O14 ve Baazsoan 0014304 7 I 3875081 GE SOLID STATE ~~ O1E 18304 pi T~s9-]| . - Standard Power MOSFETs File Number 1570 IRF330, IRF331, IRF332, IRF333 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode N-CHANNEL ENHANCEMENT MODE Power Field-Effect Transistors o 4.5A and 5.5A, 350V-400V Tos(on) = 1.0Q and 1.50 Features: m SOA is power-dissipation limited @ Nanosecond switching speeds @ Linear transfer characteristics @ High Input impedance . Majority carrier device $ 9208-33741 . TERMINAL DIAGRAM The IRF330, {RF331, IRF332 and IRF333 are n-channel enhancement-mode silicon-gate power field- TERMINAL DESIGNATION effect transistors designed for applications such as switch- ORAIN ing regulators, switching converters, motor drivers, relay souURCE (FLANGE) drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA steel GATE g2cs-3780 package. JEDEC TO-204AA Absolute Maximum Ratings Parameter IRF330 iRF331 IAF 332 IRF 333 Units Vos Drain - Source Voltage D 400 350 400 350 v [ Yocr Drain - Gate Voltaga (Rg = 20KQ) OD 400 350 400 350 v Ip @Te = 25C Cantinuous Drain Current 5.5 5.5 4.5 45 A 'p @Te = 100C Continuous Oran Current 3.5 3.5 30 30 A tom + Pulsed Drain Current @ 22 22 18 18 A Vos Gate - Source Voltage 20 v Pp @Tc = 25C Max. Power Dissipation 75 {See Fig. 14) Ww Linear Deraung Factor 0.6 (See Fig. 14) weet iim Inductive Current, Clamped (See Fig. 15 and 16) L = 100yH A 22 i 22 I 18 | 18 om Set nee 3610160 *c Lead Temperature 300 (0 0631n, {1.6mm} from case for 10s} C oc 2473875081 G E SOLID STATE Standard Power MOSFETs Ol pe ff sa7soar 0018305 4 i O1E 18305. pT-397-// IRF330, IRF331, IRF332, IRF333 Electrical Characteristics @T = 25C (Unless Otherwise Specified) 248 es Parameter Type Min. | Typ. | Max. | Unrts Test Conditions BVpss Orain - Source Breakdown Voltage IRF330 400 _ _ Vv Vos = OV IRF332 iRF331 _ IRF333 350 - - Ip = 250pA Vesitny Gate Threshold Voltage ALL 2.0 = 4.0 v Vos = Ves. Ip = 250A igss _ Gate-Source Leakage Forward ALL - - 100 aA Ves = 20V legs __ Gate-Source Leakage Reverse ALL = _[-100 | na Vas = -20V loss s- Zero Gate Vottage Drain Current ALL = > 260 pA Vps = Max. Rating, Vag = OV - = i000 [4a Vos. = Max. Rating x0 8, Vgg = OV. Te = 125C fDfon} On State Drain Current @ (RFBI0 J gg | _ A IAFaat | ps? ton) x7 Veg = 10 DS 7 "Dion} * "DSian) max + Yes inrsaz [ge | | | A IRF333 * Fosion} Static Drain-Source On-State IAFI30 _ Resistance IRF31 oe] to] a VGg = 10V, Ip = 3.0A IRF332 _ 1.0 15 a IRF333 . Sts Forward Transconductance @ ALL 30 [40] Siul Vos ?!pion) * Foston) max. 'p = 9 OA Ciss (nput Capacitance ALL = 700 { Soo pF Vs = OV. Vpg = 28V, f= 1.0 MHz Coss _ Output Capacitance ALL = 160 | 300 DF See Fig 10 Ces Reverse Transfer Capacitance ALL - 40. 80 pF tajon} _ Tumm-On Delay Time ALL - = 30 ns Yop = 175M, Ip = 3.04, 2 = 15ST ty fise Time ALL - - 35 ns See Fig. 17 fdtoff) _ Tum-Off Delay Time ALL - = 55 ns (MOSFET switching times are essentially tf Fall Time ALL _ _ 35 ns independent of operating temperature } Total Gate Charge _ Ves = 10V. Ip = 7.04. Vos = 0.8 Max. Rating. (Gate Source Pius Gate-Drain} ALL 18 30 nc See Fig, 18 for test circuit. (Gate charge is essentially Ogs Gate-Source Charge ALL _ " _ ac independent of operating temperature } Qa Gate Drain (*Miller} Charge ALE - 7.0 - ac ip Internat Drain Inductance ALL - 5.0 = aH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internal device - source and gate pins inductances. and center of dia. .o lg {internal Source Inductance ALL - 12.5] - nH Measured from the Lo source pin, 8mm (0.25 in } from header G and source bonding us pad. s Thermal Resistance Rinse Junction-to-Case ALL = | 167 [ecw Rincs Case-to-Sink ALL - 0.1 > C/W Mounting surface flat, smooth, and greased Pipsa _Junction-to-Ambient ALL - - 30. CW Free Arr Operation Source-Drain Diode Ratings and Characteristics - Is