).
LCD — A 16 characters per 2 lines liquid crystal display.
S5 — S5 is a slide switch located on the top-right side of the board.
It is used to select between external or internal input of power for
15 Vdc and 5 Vdc power supplies.
S1: RESET — S1, the RESET switch, is a push button located
near the right border of the board. It resets the microcontroller of
the board.
S2: OPTIONS — Push-button labeled OPTIONS scrolls all the
washing machine cycles programmed.
S3: ENTER — Push-button labeled ENTER selects the options
showed in the LCD.
J5 — An Optoisolated RS-232 interface, for monitor mode
communication with a host computer, is available via DB-9
connector J5.
After turning on the board, when the board is programmed with code
version “BLDC CODE V1.s19”, the first message displayed on the LCD
is “BLDC WASH”.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
40 Operational Description MOTOROLA
Operational Description
By pressing the push button labeled OPTIONS (S2) the following menu
options (defined in the following paragraphs) are displayed on the LCD:
“Fault Occurred!!!”
“Motor Stalled!!!”
“BLDC WASH”
“BLDC SPIN CW”
“BLDC SPIN CCW”
“SPEED DES +1980 CU +000”
“BLDC STOP”
“Fault Occurred!!!” is a message display when an over voltage or over
current has activated the FAULT1 input signal. The motor is stopped
when this happens and the message is displayed.
“Motor Stalled!!!” is a message displayed when the motor is stalled.
“BLDC WASH” option is the typical washing cycle. The motor rotates in
both directions, clockwise and counterclockwise. To produce this
movement of the motor a defined look-up table of desired speeds is
accessed continuously.
“BLDC SPIN CW” option makes the motor rotate in a clockwise direction.
It is applied as a starting curve table and then the speed is maintained at
a desired value programmed in software.
“BLDC SPIN CCW” option behaves similar to “BLDC SPIN CW” but in
counterclockwise direction.
“SPEED” option displays the desired speed (‘DES’) programmed in
software and the current speed (‘CU’), both in RPMs with a direction sign
(‘+’ or ‘–’) corresponding to either clockwise or counterclockwise
direction.
“BLDC STOP” option is intended to stop the motor.
When the push button labeled ENTER (S3) is pressed, the option
showed on the LCD is executed. For example, if the option “BLDC SPIN
CW” is displayed on the LCD and this button is pressed then the spin
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Operational Description
Connectors Pin De scriptions
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Operational Description 41
clockwise cycle starts. Stopping a washing cycle is accomplished by
selecting the option “BLDC STOP” by mean of OPTIONS button and
then pressing the ENTER button.
2.5 Connectors Pin Descriptions
The following subsections describe the connector pins.
2.5.1 J1 — AC Jack
2.5.2 J2 — 3-Phase Motor Connector
2.5.3 J3 — Single Phase Motor 1 Connector
2.5.4 J4 — Temperature Sensor Connector
Table 2-3. AC Jack Connector (J1)
Pin Number Name Description s
1Line Line signal
2Neutral Neutral signal
3GND Chassis ground
Table 2-4. 3-Phase Motor Connector (J2)
Pin Number Name Description
1Phase A Signal for phase A motor terminal
2Phase B Signal for phase B motor terminal
3Phase C Signal for phase C motor terminal
Table 2-5. Single-Phase Motor 1 Connector (J3)
Pin Number Name Description
1Phase B Signal for phase B motor terminal
2Phase C Signal for phase C motor terminal
Table 2-6. Temperature Sensor Connector (J4)
Pin Number Name Description
1VCC 5 Vdc output signal
2TEMPERATURE_SENSE DC input signal from
temperature sensor
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 B LDC Motor Control Board for Industrial and Appliance Applications
42 Operational Description MOTOROLA
Operational Description
2.5.5 J5 — RS-232 Interface Connector
2.5.6 J6 — External 18 Vdc Source Connector
2.5.7 J7 — Single Phase Motor 2 Connector
2.5.8 J8 — Motor Hall Effect Sensor Connector
Table 2-7. Optoisolated RS-232 DB-9 Connector (J5)
Pin Number Name Description
1Unused N/A
2RxD Data received by the PC from the control board
3TxD Data transmitted from the PC to the control board
4DTR Positive or negativ e voltage for communication
5GND Common ground reference
6Unused N/A
7RTS Negative or positive voltage for communication
8Unused N/A
9Unused N/A
Table 2-8. External 18 Vdc Source Connector (J6)
Pin Number Name Description
118 Vdc 18 Vdc signal from external source
2GND Common ground reference
Table 2-9. Single-Phase Motor 2 Connector (J7)
Pin Number Name Description
1Phase B Signal for phase B motor terminal
2Phase C Signal for phase C motor terminal
Table 2-10. Motor Hall Effect Sensors Connector (J8)
Pin Number Name Description
1GND GND
2VCC 5 Vdc output signal
3HALL_A Input signal from moto r Ha ll sens or A
4HALL_B Input signal from moto r Ha ll sens or B
5HALL_C Input signal from moto r Ha ll sens or C
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Schematics and Bill of Materials 43
Designer Reference Manual — BLDC Motor Control Board
Section 3. Schematics and Bill of Materials
3.1 Contents
3.2 Schematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
3.3 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
3.2 Schematics
A set of schematics for the BLDC (brushless dc motor) control board
appears in Figure 3-1 through Figure 3-5. Interrupted lines coded with
the same letters are electrically connected.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
44 Schematics and Bill of Materials MOTOROLA
Schematics and Bill of Materials
Figure 3-1. Power Supply
t
RT1
CL-40
-+
B2
GBPC2508W
F1
500mA
+
C1
(1500uF/250V @ 127VAC) (560uF/400V @ 230VAC)
C5
0.1uF/50V
C19
100nF/25V
T1
(SW-328 @ 127VAC) (DSW-328 @ 230VAC)
1
4
3
2
5
6
7
8
C45
100nF / 16V
C46
22nF / 400V
+
C50
470uF/10V
R52
(47K/1W @ 127VAC) (150K/1W @ 230VAC)
J1
PLUG AC
1 2
3
J6 1
2
S4
10A F2
7A Fast Acting
R7
(BC1429-ND @ 127VAC) (BC1432-ND @ 230VAC)
-+
B1
1KAB05E-ND
EXTERNAL_POWER_SUPPLY_CONNECTOR
S5
C2
22nF / 400V
C39
22nF / 400V
+
C6
470uF/25V
IC2
MC78M15CDT
IN
1OUT 3
GND
2
IC3
MC33269DT-5.0
IN
1OUT 3
GND
2
+
C4
470uF/25V
C47
0.1 uF
V_BUS
+15V
VCC
R40
330
D21
GREEN
C49
0.1 uF
C48
0.1 uF
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Schematics and Bill of Materials 45
Schematics and Bill of Materials
Schematics
Figure 3-2. MCU
R48
100K
VCC R22
10K
R3 20K
Q7
2N2222
R33 4.7
D2
1N4148
JP1
1x3 PIN HEADER
J5
5
9
4
8
3
7
2
6
1
S3
ENTER
J8
5
4
3
2
1
VCC
R30
10k
R57
1K
I_SENSE
TxD
RxD
IC8
LTV-827S
3
4
6
5
1
2 7
8
D9 1N4148
FAULT
D3 1N4148
ENABLE
RS
RS ENABLE
D4 1N4148
D1 1N4148
S2
OPTIONS
R34
2.2K
V_SENSE
TEMPERATURE_SENSE
+
C18
10uF/35V
+
C17
10uF/35V
HALL_EFFECT_CONN
R60
1K
VCC
VCC
IC9
MC68HC908MR8
VSSA
1
OSC2
2
OSC1
3
CGMXFC
4
/IRQ
5
PWM1
6
PWM2
7
PWM3
8
PWM4
9
PWM5
10
PWM6
11
PTC0/FAULT1
12
PTC1/FAULT4
13
PTB0/RxD
14
PTB1/TxD
15
PTB2/TCLKA
16
PTB3/TCH0A 17
PTB4/TCH1A 18
VDD 19
VSS 20
PTB5/TCH0B 21
PTB6/TCH1B 22
PTA0/ATD0 23
PTA1/ATD1 24
PTA2/ATD2 25
PTA3/ATD3 26
PTA4/ATD4 27
PTA5/ATD5 28
VREFH 30
/RST 31
PTA6/ATD6 29
VDDA 32
C16
0.47uF/10V
VCC
VCC
GND
HALL_C
HALL_B
HALL_A
R26
1K R27
1K R28
1K
R55
100
R54
100
R53
100
C34
10nF
C35
10nF
C36
10nF
X1
4MHz R24
10M
VCC
C13
15pF
C14
15pF
C12
0.1uF
VCC
DTR
GND
RxD
RTS
TxD
+15V R39
2.2k
C32
0.1uF D20
8.2V
C15
0.02uF
VCC
C11
0.1uF
R23
10k
S1
Reset
VCC
C52
0.47uF/10V
PWM_AT
PWM_BT
PWM_BB
PWM_AB
PWM_CT
PWM_CB
+
C42
10uF/10V
LCD
1x14 PIN HEADER
1
2
3
4
5
6
7
8
9
10
11
12
13
14
R29
10K
R41
330
VCC
R4
1K
VCC
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
46 Schematics and Bill of Materials MOTOROLA
Schematics and Bill of Materials
Figure 3-3. Gate Driver
R56
10K R49
10K
R51
10K R50
10K
R58
10K R59
10K
C51
1nF C57
1nF
C55
1nF C56
1nF
C54
1nF C53
1nF
IC4
IR2101/SO
VCC
1
HIN
2
LIN
3
COM
4
LO 5
VS
6
HO 7
VB
8
+15V
+15V
+15V
C24
0.1uF
C27
0.1uF
C8
0.1uF
+
C23
33uF/50V
+
C26
33uF/50V
+
C9
33uF/50V
C31
0.47uF/25V
C29
0.47uF/25V
C30
0.47uF/25V
IC5
IR2101/SO
VCC
1
HIN
2
LIN
3
COM
4
LO 5
VS
6
HO 7
VB
8
IC1
IR2101/SO
VCC
1
HIN
2
LIN
3
COM
4
LO 5
VS
6
HO 7
VB
8
C22
0.47uF/25V
C25
0.47uF/25V
C10
0.47uF/25V
SOURCE_COM
SOURCE_COM
R36
600
R46
75
R47
75
R35
600
D13
MBRS130CT
D11
MBRS130CT
D23 MURA160T3 GATE_AB
GATE_AT
SOURCE_AT
GATEBB
SOURCE_COM
D14 MURA160T3
SOURCE_BT
GATE_BT
GATE_CB
SOURCE_CT
GATE_CT
D19 MURA160T3
PWM_AB
PWM_AT
PWM_BT
PWM_BB
PWM_CB
PWM_CT
R38
600
R43
75
R42
75
R37
600
D18
MBRS130CT
D16
MBRS130CT
R20
600
R45
75
R44
75
R21
600
D5
MBRS130CT
D7
MBRS130CT
D12
MMSZ5248BT1
D10
MMSZ5248BT1
D17
MMSZ5248BT1
D15
MMSZ5248BT1
D6
MMSZ5248BT1
D8
MMSZ5248BT1
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Schematics and Bill of Materials 47
Schematics and Bill of Materials
Schematics
Figure 3-4. 3-Phase H-Bridge
Q1
IRFB17N50L
Q2
IRFB17N50L
Q3
IRFB17N50L
Q4
IRFB17N50L
Q5
IRFB17N50L
Q6
IRFB17N50L
J3
1
2
GATE_AT GATE_BT
GATE_AB GATE_BB
GATE_CT
GATE_CB
SINGLE_PHASE2_CONNECTOR
SINGLE_PHASE1_CONNECTOR
3_PHASE_CONNECTOR
SOURCE_COM
SOURCE_AT SOURCE_BT SOURCE_CT
J2
3
2
1
PHASE_A
PHASE_B
PHASE_C
V_BUS
PHASE_BPHASE_A PHASE_C
R19
0.005 Ohms / 3 Watts / 1%
SHUNT_+
SHUNT_-
J7
1
2
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
48 Schematics and Bill of Materials MOTOROLA
Schematics and Bill of Materials
Figure 3-5. Current and Voltage Sense
Q8
2N2222
R8
10K
VCC
C38
15pF
FAULT
R14
15K
C43
68pF
C44
15pF
R25
500K 1% R9
10K 1%
R32
1K
VCC
V_BUS
SHUNT_-
SHUNT_+
R12
(10k 1% @ 127VAC) (2.5k 1% @ 230VAC)
R11
10k 1%
R13
100
TEMPERATURE_CONNECTOR
-
+
IC7A
LM393D
3
21
8 4
+15V
VCC
R31
8.25k 1%
R1
10K
VCC
C40
0.1uF
C20
10pF
C21
22pF
TEMPERATURE_SENSE
C41
0.1uF
VCC VCC
C33
0.1uF
D22
1N5817MCT-ND
C37
20nF R2
10K
V_SENSE
-
+
IC6A
MC33502D
3
21
84
-
+
IC6B
MC33502D
5
67
84
R17
1K 1%
R18
1K 1%
C3
0.1uF
J4
1
2
R15
100K 1%
R16
100K 1%
R10
500K 1%
C7
15pF
-
+
IC7B
LM393D
5
67
8 4
+15V
I_SENSE
VCC
R5
2.5K 1%
R6
10K 1%
C28
22pF
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Schematics and Bill of Materials
Bill of Materials
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Schematics and Bill of Materials 49
3.3 Bill of Materials
The BLDC for Washing Machines Motor Controller Board Bill of
Materials (BOM) 127 Vac version is described in Table 3-1. The
230 Vac board version has only five components different from 127 Vac
version, Table 3-2 shows those changes.
