This is information on a product in full production.
September 2013 Doc ID 14723 Rev 9 1/112
1
SPC560P44L3, SPC560P44L5
SPC560P50L3, SPC560P50L5
32-bit Power Architecture® based MCU with 576 KB Flash memory
and 40 KB SRAM for automotive chassis and safety applications
Datasheet
production data
Features
64 MHz, single issue, 32-bit CPU core complex
(e200z0h)
Compliant with Power Architecture
®
embedded category
Variable Length Encoding (VLE)
Memory organization
Up to 512 KB on-ch ip code flash memor y
with ECC and erase/program controller
Additional 64 (4 × 16) KB on-chip data flash
memory with ECC for EEPROM emulation
Up to 40 KB on-chip SRAM with ECC
Fail safe protection
Programmable watchdog timer
Non-maskable interrupt
Fault collection unit
Nexus L2+ in terface
Interrupts
16-channel eDMA controller
16 priority level controller
General purpose I/Os individually
programmable as input, output or special
function
2 general purpose eTimer units
6 timers each with up/down count
capabilities
16-bit resolution, cascadable counters
Quadrature decode with rotation direction
flag
Double buffer input capture and output
compare
Communications interfaces
2 LINFlex channels (LIN 2.1)
4 DSPI channels with automatic chip select
generation
1 FlexCAN interface (2.0B Active) with 32
message objects
1 safety port based on FlexCAN with 32
message objects and up to 7.5 Mbit/s
capability; usable as second CAN when not
used as safety port
1 FlexRay™ module (V2.1) with selectable
dual or single channel support, 32
message objects and up to 10 Mbit/s
(512 KB device only)
Two 10-bit analog-to-digital converters (ADC)
2 × 11 input channels, + 4 shared channels
Conversion time < 1 µs including sampling
time at full precision
Programmable ADC Cross Triggering Unit
(CTU)
4 analog watchdogs with interrupt
capability
On-chip CAN/UART bootstrap loader with Boot
Assist Module (BAM)
1 FlexPWM unit: 8 complementary or
independent outputs with ADC synchronization
signals
Table 1. Device summary
Package Part numb er
448 KB Flash 576 KB Flash
LQFP144 SPC560P44L5 SPC560P50L5
LQFP100 SPC560P44L3 SPC560P50L3
LQFP100 (14 x 14 x 1.4 mm)
LQFP144 (20 x 20 x 1.4 mm)
www.st.com
Contents SPC560P44Lx, SPC560P50Lx
2/112 Doc ID 14723 Rev 9
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.1 High performance e200z0 core processor . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.2 Crossbar switch (XBAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.3 Enhanced direct memory access (eDMA) . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.4 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.5 Static random access memory (SRAM) . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.6 Interrupt controller (INTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.7 System status and configuration module (SSCM) . . . . . . . . . . . . . . . . . 16
1.5.8 System clocks and clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.9 Frequency-modulated phase-locked loop (FMPLL) . . . . . . . . . . . . . . . . 17
1.5.10 Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.11 Internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.12 Periodic interrupt timer (PIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.13 System timer module (STM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.14 Software watchdog timer (SWT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.15 Fault collection unit (FCU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.16 System integration unit – Lite (SIUL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.17 Boot and censorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.18 Error correction status module (ECSM) . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.19 Peripheral bridge (PBRIDGE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.20 Controller area network (FlexCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.21 Safety port (FlexCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.22 FlexRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.23 Serial communication interface module (LINFlex) . . . . . . . . . . . . . . . . . 22
1.5.24 Deserial serial peripheral interface (DSPI) . . . . . . . . . . . . . . . . . . . . . . 23
1.5.25 Pulse width modulator (FlexPWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.26 eTimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.27 Analog-to-digital converter (ADC) module . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.28 Cross triggering unit (CTU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
SPC560P44Lx, SPC560P50Lx Contents
Doc ID 14723 Rev 9 3/112
1.5.29 Nexus development interface (NDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.30 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.31 IEEE 1149.1 JTAG controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.32 On-chip voltage regulator (VREG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 29
2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.1 Power supply and reference voltage pins . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.3 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Recommended operating conditi ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.1 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.2 General notes for specifications at maximum junction temperature . . . 57
3.6 Electromagnetic interference (EMI) characteristics . . . . . . . . . . . . . . . . . 59
3.7 El ectrostatic discharge (ESD) characteristics . . . . . . . . . . . . . . . . . . . . . 59
3.8 Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 59
3.8.1 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 59
3.8.2 Voltage monitor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 63
3.9 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.10 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.10.1 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.10.2 DC electrical characteristics (5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.10.3 DC electrical characteristics (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.10.4 Input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . 69
3.10.5 I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.11 Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.12 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.13 16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . 78
Contents SPC560P44Lx, SPC560P50Lx
4/112 Doc ID 14723 Rev 9
3.14 Analog-to-digita l converter (ADC) electrical charac teristics . . . . . . . . . . . 78
3.14.1 Input impedance and ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.14.2 ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.15 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.16 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.16.1 Pad AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.17 AC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.17.1 RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.17.2 IEEE 1149.1 interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.17.3 Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.17.4 External interrupt timing (IRQ pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.17.5 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.1 ECOPAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.1 LQFP144 mechanical outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.2 LQFP100 mechanical outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . 103
5 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Appendix A Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
