R08DS0014EJ0100 Rev.1.00 Page 1 of 22
Jun 22, 2012
The mark <R> shows major revised points.
The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.
Preliminary Data Sheet
PS9402
2.5 A OUTPUT CURRENT, HIGH CMR, IGBT, POWER MOS FET GATE DRIVE, 16-PIN SSOP PHOTOCOUPLER
DESCRIPTION
The PS9402 is an optically coupled iso lator co n taining a GaAlA s LED on the inpu t side and a pho to diode, a signal
processing circuit and a power output transistor on the output side on one chip.
The PS9402 is designed specifically for high common mode transient immunity (CMR), high output current and high
switching speed.
The PS9402 includes desaturation detection and active miller clamping functions.
The PS9402 is suitable for driving IGBTs and Power MOS FETs.
The PS9402 is in a 16-pin plastic SSOP (Shrink Small O utline Package). And the PS9402 is able to high-density
(surface) mounting.
FEATURES
Long creepage distance (8 mm MIN.)
Large peak output current (2.5 A MAX., 2.0 A MIN.)
High speed switching (tPLH, tPHL = 200 ns MAX.)
UVLO (Under Voltage Lock Out) protecti on with hy st eresis
Desaturation detection
Miller clamping
High common mode transient immunity (|CMH|, |CML| = 25 kV/
μ
s MIN.)
Embossed tape product: PS9402-E3: 850 pcs/reel
Pb-Free product
Safety standards
UL approved: No. E72422
CSA approved: No. CA 101391 (
CA5A, CAN/CSA-C2 2.2 60065, 609 50
)
DIN EN60747- 5-2 (VDE08 84 Part 2) approve d:
No. 40024069
(Option)
APPLICATIONS
IGBT, Power MOS FET Gate Driver
Industrial inverter
Uninterruptible Power Supply (UPS)
R08DS0014EJ0100
Rev.1.00
Jun 22, 2012
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
PIN CONNECTION
(Top View)
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
<R>
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 2 of 22
Jun 22, 2012
PACKAGE DIMENSIONS (UNIT: mm)
0.2±0.15
10.36±0.4
0.64 MIN.
7.49
+0.5
–0.1
3.5±0.2
0.71±0.3
10.31±0.5
1.27
0.46
±0.1
0.25 M
PHOTOCOUPLER CONSTRUCTION
Parameter Unit (MIN.)
Air Distance 8 mm
Outer Creepage Distance 8 mm
Isolation Distance 0.4 mm
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 3 of 22
Jun 22, 2012
BLOCK DIAGRAM (UNIT: mm)
UVLO
DESAT
SHIELD
SHIELD
CLAMP
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
IF UVLO (VCC2 VEE) DESAT
(Pin 14: DESAT pin
input)
FAULT
(Pin 3: FAULT pin
output)
VO
OFF Not Active ( > VUVLO+) Not active High Low
ON Not Active ( > VUVLO+) Low ( < VDESATth) High High
ON Not Active ( > VUVLO+) High ( > VDESATth) Low (FAULT) Low
ON Active ( < VUVLO–) Not Active High Low
OFF Active ( < VUVLO–) Not Active High Low
<R>
<R>
<R>
<R>
<R>
<R>
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 4 of 22
Jun 22, 2012
MARKING EXAMPLE
9402
R
NT231
No. 1 pin
Mark Type Number
Assembly Lot
Year Assembled
(Last 1 Digit)
231
T
N
Rank Code
In-house Code
(T: Pb-Free)
Week Assembled
Company Initial
ORDERING INFORMATION
Part Number Order Number Solder Plating
Specification Packing Style Safet y Standard
Approval Application
Part Number*1
PS9402 PS9402-AX Pb-Free 10 pcs (Tape 10 pcs cut) Standard products PS9402
PS9402-E3 PS9402-E3-AX (Ni/Pd/Au) Embossed Tape 850 (UL and CSA
pcs/reel Approved)
PS9402-V PS940 2-V-AX 10 pcs (Tape 10 pcs cut) DIN EN60747-5-2
PS9402-V-E3 PS9402-V-E3-AX Embossed Tape 850 (VDE0884 Part2)
pcs/reel Approved
(Option)
Note: *1. For the application of the Safety Standard, following part number should be used.