Table 3-1. Bill of Materials for 127 Vac Board (Sheet 1 of 5)
Qty Value Description Label Manufacturer Part Number Distributor Distributor
Part Number
Diode Bridges
1 1.2 A 1.2 A Rectifier B1 International Rectifier 1KAB05E Digikey 1KAB05E-ND
1 25 A 25 A Rectifier B2 International Rectifier GBPC2508W Digikey GBPC2508W-ND
Capacitors
1 1500 uF / 250v Large Can Aluminum
Electrolytic Capacitors C1 Panasonic ECOS2EP152EA Digikey P7413-ND
6 0.47 uF / 25v Ceramic Capacitor (1206) C10, C22,
C25, C29,
C30, C31 Panasonic - ECG ECJ-3YB1E474K Digikey PCC1891TR-ND
5 15 pF Ceramic Capacitor (0805) C7, C13,
C14, C38,
C44 Yageo America 0805CG150J9B2 00 Digikey 311-1101-1-ND
2 0.02 uF Ceramic Capacitor (0805) C15, C37 Panasonic - ECG ECJ-2VB1H223K Digikey PCC223BGCT-ND
1 0.47 uF/10v Ceramic Capacitor (0805) C16 P anasonic - ECG ECJ-2YB1C474K Digikey PCC1818CT-ND
2 10 uF / 35v CPOL-USCT3216 C17, C18 Panasonic - ECG EEV-HA1V100WR Digikey PCE3299TR-ND
3 0.022 uF / 400v Large Ceramic Capacitor C2, C39,
C46 Vishay / Sprague 225P22394XD3 Newark 47F143
1 10 pF Ceramic Capacitor (0805) C20 Yageo America 0805CG100J9B200 Digikey 311-1099-1-ND
2 22 pF Ceramic Capacitor (0805) C21, C28 Yageo America 0805CG220J9B200 Digikey 311-1103-1-ND
15 0.1 uF Ceramic Capacitor (0805)
C3, C8,
C11, C12,
C19, C24,
C27, C32,
C33, C40,
C41, C45,
C47, C48,
C49
Panasonic - ECG ECJ-2VB1E104K Digikey PCC1828TR-ND
3 10 nF Ceramic Capacitor (0805) C34, C35,
C36 Panasonic - ECG ECJ-2VB1H103K Digikey PCC103BNCT-ND
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
50 Schematics and Bill of Materials MOTOROLA
Schematics and Bill of Materials
6 1 nF Ceramic Capacitor (0805) C51, C53,
C54, C55,
C56, C57 Yageo America 0805CG102J9B2 00 Digikey 311-1122-1-ND
2 470 uF / 25v Electrolitic Capacitor C4, C6 Panasonic - ECG EEV-FK1V471Q Digikey PCE3464CT-ND
1 10 uF / 10v Electrolitic Capacitor C42 Panasonic - ECG ECE-V1AA100NR Digikey PCE3125CT-ND
1 68 pF Ceramic Capacitor (0805) C43 Panasonic - ECG ECJ-2VC1H680J Digikey PCC680CGCT-ND
1 0.1 uF / 50v Ceramic Capacitor (0805) C5 Panasonic - ECG ECJ-2YB1H104K Digikey PCC1840CT-ND
1 470 uF / 10v POL-CAPF C50 Panasonic - ECG EEV-FK1A471P Digikey PCE3392CT-ND
1 0.47 uF / 10v Ceramic Capacitor (0805) C52 Panasonic - ECG ECJ-2YF1E474Z Digikey PCC1857CT-ND
3 33 uF / 50v CPOL-USCT7343 C9, C23,
C26 Kemet T491X336K025AS Newark
Diodes
5 LL4148 LL4148 D1, D2, D3,
D4, D9 Diodes Inc. LL4148
3 MURA160T3 SCHOTTKY_SMA D14, D19,
D23 ON MURA160T3
1 MMSZ5237BT1 Zener Diode 8.2 v D20 ON MMSZ5237BT1
1 Green SMD Green Led D21 Stanley Electric Sales
of America DG1112H-TR Digikey 404-1026-2-ND
1 1N5817MCT Schottky - 20v / 1A D22 Diodes Inc. 1N5817M Digikey 1N5817MCT-ND
6 MBRS130LT SCHOTTKY_SMB D5, D7,
D11, D13,
D16, D18 International Rectifier MBRS130LTR Digikey MBRS130LCT-ND
6MMSZ5248BT1 Zener Diode 18 v D6, D8,
D10, D12,
D15, D17 ON MMSZ5248BT1 Diodes Inc SMAZ18-13
Fuses
1 500 mA SMT SM-FUSESM F1 Bourns MF-SM050
1 10 Amp FUSE22 F2 Schurterinc OGD 0031.8231
Integrated Circuits
3 IR2101S IC1, IC4,
IC5 International Rectifier IR2101S Digikey IR2101S-ND
1MC78M15CDT Voltage Regulator 15v /
500mA IC2 ON MC78M15CDT
1 MC33269DT-5.0 Voltage Regulator 5v /
800mA IC3 ON MC33269DT-5.0
1 MC33502D Dual Operational Amplifier IC6 ON MC33502D
Table 3-1. Bill of Materials for 127 Vac Board (Sheet 2 of 5)
Qty Value Description Label Manufacturer Part Number Distributor Distributor
Part Number
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Schematics and Bill of Materials
Bill of Materials
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Schematics and Bill of Materials 51
1LM393D Low Offset Voltage
Comparator IC7 ON LM393D
1 LTV-827S Optoisolator SMD IC8 Lite-On Inc. LTV-827S Digikey 160-1369-5-ND
Connectors
1 AC_jack AC Power Connector J1 SCHURTER GSP2.9213.13 Newar k 32C1691
1 66503 66503 J2 MOLEX/WALDOM 66503 Newark 29B3093
2 6650202 6650202 J3, J7 MOLEX/WALDOM 66502 Newark 29B3092
1 S02P J4 TYCO
ELECTRONICS 640456-2 Newark 90F4250
1 FDB9 DB9 / Female connector J5 CINCH DEKL-9SAT-F Newark 95F4126
1 W237-102 J6 TYCO
ELECTRONICS 796949-2 Newark 34C9478
1 S05P J8 TYCO
ELECTRONICS 640456-5 Newark 90F5643
Jumpers
1 JP2E JP1 SPC CONNECTORS 8431-0721 Newark 16N2602
LCD
1 LCD_OPTREXN LCD LUMEX LCM-S01602DTR/A Digikey 67-1779-ND
Microcontroller
1 HC908MR8 Microcontroller MC68HC90
8MR8 Motorola MC68HC908MR8
Transistors
6 IRFPC40VH Power Mosfet 500V 17A Q1, Q2,
Q3, Q4,
Q5, Q6 International Rectifier IRFB17N50L Newark 33C4970
2 MMBT2222AL NPN transistor 2N2222AL Q7, Q8 ON MMBT2222AL
Resistors
16 10 K Resistor (0805)
R1, R2, R8,
R22, R23,
R26, R27,
R28, R29,
R30, R49,
R50, R51,
R56, R58,
R59
Yageo America 9 C0 805 2A1002FKHFT Digikey 311-10.0KCCT- ND
2 500 k / 1% Resistor (0805) R10, R25 Yageo America 9C08052A4993FKHFT Digikey 311-499KCCT-ND
1 10 k / 1% Resistor (0805) R11 Yageo America 9C08052A1002FKHFT Digikey 311-10.0KCCT-ND
Table 3-1. Bill of Materials for 127 Vac Board (Sheet 3 of 5)
Qty Value Description Label Manufacturer Part Number Distributor Distributor
Part Number
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
52 Schematics and Bill of Materials MOTOROLA
Schematics and Bill of Materials
4 100 Resistor (0805) R13, R53,
R54, R55 Yageo Amer ic a 9C08052A1000FKHFT Digikey 311-100CCT-ND
1 15 K Resistor (0805) R14 Yageo America 9C08052A1502FKHFT Digikey 311-15.0KCCT-ND
2 100 K / 1% Resistor (0805) R15, R16 Yageo America 9C08052A1652FKHFT Digikey 311-16.5KCTR-ND
2 1 K / 1% Resistor (0805) R17, R18 Yageo America 9C08052A1001FKHFT Digikey 311-1.00KCCT-ND
1 .005 / 3w / 1% Shunt Resistor R19 IRC OAR-3 0.005 1% Future Electronics
4 1K Resistor (0805) R4, R32,
R57, R60 Yageo America 9 C0 805 2A1001FKHFT Digikey 311-1.00KCCT- ND
6 600 Resistor (0805) R20, R21,
R35, R36,
R37, R38 Yageo Amer ic a 9C08052A6040FKHFT Digikey 311-604CCT-ND
1 10 M Resistor (0805) R24 Yageo America 9C08052A1005FKHFT Digikey 311-10.0MCCT-ND
1 8.25 K / 1% Resistor (0805) R31 Yageo America 9C08052A8251FKHFT Digikey 311-8.25KCCT-ND
1 4.7 Resistor (0805) R33 Yageo America 9C08052A4R70JLHFT Digikey 311-4.7ACT-ND
2 2.2 K Resistor (0805) R34, R39 Yageo America 9C08052A2201FKHFT Digikey 311-2.20KCCT-ND
2 330 Resistor (0805) R40, R41 Yageo America 9C08052A3300FKHFT Digikey 311-330CCT-ND
6 75 - 1/4 w Resistor (1206) R42, R43,
R44, R45,
R46, R47 Yageo Amer ic a 9C12063A1200FKHFT Digikey 311-120F CT-ND
1 100 K Resistor (0805) R48 Yageo America 9C08052A1003FKHFT Digikey 311-100KCTR-ND
1 2.5 K / 1% Resistor (0805) R5 Yageo America 9C08052A2501FKHFT Digikey 311-2.50KCCT-ND
1 47k / 1w Resistor (2512) R52 Panasonic - ECG ERJ-1TYJ473U Digikey PT47KXCT-ND
3 10 K / 1% Resistor (0805) R6, R9,
R12 Yageo America 9 C0 805 2A1002FKHFT Digikey 311-10.0KCCT- ND
Varistor
1 Varistor 150v RMS R7 BC Components 2322 594 51516 Digikey BC1429-ND
NTC
1 CL40 Disc thermistor RT1 NTC Thermistors CL40
Potentiometer
1 20 K Trimmer R3 Copal Electronics ST4TA203 Digikey ST4A203TR-ND
Switches
1 RESET Push Button S1 E-switch TL59FF260Q Newa rk
2 Push Button S2, S3 E-switch TL59FF260Q Newark
1CKDFA Main Switch Power
Supply S4 C&K COMPONENTS DF62J12S2APQF Newark 91F4835
1 Slide Switch S5 C&K COMPONENTS CK1101M2S3CQE2
Table 3-1. Bill of Materials for 127 Vac Board (Sheet 4 of 5)
Qty Value Description Label Manufacturer Part Number Distributor Distributor
Part Number
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Schematics and Bill of Materials
Bill of Materials
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Schematics and Bill of Materials 53
Transformer
1 328SW Side-Winder Transformer T1 Stancor SW-328
Test Points
1 VCC Test Point - Vcc TP1 Keystone Electronics 5000 Newark 52F7 277
1 15V Te st Point - 15v TP2 Keystone Electronics 5000 Newark 52F7277
1 DGND Test Po int - DGND TP3 Keystone Electronics 5001 Newark 52F7278
1 AGND Test Point - AGND TP4 Keystone Electronics 5001 Newark 52F7278
1 VBUS Test Point - VBUS TP5 Keystone Electronics 5000 Newark 52F7 277
1 C Test Point - Hall Sensor C TP6 Keystone Elec tronic s 5002 Newark 52F7 279
1 B Test Point - Hall Senso r B TP7 Keystone Electronics 5003 Newark 52F7280
1 A Test Point - Hall Senso r A TP8 Keystone Electronics 5004 Newark 52F7281
Heat Sink
1 Heatsink U1 Aavid Thermalloy 780103B04500
Crystal
1 4 MHz 4 MHz crystal X1 CTS-Frequency
Controls ATS040SM Digikey CTX502-ND
Table 3-1. Bill of Materials for 127 Vac Board (Sheet 5 of 5)
Qty Value Description Label Manufacturer Part Number Distributor Distributor
Part Number
Table 3-2. Bill of Material Changes for 230 Vac Board
Qty Value Description Label Manufacturer Part
Number Distributor Distributor
Part Number
Capacitor
1560 mF/400 V Large Can Aluminum Electrolytic
Capacitors C1 Panasonic ECOS2GP1561EA Digikey P6157-ND
Resistors
12.5 K/1% Resistor (0805) R12 Yageo America 9C08052A2501FKHFT Digikey 311-2.50KCCT-ND
1150 K/1 W Resistor (2512) R52 Panasonic – ECG ERJ-1TYJ154U Digikey PT150KXCT-ND
Varistor
1Varistor 250 V RMS R7 BC Components 2322 594 52516 Digikey BC1432-ND
Transformer
1328 DSW Dual Side-Winder Transformer T1 Stancor DSW-328
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
54 Schematics and Bill of Materials MOTOROLA
Schematics and Bill of Materials
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Hardware Design Considerations 55
Designer Reference Manual — BLDC Motor Control Board
Section 4. Hardware Design Considerations
4.1 Contents
4.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
4.3 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
4.4 RS-232 interface and MON08 Hardware Interface. . . . . . . . . .58
4.5 Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
4.6 Hall-Effect Sensors Interface . . . . . . . . . . . . . . . . . . . . . . . . . .60
4.7 LCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
4.8 Reset Button. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
4.9 3-Phase H-Bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
4.10 Current Feedback and Cycle-by-Cycle Limiting . . . . . . . . . . . .64
4.11 Voltage Feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
4.12 Current and Voltage Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . .68
4.13 Heat Sink Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
56 Hardware Design Considerations MOTOROLA
Hardware Design Considerations
4.2 Introduction
The hardware for motor control developed for the reference design has
the power output for the motor, and the microcontroller on the same
board. In addition to the hardware that is needed to run the motor, a
variety of feedback signals that facilitate control algorithm development
are included.
4.3 Power Supply
The main power input to the board is through a power jack (J1). From
this power input, V_BUS signal is generated. This voltage (V_BUS) is
generated through a rectifier bridge (B2). To minimize the effects of the
in-rush current when S4 is turned on, a NTC (RT1) was placed to slowly
charge V_BUS capacitor (C1). When S4 is turned OFF, C1 is sometimes
charged (depending on last system operation). To avoid any risk, a
discharge resistor (R52) is connected in parallel to C1. See Figure 4-1.
NOTE: There is also an Overvoltage (R7) and an Overcurrent (F2) protection.
Figure 4-1. V_BUS Power Supply
J1
PLUG AC
1 2
3
S4
10A F2
7A Fast Acting
R7
(BC1429-ND @ 127VAC) (BC1432-ND @ 230VAC)
C2
22nF / 400V
C39
22nF / 400V
t
RT1
CL-40
- +
B2
GBPC2508W
+
C1
(1500uF/250V @ 127VAC) (560uF/400V @ 230VAC)
C46
22nF / 400V
R52
(47K/1W @ 127VAC) (150K/1W @ 230VAC)
V_BUS
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Hardware Design Considerations
Power Supply
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Hardware Design Considerations 57
From the line input jack (J1) the low voltage power supplies (5 Vdc and
15 Vdc) are derived. These power supplies are generated using voltage
regulators (IC2 and IC3). To help developers vary V_BUS voltage using
a variable transformer in J1 and also let them program the
microcontroller without having the power-stage turned on (V_BUS),
an alternate Vdc power supply can be connected (J6) to keep 5 Vdc and
15 Vdc on the board when varying AC voltage in J1. To enable this
external power supply, S5 slide switch must be turned to “EXT” position.
A green LED (D21) was included to show proper +5 Vdc power supply
operation. See Figure 4-2.
Figure 4-2. 15 Vdc and 5 Vdc Power Supplies
t
RT1
CL-40
- +
B2
GBPC2508W
F1
500mA
+
C1
(1500uF/250V @ 127VAC) (560uF/400V @ 230VAC)
C5
0.1uF/50V
C19
100nF/25V
T1
(SW-328 @ 127VAC) (DSW-328 @ 230VAC)
1
4
3
2
5
6
7
8
C45
100nF / 16V
C46
22nF / 40 0 V
+C50
470uF/10V
R52
(47K/1W @ 127VAC) (150K/1W @ 230VAC)
J1
PLUG AC
1 2
3
J6 1
2
S4
10A F2
7A Fast Acting
R7
(BC1429-ND @ 127VAC) (BC1432-ND @ 230VAC)
- +
B1
1KAB05E-ND
EXTERNAL_POWER_SUPPLY_CONNECTOR
S5
C2
22nF / 400V
C39
22nF / 400V + C6
470uF/25V
IC2
MC78M15CDT
IN
1 OUT 3
GN
D
2
IC3
MC33269DT-5.0
IN
1OUT 3
GN
D
2
+C4
470uF/25V
C47
0.1 uF
V_BUS
+15V
VCC
R40
330
D21
GREEN
C49
0.1 uF
C48
0.1 uF
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
58 Hardware Design Considerations MOTOROLA
Hardware Design Considerations
4.4 RS-232 interface and MON08 Hardware Interface
The board provides an RS-232 interface by the use of an optoisolator
referenced at 5 Vdc voltage level (IC8). This topology lets the user
program the microcontroller using the MON08 interface, and
communicate via the RS-232 interface when operating in run mode. This
topology also, allows operating the board ground at a different level than
the PC (or RS-232 device), avoiding the risk of damaging the board or
the PC. See Figure 4-3.
Figure 4-3. RS-232 and MON08 Interfaces
R48
100K Q7
2N2222
D2
1N4148
5
9
4
8
3
7
2
6
1
R57
1K
TxD
RxD
IC8
LTV-827S
3
4
6
5
1
2 7
8
D9 1N4148
D3 1N4148
D4 1N4148
D1 1N4148
R34
2.2K
+C18
10uF/35V +C17
10uF/35V
R60
1K
VCC
IC9
MC68HC908MR8
/IRQ
5
PTB0/RxD
14
PTB1/TxD
15
DTR
GND
RxD
RTS
TxD
JP1
1x3 PIN HEADER
S3
ENTER
VCC
R30
10k
+15V R39
2.2k
C32
0.1uF D20
8.2V +
C42
10uF/10V
R41
330
VCC
R4
1K
VCC
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Hardware Design Considerations
Clock Source
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Hardware Design Considerations 59
4.5 Clock Source
The board uses a 4.00-MHz crystal (X1) connected to microcontroller’s
oscillator inputs (OSC1 and OSC2). The MC68HC908MR8 uses its
internal phase-locked loop (PLL) to multiply the input frequency in order
to achieve its 8 MHz maximum operating frequency. See Figure 4-4.
Figure 4-4. Clock Source
IC9
MC68HC908MR8
OSC2
2
OSC1
3
X1
4MHz R24
10M
C13
15pF
C14
15pF
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
60 Hardware Design Considerations MOTOROLA
Hardware Design Considerations
4.6 Hall-Effect Sensors Interface
The board contains a Hall-effect interface connected to the
microcontroller’s timer A (channel 1) and timer B (channel 0 and
channel 1) port signals, TCH1A, TCH0B, and TCH1B. The circuit is
designed to accept +5.0 V Hall-effect sensor inputs. Input noise filtering
is supplied on the input path for the Hall-effect interface. Figure 4-5
shows the hardware interface.
Figure 4-5. Hall-Effect Sensors Interface
J8 5 4 3 2 1
HALL_EFFECT_CONN
IC9
MC68HC908MR8
PTB4/TCH1A 18
PTB5/TCH0B 21
PTB6/TCH1B 22
CB A
R26
1K R27
1K R28
1K
R55
100
R54
100
R53
100
C34
10nF C35
10nF C36
10nF
VCC
VCC
C52
0.47uF/10V
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Hardware Design Considerations
LCD Interface
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Hardware Design Considerations 61
4.7 LCD Interface
The board contains an LCD as main user interface feedback. The LCD
contains an internal driver. The display is controlled and managed by the
microcontroller through it’s port signals. Figure 4-6 shows the hardware
interface.
Figure 4-6. LCD Interface
4.8 Reset Button
The board contains a reset button (RESET). This button is directly
connected to the microcontroller’s reset pin which causes an external pin
reset to the microcontroller. Figure 4-7 shows the hardware interface.
Pulling the asynchronous RST pin low halts all processing. The PIN bit
of the SIM reset status register (SRSR) is set as long as RST is held low
for a minimum of 67 CGMXCLK cycles, assuming that neither the
power-on reset (POR) nor the low-voltage inhibit (LVI) was the source of
the reset. Refer to Table 4-1 detailed inf o rm ation on PIN bit set timing
and to Figure 4-8 for the relative timing.
VCC R22
10K
R3 20K
IC9
MC68HC908MR8
PTC1/FAULT4 13
PTB2/TCLKA 16
PTA0/ATD0 23
PTA1/ATD1 24
PTA2/ATD2
25
PTA3/ATD3
26
LCD
1x14 PIN HEADER
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
62 Hardware Design Considerations MOTOROLA
Hardware Design Considerations
Figure 4-7. Reset Button
Figure 4-8. External Reset Timing
Table 4-1. PIN Bit Set Timing
Reset Type Number of Cycles Required
to Set PIN
POR/LVI 4163 (4096 + 64 + 3)
All Others 67 (64 + 3)
IC9
MC68HC908MR8
/RST
31
VCC
C11
0.1uF
R23
10k
S1
Reset
RST
IAB PC VECT H VECT L
CGMOUT
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Hardware Design Considerations
3-Phase H-Bridge
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Hardware Design Considerations 63
4.9 3-Phase H-Bridge
The power output is configured as a 3-phase MOSFET inverter with
free-wheeling diodes. The gate drivers of the MOSFETs are integrated
circuits for high and low side gate drivers with high voltage capability.