SPC560P44Lx, SPC560P50Lx List of tables
Doc ID 14723 Rev 9 5/112
List of tables
Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. SPC560P44Lx, SPC560P50Lx device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. SPC560P44Lx, SPC560P50Lx device configuration differences. . . . . . . . . . . . . . . . . . . . . 8
Table 4. SPC560P44Lx, SPC560P50Lx series block summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 5. Supply pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 6. System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 7. Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 8. Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 9. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 10. Recommended operating conditions (5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 11. Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 12. Thermal characteristics for 144-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 13. Thermal characteristics for 100-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 14. EMI testing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 15. ESD ratings, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 16. Approved NPN ballast components (configuration with resistor on base) . . . . . . . . . . . . . 60
Table 17. Voltage regulator electrical characteristics (configuration with resistor on base) . . . . . . . . 61
Table 18. Voltage regulator electrical characteristics (configuration without resistor on base) . . . . . 62
Table 19. Low voltage monitor electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 20. PAD3V5V field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 21. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0) . . . . . . . . . . . . . . . . . . . . . 66
Table 22. Supply current (5.0 V, NVUSRO[PAD3V5V] = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 23. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1) . . . . . . . . . . . . . . . . . . . . . 67
Table 24. Supply current (3.3 V, NVUSRO[PAD3V5V] = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 25. I/O supply segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 26. I/O weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 27. I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 28. Main oscillator output electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0) . . . . . . . 75
Table 29. Main oscillator output electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1) . . . . . . . 76
Table 30. Input clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 31. FMPLL electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 32. 16 MHz RC oscillator electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 33. ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 34. Program and erase specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 35. Flash memory module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 36. Flash memory read access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 37. Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 38. RESET electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 39. JTAG pin AC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 40. Nexus debug port timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 41. External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 42. DSPI timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 43. LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 44. LQFP100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 45. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 46. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
List of figures SPC560P44Lx, SPC560P50Lx
6/112 Doc ID 14723 Rev 9
List of figures
Figure 1. SPC560P44Lx, SPC560P50Lx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2. 144-pin LQFP pinout – Full featured configuration (top view) . . . . . . . . . . . . . . . . . . . . . . 29
Figure 3. 100-pin LQFP pinout – Airbag configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 4. 100-pin LQFP pinout – Full featured configuration (top view) . . . . . . . . . . . . . . . . . . . . . . 31
Figure 5. Power supplies constraints (–0.3 V V
DD_HV_IOx
6.0 V). . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 6. Independent ADC supply (–0.3 V V
DD_HV_REG
6.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 7. Power supplies constraints (3.0 V V
DD_HV_IOx
5.5 V). . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 8. Independent ADC supply (3.0 V V
DD_HV_REG
5.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 9. Configuration with resistor on base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 10. Configuration without resistor on base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 11. Power-up typical sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 12. Power-down typical sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 13. Brown-out typical sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 14. Input DC electrical characteristics definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 15. ADC characteristics and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 16. Input equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 17. Transient behavior during sampling phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 18. Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 19. Pad output delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 20. Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 21. Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 22. JTAG test clock input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 23. JTAG test access port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 24. JTAG boundary scan timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 25. Nexus output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 26. Nexus event trigger and test clock timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 27. Nexus TDI, TMS, TDO timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 28. External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 29. DSPI classic SPI timing – Master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 30. DSPI classic SPI timing – Master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 31. DSPI classic SPI timing – Slave, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 32. DSPI classic SPI timing – Slave, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 33. DSPI modified transfer format timing – Master, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 34. DSPI modified transfer format timing – Master, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 35. DSPI modified transfer format timing – Slave, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 36. DSPI modified transfer format timing – Slave, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 37. DSPI PCS strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 38. LQFP144 package mechanical drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 39. LQFP100 package mechanical drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 40. Commercial product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
SPC560P44Lx, SPC560P50Lx Introduction
Doc ID 14723 Rev 9 7/112
1 Introduction
1.1 Document overview
This document provides electrical specifications, pin assignments, and package diagrams
for the SPC560P44/50 series of microcontroller units (MCUs). It also describes the device
features and highlights important electrical and physical characteristics. For functional
characteristics, refer to the device reference manual.