<R>
<R>
<R>
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 5 of 22
Jun 22, 2012
ABSOLUTE MAXIMUM RATINGS (TA = 25°C, unless otherwise specified)
Parameter Symbol Ratings Unit
Forward Current *1 I
F 25 mA
Peak Transient Forward Current
( Pulse Width < 1
μ
s) IF (TRAN) 1.0 A
Reverse Voltage VR 5 V
Input Supply Voltage VCC1 0 to 5.5 V
Input IC Power Dissipation *2 P
I 80 mW
High Level Peak Output Current *3 I
OH (PEAK) 2.5 A
Low Level Peak Output Current *3 I
OL (PEAK) 2.5 A
FAULT Output Current IFAULT 8 mA
FAULT Pin Voltage VFAULT 0 to VCC1 V
Total Output Supply Voltag e (VCC2 VEE) 0 to 33 V
Negative Output Supply Volta ge (VE VEE) 0 to 15 V
Output Voltage VO 0 to VCC2 V
Peak Clamping Sinking Current IClamp 1.7 A
Miller Clamping Pin Voltage VClamp 0 to VCC2 V
DESAT Voltage VDESAT V
E to VE + 10 V
Output IC Power Dissipation *4 P
O 300 mW
Isolation Voltage *5 BV 5 000 Vr.m.s.
Operating Ambient Temperature TA 40 to +110 °C
Storage Temperature Tstg 55 to +125 °C
Notes: *1. Reduced to 0.52 mA/°C at TA = 85°C or more.
*2. Reduced to 1.6 mW/°C at TA = 75°C or more.
*3. Maximum pulse width = 10
μ
s, Maximum duty cycle = 0.2%
*4. Reduced to 5.5 mW/°C at TA = 70°C or more.
*5. AC voltage for 1 minute at TA = 25°C, RH = 60% between input and output.
Pins 1-8 shorted together, 9-16 shorted together.
RECOMMENDED OPERATING CONDITIONS
Parameter Symbol MIN. MAX. Unit
Total Output Supply Voltag e (VCC2 VEE) 15 30 V
Negative Output Supply Volta ge (VE VEE) 0 15 V
Positive Output Supply Voltage (VCC2 VE) 15 30 (VE VEE)V
Forward Current (ON) IF (ON) 8 12 mA
Forward Voltage (OFF) VF (OFF) 2 0.8 V
Operating Ambient Temperature TA 40 110 °C
<R>
<R>
<R>
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 6 of 22
Jun 22, 2012
ELECTRICAL CHARACTERISTICS (DC) (at RECOMMENDED OPERATING CONDITIONS,
VEE = VE = GND, unless otherwise specified)
Parameter Symbol Conditions MIN. TYP. *1 MAX. Unit
FAULT Logic Lo w Output
Voltage VFAULTL I
FAULT = 1.1 mA, VCC1 = 5.5 V 0.1 V
FAULT Logic High Output
Current IFAULTH VFAULT = 5.5 V, VCC1 = 5.5 V,
TA = 25°C 0.5
μ
A
High Level Outp u t Current IOH V
O = (VCC2 4 V) *2 0.5 1.5 A
V
O = (VCC2 15 V) *3 2.0
Low Level Output Current IOL V
O = (VEE + 2.5 V) *2 0.5 1.5 A
V
O = (VEE + 15 V) *3 2.0
Low Level Output Current
During Fault Condition IOLF V
O – VEE = 14 V 90 140 230 mA
High Level Output Voltage VOH I
O = 100 mA *4 V
CC2 3.0 VCC2 1.3 V
I
O = 650
μ
A *4 V
CC2 2.5 VCC2 0.8
Low Level Output Voltage VOL I
O = 100 mA 0.15 0.5 V
Clamp Pin Threshold Voltage VtClamp 2.0 V
Clamp Low Level Sinking
Current ICL V
tClamp = VEE + 2.5 V 0.35 1.5 A
High Level Supply Cu rrent ICC2H I
O = 0 mA 2 3 mA
Low Level Supply Current ICC2L I
O = 0 mA 2 3 mA
Blanking Capacitor C harging
Current ICHG V
DESAT = 2 V 0.13 0.24 0.33 mA
Blanking Capacitor D isch arging
Current IDSCHG V
DESAT = 7 V 10 30 mA
DESAT Th r e sho l d VDESATth V
CC2 VE > VUVLO, VO < 5 V 6.0 6.9 7.5 V
UVL O Threshold VUVLO+ V
O > 5 V 11.0 12.6 13.5 V
V
UVLO V
O < 5 V 9.8 11.3 12.3
UVLO Hysteresis UVLOHYS (VUVLO+) (VUVLO) 0.4 1.3 V
Threshold Input Current
(L H) IFLH I
O = 0 mA, VO > 5 V 1.5 5 mA
Threshold Input Voltage
(H L) VFHL I
O = 0 mA, VO < 5 V 0.8 V
Input Forward Voltage VF I
F = 10 mA, TA = 25°C 1.2 1.56 1.8 V
Input Reverse Current IR V
R = 3 V, TA = 25°C 10
μ
A
Input Capacitance CIN f = 1 MHz, VF = 0 V 30 pF
Notes: *1. Typical values at TA = 25°C.