The gate drivers have a minimum logic 1 input of 3 volts and a maximum
logic 0 input voltage of 0.8 volts. A schematic of one of the three phases
and its corresponding gate driver circuitry is shown in Figure 4-9.
Figure 4-9. Phase C Output and Gate Driver
D6
MMSZ5248BT1
D8
MMSZ5248BT1
Q5
IRFB17N50L
Q6
IRFB17N50L
GATE_CT
GATE_CB
SOURCE_CT
SOURCE_COM
PHASE_C
V_BUS
R19
0.005 Ohms / 3 Watts / 1%
SHUNT_-
SHUNT_+
R58
10K R59
10K
C54
1nF C53
1nF
+15V
C8
0.1uF
+
C9
33uF/50V
C30
0.47uF/25V
IC1
IR2101/SO
VCC
1
HIN
2
LIN
3
COM
4
LO 5
VS
6
HO 7
VB
8
C10
0.47uF/25V
SOURCE_COM
SOURCE_CT
GATE_CB
GATE_CT
D19 MURA160T3
PWM_CT
PWM_CB
R20
600
R45
75
R44
75
R21
600
D5
MBRS130CT
D7
MBRS130CT
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
64 Hardware Design Considerations MOTOROLA
Hardware Design Considerations
As a protection for power transitions of the microcontroller’s power
supply, there are pull-down resistors R58 and R59. So, the MOSFETs
are not triggered during transitions.
The gate drive circuit has two different impedance output values, one for
turn-on time and other for turn-off time for each of the power transistors,
TOP and BOTTOM in each phase. This is possible using D7 and D5 for
the turn-off impedances of the transistors per phase. The turn-on
impedance is given by R20 and R21 respectively, and the turn-off
impedance is given by the parallel connection of R44||R21 and R45||R20
respectively. With the values displayed in the schematic, the turn-on
time is 800 ns, and the turn-off time is 600 ns with the IRFB17N50L
MOSFET.
In the software for this reference design, deadtime is fixed to 2 µs. This
gives enough time for the transistors to change their state of
conductance with no short circuit of the phase output.
The bootstrap capacitor C10 is used to turn-on the TOP transistor
without a charge pump circuitry. Turning on the lower transistors first is
recommended in order to charge this bootstrap capacitor each time the
motor is initially energized.
4.10 Current Feedback and Cycle-by-Cycle Limiting
The 3-phase current is sensed by resistor R19 in Figure 4-9, and
amplified by a differential amplifier shown in Figure 4-10. The circuit
provides an amplified voltage of the chopped current of the inverter.
The output of the amplifier represents 0.5 volts per ampere in the shunt
resistor (R19). The MC33502 OPAMP was used for this amplifier circuit.
At this point, for current sensing within the microcontroller the ADC
conversion must be synchronized with the PWM module. That is why a
peak detector circuit was implemented to have a suitable current
waveform for sensing.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Hardware Design Considerations
Current Feedback and Cycle-by-Cycle Limiting
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Hardware Design Considerations 65
Figure 4-10. Current Differential Amplifier
This peak detector is shown in Figure 4-11. Consisting of a voltage
follower configuration with diode output for detecting peaks in the input
signals.
Figure 4-11. Current Peak Detector for Current Sensing
R19
0.005 Ohms / 3 Wa tts / 1%
VCC C33
0.1uF
-
+
IC8A
MC33502D
3
21
8
4
R17
1K 1%
R18
1K 1% R15
100K 1%
R16
100K 1%
SHUNT_AMP_CURRENT
Q7
IRFB17N50L
Q9
IRFB17N50L
GATE_CB
SOURCE_COM
GATE_CT
SOURCE_CT
V_BUS
R13
100
VCC
D22
1N5817MCT-ND
C37
20nF R2
10K
-
+
IC6B
MC33502D
5
67
84
C7
15pF
SHUNT_AMP_CURRENT I_SENSE
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
66 Hardware Design Considerations MOTOROLA
Hardware Design Considerations
This peak is stored in capacitor C37 when current flows through R19.
When the MOSFETs are switched off, the voltage stored in C37 starts to
discharge through R2.
The output of the peak detector is connected to a comparator for the
cycle-by-cycle current limiting. The FAULT1 input signal of the
microcontroller is used for limiting the current. The FAULT configuration
in the MCU CONFIG register is set to automatic operation; so,
cycle-by-cycle current limiting is accomplished.
The current limiter is shown in Figure 4-12. A LM393 was used for this
purpose. The output of this current limiter is an open collector, so
multiple inputs of limiting can be possible using only one FAULT input
signal of the microcontroller.
Figure 4-12. Cycle-by-Cycle Current Limiter
C44
15pF
R32
1K
-
+
IC7B
LM393D
5
67
8 4
+15V
VCC
R5
2.5K 1%
R6
10K 1%
C28
22pF
I_SENSE
I_LIMIT_OC
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Hardware Design Considerations
Voltage Feedback
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Hardware Design Considerations 67
4.11 Voltage Feedback
Bus voltage is scaled down by a voltage divider consisting of R25, R10,
and R9. The values are chosen such that a 500-volt maximum bus
voltage corresponds to 5 volts at output V_SENSE. So,
V_SENSE = V_BUS / 100.
For V_BUS FAULT there are two different values, depending on the
reference board. For the 115 Vac reference design board, the value is
chosen for 250 Vdc maximum, and 400 Vdc maximum for the 230 Vac
reference design board. The LM393 is used for the voltage FAULT
signal, which is shared with the current FAULT signal of the circuit shown
in Figure 4-12. The voltage feedback circuitry and voltage FAULT
detector (V_LIMIT_OC) is shown in Figure 4-13.
Figure 4-13. Voltage Feedback and Fault Detector
V_LIMIT_OC
R14
15K
C43
68pF
R25
500K 1% R9
10K 1%
VCC
V_BUS
R12
(10k 1% @ 127VAC) (2.5k 1% @ 230VAC)
R11
10k 1%
-
+
IC7A
LM393D
3
21
8 4
+15V
C20
10pF
C21
22pF
V_SENSE
C3
0.1uF
R10
500K 1%
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
68 Hardware Design Considerations MOTOROLA
Hardware Design Considerations
4.12 Current and Voltage Limiter
The circuit is shown in Figure 4-14. FAULT is signal connected to the
FAULT1 pin of the microcontroller. This input of the microcontroller is
used for limiting current and voltage. When either input of the FAULT is
in logic 0 state, the transistor Q8 is switched off and the FAULT signal
will be set to logic 1.
Figure 4-14. Current and Voltage Limiter
4.13 Heat Sink Selection
A recommended application note written by the manufacturer of the heat
sink used in this board for selecting a heat sink can be found on the
World Wide Web at:
http://www.aavidthermalloy.com/technical/papers/pdfs/select.pdf
The thermal model of a semiconductor with heat sink is:
Where:
RSDA Thermal impedance of selected heat sink
TJMAX MOSFET junction maximum temperature
TAAmbient temperature
PDMOSFET power
RSJC MOSFET thermal impedance junction to case
RSCD Thermal impedance of the thermal conductive tape
Q8
2N2222
VCC
R8
10K
C38
15pF
FAULT
R1
10K
VCC
I_LIMIT_OC
V_LIMIT_OC
()
CDJC
D
AJ
DA RR
P
TT
RMAX
ϑϑϑ
=
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Hardware Design Considerations
Heat Sink Selection
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Hardware Design Considerations 69
The values for the components selected on this board are:
Heat sink (part number: 780103B04500):
RSDA = 1.45 °C-in2 /W
MOSFET (part number: IRF17N50L):
RSJC = 0.75 °C-in2 /W
Thermally conductive tape (part number: 8805):
RSCD = 0.50 °C-in2 /W
If we suppose that every MOSFET can be as hot as 110°C and ambient
temperature is 25°C, we will get:
PD = 31.48 W
This is the maximum total power allowed for the six MOSFETs with this
heat sink.
The formula to obtain PD for a single MOSFET is:
= (Ieff)2·(Rdson)
Where:
PDPower dissipated by a single MOSFET when conducting
Ieff Effective MOSFET current
Rdson MOSFET drain-source impedance when it is conducting
(0.28for this MOSFET)
D
P
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
70 Hardware Design Considerations MOTOROLA
Hardware Design Considerations
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Software Design Considerations 71
Designer Reference Manual — BLDC Motor Control Board
Section 5. Software Design Considerations
5.1 Contents
5.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
5.3 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
5.4 Speed Control Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
5.4.1 Motor Stalled Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . .79
5.5 Commutation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
5.6 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
5.6.1 Processes: Latest Position Capture,
Period Measuring, and Speed Calculation . . . . . . . . . . .84
5.6.2 Process Speed Controller . . . . . . . . . . . . . . . . . . . . . . . . . .84
5.6.3 Process MOSFET Gating Selection. . . . . . . . . . . . . . . . . . .84
5.6.4 Process Washing Machine. . . . . . . . . . . . . . . . . . . . . . . . . .86
5.7 Application State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
5.8 Drive State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
5.9 Description of Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
5.9.1 Main(void). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
5.9.1.1 Stop Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
5.9.1.2 Waiting for Command . . . . . . . . . . . . . . . . . . . . . . . . . . .89
5.9.1.3 Displaying Actual and Reference Speed . . . . . . . . . . . . .89
5.9.1.4 Wash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
5.9.1.5 Spin CW and Spin CCW . . . . . . . . . . . . . . . . . . . . . . . . .90
5.9.1.6 Fixed Reference Speed . . . . . . . . . . . . . . . . . . . . . . . . . .90
5.9.2 InitPLL(void). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
5.9.3 InitPWMMC(void). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
5.9.4 InitTimerA(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
5.9.5 InitTimerB(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
5.9.6 Byte ResolveButtons(void). . . . . . . . . . . . . . . . . . . . . . . . . .91
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
72 Software Design Considerations MOTOROLA
Software Design Considerations
5.9.7 InitMotor(Byte Commanded_Operation) . . . . . . . . . . . . . . .91
5.9.8 TimerAOverflow_ISR(void). . . . . . . . . . . . . . . . . . . . . . . . . .91
5.9.9 Signed Word 16 PIController(void). . . . . . . . . . . . . . . . . . . .92
5.9.10 MotorStalledProtection(void) . . . . . . . . . . . . . . . . . . . . . . . .92
5.9.11 HALLA_ISR(void) and HALLB_ISR(void). . . . . . . . . . . . . . .92
5.9.12 HALLC_ISR(void). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
5.9.13 NextSequence(void). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
5.9.14 StopMotor(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
5.9.15 InitLCD(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
5.9.16 CtrlLCD(Byte ctrl). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
5.9.17 Ctrl8LCD(Byte ctrl). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
5.9.18 MovCursorLCD(Byte places, Byte dir) . . . . . . . . . . . . . . . . .93
5.9.19 DataLCD(Byte data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
5.9.20 StringLCD(Byte *msgLCD). . . . . . . . . . . . . . . . . . . . . . . . . .94
5.9.21 WaitMs(Byte milis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
5.9.22 Wait40ms(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
5.10 MCU Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
5.2 Introduction
This section describes data flow of the software implemented for this
reference design. The microcontroller is mastering all inputs from the
user interface and the Hall effect sensors. From the user interface,
functionality (washing machine process) and desired speed for the
motor can be set. This data is input for the speed controller that is also
detailed in this section. Another input for the speed controller is the
actual speed of the motor that is calculated based on the Hall effect
sensors values. The controller processes this information and calculates
the most suitable value for the MOSFET’s PWM signals. Using PWM
modules, the microcontroller triggers the MOSFET through a power
stage.
NOTE: The commutation algorithm and speed control for the motor are driven
by input capture and timer interrupts.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Software Design Considerations
Controller Design
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Software Design Considerations 73
5.3 Controller Design
The motor system to be controlled was considered as a first order
system, with a time constant of 10 milliseconds. For a robust operation
of the washing machine, a PI controller was implemented with a
controller period of 1 millisecond. The actual motor speed is calculated
from input capture channels, and the desired speed is generated in the
microcontroller depending on the washing machine process being
executed.
The system has the following transfer function in the continuous time
domain.
Taking the Z transformation and considering the zero-order-hold of the
PWM module, the system’s transfer function becomes:
The PI controller transfer function in the Z domain is:
τ
τ
1
1
)( +
=s
sG
1
1
1
1
)(
=
z
e
ze
zG T
T
τ
τ
(
)
1
1
1
)(
+
=
z
zKpKiKp
zC
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
74 Software Design Considerations MOTOROLA
Software Design Considerations
Closing the loop:
Where:
Then, the controller:
Solving for Ki
+
-
)()(1 )()( zGzC zGzC
+
)(zR
)(zE
)(zR )(zC )(zG
)(zU
)(zU
)(zR )(zU
)(zGd
)(zM
1
1
1
1
)(
=
z
e
ze
zGd d
T
d
T
τ
τ
[]
)(1)( )(
)( zGdzG zGd
zC
=
()
1
1
1
1
11
1
1
1
)(
+
=
=zzKpKiKp
zze
e
e
zC T
T
d
T
τ
τ
τ
d
T
eKi
τ
= 1
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Software Design Considerations
Controller Design
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Software Design Considerations 75
And for Kp
Where:
T — Controller period
τ
— Time constant of motor speed in open loop
τ
d— Desired time constant of motor speed in closed loop
Kp — Proportional gain of the controller
Ki — Integral gain of the controller
The implementation of the PI controller using parallel programming is
given in this diagram:
Converting into equations in discrete time domain:
Mp(K) = Kp • E(K)
Mi(K) = Kp • E(K)
M(K) = Mp(K) + Mi(K)
The targeted motor for the application has a time constant of
10 milliseconds. Based on that, a controller period is defined as
1 millisecond (10 times bigger frequency). Thus, the system has this
transfer function:
Ki
e
Ki
Kp T
=
τ
1
)(zE )(zM
Kp
1
1
z
Ki
+
+
)(zMp
)(zMi
1
1
904837.01 095163.0
)(
=
z
z
zG
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
76 Software Design Considerations MOTOROLA
Software Design Considerations
The desired time constant is 100 milliseconds for the closed loop
system. That gives the following values for the controller parameters:
Ki = 0.00995
Kp = 0.094609
In the microcontroller implementation of this controller, a scale factor is
defined. It is better if the scale value is a power of two. So, 256 is our
scale value.
I_ Gain = 0.00995 • 256 = 2.54 3
P_Gain = 0.094609 • 256 = 24.22 24
Once the controller parameters are calculated, it is possible to
implement them into the microcontroller.
The PI controller implementation is shown in Figure 5-1.
5.4 Speed Control Algorithm
The speed control algorithm consists of three main parts: the actual
speed calculation, the speed regulator by a PI controller, and a motor
stalled protection. This algorithm is executed by a timer overflow
interrupt handler each millisecond. The flowchart of this interrupt handler
is shown in Figure 5-2.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Software Design Considerations
Speed Control Algorithm
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Software Design Considerations 77
Figure 5-1. PI Controller Flowchart
PI_Controller
ControlDifference =
Reference_Speed -
Speed
ControlDifference
>= 0
P_Portion =
ControlDifference
* Kp
I_Portion =
ControlDifference
* Ki
YES
P_Portion = -
ControlDifference
* Kp
I_Portion = -
ControlDifference
* Ki
ControlDifference = -
ControlDifference
NO
I_PortionK_1 >
MAXINTEGRAL
I_PortionK_1 =
MAXINTEGRAL
I_PortionK_1 <
MININTEGRAL
YES
NO
YES
I_PortionK_1 =
MININTEGRAL
Controller Output =
I_PortionK_1 +
P_Portion
End
I_PortionK_1 =
I_PortionK_1 +
P_Portion
NO
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
78 Software Design Considerations MOTOROLA
Software Design Considerations
Figure 5-2. Speed Control Algorithm Flowchart
TIMA_OV_ISR
Dif_Capture =
Actual_Capture -
Past_Capture
Dif_Capture <
MINCAPTURE S peed =
MAXSPEED
Speed =
MINSPEED
Dif_Capture >
MAXCAPTURE
YES
NO
YES
Speed = 1665 /
(Dif_Cap ture / 18)
NO
Actual_Direction =
CCW Speed = -SpeedYES
PI_Controller
NO
Controller
Output < 0
Controller Output
= -Controller
Output
YES
1
1
Require d D i r ecti on
= CCW
Require d D i r ecti on
= CW
NO
newPWM =
(Control ler Output
/ 256) + 128
MotorStalled
Protection
MilliCounter =
MilliCounter + 1
MilliCounter > 10
End
MilliCounter = 0
YES
BLDCState =
BLDCWASH End of SPIN
Table
NO
Speed Reference
= WASHTable
[index++]
YES
Speed Reference
= SPINTable
[index++]
NO
Required
Direction =
CCW
Speed Reference
= -Speed
Reference
YES
NO
YES
NO
2
2
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Software Design Considerations
Speed Control Algorithm
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Software Design Considerations 79
5.4.1 Motor Stalled Protection
The motor stalled protection subroutine is used for commutating the
motor windings if the motor hasn’t moved to a new angular position. If
the motor doesn’t change its angular position in a period of 250
milliseconds, the motor is completely stopped.