Continuous Source Current IRF330 _ _ 55 A Modified MOSFET symbol (Body Diode} IRF331 thowing the integral > IAF 332 reverse P-N yunction recnfier. raga | ~ | - | 45 | A isnt Pulse Source Current (RF330 22 A \ 4 - - G {Body Diode) @ --, ee - = $s {F333 | A Vsp Diode Forward Voltege @ inese | - | - fue] ov Tg = 28C, Ig = 5 5A, Vgg = OV IRF332 inFa33 | - - | 15 v Te = 25C, Is = 4.54, Vg = OV UG Reverse Recovery Time ALL - {so0f ~ Ty = 150C, Ip # 5.54, dip/dt = 100Aius One Reverse Recovered Charge ALL - 40 = ac Ty = 180C, Ip = 5.54, Dpidt = 100A/us ton Forward Turn-on Time ALL tntnnsic tum on time is negligible. Turn on speed 1s substantially controlled by lg + lp OT, = 25C to 150C. @Putse Test: Pulse width < 300us, Outy Cycle < 2%. Aepatitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal (mpedance Curve (Fig 5) eee nears cee ReneeO1 DEM 3875081 o01830b o i O1 18306 _ D7" 39-/! Standard Power MOSFETs IRF330, IRF331, IRF332, IRF333 3875081 GE SOLID STATE. les PULSE Vos > tpton) * (p. ORAIN CURRENT (AMPERES) Ip, ORAIN CURRENT (AMPERES) 8 0 100 150 200 250 300 0 ' 2 a a 5 6 ? os, ORAIN TO SOURCE VOLTAGE (VOLTS? Vos GATE TO SOURCE VOLTAGE (vaLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics 50 4S LIMITED 20 8 & i Ss E z = = 3 = = B 2 2 z < z = 10 s 2 tc" ? os T+ 180C 1 02 : o1 2 2 5 mo 2 so 100 200 500 Vpg. DRAIN TO SQURCE VOLTAGE (VOLTS) Vpg: ORAIN TO SQURCE VOLTAGE (VOLTS) Fig. 3 Typicat Saturation Characteristics Fig. 4 Maximum Sate Operating Area Leet} | be t2 NORMALIZED EFFECTIVE TRANSIENT Zeuctin ony THEAMAL IMPEDANCE (PER UNIT) OUTY FACTOR, O- z . . 2. PER UNIT BASE = Ryne * 1.87 OEG COW. on 3 Tym -Te = Pom Zmnscttl. 001 05 2 5 wt 2 5 ws 2 192 2 nr 5 10 2 5 10 - - - ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 6 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 249 aOl DE gp3875081 0018307 c i 3875081 G E SOLID STATE - oie 18307 OT-S9-I! Standard Power MOSFETs . IRF330, IRF331, IRF332, IRF333 10 Roo. o 3 ~ Ota, TAANSCONDUCTANCE (SIEMENS) wn = * ipr. REVERSE DAAIN CURRENT (AMPERES) x Rosten} max, 2 , 10 Q- 2 & e to 0 1 2 3 4 Ip. DAAIN CURRENT [AMPERES} Vgp. SOUACE-TD DRAIN VOLTAGE (VOLTS) Fig. 6 Typical Transconductance Vs. Drain Current Fig. 7 Typical Source-Drain Diode Forward Voltage 135 a ~ (NORMALIZED) o o nz 2 o 2 bd Aigs(on)- ORAIN-TO-SOUACE ON RESISTANCE (NORMALIZED) BVpo5. ORAIN-TO-SOURCE BREAKDOWN VOLTAGE O75 a2 40 0 80 120 160 40 0 0 #0 120 T), JUNCTION TEMPE AATURE (C) Ty, JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature Fig. 8 Normatized On-Resistance Vs. Temperature sl 1800 Cin * Cg + Cpa, Cas SHORTED Crag = Cys Consus tly = Cig? Og an 3 . C, CAPACITANCE (oF) a Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS) s Ip=7A FOR TEST CIRCUIT SEE 18 o 13 20 xn a 0 Qo a 16 a4 32 40 Vos. ORAIN TO SOURCE VOLTAGE (VOLTS) ' , Oy TOTAL GATE CHARGE {0C) Fig. 10 Typica! Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 2503875081 G E SOLID STATE O1 ve Wsazsoa1 00348304 4 i O1 18308 of -S37-// Standard Power MOSFETs Fig, 2 Vg * 20V Alston}. DRAIN-TO-SOURCE ON RESISTANCE (CHMS) Rosion) wiTH ar 20: DUAATION. INITIAL Ty = 259C. (HEATING EFFECT OF 20 xs Is Q 5 10 15 2 H Ip. DRAIN CURRENT (AMPERES) Fig. 12 Typicat On-Resistance Vs. Drain Current a 3 a Pp, POWER DISSIPATION (WATTS) Q 20 40 60 IRF330, IRF331, IRF332, IRF333 Jp, DRAIN CURRENT (AMPERES) a 26 50 LT 100 Tc. CASE TEMPERATURE (C} Fig. 13 Maximum Drain Current Vs. Case Temperature 125 189 a 100 120 40 Tc, CASE TEMPERATURE {C} Fig. 14 Power Vs. Temperature Derating Curve WARY ty TO OBTAIN REQUIREG PEAK re oe Ves *20V Lat, 1 Fig. 15 Clamped Inductive Test Circuit . 17 Switching Time Test Circuit Ey D58Vps5 Vo * 0 1S8Vps5 Fig. 16 Clamped Inductive Waveforms o *Yos - CURRENT CSOLATED REGULATOR 6 SUPPLY) SAME TYPE 10 CURRENT = CURRENT SHUNT SHUNT Fig. 18 Gate Charge Test Circuit 251