*2. Maximum pulse width = 50
μ
s, Maximum duty cycle = 0.5%
*3. Maximum pulse width = 10
μ
s, Maximum duty cycle = 0.2%
*4. VOH is measured with the DC load current in this testing (Maximum pulse width = 1 ms, Maximum duty cycle =
20%).
<R>
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 7 of 22
Jun 22, 2012
SWITCHING CHARACTERISTICS (AC) (at RECOMMENDED OPERATING
CONDITIONS, VEE = VE = GND, unless otherwise specified)
Parameter Symbol Conditions MIN. TYP. *1 MAX. Unit
Propagation Delay Time (L H) tPLH R
g = 10 Ω, Cg = 10 nF, 50 90 200 ns
Propagation Delay Time (H L) tPHL f = 10 kHz, 50 110 200 ns
Pulse Width Distortion (PWD) |tPHLtPLH| Duty Cycle = 50% *2, 20 100 ns
Propagation Delay Time
(Difference Between Any Two
Products)
tPHLtPLH IF = 10 mA,
VCC2 = 30 V 100 100 ns
Rise Time tr 50 ns
Fall Time tf 50 ns
Common Mode Transient
Immunity at High Level Output *3 CMH TA = 25°C, IF = 10 mA,
VCC2 = 30 V, VCM = 1.5 kV,
CDESAT = 100 pF,
RF = 2.1 kΩ, VCC1 = 5 V
25 kV/
μ
s
Common Mode Transient
Immunity at Low Level Output *4 CML TA = 25°C, VF = 0 V,
VCC2 = 30 V,
VCM = 1.5 kV, RF = 2.1 kΩ,
VCC1 = 5 V
25 kV/
μ
s
DESAT Sense to 90% VO Delay tDESAT
(90%) CDESAT = 100 pF,
RF = 2.1 kΩ, 250 500 ns
DESAT Sense to 10% VO Delay tDESAT
(10%) Rg = 10 Ω, Cg = 10 nF
VCC2 = 30 V 1.5 2 3
μ
s
DESAT Sense to Low Level
FAULT Signal Delay tDESAT
(FAULT) 400 800 ns
DESAT Sense to DESAT Low
Propagation Delay tDESAT
(LOW) 250 ns
DESAT Input Mute *5 tDESAT
(MUTE) 5
μ
s
RESET to High Level FAULT VCC1 = 5.5 V 0.3 1.2 3.0
μ
s
Signal Delay tRESET
(FAULT) V
CC1 = 3.3 V 0.5 1.5 4.0
μ
s
Notes: *1. Typical values at TA = 25°C.
*2. This load condition is equivalent to the IGBT load at 1 200 V/150 A.
*3. Common mode transient immunity in the high state is the maximum tolerable dVCM/dt of the common mode
pulse, VCM, to assure that the output will remain in the high state (i.e., VO > 15 V or FAULT > 2 V). A 100 pF
and a 2.1 k pull-up resistor is needed in fault detection mode.
*4. Common mode transient immunity in the low state is the maximum tolerable dVCM/dt of the common mode
pulse, VCM, to assure that the output will remain in a low state (i.e., VO < 1.0 V or FAULT < 0.8 V).
*5. During muting DESAT, even if LED (IF) input occurs, IGBT operates turn-off and Vo state is kept to low.
After unmuting this DESAT, when LED is turned on, Vo/FAULT becomes high state (with automatic reset).
<R>
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 8 of 22
Jun 22, 2012
TEST CIRCUIT 1
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
VFAULTL
IF
IF
VOH
VCC2
IOH
VCC
2
VOL
VCC2
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
IFAULTH
IOL
VCC2
V
CC
1
I
F
2
V
CC
1
V
O
0.1 F
μ
V
O
IOIO
0.1 F
μ
0.1 F
μ
0.1 F
μ
Fig. 1 V
FAULTL
Test Circuit
Fig. 3 I
OH
Test Circuit
Fig. 5 V
OH
Test Circuit Fig. 6 V
OL
Test Circuit
Fig. 4 I
OL
Test Circuit
Fig. 2 I
FAULTH
Test Circuit
<R>
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 9 of 22
Jun 22, 2012
TEST CIRCUIT 2
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
I
F
I
F
I
CL
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
I
F
I
CC2H
I
CC2L
I
CHG
2 V
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
I
DSCHG
7 V
2.5 V
V
DESAT
V
CC
2V
CC
2
V