The motor stalled subroutine’s flowchart is the following:
Figure 5-3. Motor Stalled Protection Flowchart
Motor S talled
Protection
Time_Out =
Time_Out + 1
Time_Out > 250 Stop MotorYES
(Time_Out % 8) = 0 NextSequenceYES
NO
End
NO
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
80 Software Design Considerations MOTOROLA
Software Design Considerations
5.5 Commutation Algorithm
The commutation algorithm provides the generation of a rotational field
according to rotor position. This algorithm uses the Hall sensors to
obtain the rotor position. Outputs from the Hall sensors are connected to
three independent input-capture channels through an analog filter. The
timers are set to catch each input signal edge and call an interrupt
routine, which provides the commutation algorithm.
The Hall sensor consists of three sensors (sensor A, sensor B, and
sensor C). These sensors comprise six states (001, 010, 011, 100, 101,
and 110). Each state determines which motor phase the 3-phase
inverter should power. The interrupt routine reads the state of the Hall
sensors from the MCU port. This value is used as pointer to the
commutation table (see Table 5-1 and Table 5-2), which includes
information about the power MOSFETs gating. Figure 5-4 shows the
resultant voltage which is applied to a BLDC motor per one electrical
revolution.
Table 5-1. Commutation Sequence for Clockwise Rotation
Hall Sensor In puts Two MOSFET Scheme Three MOSFET Scheme
Hall
Sensor A Hall
Sensor B Hall
Sensor C Phase APhase BPhase CPhase APhase BPhase C
1 1 0 +Vdc NC –Vdc +Vdc –Vdc –Vdc
1 0 0 +Vdc –Vdc NC +Vdc –Vdc +Vdc
1 0 1 NC –Vdc +Vdc –Vdc –Vdc +Vdc
0 0 1 –Vdc NC +Vdc –Vdc +Vdc +Vdc
0 1 1 –Vdc +Vdc NC –Vdc +Vdc –Vdc
0 1 0 NC +Vdc –Vdc +Vdc +Vdc –Vdc
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Software Design Considerations
Commutation Algorithm
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Software Design Considerations 81
The generation of the PWM voltage waveforms is done by the
complementary mode when using a three MOSFET commutation
scheme, and by loading 0 to the corresponding phases and configuring
the microcontroller to have a TOPNEG PWM when using a two
MOSFET commutation scheme. This is done because the
M68HC908MRx microcontrollers don’t have the PWM MASK option, so
Table 5-2. Commutation Sequence for Counterclockwise Rotation
Hall Sensor In puts Two MOSFET Scheme Three MOSFET Scheme
Hall
Sensor A Hall
Sensor B Hall
Sensor C Phase APhase BPhase CPhase APhase BPhase C
101NC +Vdc –Vdc –Vdc +Vdc –Vdc
100–Vdc +Vdc NC –Vdc +Vdc +Vdc
110–Vdc NC +Vdc –Vdc –Vdc +Vdc
010NC –Vdc +Vdc +Vdc –Vdc +Vdc
011+Vdc –Vdc NC +Vdc –Vdc –Vdc
001+Vdc NC –Vdc +Vdc +Vdc –Vdc
Phase A
Phase B
Phase C
60° 120° 18 240° 300°
Note: Use black area for three MOSFET commu tation scheme.
Figure 5-4. 3-Phase Voltage System Applies to BLDC Motor
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
82 Software Design Considerations MOTOROLA
Software Design Considerations
the complementary mode with a two MOSFET commutation scheme is
done by software. The deadtime is fixed to 2 microseconds for both
commutation schemes. This method allows independence of
commutation and speed control. See Figure 5-5.
Figure 5-5. Commutation Algorithm for Hall Sensors
Start of next sequence
Read new state of Hall
sensors
Look up new transistor states
from angular rotor position
Put new value to PWM
module
End
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Software Design Considerations
Data Flow
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Software Design Considerations 83
5.6 Data Flow
The control algorithm of a closed loop BLDC drive for washing machines
is described in Figure 5-6.
Figure 5-6. Main Data Flow
Desired Speed
Speed Cont roller
(PI cont rol ler)
Desire d Sp e ed
Period
Measurement
Speed Calc ul at ion
Ac tual Speed
MOSFET gating
selection
PWM State
Latests Position
Capture
Motor Direction Angular P o sition
W ashing Machine
Process
Posi ti on S en s ors
(Hall Sens ors)
User's Menu
(LCD and push
buttons)
PWM Genera ti on
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
84 Software Design Considerations MOTOROLA
Software Design Considerations
5.6.1 Processes: Latest Position Capture, Period Measuring, and Speed Calculation
The latest position capture, period measuring, and speed calculation
processes relate to the inputs of the Hall sensors. The sensors generate
streams of pulses that are captured (separately for each sensor) by the
input capture (IC) function. The process latest position capture captures
the latest state of the Hall sensors.
The processes period measuring and speed calculation read the time
between the adjacent rising edges of Hall sensor output and calculate
the actual motor speed variable speed.
5.6.2 Process Speed Controller
This process calculates the duty cycle of the PWM based on the output
of the speed controller (the PI controller).
5.6.3 Process MOSFET Gating Selection
This process calculates which PWM channel is enabled for PWM
generation. Two commutation schemes are present here. In the file
main.h, a compiler directive allows the programmer to select between
the two MOSFET scheme and the three MOSFET scheme. For the
deadtime insertion there are things which should be noted.
If the three MOSFET commutation scheme is selected by the directive:
#define MOS_3_COM
#undef MOS_2_COM
The PWM module automatically makes deadtime insertion by
hardware.
If the two MOSFET commutation scheme is selected by the directive:
#undef MOS_3_COM
#define MOS_2_COM
Deadtime insertion is done by software and PWM module
configuration.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Software Design Considerations
Data Flow
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Software Design Considerations 85
As an example, the algorithm for 50% of duty cycle on phase A and the
two MOSFET commutation scheme is:
In the microcontroller CONFIG register the PWM write once
register is configured as:
Center aligned PWM
Independent mode
TOPNEG enabled
The required duty cycle is directly loaded into the PVAL register
for the TOP transistor.
The value loaded into the PVAL register for the BOT transistor is
calculated as:
#define DEADTIME 0x10
PMOD = 0x100;
PVAL1 = 0x80;
PVAL2 = PVAL1 – DEADTIME;
The output signal for one PWM cycle is shown in Figure 5-7.
Figure 5-7. Software Deadtime Insertion
SOFTWARE
DEADTIME
INSERTION
1 CYCLE PWM
PWM1
TOP MOSFET
TOPNEG ENABLED
PWM2
BOTTOM MOSFET
BOTNEG DISABLED
Note: The PWMMC is configured with independent mode
and center aligned operation
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
86 Software Design Considerations MOTOROLA
Software Design Considerations
5.6.4 Process Washing Machine
The process generates reference speeds, depending on the process
phase being executed of the washer. The user selects the washer
process by a user’s menu.
5.7 Application State Diagram
Figure 5-8. Application State Diagram
As Figure 5-8 shows, the application state consists of the initialization
routine, followed by a main loop with background tasks. The time critical
functions are calculated by the interrupt routines.
A brief description of the 3-phase BLDC motor control follows:
Initialization routine:
PWM initialization
System timer initialization
Input capture initialization for position feedback
Variable initialization for speed measurement
Character display initialization
I/O ports initialization
PLL initialization
MCU initialization
Reset
Initialization
Main Loop
(State Machine)
Interrupts
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Software Design Considerations
Application State Diagram
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Software Design Considerations 87
Main loop:
Application state machine
Check push buttons
Display messages for user menu
Display actual and desired motor speed
Initialize motor for running state:
Load desired speed from look up table
Charge bootstrap capacitors
Resume timers for speed control
Timer A overflow interrupt handler:
Speed calculation
Speed PI controller calculation
Setting of new duty cycle to PWM
Motor stalled protection
Load new desired speed from look up table depending on the
washer process being executed
Timer A Ch1, Timer B Ch0 and Ch1 interrupt handlers:
Reading the angular motor position
Spin direction calculation
Selecting gating signals for MOSFETs
Timer B Ch1 interrupt handler
Calculation of period between edges for one Hall effect sensor
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
88 Software Design Considerations MOTOROLA
Software Design Considerations
5.8 Drive State Machine
The drive can be one of the states shown in Figure 5-9 (which also
shows transition conditions among the drive states).
Figure 5-9. Drive State Machine and Transitions
Waiting for
command
WASH
command
SPIN CW
command
SPIN CCW
command
Generating Reference
Speed
Generating Ramp
Generating Ramp
Fixed
Reference
Speed
Ramp Finished
Ramp Finished
Display Actual
and Reference
Speed
From any
State
Stop Motor
Motor
Stalled
Detection
Stop Motor
Stop
Command
Stop
Command
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Software Design Considerations
Description of Routines
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Software Design Considerations 89
5.9 Description of Routines
The following subsections provide a description of each routine.
5.9.1 Main(void)
This routine contains the principal state machine of the application. It
includes initialization and user’s menu for selecting two different
processes of the washing machine: SPIN and WASH. It also includes
two additional options: STOP and Speed display, where the actual and
measured speeds are displayed in the LCD.
5.9.1.1 Stop Motor
The application arrives in this state by two different ways: first if there is
no Hall sensor changes for more than 250 milliseconds, and second if
the user selects the option STOP from the menu.
5.9.1.2 Waiting for Command
This is the idle state of the application. Only the LCD and the push
buttons are processed in this state. The UPPER button is used for
changing the message displayed; thus, the command to be executed,
and the LOWER button is used for executing the currently displayed
message command, except for the SPEED message, which displays the
actual and desired speed of the motor.
5.9.1.3 Displaying Actual and Reference Speed
In this state, the actual and reference speed are continuously displayed.
5.9.1.4 Wash
When the user selects the WASH process from the user’s menu, the
application starts running the motor. First an initialization routine is called
for charging bootstrap capacitors, resume timers for speed control, and
the first reference speed for the Wash process look up table is loaded
into variable RefSpeed. Once the motor is running, a timer overflow
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
90 Software Design Considerations MOTOROLA
Software Design Considerations
interrupt handler is used for the speed control and continuous generation
of reference speeds, including positive and negative values, so the
agitator moves in both directions of rotation.
5.9.1.5 Spin CW and Spin CCW
When the Spin process is selected in either direction, the motor
initialization is called, and then an acceleration ramp is loaded from a
Spin look up table, and the sign of the reference speed is set according
to the direction of rotation selected.
5.9.1.6 Fixed Reference Speed
When the acceleration ramp table of the Spin process is fully loaded, the
reference speed remains constant.
5.9.2 InitPLL(void)
This function is called once in the application. It sets the bus frequency
to 8 MHz with an external crystal of 4 MHz.
5.9.3 InitPWMMC(void)
This function initializes the PWM module for motor control with the
following settings:
PWM frequency of 15.625 kHz
Two microseconds of deadtime
Reload every PWM cycle
5.9.4 InitTimerA(void)
Timer A and timer A channel 1 are initialized for speed control and
commutation control. The overflow interrupt is enabled for speed control
each millisecond. Channel 1 is configured as an input capture channel
with interrupt enabled on any edge. This channel is connected to Hall
sensor A.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Software Design Considerations
Description of Routines
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Software Design Considerations 91
5.9.5 InitTimerB(void)
Timer B channel 0 and channel 1 are configured as input capture
channels with interrupts enabled on any edge. Channel 0 is connected
to Hall sensor B and channel 1 to Hall sensor C. These two channels are
used also for commutation control. Channel 1 is used for period
calculation between two Hall sensor edges.
5.9.6 Byte ResolveButtons(void)
The state of the input pins, where the push buttons are continuously
checked for any change, are tested here. A debounce delay is included
in the routine. If there is no change on the push buttons, and the Speed
message is being displayed, the respective value of the actual speed
and reference speed are displayed in this routine.
5.9.7 InitMotor(Byte Commanded_Operation)
This subroutine is called from main to perform one of the two of the
washing machine processes. The process is selected by the parameter
value, Commanded_Operation.
Parameters:
BLDCWASH — Wash process of the washing machine.
BLDCSPIN — Spin process
Depending on the process selected from the user’s menu, the Speed
reference is loaded from the respective look up table. The speed
controller integral portion is set to 0, the bootstrap capacitors are
charged and the timers are resumed.
5.9.8 TimerAOverflow_ISR(void)
Refer to 5.4 Speed Control Algorithm.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
92 Software Design Considerations MOTOROLA
Software Design Considerations
5.9.9 Signed Word 16 PIController(void)
Refer to 5.3 Controller Design.
5.9.10 MotorStalledProtection(void)
Refer to 5.4.1 Motor Stalled Protection.
5.9.11 HALLA_ISR(void) and HALLB_ISR(void)
Interrupt handler routines to drive Hall sensors A and B for BLDC motor
commutation. Direction is computed from the last Hall sensor input state.
5.9.12 HALLC_ISR(void)
Interrupt handler routines to drive Hall sensor C for BLDC motor
commutation. Direction is computed from the last Hall Sensor input
state. In this routine, the period between edges is measured for speed
calculation.
5.9.13 Fault1_ISR(void)
Interrupt handler subroutine for Fault1. The motor is stopped when a
FAULT occurs. The FAULT is asserted when the current limit or voltage
limit has been reached by the power stage.
5.9.14 NextSequence(void)
In this routine, the MOSFET selection is performed based on the
commutation scheme and the Required_Direction of the motor. Refer to
5.5 Commutation Algorithm.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Software Design Considerations
Description of Routines
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Software Design Considerations 93
5.9.15 InitLCD(void)
This function initializes the character display with these settings:
4-bit operation mode
2-line display
No display shift and move right
Clear display and return to home position
Display on, blink off, and cursor off
5.9.16 CtrlLCD(Byte ctrl)
This subroutine is used for sending control bytes to the LCD. Because
the function is called in 4-bit operation mode, this routine sends the 8-bit
value in two parts.
Parameters:
ctrl — An 8-bit value for different control of the LCD, such as
number of lines, blink on or off, etc.
5.9.17 Ctrl8LCD(Byte ctrl)
This subroutine is used for sending control bytes to the LCD in 8-bit
mode. The function is used only to enter 4-bit mode, since the other four
data pins have no connection.
Parameters:
ctrl — An 8-bit value for different control of the LCD, such as
number of lines, blink on or off, etc.
5.9.18 MovCursorLCD(Byte places, Byte dir)
Function used to move the LCD cursor to right or left the number of
desired places.
Parameters:
places — Number of places wanted to move the LCD cursor
without affecting any LCD actual message.
dir — Direction in which the cursor is to be moved, right or left.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
94 Software Design Considerations MOTOROLA
Software Design Considerations
5.9.19 DataLCD(Byte data)
ASCII symbol to be displayed on the LCD, at the current cursor position.
Parameters:
data — 8-bit value representing the ASCII code of the symbol to
be displayed in the LCD at current position.
5.9.20 StringLCD(Byte *msgLCD)
This function displays a string in the LCD at current cursor position. If a
'&' character is present in the string, a new line feed is commanded to
the LCD. The function sends all the bytes in the string until a presence
of an End Of String, EOS or 0x00 byte.
Parameters:
*msgLCD — Pointer to the string to be displayed on the LCD.
5.9.21 WaitMs(Byte milis)
Delay routine that waits for a number of milliseconds to send in the
parameter milis. The delay is calculated for an 8 MHz fBUS operation.
Parameters:
milis — An 8-bit value representing the number of milliseconds the
delay will take.
5.9.22 Wait40µs(void)
Fixed delay of 40 microseconds.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Software Design Considerations
MCU Usage
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Software Design Considerations 95
5.10 MCU Usage
Table 5-3 shows how much memory is needed to run the 3-phase BLDC
motor drive in a speed closed loop using Hall sensors, washing machine
functions, and user’s interface. A part of the MCU memory is still
available for other tasks.
Table 5-3. RAM and FLASH Memory Usage
Memory
(In 8-Bit Words) Available
(MC68HC908MR8) Used
(Application + Stack)
Program FLASH 7680 2820
Data RAM 256 36 + 96
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
96 Software Design Considerations MOTOROLA
Software Design Considerations
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Practical Results 97
Designer Reference Manual — BLDC Motor Control Board
Section 6. Practical Results
Figure 6-1 shows the motor power output versus the motor torque with
drives for the two commutation schemes developed in the reference
design — consisting of switching two MOSFETs at each angular position
or three MOSFETs at each angular position.
Figure 6-1. Power Output versus Torque Motor Characteristic
Power Output Vs Torque
0.00
50.00
100.00
150.00
200.00
250.00
300.00
350.00
400.00
450.00
500.00
0.93
2.54
4.34
6.08
7.82
9.43
11.76
15.28
18.20
21.49
24.65
27.93
Torque (lb-in)
Power Output (Watts)
Two-MOSFETs Scheme
Three-MOSFETs Scheme
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
98 Practical Results MOTOROLA
Practical Results
Figure 6-2 shows the motor torque output versus motor maximum
speed for the two commutation algorithms developed in the reference
design.
Figure 6-2. Speed versus Torque Motor Characteristic
Current waveforms are shown in the two oscilograms:
Figure 6-3 for the commutation scheme switching two MOSFETs
at a time
Figure 6-4 for the commutation scheme switching three
MOSFETs at a time
NOTE: There is less torque ripple, which is dependent on the current, for the
commutation algorithm switching three MOSFETs.
Speed Vs Torque
0
500
1000
1500
2000
2500
3000
3500
4000
0.93
2.54
4.34
6.08
7.82
9.43
11.76
15.28
18.20
21.49
24.65
27.93
Torque (lb-in)
Speed (RPM)
Two-MOSFETs Scheme
Three-MOSFETs Scheme
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Practical Results
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Practical Results 99
Figure 6-3. Current Waveform for Two MOSFET Commutation Scheme
Figure 6-4. Current Waveform for Three MOSFET Commutation Scheme
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
100 Practical Results MOTOROLA
Practical Results
Taking the rectified current of the three-phase inverter, the torque ripple
in the motor can be seen assuming that torque is proportional to current.
