1C3M0350120J Rev. A, 03-2020
C3M0350120J
Silicon Carbide Power MOSFET
C3MTM MOSFET Technology
N-Channel Enhancement Mode
Features
3rd generation SiC MOSFET technology
Low impedance package with driver source pin
7mm of creepage distance between drain and source
High blocking voltage with low on-resistance
High-speed switching with low capacitances
Fast intrinsic diode with low reverse recovery (Qrr)
Halogen free, RoHS compliant
Benets
Reduce switching losses and minimize gate ringing
Higher system efciency
Reduce cooling requirements
Increase power density
Increase system switching frequency
Applications
Renewable energy
High voltage DC/DC converters
Switch Mode Power Supplies
UPS
Package
Part Number Package Marking
C3M0350120J TO-263-7 C3M0350120J
V
DS
1200 V
I
D
@
25˚C
7.2 A
R
DS(on)
350 mΩ
Maximum Ratings (TC = 25 ˚C unless otherwise specied)
Symbol Parameter Value Unit Test Conditions Note
VDSmax Drain - Source Voltage 1200 V VGS = 0 V, ID = 100 μA
VGSmax Gate - Source Voltage (dynamic) -8/+19 V AC (f >1 Hz) Note: 1
VGSop Gate - Source Voltage (static) -4/+15 V Static Note: 2
ID Continuous Drain Current
7.2
AVGS = 15 V, TC = 25˚C Fig. 19
5VGS = 15 V, TC = 100˚C
ID(pulse) Pulsed Drain Current 20 A Pulse width tP limited by Tjmax Fig. 22
PDPower Dissipation 40.8 W TC=25˚C, TJ = 150 ˚C Fig. 20
TJ , Tstg Operating Junction and Storage Temperature -55 to
+150 ˚C
TLSolder Temperature 260 ˚C 1.6mm (0.063”) from case for 10s
Note (1): When using MOSFET Body Diode VGSmax = -4V/+19V
Note (2): MOSFET can also safely operate at 0/+15 V
1 2 3 4 5 6 7
G KS S S S S S
TAB
Drain
Drain
(TAB)
Power
Source
(Pin 3,4,5,6,7)
Driver
Source
(Pin 2)
Gate
(Pin 1)
2C3M0350120J Rev. A, 03-2020
Electrical Characteristics (TC = 25˚C unless otherwise specied)
Symbol Parameter Min. Typ. Max. Unit Test Conditions Note
V(BR)DSS Drain-Source Breakdown Voltage 1200 V VGS = 0 V, ID = 100 μA
VGS(th) Gate Threshold Voltage 1.8 2.5 3.6 VVDS = VGS, ID = 1 mA Fig. 11
2.0 VVDS = VGS, ID = 1 mA, TJ = 150ºC
IDSS Zero Gate Voltage Drain Current 1 50 μA VDS = 1200 V, VGS = 0 V
IGSS Gate-Source Leakage Current 10 250 nA VGS = 15 V, VDS = 0 V
RDS(on) Drain-Source On-State Resistance 350 455 mVGS = 15 V, ID = 3.6 A Fig. 4,
5, 6
525 VGS = 15 V, ID = 3.6 A, TJ = 150ºC
gfs Transconductance 2.9 SVDS= 20 V, IDS= 3.6 A Fig. 7
2.6 VDS= 20 V, IDS= 3.6 A, TJ = 150ºC
Ciss Input Capacitance 345
pF VGS = 0 V, VDS = 1000 V
f = 1 MHz
VAC = 25 mV
Fig. 17,
18
Coss Output Capacitance 20
Crss Reverse Transfer Capacitance 3.4
Eoss Coss Stored Energy 10.6 μJ Fig. 16
EON Turn-On Switching Energy (Body Diode FWD) 46
μJ VDS = 800 V, VGS = -4 V/15 V, ID = 3.6 A,
RG(ext) = 2.5 Ω, L= 716 μH
Fig. 26,
29
EOFF Turn-Off Switching Energy (Body Diode FWD) 8
td(on) Turn-On Delay Time 6
ns
VDD = 800 V, VGS = -4 V/15 V
ID = 3.6 A, RG(ext) = 0 Ω,
Timing relative to VDS
Inductive load
Fig. 27,
28, 29
trRise Time 7
td(off) Turn-Off Delay Time 9
tfFall Time 11
RG(int) Internal Gate Resistance 7 f = 1 MHz, VAC = 25 mV
Qgs Gate to Source Charge 5.1
nC