1.2 Description
This 32-bit system-on-chip (SoC) automotive microcontroller family is the latest
achievement in integrated automotive application controllers. It belongs to an expanding
range of automotive-focused products designed to address chassis applications—
specifically, electrical hydraulic power steering (EHPS) and electric power steering (EPS)—
as well as airbag applications.
This family is one of a series of next-generation integrated automotive microcontrollers
based on the Power Architecture technology.
The advanced and cost-efficient host processor core of this automotive controller family
complies with the Power Architecture embedded category. It operates at speeds of up to
64 MHz and offers high performance processing optimized for low power consumption. It
capitalizes on the available development infrastructure of current Power Architecture
devices and is supported with software drivers, operating systems and configuration code to
assist with users implementations.
1.3 Device comparison
Table 2 provides a summary of different members of the SPC560P44Lx, SPC560P50Lx
family and their features—relative to full-featured version—to enable a comparison among
the family members and an understanding of the range of functionality offered within this
family.
Table 2. SPC560P44Lx, SPC560P50Lx device comp arison
Feature SPC560P44 SPC560P50
Code flash memory (with ECC) 384 KB 512 KB
Data flash memory / EE option (with ECC) 64 KB
SRAM (with ECC) 36 KB 40 KB
Processor core 32-bit e200z0h
Instruction set VLE (variable length encoding)
CPU performance 0–64 MHz
FMPLL (frequency-modulated phase-locked loop)
module 2
INTC (interrupt controller) channels 147
PIT (periodic interrupt timer) 1 (includes four 32-bit timers)
Introduction SPC560P44Lx, SPC560P50Lx
8/112 Doc ID 14723 Rev 9
SPC560P44Lx, SPC560P50Lx is available in two configurations having different features:
full-featured and airbag. Table 3 shows the main differences between the two versions.
eDMA (enha nc ed dire ct me mo ry acc es s)
channels 16
FlexRay Yes
(1)
Flex CAN (controller area network) 2
(2),(3)
Safety port Yes (via second FlexCAN module)
FCU (fault collection uni t) Yes
CTU (cross triggering unit) Yes
eTimer 2 (16-bit, 6 channels)
FlexPWM (pulse-width modulation) ch annels 8 (capturing on X-channels)
ADC (analog-to-digital converter) 2 (10-bit, 15-channel
(4)
)
LINFlex 2
DSPI (deserial serial peripheral interface ) 4
CRC (cyclic redundancy check) unit Yes
JTA G controller Yes
Nexus port controller (N PC) Yes (Level 2+)
Supply
Digital power supply
(5)
3.3 V or 5 V single supply with external transistor
Analog power supply 3.3 V or 5 V
Internal RC oscillator 16 MHz
External crystal oscillator 4–40 MHz
Packages LQFP100
LQFP144
Temperature Standard ambient temperature –40 to 125 °C
1. 32 message buffers, selectable single or dual channel support
2. Each FlexCAN module has 32 message buffers.
3. One FlexCAN module can act as a Safety Port with a bit rate as high as 7.5 Mbit/s.
4. Four channels shared between the two ADCs
5. The different supply voltages vary according to the part number ordered.
Table 2. SPC560P44Lx, SPC560P50Lx device comp arison (continued)
Feature SPC560P44 SPC560P50
Table 3. SPC560P44Lx, SPC560P50Lx device configuration differences
Feature Full-featured Airbag
CTU (cross triggering unit) Yes No
FlexPWM Yes No
SPC560P44Lx, SPC560P50Lx Introduction
Doc ID 14723 Rev 9 9/112
1.4 Block diagram
Figure 1 shows a top-level block diagram of the SPC560P44Lx, SPC560P50Lx MCU.