This is shown in Figure 6-5 and Figure 6-6 for the two MOSFET
commutation scheme and the three MOSFET commutation scheme,
respectively.
Figure 6-5. Torque Waveform for Two MOSFET
Commutation Scheme
Figure 6-6. Torque Waveform for Three MOSFET
Commutation Scheme
0
1
2
3
4
5
6
7
8
9
10
11
12
0
1
2
3
4
5
6
7
8
9
10
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Practical Results
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Practical Results 101
The speed control algorithm results are listed in Table 6-1 for this
reference design. This data includes:
Steady-state error of the controller for different speeds
Minimum and maximum controllable speed ranges
Table 6-1. Speed Results
Full Load
(13.4 lb-in) Full Load
(13.4 lb-in) No Loa d No Load
Maximum Speed
(RPM) Minimum Speed
(RPM) Maximum Spee d
(RPM) Minimum Speed
(RPM)
3 MOSFET 2189.7 (–31.3, +62.6) 218.9 (± 31.3) 3440.9 (–187.7, +31.3) 218.9 (± 31.3)
2 MOSFET 2033.3 (± 31.3) 218.9 (± 31.3) 2658.9 (± 62.6) 218.9 (± 31.3)
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
102 Practical Results MOTOROLA
Practical Results
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
BLDC Motor Control Boar d for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 103
Designer Reference Manual — Remote Keyless Access
Section 7. Source Code
7.1 Contents
7.2 Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
7.2.1 MR8IO.H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
7.2.2 START08.H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
7.2.3 MAIN.H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
7.2.4 TIMER.H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
7.2.5 LCD.H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
7.2.6 TABLES.H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
7.3 Source Code Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
7.3.1 START08.C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
7.3.2 MAIN.C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
7.3.3 TIMER.C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
7.3.4 LCD.C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
104 Source Code MOTOROLA
Source Code
7.2 Include Files
7.2.1 MR8IO.H
;
/*****************************************************************************\
* Copyright (c) 2002, Motorola Inc.
*
* Motorola Confidential Proprietary
*
* --------------------------------------------------------------------------- *
* File name : mr8io.h *
* Project name: Brushless DC Motor Drive with the MR8 Microcontroller
*
* --------------------------------------------------------------------------- *
* Author : Jorge Zambada *
* Email : Jorge.Zambada@motorola.com *
* Department : Mexico Applications Lab - SPS *
* *
* Description : All the MCU registers and some bit mask values are declared
*
* in this document as defines to interface with most of the *
* microcontroller registers and peripherals
*
\*****************************************************************************/
/* PORTS section
*/
#define PORTA (*(volatile char*)(0x00)) /* port A */
#define PORTB (*(volatile char*)(0x01)) /* port B */
#define PORTC (*(volatile char*)(0x02)) /* port C */
#define DDRA (*(volatile char*)(0x04)) /* data direction port A */
#define DDRB (*(volatile char*)(0x05)) /* data direction port B */
#define DDRC (*(volatile char*)(0x06)) /* data direction port C */
/* A TIMER section
*/
#define TASC (*(volatile char*)(0x0E)) /* timer A status/ctrl register */
#define TACNT (*(volatile int*)(0x0F)) /* timer A counter register */
#define TACNTH (*(volatile char*)(0x0F) /* timer A counter high */
#define TACNTL (*(volatile char*)(0x10)) /* timer A counter low */
#define TAMOD (*(volatile int*)(0x11)) /* timer A modulo register */
#define TAMODH (*(volatile char*)(0x11)) /* timer A modulo high */
#define TAMODL (*(volatile char*)(0x12)) /* timer A modulo low */
#define TASC0 (*(volatile char*)(0x13)) /* timer A channel 0 status/ctrl */
#define TACH0 (*(volatile int*)(0x14)) /* timer A channel 0 register */
#define TACH0H (*(volatile char*)(0x14)) /* timer A channel 0 high */
#define TACH0L (*(volatile char*)(0x15)) /* timer A channel 0 low */
#define TASC1 (*(volatile char*)(0x16)) /* timer A channel 1 status/ctrl */
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Include Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 105
#define TACH1 (*(volatile int*)(0x17)) /* timer A channel 1 register */
#define TACH1H (*(volatile char*)(0x17)) /* timer A channel 1 high */
#define TACH1L (*(volatile char*)(0x18)) /* timer A channel 1 low */
/* OPTION section
*/
#define MOR (*(volatile char*)(0x1F)) /* CONFIG Configuration Write-Once Regis-
ter */
/* PWM section
*/
#define PCTL1 (*(volatile char*)(0x20)) /* PWM control register 1 */
#define PCTL2 (*(volatile char*)(0x21)) /* PWM control register 2 */
#define FCR (*(volatile char*)(0x22)) /* Fault control register */
#define FSR (*(volatile char*)(0x23)) /* Fault Status register */
#define FTAC (*(volatile char*)(0x24)) /* Fault acknowledge register */
#define PWMOUT (*(volatile char*)(0x25)) /* PWM output control register */
#define PCNT (*(volatile int*)(0x26)) /* PWM counter register */
#define PCNTH (*(volatile char*)(0x26)) /* PWM counter register high */
#define PCNTL (*(volatile char*)(0x27)) /* PWM counter register low */
#define PMOD (*(volatile int*)(0x28)) /* PWM counter Modulo register */
#define PMODH (*(volatile char*)(0x28)) /* PWM counter Modulo reg. high */
#define PMODL (*(volatile char*)(0x29)) /* PWM counter Modulo reg. low */
#define PVAL1 (*(volatile int*)(0x2a)) /* PWM 1 value register */
#define PVAL1H (*(volatile char*)(0x2a)) /* PWM 1 value register high */
#define PVAL1L (*(volatile char*)(0x2b)) /* PWM 1 value register low */
#define PVAL2 (*(volatile int*)(0x2c)) /* PWM 2 value register */
#define PVAL2H (*(volatile char*)(0x2c)) /* PWM 2 value register high */
#define PVAL2L (*(volatile char*)(0x2d)) /* PWM 2 value register low */
#define PVAL3 (*(volatile int*)(0x2e)) /* PWM 3 value register */
#define PVAL3H (*(volatile char*)(0x2e)) /* PWM 3 value register high */
#define PVAL3L (*(volatile char*)(0x2f)) /* PWM 3 value register low */
#define PVAL4 (*(volatile int*)(0x30)) /* PWM 4 value register */
#define PVAL4H (*(volatile char*)(0x30)) /* PWM 4 value register high */
#define PVAL4L (*(volatile char*)(0x31)) /* PWM 4 value register low */
#define PVAL5 (*(volatile int*)(0x32)) /* PWM 5 value register */
#define PVAL5H (*(volatile char*)(0x32)) /* PWM 5 value register high */
#define PVAL5L (*(volatile char*)(0x33)) /* PWM 5 value register low */
#define PVAL6 (*(volatile int*)(0x34)) /* PWM 6 value register */
#define PVAL6H (*(volatile char*)(0x34)) /* PWM 6 value register high */
#define PVAL6L (*(volatile char*)(0x35)) /* PWM 6 value register low */
#define DEADTM (*(volatile char*)(0x36)) /* Dead Time Write-once register */
#define DISMAP (*(volatile char*)(0x37)) /* PWM Disable Mapping Write-once register
*/
/* SCI section
*/
#define SCC1 (*(volatile char*)(0x38)) /* SCI control register 1 */
#define SCC2 (*(volatile char*)(0x39)) /* SCI control register 2 */
#define SCC3 (*(volatile char*)(0x3A)) /* SCI control register 3 */
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
106 Source Code MOTOROLA
Source Code
#define SCS1 (*(volatile char*)(0x3B)) /* SCI status register 1 */
#define SCS2 (*(volatile char*)(0x3C)) /* SCI status register 2 */
#define SCDR (*(volatile char*)(0x3D)) /* SCI data register */
#define SCBR (*(volatile char*)(0x3E)) /* SCI baud rate */
/* INTERRUPT section
*/
#define ISCR (*(volatile char*)(0x3F)) /* IRQ status/control register */
/* A/D section
*/
#define ADSCR (*(volatile char*)(0x40)) /* ADC status and control reg. */
#define ADR (*(volatile int*)(0x41)) /* ADC data register */
#define ADRH (*(volatile char*)(0x41)) /* ADC data register high */
#define ADRL (*(volatile char*)(0x42)) /* ADC data register low */
#define ADCLK (*(volatile char*)(0x43)) /* ADC clock register */
/* B TIMER section
*/
#define TBSC (*(volatile char*)(0x51)) /* timer B status/ctrl register */
#define TBCNT (*(volatile int*)(0x52)) /* timer B counter register */
#define TBCNTH (*(volatile char*)(0x52)) /* timer B counter high */
#define TBCNTL (*(volatile char*)(0x53)) /* timer B counter low */
#define TBMOD (*(volatile int*)(0x54)) /* timer B modulo register */
#define TBMODH (*(volatile char*)(0x54)) /* timer B modulo high */
#define TBMODL (*(volatile char*)(0x55)) /* timer B modulo low */
#define TBSC0 (*(volatile char*)(0x56)) /* timer B channel 0 status/ctrl */
#define TBCH0 (*(volatile int*)(0x57)) /* timer B channel 0 register */
#define TBCH0H (*(volatile char*)(0x57)) /* timer B channel 0 high */
#define TBCH0L (*(volatile char*)(0x58)) /* timer B channel 0 low */
#define TBSC1 (*(volatile char*)(0x59)) /* timer B channel 1 status/ctrl */
#define TBCH1 (*(volatile int*)(0x5A)) /* timer B channel 1 register */
#define TBCH1H (*(volatile char*)(0x5A)) /* timer B channel 1 high */
#define TBCH1L (*(volatile char*)(0x5B)) /* timer B channel 1 low */
/* PLL section
*/
#define PCTL (*(volatile char*)(0x5C)) /* PLL control register */
#define PBWC (*(volatile char*)(0x5D)) /* PLL bandwidth register */
#define PPG (*(volatile char*)(0x5E)) /* PLL programming register */
/* SIM section
*/
#define SBSR (*(volatile char*)(0xFE00))/* SIM break status register */
#define SRSR (*(volatile char*)(0xFE01))/* SIM reset status register */
#define SBFCR (*(volatile char*)(0xFE03))/* SIM break control register */
#define FLCR (*(volatile char*)(0xFE08))/* FLASH control register */
#define LVISCR (*(volatile char*)(0xFE0F)) /* LVI status/control register */
#define FLBPR (*(volatile char*)(0xFF7E)) /* FLASH block protect register */
#define COPCTL (*(volatile char*)(0xFFFF)) /* COP control register */
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Include Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 107
/* ADC Flags and bit masks
*/
#define ATD8_PTC0 0x06
#define Continuous_Conversion 0x20
#define ADC_Input_Clock_by_8 0x60
#define Internal_Bus_Clock 0x10
#define COCO 0x80
/* PLL Flags and bit masks
*/
#define BCS 0x10
#define PLLON 0x20
#define AUTO 0x80
#define LOCK 0x40
/* IRQ Flags and bit masks
*/
#define IMASK 0x02
/* PWM Flags and bit masks
*/
*/
#define PWMEN 0x01
#define LDOK 0x02
#define PWMINT 0x20
#define PWMF 0x10
#define FTACK1 0x01
/* TIM Flags and bit masks
*/
#define TRST 0x10
#define TSTOP 0x20
#define TOIE 0x40
#define CHIE 0x40
#define TOF 0x80
#define CHF 0x80
/*****************************************************************************\
* End mr8io.h *
******************************************************************************/
;
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
108 Source Code MOTOROLA
Source Code
7.2.2 START08.H
;
/******************************************************************************
FILE : start08.h
PURPOSE : datastructures for startup
LANGUAGE: ANSI-C
*/
/*****************************************************************************/
#ifndef START08_H
#define START08_H
#ifdef __cplusplus
extern "C" {
#endif
#include "hidef.h"
/*
the following datastructures contain the data needed to
initialize the processor and memory
*/
typedef struct{
unsigned char *_FAR beg;
int size; /* [beg..beg+size] */
} _Range;
typedef struct _Copy{
int size;
unsigned char *_FAR dest;
} _Copy;
typedef void (*_PFunc)(void);
typedef struct _LibInit{
_PFunc *startup; /* address of startup desc */
} _LibInit;
typedef struct _Cpp{
_PFunc initFunc; /* address of init function */
} _Cpp;
#define STARTUP_FLAGS_NONE 0
#define STARTUP_FLAGS_ROM_LIB (1<<0) /* if module is a ROM library */
#define STARTUP_FLAGS_NOT_INIT_SP (1<<1) /* if stack pointer has not to be initial-
ized */
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Include Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 109
#pragma DATA_SEG FAR _STARTUP
#ifdef __ELF_OBJECT_FILE_FORMAT__
/* ELF/DWARF object file format */
/* attention: the linker scans the debug information for this structures */
/* to obtain the available fields and their sizes. */
/* So dont change the names in this file. */
extern struct _tagStartup {
unsigned char flags; /* STARTUP_FLAGS_xxx */
_PFunc main; /* top level procedure of user program */
#ifndef __NO_STACK_OFFSET
unsigned short stackOffset; /* initial value of the stack pointer */
#endif
unsigned short nofZeroOuts; /* number of zero out ranges */
_Range *_FAR pZeroOut; /* vector of ranges with nofZeroOuts elements */
_Copy *_FAR toCopyDownBeg; /* rom-address where copydown-data begins
*/
#if 0 /* switch on to implement ROM libraries */
unsigned short nofLibInits; /* number of library startup descriptors */
_LibInit *_FAR libInits; /* vector of pointers to library startup
descriptors */
#endif
#if defined(__cplusplus)
unsigned short nofInitBodies; /* number of init functions for C++ constructors
*/
_Cpp * _ F A R i n i t B od i e s ; /* v ec t o r of f u n c t io n p o in t e r s t o i n i t fu n c t i o n s f o r
C++ constructo rs */
#endif
} _startupData;
#else
extern struct _tagStartup{
unsigned flags;
_PFunc main; /* top procedure of user program */
unsigned dataPage; /* page where data allocation begins */
long stackOffset;
int nofZeroOuts;
_Range *_FAR pZeroOut; /* pZeroOut is a vector of ranges with nofZe-
roOuts elements */
long toCopyDownBeg; /* rom-address where copydown-data begins */
_PFunc *_FAR mInits; /* mInits is a vector of function pointers, ter-
minated by 0 */
_PFunc *_FAR libInits; /* libInits is a vector of function pointers,
terminated by 0x0000FFFF */
} _startupData;
#endif
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
110 Source Code MOTOROLA
Source Code
#pragma DATA_SEG DEFAULT
extern void _Startup(void); /* execution begins in this procedure */
/*--------------------------------------------------------------------*/
#ifdef __cplusplus
}
#endif
#endif
;
7.2.3 MAIN.H
;
/*****************************************************************************\
* Copyright (c) 2002, Motorola Inc.
*
* Motorola Confidential Proprietary
*
* ----------------------------------------------------------------------------*
* File name : main.h *
* Project name: Brushless DC Motor Drive with the MR8 Microcontroller
*
* ----------------------------------------------------------------------------*
* Author : Jorge Zambada *
* Email : Jorge.Zambada@motorola.com *
* Department : Mexico Applications Lab - SPS *
* *
* Description : File subroutines and State Flags values are defined in this *
* document. Macro definition and new type definition where *
* added here *
\*****************************************************************************/
#define MOS_2_COM
#undef MOS_3_COM
// New Data type definitions
typedef unsigned short int UINT16; // 16 bit unsigned integer (0, 65535)
typedef signed short int SINT16; // 16 bit signed integer (-32768, 32767)
typedef unsigned char UBYTE; // 8 bit unsigned byte (0, 255)
typedef signed char SBYTE; // 8 bit signed byte (-128, 127)
// Function Headers
UBYTE ResolveButtons(void);
// Macro Definitions
#define Forever() while(1)
#define EnableInterrupts() {__asm CLI;}
#define DisableInterrupts() {__asm SEI;}
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Include Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 111
#define DebounceDelay() WaitMs(30)
#define WaitUntilUpButtonIsReleased() while((PORTB & OPTIONS_BUTTON) == 0x00)
// General Boolean defines
#define TRUE 1
#define FALSE 0
// Buttons Definition
#define OPTIONS_BUTTON 0x08
#define ENTER_BUTTON 0x04
// MCU Configuration
#define EDGE_ALIGNED 0x80
#define CENTER_ALIGNED 0x00
#define INDEPENDENT_PWMS 0x10
#define COMPLEMENTARY_MODE 0x00
#define COP_DISABLE 0x01
#define TOPNEG 0x20
#define FAULT_1_AUTOMATIC 0x01
#define FAULT_1_MANUAL 0x00
#define FAULT_1_INT 0x02
/*****************************************************************************\
* End main.h *
******************************************************************************/
;
7.2.4 TIMER.H
;
/*****************************************************************************\
* Copyright (c) 2002, Motorola Inc.