VDS = 800 V, VGS = -4 V/15 V
ID = 3.6 A
Per IEC60747-8-4 pg 21
Fig. 12
Qgd Gate to Drain Charge 4.6
QgTotal Gate Charge 13
Reverse Diode Characteristics (TC = 25˚C unless otherwise specied)
Symbol Parameter Typ. Max. Unit Test Conditions Note
VSD Diode Forward Voltage
4.5 V VGS = -4 V, ISD = 1.8 A Fig. 8,
9, 10
4.0 V VGS = -4 V, ISD = 1.8 A, TJ = 150 °C
ISContinuous Diode Forward Current 7.3 A VGS = -4 V Note 1
IS, pulse Diode pulse Current 20 A VGS = -4 V, pulse width tP limited by Tjmax Note 1
trr Reverse Recover time 5 ns
VGS = -4 V, ISD = 3.6 A, VR = 800 V
dif/dt = 3550 A/µs, TJ = 25 °C
Note 1,
Fig. 29
Qrr Reverse Recovery Charge 23 nC
Irrm Peak Reverse Recovery Current 8 A
Thermal Characteristics
Symbol Parameter Typ. Unit Test Conditions Note
RθJC Thermal Resistance from Junction to Case 2.9 °C/W Fig. 21
3C3M0350120J Rev. A, 03-2020
0
5
10
15
20
0.0 2.0 4.0 6.0 8.0 10.0 12.0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
J
= 150 °C
tp = < 200 µs
V
GS
= 7V
V
GS
= 15V
V
GS
= 13V
V
GS
= 11V
V
GS
= 9V
0
5
10
15
20
0246810 12
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
J
= -55 °C
tp = < 200 µs
V
GS
= 7V
V
GS
= 15V
V
GS
= 13V
V
GS
= 11V
V
GS
= 9V
0
5
10
15
20
0246810 12
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
J
= 25 °C
tp = < 200 µs
V
GS
= 7V
V
GS
= 13V
V
GS
= 11V
V
GS
= 15V
Figure 2. Output Characteristics TJ = 25 ºC
Typical Performance
Figure 5. On-Resistance vs. Drain Current
For Various Temperatures
Figure 1. Output Characteristics TJ = -55 ºC
Figure 3.
Output Characteristics TJ = 150 ºC
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
-50 -25 025 50 75 100 125 150
On Resistance, RDS On (P.U.)
Junction Temperature, TJC)
Conditions:
I
DS
= 5 A
V
GS
= 15 V
t
p
< 200 µs
0
100
200
300
400
500
600
700
800
900
1,000
0246810 12 14
On Resistance, RDS On (mOhms)
Drain-Source Current, IDS (A)
Conditions:
V
GS
= 15 V
t
p
< 200 µs
T
J
= 150 °C
T
J
= -55 °C
T
J
= 25 °C
Figure 4. Normalized On-Resistance vs. Temperature
0
100
200
300
400
500
600
700
800
900
-50 -25 025 50 75 100 125 150
On Resistance, R
DS On
(mOhms)
Junction Temperature, T
J
C)
Conditions:
I
DS
= 3.6 A
t
p
< 200 µs
V
GS
= 15 V
V
GS
= 13 V
V
GS
= 11 V
Figure 6. On-Resistance vs. Temperature
For Various Gate Voltage
4C3M0350120J Rev. A, 03-2020
Typical Performance
Figure 8. Body Diode Characteristic at -55 ºC
Figure 9. Body Diode Characteristic at 25 ºC
0
2
4
6
8
10
12
14
16
18
20
0246810 12 14
Drain-Source Current, I
DS
(A)
Gate-Source Voltage, V
GS
(V)
Conditions:
V
DS
= 20 V
tp < 200 µs
T
J
= 25 °C T
J
= -55 °C
T
J
= 150 °C
-20
-15
-10
-5
0
-10 -8 -6 -4 -2 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= -55°C
t
p
< 200 µs
V
GS
= -2 V
V
GS
= -4 V
V
GS
= 0 V
-20
-15
-10
-5
0
-10 -8 -6 -4 -2 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= 25°C
t
p
< 200 µs
V
GS
= -2 V
V
GS
= -4 V
V
GS
= 0 V
-20
-15
-10
-5
0
-10 -8 -6 -4 -2 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= 150°C
t
p
< 200 µs
V
GS
= -2 V
V
GS
= -4 V
V
GS
= 0 V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