CC
2V
CC
2
V
CC
2V
CC
2
0.1 F
μ
0.1 F
μ
0.1 F
μ
0.1 F
μ
0.1 F
μ
0.1 F
μ
Fig. 7 I
CC2H
Test Circuit
Fig. 9 I
CHG
Test Circuit
Fig. 11 I
CL
Test Circuit Fig. 12 V
DESAT
Test Circuit
Fig. 10 I
DSCHG
Test Circuit
Fig. 8 I
CC2L
Test Circuit
<R>
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 10 of 22
Jun 22, 2012
TEST CIRCUIT 3
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
I
F
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
I
F
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
I
F
10 Ω
10 nF
I
F
V
OUT
FAULT
V
DESET
90%
10%
50% 50%
50%
t
DESET (LOW)
t
DESET (MUTE)
t
DESET (10%)
t
DESET (90%)
t
RESET (FAULT)
t
DESET (FAULT)
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
I
F
2.1 kΩ
10 Ω
10 nF
100 pF
t
PHL
t
PLH
I
F
V
OUT
90%
50%
10%
t
r
t
f
V
CC
2
V
CC
2
V
CC
2
V
CC
2
VDESAT
+
VCC1 = 5 V
0.1 F
μ
0.1 F
μ
0.1 F
μ
0.1 F
μ
Fig. 13 V
UVLO
Test Circuit
Fig. 15 t
PLH/
t
PHL
Test Circuit Fig. 17 t
PLH
/t
PHL
Test Wave Forms
Fig. 18 t
DESAT
Test Wave Forms
Fig. 14 I
FLH
Test Circuit
Fig. 17 t
DESAT
Test Circuit
<R>
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 11 of 22
Jun 22, 2012
TEST CIRCUIT 4
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
10 Ω
10 nF
+
SCOPE
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
10 Ω
10 nF
+
SCOPE
2.1 kΩ
SCOPE
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
10 Ω
10 nF
+
2.1 kΩ
SCOPE
V
S
V
CC
1
Fault
V
S
Cathode
Anode
Anode
Cathode
V
E
V
LED
Desat
V
CC
2
V
EE
V
O
V
clamp
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
10 Ω
10 nF
+
V
OH
V
OL
1 V
15 V
1 500 V
V
CM
0 V
V
O
(CM
H
: I
F
= 10 mA)
V
O
(CM
L
: I
F
= 0 mA)
t
r
t
f
90%
10%
GND
OPEN
0.8 V
2 V
1 500 V
V
CM
0 V
V
FAULT
(CM
H
: I
F
= 10 mA, DESAT)
V
FAULT
(CM
L
: I
F
= 0 mA, DESAT)
t
r
t
f
90%
10%
VCC2VCC2
VCC1
VCC2
100 pF
VCC1
VCC2
0.1 F
μ
0.1 F
μ
0.1 F
μ
0.1 F
μ
0.1 F
μ
0.1 F
μ
Fig. 19 CMH Test Circuit (LED1 ON)
Fig. 21 CMH Test Circuit (LED2 ON)
Fig. 23 CMH, CML Test Wave Forms
(LED1 ON, OFF)
Fig. 24 CMH, CML Test Wave Forms
(LED2 ON, OFF)
Fig. 22 CML Test Circuit (LED2 OFF)
Fig. 20 CML Test Circuit (LED1 OFF)
<R>
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 12 of 22
Jun 22, 2012
TYPICAL CHARACTERISTICS (TA = 25°C, unless otherwise specified)
Ambient Temperature T
A
(°C)
Output IC Power Dissipation P
O
(mW)
OUTPUT IC POWER DISSIPATION
vs. AMBIENT TEMPERATURE
0
50
100
150
200
250
300
350
400
Ambient Temperature T
A
(°C)
Threshold Input Current I
FLH
(mA)
THRESHOLD INPUT CURRENT vs.
AMBIENT TEMPERATURE
5
4
3
2
1
0
V
CC
2 = 30 V,
V
EE
= GND,
V
O
> 5 V
40 200 20406080100
Forward Current I
F
(mA)
Output Voltage V
O
(V)
OUTPUT VOLTAGE vs.
FORWARD CURRENT
V
CC
= 30 V,
V
EE
= GND
102435
35
30
25
20
15
10
5
Ambient Temperature T
A
(°C)
Input IC Power Dissipation P
I
(mW)
INPUT IC POWER DISSIPATION
vs. AMBIENT TEMPERATURE
250 50 75 100 125
0
120
100
80
60
40
20
250 50 75 100 125
High Level Output Voltage – Output
Supply Voltage V
OH
V
CC
2 (V)
High Level Output Current I
OH
(A)
HIGH LEVEL OUTPUT VOLTAGE – OUTPUT SUPPLY
VOLTAGE vs. HIGH LEVEL OUTPUT CURRENT
2.5 2.0 1.5 1.0 0.00.5
0.0
5.0
4.0
3.0
2.0
1.0
V
CC
= 30 V,
V
EE
= GND,
I
F
= 10 mA
40°C
T
A
= 110°C
25°C
Forward Voltage V
F
(V)
Forward Current I
F
(mA)
FORWARD CURRENT vs.