*
* Motorola Confidential Proprietary
*
* ----------------------------------------------------------------------------*
* File name : timer.h *
* Project name: Brushless DC Motor Drive with the MR8 Microcontroller
*
* ----------------------------------------------------------------------------*
* Author : Jorge Zambada *
* Email : Jorge.Zambada@motorola.com *
* Department : Mexico Applications Lab - SPS *
* *
* Description : File subroutines and State Flags values are defined in this
*
* document. Also Macro definitions are placed here. *
\*****************************************************************************/
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
112 Source Code MOTOROLA
Source Code
// Function Headers
void InitTimerA(void);
void InitTimerB(void);
void StopMotor(void);
void WaitMs(UBYTE number_of_miliseconds);
void InitPWMMC(void);
void InitPLL(void);
void NextSequence(void);
SINT16 PIController (void);
void MotorStalledProtection(void);
void InitMotor(UBYTE commanded_operation);
// Macro Definitions
#define HallSensorInputs() (PORTB & 0x70)
#define TurnOffAllPWMOutputs() (PWMOUT = 0x40)
#define Turn_On_Low_Side_MOSFETs() (PWMOUT = 0x6A)
#define ResumeTimerA() (TASC &= ~TSTOP)
#define ResumeTimerB() (TBSC &= ~TSTOP)
#define Reset_TimerA() (TASC |= TRST)
#define Reset_TimerB() (TBSC |= TRST)
// Timer Flags
#define Prescaler_by_1 0x00
#define Prescaler_by_2 0x01
#define Prescaler_by_4 0x02
#define Prescaler_by_8 0x03
#define Prescaler_by_16 0x04
#define Prescaler_by_32 0x05
#define Prescaler_by_64 0x06
#define _1milli 0x007D
#define _100milis 0xC350
#define IC_any_Edge 0x0C
#define Port_Control 0x00
#define MAXPERIOD 4605
#define MINPERIOD 237
#define MAXSPEED 126
#define MINSPEED 7
#define MAXINTEGRAL 25000
#define MININTEGRAL -25000
// Brushless Status and Control
#define HALL_A 0x10
#define HALL_B 0x20
#define HALL_C 0x40
#define CW 0
#define CCW 1
#define BLDCSTOP 0
#define BLDCSPIN 1
#define BLDCWASH 2
#define WASHTABLEPOINTS 256
#define SPINTABLEPOINTS 256
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Include Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 113
#define NO_FAULT 0x00
#define MOTOR_STALLED 0x01
#define FAULT_OCCURRED 0x02
// PWM Module
#define _15_625KHz 0x100
#define ZEROPWM 0x80
#define DEADTIME 0x10
#define PWMOFF 0x0000
#define PWMFREQ _15_625KHz
#define PWMON PWMFREQ
#define RELOAD_1 0x00
#define RELOAD_2 0x40
#define RELOAD_4 0x80
#define RELOAD_8 0xC0
/*****************************************************************************\
* End timer.h *
******************************************************************************/
;
7.2.5 LCD.H
;
/*****************************************************************************\
* Copyright (c) 2002, Motorola Inc.
*
* Motorola Confidential Proprietary
*
* ----------------------------------------------------------------------------*
* File name : lcd.h *
* Project name: Brushless DC Motor Drive with the MR8 Microcontroller
*
* ----------------------------------------------------------------------------*
* Author : Jorge Zambada *
* Email : Jorge.Zambada@motorola.com *
* Department : Mexico Applications Lab - SPS *
* *
* Description : The functions prototypes and some usefull #defines where *
* placed in this document for a better understanding of LCD *
* interface *
\*****************************************************************************/
// Function Declaration Headers
void WaitMs(UBYTE number_of_miliseconds);
void Wait40us(void);
void InitLCD(void);
void DataLCD(UBYTE data_to_be_displayed);
void StringLCD(UBYTE *pointer_to_string);
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
114 Source Code MOTOROLA
Source Code
void CtrlLCD(UBYTE control_byte);
void Ctrl8LCD(UBYTE control_byte);
void MovCursorLCD(UBYTE number_of_places, UBYTE direction);
// Macro Definitions
#define Set_E() (PORTB |= E)
#define Clear_E() (PORTB &= ~E)
#define Set_RS() (PORTC |= RS)
#define Clear_RS() (PORTC &= ~RS)
#define EnableInterrupts() {__asm CLI;}
// General Defines
#define CLEARLCD 0x01
#define MOVECURSORCOMMAND 0x10
#define MAXLCDMSGS 5
#define RIGHT 0x04
#define LEFT 0x00
#define EOS 0
#define EOL '&'
#define First_Column 16
// Control Pins
#define RS 0x02
#define E 0x04
// LCD States
#define BLDC_WASH 0
#define BLDC_SPINCW 1
#define BLDC_SPINCCW 2
#define SPEED 3
#define BLDC_STOP 4
/*****************************************************************************\
* End lcd.h *
******************************************************************************/
;
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Include Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 115
7.2.6 TABLES.H
;
/* Table used for WASH process of the washing machine */
const SBYTE WASHTable[WASHTABLEPOINTS] =
{14,15,16,18,19,20,22,23,24,25,27,28,29,30,32,33,34,35,36,37,38,40,41,42,43,44,
45,46,47,48,48,49,50,51,52,53,53,54,55,56,56,57,58,58,59,59,60,60,61,61,61,62,
62,62,63,63,63,63,64,64,64,64,64,64,64,64,64,64,64,63,63,63,63,63,62,62,62,61,
61,60,60,59,59,58,58,57,56,56,55,54,54,53,52,51,50,50,49,48,47,46,45,44,43,42,
41,40,39,38,37,35,34,33,32,31,29,28,27,26,24,23,22,21,19,18,17,15,14,13,-13,
-15,-16,-17,-19,-20,-21,-22,-24,-25,-26,-28,-29,-30,-31,-32,-34,-35,-36,-37,
-38,-39,-40,-41,-42,-43,-44,-45,-46,-47,-48,-49,-50,-51,-52,-52,-53,-54,-55,
-55,-56,-57,-57,-58,-59,-59,-60,-60,-61,-61,-61,-62,-62,-62,-63,-63,-63,-63,
-64,-64,-64,-64,-64,-64,-64,-64,-64,-64,-64,-64,-63,-63,-63,-63,-62,-62,-62,
-61,-61,-60,-60,-59,-59,-58,-58,-57,-57,-56,-55,-55,-54,-53,-52,-52,-51,-50,
-49,-48,-47,-46,-45,-44,-43,-42,-41,-40,-39,-38,-37,-36,-35,-33,-32,-31,-30,
-29,-27,-26,-25,-24,-22,-21,-20,-18,-17,-16,-14,-13};
/* table used for SPIN process of washing machine */
const SBYTE SPINTable[SPINTABLEPOINTS] =
{14,15,15,15,16,16,16,16,17,17,17,18,18,18,19,19,19,19,20,20,20,21,21,21,22,22,
22,23,23,23,23,24,24,24,25,25,25,26,26,26,26,27,27,27,28,28,28,28,29,29,29,30,
30,30,30,31,31,31,32,32,32,32,33,33,33,34,34,34,34,35,35,35,36,36,36,36,37,37,
37,37,38,38,38,39,39,39,39,40,40,40,40,41,41,41,41,42,42,42,42,43,43,43,43,44,
44,44,44,45,45,45,45,46,46,46,46,47,47,47,47,47,48,48,48,48,49,49,49,49,49,50,
50,50,50,51,51,51,51,51,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,54,55,55,
55,55,55,55,56,56,56,56,56,56,57,57,57,57,57,57,58,58,58,58,58,58,58,59,59,59,
59,59,59,59,59,60,60,60,60,60,60,60,60,61,61,61,61,61,61,61,61,61,61,62,62,62,
62,62,62,62,62,62,62,62,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,64,
64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64 };
;
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
116 Source Code MOTOROLA
Source Code
7.3 Source Code Files
7.3.1 START08.C
;
/******************************************************************************
FILE : start08.c
PURPOSE : 68HC08 standard startup code
LANGUAGE : ANSI-C / INLINE ASSEMBLER
----------------------------------------------------------------------------
HISTORY
22 oct 93 Created.
04/17/97 Also C++ constructors called in Init().
******************************************************************************/
#include "start08.h"
/**********************************************************************/
struct _tagStartup _startupData; /* read-only:
_startupData is allocated in ROM and
initialized by the linker */
#define USE_C_IMPL 0 /* for now, we are using the inline assembler implementation for
the startup code */
#if !USE_C_IMPL
#pragma MESSAGE DISABLE C20001 /* Warning C20001: Different value of stackpointer
depending on control-flow */
/* the function _COPY_L releases some bytes from the stack internally */
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME
static void near loadByte(void) {
asm {
PSHH
PSHX
LDA 5,SP
PSHA
LDX 7,SP
PULH
LDA 0,X
AIX #1
STX 6,SP
PSHH
PULX
STX 5,SP
PULX
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 117
PULH
RTS
}
}
#endif
extern void _COPY_L(void);
/* DESC: copy very large structures (>= 256 bytes) in 16 bit address space (stack
incl.)
IN: TOS count, TOS(2) @dest, H:X @src
OUT:
WRITTEN: X,H */
#ifdef __ELF_OBJECT_FILE_FORMAT__
#define toCopyDownBegOffs 0
#else
#define toCopyDownBegOffs 2 /* for the hiware format, the toCopyDownBeg field is a
long. Because the HC08 is big endian, we have to use an offset of 2 */
#endif
static void Init(void) {
/* purpose: 1) zero out RAM-areas where data is allocated
2) init run-time data
3) copy initialization data from ROM to RAM
*/
unsigned int i;
int *p;
#if USE_C_IMPL /* C implementation of ZERO OUT and COPY Down */
int j;
char *dst;
_Range *r;
r = _startupData.pZeroOut;
/* zero out */
for (i=0; i != _startupData.nofZeroOuts; i++) {
dst = r->beg;
j = r->size;
do {
*dst = 0; /* zero out */
dst++;
j--;
} while(j != 0);
r++;
}
#else /* faster and smaller asm implementation for ZERO OUT */
asm {
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
118 Source Code MOTOROLA
Source Code
ZeroOut: ;
LDA _startupData.nofZeroOuts:1 ; nofZeroOuts
INCA
STA i:1 ; i is counter for number of zero outs
LDA _startupData.nofZeroOuts:0 ; nofZeroOuts
INCA
STA i:0
LDHX _startupData.pZeroOut ; *pZeroOut
BRA Zero_5
Zero_3: ;
; CLR i:1 is already 0
Zero_4: ;
; { HX == _pZeroOut }
PSHX
PSHH
; { nof bytes in (int)2,X }
; { address in (int)0,X }
LDA 0,X
PSHA
LDA 2,X
INCA
STA p ; p:0 is used for high byte of byte counter
LDA 3,X
LDX 1,X
PULH
INCA
BRA Zero_0
Zero_1: ;
; CLRA A is already 0, so we don't have to clear it
Zero_2: ;
CLR 0,X
AIX #1
Zero_0: ;
DBNZA Zero_2
Zero_6:
DBNZ p, Zero_1
PULH
PULX ; restore *pZeroOut
AIX #4 ; advance *pZeroOut
Zero_5: ;
DBNZ i:1, Zero_4
DBNZ i:0, Zero_3
;
CopyDown: ;
}
#endif
/* copy down */
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 119
/* _startupData.toCopyDownBeg ---> {nof(16) dstAddr(16) {bytes(8)}^nof} Zero(16)
*/
#if USE_C_IMPL /* (optimized) C implementation of COPY DOWN */
p = (int*)_startupData.toCopyDownBeg;
for (;;) {
i = *p; /* nof */
if (i == 0) {
break;
}
dst = (char*)p[1]; /* dstAddr */
p+=2;
do {
/* p points now into 'bytes' */
*dst = *((char*)p); /* copy byte-wise */
((char*)p)++;
dst++;
i--;
} while (i!= 0);
}
#elif defined(__OPTIMIZE_FOR_SIZE__)
{
asm {
LDA _startupData.toCopyDownBeg:(1+toCopyDownBegOffs)
PSHA
LDA _startupData.toCopyDownBeg:(0+toCopyDownBegOffs)
PSHA
Loop0:
JSR loadByte ; load high byte counter
TAX ; save for compare
INCA
STA i
JSR loadByte ; load low byte counter
INCA
STA i:1
DECA
BNE notfinished
CBEQX #0, finished
notfinished:
JSR loadByte ; load high byte ptr
PSHA
PULH
JSR loadByte ; load high byte ptr
TAX ; HX is now destination pointer
BRA Loop1
Loop3:
Loop2:
JSR loadByte ; load data byte
STA 0,X
AIX #1
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
120 Source Code MOTOROLA
Source Code
Loop1:
DBNZ i:1, Loop2
DBNZ i:0, Loop3
BRA Loop0
finished:
AIS #2
}
}
#else /* optimized asm version. Some bytes (ca 3) larger than C version (when consid-
ering the runtime routine too), but about 4 times faster */
asm {
LDX _startupData.toCopyDownBeg:(0+toCopyDownBegOffs)
PSHX
PULH
LDX _startupData.toCopyDownBeg:(1+toCopyDownBegOffs)
next:
LDA 0,X ; list is terminated by 2 zero bytes
ORA 1,X
BEQ copydone
PSHX ; store current position
PSHH
LDA 3,X ; psh dest low
PSHA
LDA 2,X ; psh dest high
PSHA
LDA 1,X ; psh cnt low
PSHA
LDA 0,X ; psh cnt high
PSHA
AIX #4
JSR _COPY_L ; copy one block
PULH
PULX
TXA
ADD 1,X ; add low
PSHA
PSHH
PULA
ADC 0,X ; add high
PSHA
PULH
PULX
AIX #4
BRA next
copydone:
}
#endif
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 121
/* FuncInits: for C++, this are the global constructors */
#ifdef __cplusplus
#ifdef __ELF_OBJECT_FILE_FORMAT__
i = _startupData.nofInitBodies - 1;
while ( i >= 0) {
(&_startupData.initBodies->initFunc)[i](); /* call C++ constructors */
i--;
}
#else
if (_startupData.mInits != NULL) {
_PFunc *fktPtr;
fktPtr = _startupData.mInits;
while(*fktPtr != NULL) {
(**fktPtr)(); /* call constructor */
fktPtr++;
}
}
#endif
#endif
/* LibInits: used only for ROM libraries */
}
#pragma NO_EXIT
#ifdef __cplusplus
extern "C"
#endif
void _Startup (void) { /* To set in the linker parameter file: 'VECTOR 0 _Startup' */
/* purpose: 1) initialize the stack
2) initialize run-time, ...
initialize the RAM, copy down init dat etc (Init)
3) call main;
called from: _PRESTART-code generated by the Linker
*/
#ifdef __ELF_OBJECT_FILE_FORMAT__
//asm{
// mov #$40,$25
// }
DisableInterrupts; /* in HIWARE format, this is done in the prestart code */
#endif
for (;;) { /* forever: initialize the program; call the root-procedure */
if (!(_startupData.flags&STARTUP_FLAGS_NOT_INIT_SP)) {
/* initialize the stack pointer */
INIT_SP_FROM_STARTUP_DESC();
}
Init();
(*_startupData.main)();
} /* end loop forever */
}
;
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
122 Source Code MOTOROLA
Source Code
7.3.2 MAIN.C
;
/*****************************************************************************\
* Copyright (c) 2002, Motorola Inc.
*
* Motorola Confidential Proprietary
*
* --------------------------------------------------------------------------- *
* File name : main.c *
* Project name: Brushless DC Motor Drive with the MR8 Microcontroller
*
* --------------------------------------------------------------------------- *
* Author : Jorge Zambada *
* Email : Jorge.Zambada@motorola.com *
* Department : Mexico Applications Lab - SPS *
* *
* Description : In this file, the MCU configuration, data initialization and*
* an endless loop is implemented. Also a subroutine to sense
*
* push button changes and an algorithm for calculating the
*
* desired and actual motor speed. *
\*****************************************************************************/
#ifndef _MAIN_H
#define _MAIN_H
#include "main.h"
#include "timer.h"
#include "MR8IO.h"
#include "lcd.h"
#endif
/************************** LCD MESSAGES ***********************************/
const UBYTE MSGS[MAXLCDMSGS][13] = {
{" BLDC WASH"},
{"BLDC SPIN CW"},
{"BLDC SPI CCW"},
{" SPEED &"},
{" BLDC STOP"}
};
#pragma DATA_SEG DATA_ZEROPAGE
UBYTE LCDState = BLDC_WASH, // Variable for LCD command pointer
BLDCState = BLDCSTOP, // State variable for Brushless DC motor
FAULTState = NO_FAULT; /* State of the FAULT. Motor was stalled or
FAULT 1 occurred */
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 123
/*****************************************************************************\
* void main(void): This function includes MCU and its peripherals *
* configuration. Also an endless loop for the main menu *
* in the LCD display for user interface *
* *
* Parameters: None. *
* *
* Return: None. *
\*****************************************************************************/
void main(void) {
extern UBYTE Required_Direction;
UBYTE botpressed; /* This variable is used to store the key
pressed by the user */
// MCU init
#ifdef MOS_3_COM
MOR = CENTER_ALIGNED | COMPLEMENTARY_MODE | COP_DISABLE;
#endif
#ifdef MOS_2_COM
DISMAP = 0x20;
MOR = CENTER_ALIGNED | TOPNEG | INDEPENDENT_PWMS | COP_DISABLE;
#endif
ISCR = IMASK;
FCR = FAULT_1_MANUAL | FAULT_1_INT;
InitPLL();
InitPWMMC();
// Port init
PORTA = 0x00;
PORTB = 0x00;
PORTC = 0x00;
DDRA = 0x0F;
DDRB = 0x04;
DDRC = 0x02;
WaitMs(250);
InitLCD();
InitTimerA();
InitTimerB();
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
124 Source Code MOTOROLA
Source Code
EnableInterrupts();
do
{
/* At this point of the endless main loop,
a new string of the main menu is displayed
in the LCD for user interface */
CtrlLCD(CLEARLCD);
StringLCD((UBYTE *)(MSGS[LCDState]));
/* This function call doesn't return until
one of the two buttons is pressed and
released */
botpressed = ResolveButtons();
/* The LEFT button is used for changing the LCD
message for other system functions, such as
varying BLDC and FAN DC speed, starting and
stopping both motors, etc. */
if (botpressed == OPTIONS_BUTTON)
{LCDState = (UBYTE)(LCDState + 1);
if (LCDState == MAXLCDMSGS) LCDState = BLDC_WASH;
}
/* The RIGHT button is used for selecting the
current function displayed in the LCD */
else if (botpressed == ENTER_BUTTON)
{
/* Function 1. Wash function for a washing machine
is selected here. */
if(LCDState == BLDC_WASH)
{if(BLDCState == BLDCSTOP)
{LCDState = BLDC_STOP;
InitMotor(BLDCWASH);
}
}
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 125
/* Function 2. Spin CW function for the washing machine */
else if(LCDState == BLDC_SPINCW)
{if(BLDCState == BLDCSTOP)
{LCDState = BLDC_STOP;
Required_Direction = CW;
InitMotor(BLDCSPIN);
}
}
/* Function 3. Spin CCW function for the washing machine */
else if(LCDState == BLDC_SPINCCW)
{if(BLDCState == BLDCSTOP)
{LCDState = BLDC_STOP;
Required_Direction = CCW;
InitMotor(BLDCSPIN);
}
}
/* Function 4. At any time, when this function is selected,
the brushless dc motor is stopped and all the
values are reinitialized for another start */
else if(LCDState == BLDC_STOP)
StopMotor();
}
}Forever();
}
UBYTE ResolveButtons(void)
{
extern SBYTE RefSpeed,
Speed;
#pragma DATA_SEG DATA_ZEROPAGE
static UBYTE buffer = 0; /* used for buffer temporal calculations
of motor actual speed */
do
{if((PORTB & OPTIONS_BUTTON) == 0x00)
{DebounceDelay();
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
126 Source Code MOTOROLA
Source Code
if((PORTB & OPTIONS_BUTTON) == 0x00)
{WaitUntilUpButtonIsReleased();
return OPTIONS_BUTTON;
}
}
else
{asm BIH no_button_pressed;
DebounceDelay();
asm BIH no_button_pressed;
asm button_pressed: /* Wait until DOWN button is released */
asm BIL button_pressed;
return ENTER_BUTTON;
asm no_button_pressed:
}
/* For displaying the actual and desired speed select this message.