-50 -25 025 50 75 100 125 150
Threshold Voltage, V
th
(V)
Junction Temperature T
J
C)
Conditons
V
GS
= V
DS
I
DS
= 1mA
Figure 10. Body Diode Characteristic at 150 ºC
Figure 7. Transfer Characteristic for
Various Junction Temperatures
Figure 11. Threshold Voltage vs. Temperature Figure 12. Gate Charge Characteristics
-4
0
4
8
12
16
0 2 4 6 8 10 12 14
Gate-Source Voltage, V
GS
(V)
Gate Charge, Q
G
(nC)
Conditions:
I
DS
= 5 A
I
GS
= 50 mA
V
DS
= 800 V
T
J
= 25 °C
5C3M0350120J Rev. A, 03-2020
Typical Performance
Figure 15. 3rd Quadrant Characteristic at 150 ºC
Figure 13. 3rd Quadrant Characteristic at -55 ºC
-20
-15
-10
-5
0
-10 -8 -6 -4 -2 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= -55 °C
t
p
< 200 µs
V
GS
= 10 V
V
GS
= 5 V
V
GS
= 15 V
V
GS
= 0 V
-20
-15
-10
-5
0
-10 -8 -6 -4 -2 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= 25 °C
t
p
< 200 µs
V
GS
= 10 V
V
GS
= 5 V
V
GS
= 15 V
V
GS
= 0 V
-20
-15
-10
-5
0
-10 -8 -6 -4 -2 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= 150 °C
t
p
< 200 µs
V
GS
= 10 V
V
GS
= 5 V
V
GS
= 15 V
V
GS
= 0 V
Figure 14. 3rd Quadrant Characteristic at 25 ºC
0
2
4
6
8
10
12
14
16
0200 400 600 800 1000 1200
Stored Energy, E
OSS
(µJ)
Drain to Source Voltage, V
DS
(V)
Figure 16. Output Capacitor Stored Energy
Figure 17. Capacitances vs. Drain-Source
Voltage (0 - 200V)
1
10
100
1000
050 100 150 200
Capacitance (pF)
Drain-Source Voltage, V
DS
(V)
C
iss
C
oss
T
J
= 25 °C
V
AC
= 25 mV
f = 1 MHz
C
rss
1
10
100
1000
0200 400 600 800 1000 1200
Capacitance (pF)
Drain-Source Voltage, V
DS
(V)
C
iss
C
oss
T
J
= 25 °C
V
AC
= 25 mV
f = 1 MHz
C
rss
Figure 18. Capacitances vs. Drain-Source
Voltage (0 - 1000V)
6C3M0350120J Rev. A, 03-2020
10E-3
100E-3
1
1E-6 10E-6 100E-6 1E-3 10E-3 100E-3 1
Junction To Case Impedance, ZthJC (oC/W)
Time, tp(s)
0.5
0.3
0.1
0.05
0.02
0.01
SinglePulse
Typical Performance
0
1
2
3
4
5
6
7
8
-55 -30 -5 20 45 70 95 120 145
Drain-Source Continous Current, I
DS (DC)
(A)
Case Temperature, T
C
C)
Conditions:
T
J
≤ 150 °C
0
5
10
15
20
25
30
35
40
45
-55 -30 -5 20 45 70 95 120 145
Maximum Dissipated Power, P
tot
(W)
Case Temperature, T
C
C)
Conditions:
T
J
≤ 175 °C
0.01
0.10
1.00
10.00
0.1 110 100 1000
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
100 µs
1 ms
10 µs
Conditions:
T
C
= 25 °C
D = 0,
Parameter: t
p
100 ms
Limited by R
DS On
Figure 22. Safe Operating Area
Figure 21. Transient Thermal Impedance
(Junction - Case)
0
20
40
60
0 2 4 6 8 10 12
Switching Loss (µJ)
Drain to Source Current, I
DS
(A)
E
Off
E
On
E
Total
Conditions:
T
J
= 25 °C
V
DD
= 600 V
R
G(ext)
= 2.5
V
GS
= -4V/+15V
FWD = C3M0350120J
L = 716 μH
Figure 23. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 600V)
Figure 24. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 800V)
0
20
40
60
80
100
0 1 2 3 4 5 6 7 8
Switching Loss (µJ)
Drain to Source Current, I
DS
(A)
E
Off
E
On
E
Total
Conditions:
T
J
= 25 °C
V
DD
= 800 V
R
G(ext)
= 2.5
V
GS
= -4V/+15V
FWD = C3M0350120J
L = 716 μH
Figure 19. Continuous Drain Current Derating vs.