FORWARD VOLTAGE
1.0
0.01
0.1
1.0
10
100
1.2 1.4 1.6 1.8 2.0 2.2 2.4
T
A
= +100°C
+85°C
+50°C
+25°C
0°C
40°C
Remark The graphs indicate nominal characteristics.
<R>
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 13 of 22
Jun 22, 2012
Output Supply Voltage VCC2 (V)
PROPAGATION DELAY TIME,
PULSE WIDTH DISTORTION
vs. OUTPUT SUPPLY VOLTAGE
Propagation Delay Time tPHL, tPLH (ns),
Pulse Width Distortion (PWD) tPHL – tPLH (ns)
Propagation Delay Time tPHL, tPLH (ns),
Pulse Width Distortion (PWD) tPHL – tPLH (ns)
15 20 25 30
VEE = GND, IF = 10 mA,
Rg = 10 Ω, Cg = 10 nF,
f = 10 kHz, Duty cycle = 50%
200
150
100
50
0
tPHL
PWD
tPLH
PROPAGATION DELAY TIME,
PULSE WIDTH DISTORTION
vs. LOAD CAPACITANCE
Load Capacitance Cg (nF)
01020
30 40 50
VCC2 = 30 V, VEE = GND,
IF = 10 mA, Rg = 10 Ω,
f = 10 kHz, Duty cycle = 50%
tPHL
tPLH
PWD
PROPAGATION DELAY TIME,
PULSE WIDTH DISTORTION
vs. LOAD RESISTANCE
VCC2 = 30 V, VEE = GND,
IF = 10 mA, Cg = 10 nF,
f = 10 kHz, Duty cycle = 50%
tPHL
PWD
tPLH
Load Resistance Rg (Ω)
Propagation Delay Time tPHL, tPLH (ns),
Pulse Width Distortion (PWD) tPHL – tPLH (ns)
Propagation Delay Time tPHL, tPLH (ns),
Pulse Width Distortion (PWD) tPHL – tPLH (ns)
PROPAGATION DELAY TIME,
PULSE WIDTH DISTORTION
vs. AMBIENT TEMPERATURE
Ambient Temperature TA (°C)
040 20 20 40 60 80
VCC2 = 30 V, VEE = GND,
IF = 10 mA,
Rg = 10 Ω, Cg = 10 nF,
f = 10 kHz, Duty cycle = 50%
tPHL
tPLH
100
PWD
200
150
100
50
0
01020
30 40 50
200
150
100
50
0
200
150
100
50
0
Low Level Output Current IOL (A)
Low Level Output Voltage VOL (V)
LOW LEVEL OUTPUT VOLTAGE vs.
LOW LEVEL OUTPUT CURRENT
0.0
5.0
4.0
3.0
2.0
1.0
0 0.5 1.0 1.5 2.52.0
VCC = 30 V,
VEE = GND,
IF = 0 mA
40°C
25°C
TA = 110°C
Forward Current IF (mA)
PROPAGATION DELAY TIME,
PULSE WIDTH DISTORTION
vs. FORWARD CURRENT
Propagation Delay Time tPHL, tPLH (ns),
Pulse Width Distortion (PWD) tPHL – tPLH (ns)
7101316
VCC2 = 30 V, VEE = GND,
Rg = 10 Ω, Cg = 10 nF,
f = 10 kHz, Duty cycle = 50%
200
150
100
50
0
tPHL
PWD
tPLH
Remark The graphs in dicate nominal characteristics.
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 14 of 22
Jun 22, 2012
Ambient Temperature TA (°C)
High Level Output Voltage – Output
Supply Voltage VOHVCC2 (V)
HIGH LEVEL OUTPUT VOLTAGE
OUTPUT SUPPLY VOLTAGE vs.
AMBIENT TEMPERATURE
20 0 20 40 806040
0.0
3.0
2.5
2.0
1.5
1.0
0.5
100 20 0 20 40 806040 100
VCC2 = 30 V, VEE = GND,
IF = 10 mA
Ambient Temperature TA (°C)
High Level Output Current IOH (A)
HIGH LEVEL OUTPUT CURRENT vs.
AMBIENT TEMPERATURE
Ambient Temperature TA (°C)
Low Level Output Voltage VOL (V)
LOW LEVEL OUTPUT VOLTAGE vs.
AMBIENT TEMPERATURE
0.5
0
0.1
0.2
0.3
0.4
VCC2 = 30 V, VEE = GND,
IF = 10 mA, IO = 100 mA
Ambient Temperature TA (°C)
Low Level Output Current IOL (A)
LOW LEVEL OUTPUT CURRENT vs.
AMBIENT TEMPERATURE
20 0 20 40 806040 100
0
1
7
6
5
4
3
2
VCC2 = 30 V, VEE = GND,
IF = 10 mA
20 0 20 40 806040 100
5
0
1
2
3
4
VCC2 = 30 V, VEE = GND,
IF = 10 mA
–100 mA
IO = –650 A
VO = VCC2 4 V VO = VEE +15 V
VEE +2.5 V
VCC2 15 V
μ
Ambient Temperature TA (°C)
HIGH LEVEL SUPPLY CURRENT,
LOW LEVEL SUPPLY CURRENT vs.