This algorithm converts a UBYTE value to ASCII values suitable for
the LCD display */
if ((LCDState == SPEED))
{if (RefSpeed < 0)
{buffer = (UBYTE)(-RefSpeed);
StringLCD("DES-");
}
else
{buffer = (UBYTE)RefSpeed;
StringLCD("DES+");
}
DataLCD((UBYTE)(((buffer * 31) / 100) / 10) + '0');
DataLCD((UBYTE)(((buffer * 31) / 100) % 10) + '0');
DataLCD((UBYTE)(((buffer * 31) % 100) / 10) + '0');
if (Speed < 0)
{buffer = (UBYTE)(-Speed);
StringLCD("0 CU-");
}
else
{buffer = (UBYTE)Speed;
StringLCD("0 CU+");
}
DataLCD((UBYTE)(((buffer * 31) / 100) / 10) + '0');
DataLCD((UBYTE)(((buffer * 31) / 100) % 10) + '0');
DataLCD((UBYTE)(((buffer * 31) % 100) / 10) + '0');
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Boar d for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 127
DataLCD('0');
MovCursorLCD(First_Column, LEFT);
}
if (FAULTState != NO_FAULT)
{CtrlLCD(CLEARLCD);
if (FAULTState == MOTOR_STALLED)
StringLCD("Motor Stalled!!!");
else StringLCD("Fault Occured!!!");
FAULTState = NO_FAULT;
LCDState = BLDC_STOP;
}
}Forever();
}
/*****************************************************************************\
* End main.c *
******************************************************************************/
;
7.3.3 TIMER.C
;
/*****************************************************************************\
* Copyright (c) 2002, Motorola Inc.
*
* Motorola Confidential Proprietary
*
* ----------------------------------------------------------------------------*
* File name : timer.c *
* Project name: Brushless DC Motor Drive with the MR8 Microcontroller
*
* ----------------------------------------------------------------------------*
* Author : Jorge Zambada *
* Email : Jorge.Zambada@motorola.com *
* Department : Mexico Applications Lab - SPS *
* *
* Description : The implementation of different motor control algorithms are*
* in this document. Also the interrupt handler subroutines are*
* here in timer.c *
\*****************************************************************************/
#ifndef _TIMER_H
#define _TIMER_H
#include "main.h"
#include "timer.h"
#include "tables.h"
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
128 Source Code MOTOROLA
Source Code
#include "MR8IO.h"
#include "lcd.h"
#endif
#pragma DATA_SEG DATA_ZEROPAGE
SINT16 newPWM = PWMOFF, /* variable that indicates the duty cycle
of the BLDC motor windings, and the
output of the speed controller */
_newPWM = PWMOFF,/* Negative value of newPWM for
complementary mode */
P_Portion = 0, /* Proportional portion of the controller*/
I_Portion = 0, /* Integral portion of the controller */
I_PortionK_1 = 0, /* Integral portion in last control
action */
ControllerOutput = 0; /* Output of the controller */
SBYTE Speed = MINSPEED, /* Actual Speed of the motor */
RefSpeed = MINSPEED, /* Reference Speed of the motor */
ControlDifference = 0; /* Error signal of the controller */
UBYTE Required_Direction = CW,/* Required direction of motor rotation */
Actual_Direction = CW, /* Actual direction of motor rotation */
Time_Out = 0,/* Used for detecting motor stalled
condition*/
TempHalls = 0, /* Used for temporal storage of Hall
sensors */
P_Gain = 24, /* Proportional parameter of the
controller */
I_Gain = 3, /* Integral parameter of the controller */
SPINTable_Index = 0, /* Index used for SPIN process table */
WASHTable_Index = 0, /* Index used for WASH process table */
Milli_Counter = 0;/* Counter of milliseconds to change
reference speed value in the two processes of
the washing machine */
UINT16 Past_Capture = 0, /* Past value of the capture value in one
of the timer channels */
Actual_Capture = 0, /* Actual value of the capture value in one
of the timer channels */
Dif_Capture = 0; /* Actual period between captures for speed
calculation */
/*****************************************************************************\
* void Init_Motor(UBYTE Commanded_Operation): This subroutine is called from *
* main to perform one of the three washing machine processes. The *
* process is selected by the parameter value, Commanded_Operation. *
* *
* Parameters: Commanded_Operation. *
* BLDCWASH. Wash process of the washing machine. *
* BLDCSPIN. Spin process. *
* *
* Return: None. *
\*****************************************************************************/
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 129
void InitMotor(UBYTE Commanded_Operation)
{extern UBYTE BLDCState;
BLDCState = Commanded_Operation;
/* Initialize Reference speed and pointers to tables */
if (BLDCState == BLDCWASH)
{WASHTable_Index = 0;
RefSpeed = WASHTable[WASHTable_Index++];
}
else
{SPINTable_Index = 0;
RefSpeed = SPINTable[SPINTable_Index++];
if (Required_Direction == CCW)
RefSpeed = -RefSpeed;
}
/* Initialize variables used for motor control and speed calculation */
Actual_Capture = MAXPERIOD;
Past_Capture = 0;
I_PortionK_1 = 0;
Milli_Counter = 0;
Time_Out = 0;
/* Charge bootstrap capacitors*/
#ifdef MOS_3_COM
PVAL1 = PWMOFF;
PVAL3 = PWMOFF;
PVAL5 = PWMOFF;
PCTL1 |= LDOK;
Turn_On_Low_Side_MOSFETs();
WaitMs(10);
PWMOUT = 0x00;
#endif
#ifdef MOS_2_COM
PVAL1 = PWMON;
PVAL3 = PWMON;
PVAL5 = PWMON;
PVAL2 = PWMON;
PVAL4 = PWMON;
PVAL6 = PWMON;
PCTL1 |= LDOK;
WaitMs(10);
PVAL2 = PWMOFF;
PVAL4 = PWMOFF;
PVAL6 = PWMOFF;
PCTL1 |= LDOK;
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
130 Source Code MOTOROLA
Source Code
#endif
/* Initialize timers for capture operation and interrupt every 1 ms */
InitTimerB();
InitTimerA();
ResumeTimerB();
ResumeTimerA();
newPWM = ZEROPWM;
return;
}
/*****************************************************************************\
* void InitTimerA (void): This subroutine is called from main and from the *
* subroutine for executing any washing machine process. * *
Its function is to initialize timer A. *
* *
* Parameters: None. *
* *
* Return: None. *
\*****************************************************************************/
void InitTimerA (void)
{
/*
Used for:
1 Speed control
2 Commutation
*/
TASC;
TASC = TOIE | TSTOP | TRST | Prescaler_by_64;
TAMOD = _1milli;
TASC1 = CHIE | IC_any_Edge; // HALL A
return;
}
/*****************************************************************************\
* void InitTimerB (void): This subroutine is called from main and from the *
* subroutine for executing any washing machine process.
*
* Its function is to initialize timer A. *
* *
* Parameters: None. *
* *
* Return: None. *
\*****************************************************************************/
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 131
void InitTimerB (void)
{
/*
Used for:
1 Speed Calculation
2 Commutation
*/
TBSC;
TBSC = TSTOP | TRST | Prescaler_by_64;
TBMOD = 0xFFFF;
TBSC0 = CHIE | IC_any_Edge; // HALL B
TBSC1 = CHIE | IC_any_Edge; // HALL C
return;
}
/*****************************************************************************\
* interrupt void TIMA_OV_ISR (void): Interrupt handler subroutine for motor *
* control, motor stalled protection and application *
* management. This interrupt occurs every millisecond. *
* *
* Parameters: None. *
* *
* Return: None. *
\*****************************************************************************/
interrupt void TimerAOverflow_ISR (void) // 519 max, 403 typ
{extern UBYTE BLDCState;
TASC;
TASC &= ~TOF;
Dif_Capture = Actual_Capture - Past_Capture;
if (Dif_Capture > MAXPERIOD)
Speed = MINSPEED;
else if (Dif_Capture < MINPERIOD)
Speed = MAXSPEED;
else
{/*
1665
Speed = ------------------
(Dif_Capture / 18)
*/
asm{ TXA
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
132 Source Code MOTOROLA
Source Code
LDX #0x12
DIV
LDHX #0x0681
PSHA
TXA
PULX
DIV
STA Speed
}
}
if (Actual_Direction == CCW)
Speed = -Speed;
ControllerOutput = PIController();
if (ControllerOutput < 0)
{ControllerOutput = -ControllerOutput;
Required_Direction = CCW;
}
else Required_Direction = CW;
/* ControllerOutput
newPWM = ---------------- + 128
256
*/
newPWM = (UBYTE)((UBYTE)(ControllerOutput >> 8) + 0x80);
MotorStalledProtection();
Milli_Counter++;
/* Enters if Milli_Counter > 10 milliseconds */
if (Milli_Counter > 10)
{Milli_Counter = 0;
/* Wash Process */
if (BLDCState == BLDCWASH)
RefSpeed = WASHTable[WASHTable_Index++];
/* Spin Process */
else if (SPINTable_Index != 0)
{RefSpeed = SPINTable[SPINTable_Index++];
if (Required_Direction == CCW)
RefSpeed = -RefSpeed;
}
}
return;
}
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 133
/*****************************************************************************\
* SINT16 PI_Controller (void): This subroutines contains the PI controller *
* implementation. *
* *
* Parameters: None. *
* *
* Return: SINT16. Controller output. *
\*****************************************************************************/
/*
----
| | Mp(K)
---------| Kp |--------
| | | |
--- | ---- | --- -------
R(K) -------| + | E(K) | --| + | M(K) | |
| |--------| | |---------| Plant |--
U(K) ------| - | | --| + | | | |
| --- | ---------- | --- ------- |
| | | Ki | | |
| -------|----------|---- |
| |1 - Z^(-1)| Mi(K) |
| ---------- |
| |
-----------------------------------------------------------------------
E(K) = R(K) - U(K)
Mp(K) = E(K) * Kp
Mi(K) = Mi(K - 1) + E(K) * Ki
M(K) = Mp(K) + Mi(K)
where:
Symbol Variable Name
E(K): ControlDifference
R(K): RefSpeed
U(K): Speed
Mp(K): P_Portion
Mi(K): I_Portion
Mi(K - 1): I_PortionK_1
M(K): ControllerOutput
Kp: P_Gain
Ki: I_Gain
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
134 Source Code MOTOROLA
Source Code
*/
SINT16 PIController (void) // 171 max, 152 typ
{
ControlDifference = RefSpeed - Speed;
if (ControlDifference >= 0)
{P_Portion = (SINT16)((UBYTE)(ControlDifference) * (UBYTE)(P_Gain));
I_Portion = (SINT16)((UBYTE)(ControlDifference) * (UBYTE)(I_Gain));
}
else
{ControlDifference = -ControlDifference;
P_Portion = (SINT16)(-((UBYTE)(ControlDifference) * (UBYTE)(P_Gain)));
I_Portion = (SINT16)(-((UBYTE)(ControlDifference) * (UBYTE)(I_Gain)));
}
if (I_PortionK_1 > MAXINTEGRAL)
I_PortionK_1 = MAXINTEGRAL;
else if (I_PortionK_1 < MININTEGRAL)
I_PortionK_1 = MININTEGRAL;
I_PortionK_1 = I_PortionK_1 + I_Portion;
return (I_PortionK_1 + P_Portion);
}
/*****************************************************************************\
* void Motor_Stalled_Protection (void): This subroutines doesn't let the *
* motor to stop. It calls NextSequence if a period of *
* time has passed and no hall sensor changes have
*
* arrived. If a longer period of time has passed with *
* no hall sensor changes, the motor is stopped. *
* *
* Parameters: None. *
* *
* Return: None. *
\*****************************************************************************/
void MotorStalledProtection(void) // 140 max, 43 typ
{
extern UBYTE FAULTState;
Time_Out++;
/* If no hall sensor interrupt has occured in a timeframe of 250 milli
second, stop the motor and quit process execution */
if (Time_Out > 250)
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 135
{StopMotor();
FAULTState = MOTOR_STALLED;
}
else {/* If 8 timeout has completed, a motor stalled protection action is
taken, calling subroutine NextSequence instead of being called from
a Hall Effect Sensor Interrupt */
if ((Time_Out & 0x07) == 0)
{TempHalls = HallSensorInputs();
NextSequence();
}
}
return;
}
/*****************************************************************************\
* interrupt void HALL_A_ISR(void): Interrupt handler subroutine for driving *
* Hall A input signal. in this interrupts *
* is called NextSequence Subroutine for *
* commuting the BLDC motor *
* *
* Parameters: None. *
* *
* Return: None. *
\*****************************************************************************/
interrupt void HallA_ISR (void) // 160 max, 148 typ
{TASC1;
TASC1 &= ~CHF;
TempHalls = HallSensorInputs();
/* Compute actual rotor direction from hall effect sensor changes */
if ( (TempHalls == (HALL_C)) || (TempHalls == (HALL_A | HALL_B)) )
Actual_Direction = CW;
else Actual_Direction = CCW;
Time_Out = 0;
NextSequence();
return;
}
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
136 Source Code MOTOROLA
Source Code
/*****************************************************************************\
* interrupt void HALL_B_ISR(void): Interrupt handler subroutine for driving *
* Hall B input signal. in this interrupts *
* is called NextSequence Subroutine for *
* commuting the BLDC motor *
* *
* Parameters: None. *
* *
* Return: None. *
\*****************************************************************************/
interrupt void HallB_ISR (void) // 160 max, 148 typ
{TBSC0;
TBSC0 &= ~CHF;
TempHalls = HallSensorInputs();
/* Compute actual rotor direction from hall effect sensor changes */
if ( (TempHalls == (HALL_A)) || (TempHalls == (HALL_B | HALL_C)) )
Actual_Direction = CW;
else Actual_Direction = CCW;
Time_Out = 0;
NextSequence();
return;
}
/*****************************************************************************\
* interrupt void HALL_C_ISR(void): Interrupt handler subroutine for driving *
* Hall C input signal. in this interrupts *
* is called NextSequence Subroutine for *
* commuting the BLDC motor. Othe function *
* of this interrupt handler is to provide *
* to the overflow interrupt two consecutive *
* periods of hall changes, to calculate *
* actual speed. *
* *
* Parameters: None. *
* *
* Return: None. *
\*****************************************************************************/
interrupt void HallC_ISR (void) // 189 max, 177 typ
{TBSC1;
TBSC1 &= ~CHF;
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 137
/* This hall effect sensor is used as a period feedback for control input
of the speed of the motor */
Past_Capture = Actual_Capture;
Actual_Capture = TBCH1;
TempHalls = HallSensorInputs();
/* Compute actual rotor direction from hall effect sensor changes */
if ( (TempHalls == (HALL_B)) || (TempHalls == (HALL_A | HALL_C)) )
Actual_Direction = CW;
else Actual_Direction = CCW;
Time_Out = 0;
NextSequence();
return;
}
/*****************************************************************************\
* void NextSequence (void): This subroutine has all the posible combinations *
* of hall effect sensor inputs and direction of the
*
* motor, to properly commutate it. *
* *
* Parameters: None. *
* *
* Return: None. *
\*****************************************************************************/
void NextSequence(void) //108 max, 96 typ
{
#ifdef MOS_3_COM
_newPWM = PWMFREQ - newPWM;
#endif
#ifdef MOS_2_COM
#pragma DATA_SEG DATA_ZEROPAGE
static SINT16 backupnewPWM;
backupnewPWM = newPWM;
_newPWM = newPWM;
newPWM = PWMFREQ - newPWM;
#endif
/* This commutation truth table is based on "Commutate truth table.xls"*/
if (Required_Direction == CW)
{if (TempHalls == (HALL_A))
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
138 Source Code MOTOROLA
Source Code
{#ifdef MOS_3_COM
PVAL1 = newPWM;
PVAL3 = _newPWM;
PVAL5 = newPWM;
#endif
#ifdef MOS_2_COM
PVAL1 = newPWM;
PVAL2 = PVAL1 - DEADTIME;
PVAL3 = _newPWM;
PVAL4 = PVAL3 - DEADTIME;
PVAL5 = PWMON;
PVAL6 = PWMOFF;
#endif
}
else if (TempHalls == (HALL_A | HALL_C))
{#ifdef MOS_3_COM
PVAL1 = _newPWM;
PVAL3 = _newPWM;
PVAL5 = newPWM;
#endif
#ifdef MOS_2_COM
PVAL1 = PWMON;
PVAL2 = PWMOFF;
PVAL3 = _newPWM;
PVAL4 = PVAL3 - DEADTIME;
PVAL5 = newPWM;
PVAL6 = PVAL5 - DEADTIME;
#endif
}