Case Temperature
Figure 20. Maximum Power Dissipation Derating vs.
Case Temperature
7C3M0350120J Rev. A, 03-2020
Typical Performance
0
20
40
60
80
100
0 5 10 15 20 25
Switching Loss (µJ)
External Gate Resistor RG(ext) (Ohms)
E
Off
E
On
E
Total
Conditions:
T
J
= 25 °C
V
DD
= 800 V
I
DS
= 3.6 A
V
GS
= -4V/+15 V
FWD = C3M0350120J
L = 716 μH
0
5
10
15
20
0 5 10 15 20 25
Switching Times (ns)
External Gate Resistor RG(ext) (Ohms)
t
d(off)
Conditions:
T
J
= 25 °C
V
DD
= 800 V
I
DS
= 3.6 A
V
GS
= -4V/+15 V
FWD = C3M0350120J
t
r
t
f
t
d(on)
0
20
40
60
80
100
025 50 75 100 125 150 175
Switching Loss (µJ)
Junction Temperature, T
J
C)
E
Off
E
On
E
Total
Conditions:
I
DS
= 5 A
V
DD
= 800 V
R
G(ext)
= 2.5
V
GS
= -4V/+15 V
L = 716 μH
FWD = C3M0350120J
Figure 26. Clamped Inductive Switching Energy vs.
Temperature
Figure 27. Switching Times vs. RG(ext)
Figure 25. Clamped Inductive Switching Energy vs. RG(ext)
Figure 28. Switching Times Denition
8C3M0350120J Rev. A, 03-2020
Test Circuit Schematic
L
Q
2
D.U.T
Q
1
VGS= - 4 V
R
G
R
G
C
DC
V
DC
KS
KS
Figure 29. Clamped Inductive Switching
Waveform Test Circuit
Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode as shown above.
9C3M0350120J Rev. A, 03-2020
Package Dimensions
Package 7L D2PAK
Dim All Dimensions in Millimeters
Min typ Max
A 4.300 4.435 4.570
A1 0.00 0.125 0.25
b 0.500 0.600 0.700
b2 0.600 0.800 1.000
c 0.330 0.490 0.650
C2 1.170 1.285 1.400
D 9.025 9.075 9.125
D1 4.700 4.800 4.900
E 10.130 10.180 10.230
E1 6.500 7.550 8.600
E2 6.778 7.223 7.665
e 1.27
H 15.043 16.178 17.313
L 2.324 2.512 2.700
L1 0.968 1.418 1.868
Ø
Ø1 4.5˚ 5.5˚
1010 C3M0350120J Rev. A, 03-2020
Copyright © 2019 Cree, Inc. All rights reserved.
The information in this document is subject to change without notice.
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.wolfspeed.com/power
RoHS Compliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the
threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/
EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or
from the Product Documentation sections of www.cree.com.
REACh Compliance
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA)
has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree represen-
tative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is
also available upon request.
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac debrillators or similar emergency medical
equipment, aircraft navigation or communication or control systems, air trafc control systems.
Notes
Related Links
SPICE Models: http://wolfspeed.com/power/tools-and-support
SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support
SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support