AMBIENT TEMPERATURE
High Level Supply Current ICCH (mA),
Low Level Supply Current ICCL (mA)
20 0 20 40 806040
3.0
2.5
2.0
1.5
1.0
0.5 100
VCC2 = 30 V,
VEE = GND,
VO = OPEN
ICC2H
(IF = 10 mA)
ICC2L
(IF = 0 mA)
Output Supply Voltage VCC2 (V)
HIGH LEVEL SUPPLY CURRENT,
LOW LEVEL SUPPLY CURRENT vs.
OUTPUT SUPPLY VOLTAGE
High Level Supply Current ICCH (mA),
Low Level Supply Current ICCL (mA)
15 20 3025
VEE = GND,
VO = OPEN
ICC2H
(IF = 10 mA)
ICC2L
(IF = 0 mA)
3.0
2.5
2.0
1.5
1.0
0.5
Remark The graphs in dicate nominal characteristics.
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 15 of 22
Jun 22, 2012
Ambient Temperature T
A
(°C)
Blanking Capacitor Discharging Current I
DSCHG
(mA)
BLANKING CAPACITOR DISCHARGING
CURRENT vs. AMBIENT TEMPERATURE
20 0 20 40 806040 100
60
20
30
40
50
V
CC
2 = 30 V, V
EE
= V
E
= GND,
I
F
= 0 mA, V
DESAT
= 7 V
Ambient Temperature T
A
(°C)
DESAT Threshold V
DESATth
(V)
DESAT THRESHOLD vs.
AMBIENT TEMPERATURE
20 0 20 40 806040 100
7.5
6.0
6.3
6.9
6.6
7.2
V
EE
= V
E
= GND,
V
CC
2 > V
UVLO
, V
O
< 5 V,
I
F
= 10 mA
Ambient Temperature T
A
(°C)
DESAT Sense to 90% V
O
Delay t
DESAT (90%)
(ns)
20 0 20 40 806040 100
500
0
100
300
200
400
DESAT SENSE TO 90% VO DELAY vs.
AMBIENT TEMPERATURE
V
EE
= V
E
= GND, R
g
= 10 Ω,
C
g
= 10 nF, R
F
= 2.1 kΩ,
C
DESAT
= 100 pF, V
CC
1 = 5 V
V
CC
2 = 30 V
15 V
Ambient Temperature T
A
(°C)
DESAT Sense to 10% V
O
Delay t
DESAT (10%)
( s)
20 0 20 40 806040 100
3.0
0.0
1.0
0.5
2.0
1.5
2.5
DESAT SENSE TO 10% VO DELAY vs.
AMBIENT TEMPERATURE
V
CC
1 = 5 V, V
EE
= V
E
= GND, R
g
= 10 Ω,
C
g
= 10 nF, R
F
= 2.1 kΩ, C
DESAT
= 100 pF
V
CC
2 = 30 V
15 V
μ
Ambient Temperature T
A
(°C)
Clamp Low Level Sinking Current I
CL
(A)
CLAMP LOW LEVEL SINKING CURRENT
vs. AMBIENT TEMPERATURE
20 0 20 40 806040 100
4
0
1
2
3
V
CC
2 = 30 V,
V
EE
= V
E
= GND,
V
t
Clamp = 2.5 V
Ambient Temperature T
A
(°C)
Blanking Capacitor Charging Current I
CHG
(mA)
BLANKING CAPACITOR CHARGING
CURRENT vs. AMBIENT TEMPERATURE
20 0 20 40 806040 100
0.10
0.35
0.30
0.20
0.25
0.15
V
CC
2 = 30 V, V
EE
= V
E
= GND,
I
F
= 10 mA, V
DESAT
= 2 V
Remark The graphs in dicate nominal characteristics.
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 16 of 22
Jun 22, 2012
I
F
= 10 mA, V
EE
= GND
OUTPUT VOLTAGE vs. SUPPLY VOLTAGE
Supply Voltage V
CC
2 – V
EE
(V)
Output Voltage V
O
(V)
0 5 10 15 20
14
12
10
8
6
4
2
0
UVLO
HYS
V
UVLO+
V
UVLO
(12.6 V)
(11.3 V)
Load Resistance R
g
(Ω)
Power Consumption Per Cycle E
SW
( J)
20 4030010 50
8
7
0
1
3
2
5
4
6
POWER CONSUMPTION PER CYCLE vs.