else if (TempHalls == (HALL_C))
{#ifdef MOS_3_COM
PVAL1 = _newPWM;
PVAL3 = newPWM;
PVAL5 = newPWM;
#endif
#ifdef MOS_2_COM
PVAL1 = _newPWM;
PVAL2 = PVAL1 - DEADTIME;
PVAL3 = PWMON;
PVAL4 = PWMOFF;
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 139
PVAL5 = newPWM;
PVAL6 = PVAL5 - DEADTIME;
#endif
}
else if (TempHalls == (HALL_B | HALL_C))
{#ifdef MOS_3_COM
PVAL1 = _newPWM;
PVAL3 = newPWM;
PVAL5 = _newPWM;
#endif
#ifdef MOS_2_COM
PVAL1 = _newPWM;
PVAL2 = PVAL1 - DEADTIME;
PVAL3 = newPWM;
PVAL4 = PVAL3 - DEADTIME;
PVAL5 = PWMON;
PVAL6 = PWMOFF;
#endif
}
else if (TempHalls == (HALL_B))
{#ifdef MOS_3_COM
PVAL1 = newPWM;
PVAL3 = newPWM;
PVAL5 = _newPWM;
#endif
#ifdef MOS_2_COM
PVAL1 = PWMON;
PVAL2 = PWMOFF;
PVAL3 = newPWM;
PVAL4 = PVAL3 - DEADTIME;
PVAL5 = _newPWM;
PVAL6 = PVAL5 - DEADTIME;
#endif
}
else if (TempHalls == (HALL_A | HALL_B))
{#ifdef MOS_3_COM
PVAL1 = newPWM;
PVAL3 = _newPWM;
PVAL5 = _newPWM;
#endif
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
140 Source Code MOTOROLA
Source Code
#ifdef MOS_2_COM
PVAL1 = newPWM;
PVAL2 = PVAL1 - DEADTIME;
PVAL3 = PWMON;
PVAL4 = PWMOFF;
PVAL5 = _newPWM;
PVAL6 = PVAL5 - DEADTIME;
#endif
}
}
else
{if (TempHalls == (HALL_A))
{#ifdef MOS_3_COM
PVAL1 = _newPWM;
PVAL3 = newPWM;
PVAL5 = newPWM;
#endif
#ifdef MOS_2_COM
PVAL1 = _newPWM;
PVAL2 = PVAL1 - DEADTIME;
PVAL3 = newPWM;
PVAL4 = PVAL3 - DEADTIME;
PVAL5 = PWMON;
PVAL6 = PWMOFF;
#endif
}
else if (TempHalls == (HALL_A | HALL_C))
{#ifdef MOS_3_COM
PVAL1 = _newPWM;
PVAL3 = newPWM;
PVAL5 = _newPWM;
#endif
#ifdef MOS_2_COM
PVAL1 = PWMON;
PVAL2 = PWMOFF;
PVAL3 = newPWM;
PVAL4 = PVAL3 - DEADTIME;
PVAL5 = _newPWM;
PVAL6 = PVAL5 - DEADTIME;
#endif
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 141
}
else if (TempHalls == (HALL_C))
{#ifdef MOS_3_COM
PVAL1 = newPWM;
PVAL3 = newPWM;
PVAL5 = _newPWM;
#endif
#ifdef MOS_2_COM
PVAL1 = newPWM;
PVAL2 = PVAL1 - DEADTIME;
PVAL3 = PWMON;
PVAL4 = PWMOFF;
PVAL5 = _newPWM;
PVAL6 = PVAL5 - DEADTIME;
#endif
}
else if (TempHalls == (HALL_B | HALL_C))
{#ifdef MOS_3_COM
PVAL1 = newPWM;
PVAL3 = _newPWM;
PVAL5 = _newPWM;
#endif
#ifdef MOS_2_COM
PVAL1 = newPWM;
PVAL2 = PVAL1 - DEADTIME;
PVAL3 = _newPWM;
PVAL4 = PVAL3 - DEADTIME;
PVAL5 = PWMON;
PVAL6 = PWMOFF;
#endif
}
else if (TempHalls == (HALL_B))
{#ifdef MOS_3_COM
PVAL1 = newPWM;
PVAL3 = _newPWM;
PVAL5 = newPWM;
#endif
#ifdef MOS_2_COM
PVAL1 = PWMON;
PVAL2 = PWMOFF;
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
142 Source Code MOTOROLA
Source Code
PVAL3 = _newPWM;
PVAL4 = PVAL3 - DEADTIME;
PVAL5 = newPWM;
PVAL6 = PVAL5 - DEADTIME;
#endif
}
else if (TempHalls == (HALL_A | HALL_B))
{#ifdef MOS_3_COM
PVAL1 = _newPWM;
PVAL3 = _newPWM;
PVAL5 = newPWM;
#endif
#ifdef MOS_2_COM
PVAL1 = _newPWM;
PVAL2 = PVAL1 - DEADTIME;
PVAL3 = PWMON;
PVAL4 = PWMOFF;
PVAL5 = newPWM;
PVAL6 = PVAL5 - DEADTIME;
#endif
}
}
PCTL1 |= LDOK;
#ifdef MOS_2_COM
newPWM = backupnewPWM;
#endif
return;
}
/*****************************************************************************\
* void init_PWMMC (void):Initialization of the PWM module is implemented *
* in this subrouine and the frequency is set to
*
* 15.625 kHz. *
* *
* Parameters: None. *
*
* Return: None. *
\*****************************************************************************/
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 143
void InitPWMMC(void)
{PMOD = PWMFREQ; // Frequency of 15.625 KHz
#ifdef MOS_3_COM
PVAL1 = PWMOFF;
PVAL3 = PWMOFF;
PVAL5 = PWMOFF;
DEADTM = DEADTIME;
#endif
#ifdef MOS_2_COM
PVAL1 = PWMON;
PVAL3 = PWMON;
PVAL5 = PWMON;
PVAL2 = PWMOFF;
PVAL4 = PWMOFF;
PVAL6 = PWMOFF;
#endif
PCTL2 = RELOAD_1; /* Reload every 4 PWM cycle. Fop=Fbus=8000000 Hz.
PWMFreq = 8MHz / (2*256) = 15.625 kHz
Reload Freq = 15.625 kHz / 4 = 3.90625 kHz */
PCTL1 = PWMEN; // Turn on PWM module
PCTL1 |= LDOK;
return;
}
/*****************************************************************************\
* void stop_motor (void): The motor is stopped in this subroutine, either * *
for user command or motor stalled. *
* *
* Parameters: None. *
* *
* Return: None. *
\*****************************************************************************/
void StopMotor(void)
{
extern UBYTE BLDCState;
InitTimerA();
InitTimerB();
BLDCState = BLDCSTOP;
#ifdef MOS_3_COM
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
144 Source Code MOTOROLA
Source Code
TurnOffAllPWMOutputs();
PVAL1 = PWMOFF;
PVAL3 = PWMOFF;
PVAL5 = PWMOFF;
#endif
#ifdef MOS_2_COM
PVAL1 = PWMON;
PVAL3 = PWMON;
PVAL5 = PWMON;
PVAL2 = PWMOFF;
PVAL4 = PWMOFF;
PVAL6 = PWMOFF;
#endif
PCTL1 |= LDOK;
return;
}
/*****************************************************************************\
* void init_PLL (void): PLL is initialized to run at 8 MHz of Bus frequency *
* *
* Parameters: None. *
* *
* Return: None. *
\*****************************************************************************/
void InitPLL(void) // Fbus = 8000000 +/- 2% Hz
{PCTL &= ~BCS; // select external reference as base clock
PCTL &= ~PLLON; // turn off PLL
PPG = 0x86; // program N and L
PBWC |= AUTO; // enable automatic bandwidth control
PCTL |= PLLON; // turn on PLL
while((PBWC & LOCK)==0); // wait for PLL to lock
PCTL |= BCS;
return;
}
/*****************************************************************************\
* interrupt void Fault1_ISR(void): Interrupt handler subroutine for Fault1. *
* The motor is stopped when a FAULT occurs. *
* The FAULT is asserted when the current *
* limit or voltage limit has been reached by *
* the power stage. *
* *
* Parameters: None. *
* *
* Return: None. *
\*****************************************************************************/
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 145
interrupt void Fault1_ISR (void)
{extern UBYTE FAULTState;
StopMotor();
FTAC |= FTACK1;
FAULTState = FAULT_OCCURED;
return;
}
interrupt void Error_Trap (void)
{return;
}
/*****************************************************************************\
* End timer.c *
******************************************************************************/
;
7.3.4 LCD.C
;
/*****************************************************************************\
* Copyright (c) 2002, Motorola Inc.
*
* Motorola Confidential Proprietary
*
* ----------------------------------------------------------------------------*
* File name : lcd.c *
* Project name: Brushless DC Motor Drive with the MR8 Microcontroller
*
* ----------------------------------------------------------------------------*
* Author : Jorge Zambada *
* Email : Jorge.Zambada@motorola.com *
* Department : Mexico Applications Lab - SPS *
* *
* Description : The LCD interface and delay subroutines are implemented in *
* this file. *
\*****************************************************************************/
#ifndef _LCD_H
#define _LCD_H
#include "main.h"
#include "MR8IO.h"
#include "lcd.h"
#endif
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
146 Source Code MOTOROLA
Source Code
/*****************************************************************************\
* void init_LCD(void): Subroutine to initialize the LCD character display for *
* 4-bit operation, blink off, display on. *
* *
* Parameters: None. *
* *
* Return: None. *
\*****************************************************************************/
void InitLCD(void)
{
/* Sequence followed for LCD initialization */
// In 8 bit operation mode
WaitMs(15);
Ctrl8LCD(0x03); // Set 8 bit operation
WaitMs(5);
Ctrl8LCD(0x03); // Set 8 bit operation
WaitMs(1);
Ctrl8LCD(0x03); // Set 8 bit operation
Ctrl8LCD(0x02); // Set 4 bit operation
// In 4 bit operation mode
CtrlLCD(0x28); // 4 bit operation with 2 line display
CtrlLCD(0x06); // No display shift and move right
CtrlLCD(0x01); // Clear display and return home position
CtrlLCD(0x0C); // Display on, cursor off and blink off
return;
}
/*****************************************************************************\
* void ctrl_LCD(void): Subroutine for sending control bytes to the LCD. This
*
* routine send the 8 bit value in two parts, since this *
* function is called in 4 bit operation mode. *
* *
* Parameters: ctrl. An 8 bit value for different control of the LCD, such as *
* number of lines, blink on or off, etc. *
* *
* Return: None. *
\*****************************************************************************/
void CtrlLCD(UBYTE ctrl)
{// Upper Nibble
PORTA &= 0xF0; // puting pin states of the LCD in PORTA pins
PORTA |= (ctrl >> 4) & 0x0F;
Set_E();
Clear_E();
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 147
Wait40us();
// Lower Nibble
PORTA &= 0xF0; // puting pin states of the LCD in PORTA pins
PORTA |= ctrl & 0x0F;
Set_E();
Clear_E();
if ((ctrl==0x01) || (ctrl==0x02)) WaitMs(2);
Wait40us();
return;
}
/*****************************************************************************\
* void ctrl8LCD(void): Subroutine for sending control bytes to the LCD in 8 *
* bit mode. use this function only to enter 4-bit mode, *
* since the other 4 data pins have no connection *
* *
* Parameters: ctrl. An 8 bit value for different control of the LCD, such as *
* number of lines, blink on or off, etc. *
* *
* Return: None. *
\*****************************************************************************/
void Ctrl8LCD(UBYTE ctrl)
{
PORTA &= 0xF0; // puting pin states of the LCD in PORTA pins
PORTA |= ctrl & 0x0F;
Set_E();
Clear_E();
Wait40us();
return;
}
/*****************************************************************************\
* void mov_cursor_LCD(UBYTE places, UBYTE dir): subroutine to move the LCD *
* cursor to RIGHT or LEFT the *
* the number of places the user *
* wants specyfied in 'places' *
* *
* Parameters: places. Number of places wanted to move the LCD cursor without *
* affecting any LCD actual message. *
* dir. Direction in which the cursor is to be moved. RIGHT or *
* LEFT. *
* *
* Return: None. *
\*****************************************************************************/
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
148 Source Code MOTOROLA
Source Code
void MovCursorLCD(UBYTE places, UBYTE dir)
{UBYTE ctrl_byte = 0x10 | dir;
do
{CtrlLCD(ctrl_byte);
}while((--places)>0);
return;
}
/*****************************************************************************\
* void data_LCD(UBYTE data): ASCII symbol to be displayed in the LCD in the *
* current cursor position. *
* *
* Parameters: data. 8-bit value representing the ASCII code of the symbol *
* to be displayed in the LCD at current position *
* *
* Return: None. *
\*****************************************************************************/
void DataLCD(UBYTE data)
{// Upper Nibble
PORTA &= 0xF0; // puting pin states of the LCD in PORTA pins
PORTA |= (data >> 4) & 0x0F;
Set_RS();
Set_E();
Clear_E();
// Lower Nibble
PORTA &= 0xF0; // puting pin states of the LCD in PORTA pins
PORTA |= data & 0x0F;
Set_E();
Clear_E();
Wait40us();
Clear_RS();
return;
}
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Source Code
Source Code Files
BLDC Motor Control Board for Industrial and Appliance Applications DRM007
MOTOROLA Source Code 149
/*****************************************************************************\
* void string_LCD(UBYTE *msgLCD): A function that displays a string in the LCD*
* at current cursor position. If a '&' cha- *
* racter is present in the string, a new line
*
* is commanded in the LCD. the function send *
* all the bytes in the string until a presense*
* of a EndOfString, EOS or 0x00 byte. *
* *
* Parameters: *msgLCD. Pointer to the string to be displayed in the LCD
*
* *
* Return: None. *
\*****************************************************************************/
void StringLCD(UBYTE *msgLCD)
{while(*msgLCD != EOS)
{if(*msgLCD == EOL) MovCursorLCD(29,RIGHT); // new line
else DataLCD(*msgLCD);
msgLCD++;
}
return;
}
/*****************************************************************************\
* void wait_ms(UBYTE milis): Delay routine that waits for a number of milli- *
* seconds send in the parameter milis. the delay *
* is calculated for a 8 MHz Fbus operation. *
* *
* Parameters: milis. A 8 bit value representing the number of milliseconds the*
* delay will wait. *
* *
* Return: None. *
\*****************************************************************************/
void WaitMs(UBYTE milis)
{
UBYTE wait40usCount = 0; // used for counting wait40us delay
do{ for(wait40usCount = 0; wait40usCount < 24; wait40usCount++)
Wait40us();
}while((--milis) != 0);
return;
}
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
DRM007 BLDC Motor Control Board for Industrial and Appliance Applications
150 Source Code MOTOROLA
Source Code
/*****************************************************************************\
* void wait40us(void): An instant of time of which the wait_ms() subroutine is*
* based on. *
* *
* Parameters: None *
* *
* *
* Return: None. *
\*****************************************************************************/
void Wait40us(void)
{
UBYTE count = 103; // Value for 40us delay at Fbus = 8 MHz
do{
}while(--count);
return;
}
/*****************************************************************************\
* End lcd.c *
******************************************************************************/
;
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
HOW TO REACH US:
USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447
JAPAN:
Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569
ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.;
Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334
TECHNICAL INFORMATION CENTER:
1-800-521-6274
HOME PAGE:
http://motorola.com/semiconductors
Inf ormation in this docume nt is provided solely to enable system and software
implementers to use Motorola pro ducts. There a re no e xpress or implied cop yright
licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.
Motorola reserves the right to mak e changes without further notice to any products
herein. Motorola makes no warranty, representation or guarantee regarding the
suitability of its products f or any pa rticular purpose, nor does Motorola assume an y
liability arising out of the app lication or use of any product or circuit, and specifically
disclaims any and all liability , including without limitation consequential or incidental
damages. “Typical” parameters which ma y be provided in Motorola data sheets
and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts.
Motorola does not con vey any licen se under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other
applications intended to support or sustain lif e, or f or any other applicatio n in which
the f ailure of the Moto rola product could create a sit uation where personal injury or
death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expe nses, and reasonable attorney fees
arising out of, dir ectly or indirectly, any claim of personal inju ry or death associated
with such unintended or u nauthorized use, e ven if such claim alleges that Motorola
was negligent regarding the design or manufacture of the part.
Motorola and the Styliz ed M Logo are registered in t he U .S. Pa tent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
© Motorola, Inc. 2003
DRM007/D
Rev. 0
2/2003
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...