LOAD RESISTANCE
Q
g
= 1 000 nC
Q
g
= 100 nC
Q
g
= 500 nC
μ
Load Resistance R
g
(Ω)
DESAT Sense to 10% V
O
Delay t
DESAT (10%)
( s)
20 403010 50
3.0
0.0
1.0
0.5
2.0
1.5
2.5
DESAT SENSE TO 10% V
O
DELAY vs.
LOAD RESISTANCE
V
CC
1 = 5 V, V
EE
= V
E
= GND, C
g
= 10 nF,
R
F
= 2.1 kΩ, C
DESAT
= 100 pF
V
CC
2 = 30 V
15 V
Load Capacitance C
g
(nF)
DESAT Sense to 10% V
O
Delay t
DESAT (10%)
( s)
20 403010 50
12.0
0.0
6.0
3.0
9.0
DESAT SENSE TO 10% V
O
DELAY vs.
LOAD CAPACITANCE
V
CC
1 = 5 V, V
EE
= V
E
= GND,
R
F
= 2.1 kΩ, R
g
= 10 Ω,
C
DESAT
= 100 pF
V
CC
2 = 30 V
15 V
0
μ
μ
Remark The graphs in dicate nominal characteristics.
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 17 of 22
Jun 22, 2012
TAPING SPECIFICATIONS (UNIT: mm)
Packing: 850 pcs/reel
2.0±0.5
R 1.0
13.0±0.2
φ
3.5
φ
21.0±0.8
φ
330±2.0
φ
100±1.0
φ
4.5
±0.1
3.8
±0.1
0.35
10.8
±0.1
4.0
±0.1
2.0
±0.1
11.5
±0.1
1.75
±0.1
φ
1.55
±0.1
24
±0.3
16
±0.1
10.9
±0.1
2.0±0.5
23.9 to 27.4
Outer edge of
flange
29.5±1.0
25.5±1.0
φ
1.5+0.1
–0
PS9402-E3
Tape Direction
Outline and Dimensions (Tape)
Outline and Dimensions (Reel)
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 18 of 22
Jun 22, 2012
RECOMMENDED MOUNT PAD DIMENSIONS (UNIT: mm)
Part Number
PS9402
Lead Bending A
lead bending type (Gull-wing)
for surface mount 9.85
B
1.27
C
0.96
D
1.65
D
CB
A
<R>
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 19 of 22
Jun 22, 2012
NOTES ON HANDLING
1. Recommended soldering conditions
(1) Infrared reflow soldering
• Peak reflow temperature 260°C or below (package surface temperature)
Ti me of peak reflow temp erature 10 seconds or less
Time of temperature higher than 220°C 60 seconds or less
Time to preheat temperature from 120 to 180°C 120±30 s
• Number of reflows Three
Flux Rosin flux containing small amount of chlorine (The flux
with a maximum chlorine content of 0.2 Wt% is
recommended.)
120±30 s
(preheating)
220°C
180°C
Package Surface Temperature T (°C)
Time (s)
Recommended Temperature Profile of Infrared Reflow
(heating)
to 10 s
to 60 s
260°C MAX.
120°C
(2) Wave soldering
• Temperature 260°C or below (molten solder temperature)
Time 10 seconds or less
• Preheating conditions 120°C or below (package surface temperature)
Number of times One (Allowed to be dipped in solder including plastic mold portion.)
Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine
content of 0.2 Wt% is recommended.)
(3) Soldering by Soldering Iron
Peak Temperature (lead part temperature) 350°C or below
Time (each pins) 3 seconds or less
Flux Rosin flux containing small amount of chlorine (The flux with a
maximum chlori ne co nt ent of 0.2 Wt% is recomm ended .)
(a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead
(4) Cautions
Fluxes Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.
2. Cautions regarding noise
Be aware that when voltage is applied suddenly between the photocoupler’s input and output at startup, the output
transistor may enter the on state, even if the voltage is within the abso lute maximum ratings.
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 20 of 22
Jun 22, 2012
USAGE CAUTIONS
1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static
electricity when handling.
2. Board designing
(1) By-pass capacitor of more than 0.1
μ
F is used between VCC and GND near device. Also, ensure that the distance
between the leads of the photocoupler and capacitor is no more than 10 mm.
(2) When designing the printed wiring board, ensure that the pattern of the IGBT collectors/emitters is not too close
to the input block pattern of the photocoupler.
If the pattern is too close to the input block and coupling occurs, a sudden fluctuation in the voltage on the IGBT
output side might affect the photocoupler’s LED input, leading to malfunction or degradation of characteristics.
(If the pattern needs to be close to the input block, to prevent the LED from lighting during the off state due to
the abovementioned coup ling, design the input-side circuit so that the bias of the LED is reversed, within the
range of the recommended operating conditions, and be sure to thoroughly evaluate operation.)
3. Make sure the rise/fall time of the forward current is 0.5
μ
s or less.
4. In order to avoid malfunctions, make sure the rise/fall slope of th e VCC2 is 3 V/
μ
s or less.
5. Avoid storage at a high temperature and high humidity.
<R>
<R>
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 21 of 22
Jun 22, 2012
SPECIFICATION OF VDE MARKS LICENSE DOCUMENT
Parameter Symbol Spec. Unit
Climatic test class (IEC 60068-1/DIN EN 60068-1) 40/110/21
Dielectric strength
maximum operating isolati on voltage
Test voltage (partial dischar ge test, procedure a for type test and random test)
Upr = 1.6 × UIORM., Pd < 5 pC
UIORM
Upr
1 130
1 808
Vpeak
Vpeak
Test voltage (partial discharge test, procedure b for all devic es)
Upr = 1.875 × UIORM., Pd < 5 pC Upr 2 119 Vpeak
Highest permissible overvoltage UTR 8 000 Vpeak
Degree of pollution (DIN EN 60664-1 VDE0 110 Part 1) 2
Comparative tracking index (IEC 60112/DIN EN 60112 (VDE 0303 Part 11)) CTI 175
Material group (DIN EN 60664-1 VDE0110 Part 1) III a
Storage temperature range Tstg –55 to +125 °C
Operating temperature range TA –40 to +110 °C
Isolation resistance, minimum value
VIO = 500 V dc at TA = 25°C
VIO = 500 V dc at TA MAX. at least 100°C
Ris MIN.
Ris MIN.
1012
1011
Ω
Ω
Safety maximum ratings (maximum permissible in case of fault, see thermal
derating curve)
Package temperature
Current (input current IF, Psi = 0)
Power (output or total power dissipation)
Isolation resistance
VIO = 500 V dc at TA = Tsi
Tsi
Isi
Psi
Ris MIN.
175
400
700
109
°C
mA
mW
Ω
<R>
PS9402 Chapter Title
R08DS0014EJ0100 Rev.1.00 Page 22 of 22
Jun 22, 2012
Caution GaAs Products This product uses gallium arsenide (GaAs).
GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe
the following points.
• Follow related laws and ordinances when disposing of the product. If there are no applicable laws
and/or ordinances, dispose of the product as recommended below.
1. Commission a disposal company able to (with a license to) collect, transport and dispose of
materials that contain arsenic and other such industrial waste materials.
2. Exclude the product from general industrial waste and household garbage, and ensure that the
product is controlled (as industrial waste subject to special control) up until final disposal.
• Do not burn, destroy, cut, crush, or chemically dissolve the product.
• Do not lick the product or in any way allow it to enter the mouth.
All trademarks and registered trademarks are t he property of their respective owners.
C - 1
Revision History PS9402 Data Sheet
Description
Rev. Date Page Summary
0.01 May 09, 2011 First edition issued
1.00 Jun 22, 2012 Throughout Preliminary Data Sheet - > Data Sheet
Throughout Safety standards approved
p.3 Modification of BLOCK DIAGRAM
p.4 Modification of MARKING EXAMPLE
p.5 Modification of ABSOLUTE MAXIMUM RATINGS
p.6 Modification of ELECTRICAL CHARACTERISTICS (DC)
p.7 Modification of SWITCHING CHARACTERISTICS (AC)
pp.8 to 11 Modification of TEST CIRCUIT
pp.12 to 16 Addition of TYPICAL CHARACTERISTICS
p.18 Addition of RECOMMENDED MOUNT PAD DIMENSIONS
p.20 Modification of USAGE CAUTIONS
p.21 Addition of SPECIFICATION OF VDE MARKS LICENSE DOCUMENT
Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
use of these circuits, software, or information.
2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.
4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or
third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on
the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; and industrial robots etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical
implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it
in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses
incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.
6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage
range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the
use of Renesas Electronics products beyond such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and
malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,
please evaluate the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics
products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes
no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or
regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the
development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the
contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
products.
11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.
htt
p
://www.renesas.co
m
Refer to "htt
p
://www.renesas.com/" for the latest and detailed information
.
R
e
n
esas
El
ec
tr
o
ni
cs
Am
e
ri
ca
In
c
.
2880 Scott Boulevard Santa Clara
,
CA 95050-2554
,
U.S.A
.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Mala
y
sia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petalin
g
Jaya, Selan
g
or Darul Ehsan, Malaysi
a
Tel: +60-3-7955-9390
,
Fax: +60-3-7955-951
0
Renesas Electronics Korea Co.
,
Ltd
.
11F., Samik Lavied' or Bld
., 720-2 Yeoksam-Don
, Kan
nam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737
,
Fax: +82-2-558-514
1
S
ALE
S
O
FFI
C
E
S
©
2012 Renesas Electronics Corporation. All ri
g
hts reserved
.
Colo
p
hon 2.0