FlexRay Yes No
FMPLL (frequency-modulated phase-locked loop) module 2 (one FMPLL, one for
FlexRay) 1 (only FMPLL)
Table 3. SPC560P44Lx, SPC560P50Lx device configuration differences (continued)
Feature Full-featured Airbag
Introduction SPC560P44Lx, SPC560P50Lx
10/112 Doc ID 14723 Rev 9
Figure 1. SPC560P44Lx, SPC560P50Lx block diagram
e200z0 Core
32-bit
general
purpose
registers
Special
purpose
registers
Integer
execution
unit
Exception
handler
Variable
length
encoded
instructions
Instruction
unit
Load/store
unit
Branch
prediction
unit
JTAG
1.2 V regulator
control
XOSC
16 MHz
RC oscillator
FMPLL_0
(System)
Nexus port
controller
Interrupt
controller
eDMA
16 channels
Master Master
Instruction
32-bit
Master
Data
32-bit
SRAM
(with ECC)
Slave Slave
Crossbar switch (XBAR, AMBA 2.0 v6 AHB)
Peripheral bridge
FCU
Legend:
ADC Analog-to-digital converter
BAM Boot assist module
CRC Cyclic redundancy check
CTU Cross triggering unit
DSPI Deserial serial peripheral interface
ECSM Error correction status module
eDMA Enhanced direct memory access
eTimer Enhanced timer
FCU Fault collec t ion unit
Flash Flash memory
FlexCAN Controller area network
FlexPWM Flexible pulse width modulation
FMPLL Freque ncy- mod ula ted pha se- l ocke d loop
INTC Interrupt controller
JTAG JTAG controller
LINFlex Serial communication interface (LIN support)
MC_CGM Clock generation module
MC_ME Mode entry module
MC_PCU Power control unit
MC_RGM Reset generation module
PIT Periodic interrupt timer
SIUL System integration unit Lite
SRAM Static random-access memory
SSCM System status and configuration module
STM System timer module
SWT Software watchdog timer
WKPU Wakeup unit
XOSC External oscillator
XBAR Crossbar swit ch
Slave
External ballast
Code Flash
(with ECC)
Data Flash
(with ECC )
Nexus 2+
eDMA
16 channels
FlexPWM
CTU
DSPI
FlexCAN
LINFlex
Safety port
PIT
STM
SWT
MC_RGM
MC_CGM
MC_ME
BAM
SIUL
eTimer (6 ch)
FMPLL_1
(FlexRay, MotCtrl)
FlexRay
SSCM
1.2 V Rail VREG
WKPU
CRC
Shared
Channels
Channels
10-bit 10-bit
0–10
0–10
channels
11–14
ADC_1ADC_0
ECSM
SPC560P44Lx, SPC560P50Lx Introduction
Doc ID 14723 Rev 9 11/112
Table 4. SPC560P44Lx, SPC560P50Lx series block summary
Block Function
Analog-to-digital converter (ADC) Multi-channel, 10-bit analog-to-digital converter
Boot assist module (BAM) Block o f read-onl y me mory cont ainin g VLE cod e which is execu ted acco rding to
the boot mode of the device
Clock generation module
(MC_CGM) Provides logic and control required for the generation of system and peripheral
clocks
Controller area network
(FlexCAN) Supports the standard CAN communications protocol
Cross triggering unit (CTU) Enables synchronization of ADC conversions with a timer event from the
eMI OS or f rom the PIT
Crossbar switch (XBAR) Supports simultaneous connections between two master ports and three slave
ports; supports a 32-bit address bus width and a 32-bit data bus width
Cyclic redundancy ch ec k (CRC) CRC checksu m generator
Deserial serial peripheral
interface (DSPI) Provides a synchronous serial interface for communication with external
devices
Enhanced direct memory access
(eDMA) Performs complex data transfers with minimal intervention from a host
proc esso r vi a “n” programmable channels
Enhanced timer (eTimer) Provides enhanced programmable up/down modulo counting
Error correction status module
(ECSM)
Provides a myriad of miscellaneous control functions for the device including
program-visible information about configuration and revisi on levels, a reset
status register, wakeup control for exiting sleep modes, and optional features
such as information on memory errors reported by error-correcting codes
External os cil lat or (XOSC) Provides an output clock used as input reference for FMPLL_0 or as reference
clock for specific modules depending on system needs
Fault collection unit (FCU) Provides functional safety to the device
Flash memory Provides non-volatile storage for program code, constants and variables
Frequency-modulated phase-
locked loop (FMPLL) Generates high-speed system clocks and supports programmable frequency
modulation
Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests
JTA G controller Provides the means to test chip functionality and connectivity while remaining
transparent to system logic when not in test mode
LINF lex controller Manages a high number of LIN (Local Interconnect Network protocol)
messages efficiently with minimum load on CPU
Mode entry module (MC_ME)
Provides a mechanism for controlling the device operational mode and mode
transition sequences in all functional states; also manages the power control
unit, reset generation module and clock generation module, and holds the
configuration, control and status registers accessible for applications
Periodic interrupt timer (PIT) Produces periodic interrupts and triggers
Peripheral bridge (PBRIDGE) Interface between the system bus and on-chip peripherals
Power control unit (MC_PCU) Reduces the overall power consumption by disconnecting parts of the device
from the power supply via a power switching device; device components are
grouped into sections called “power domains” which are controlled by the PCU
Introduction SPC560P44Lx, SPC560P50Lx
12/112 Doc ID 14723 Rev 9
Pulse width modulator
(FlexPWM) Contains four PWM submodules, each of which is capable of controlling a
single half-bridge power stage and two fault input channels
Reset generation module
(MC_RGM) Centralizes reset sources and manages the device reset sequence of the
device
Static random-access memory
(SRAM) Provides storage for program code, constants, and variables
System integration unit lite (SIUL) Provides control over all the electrical pad controls and up 32 ports with 16 bits
of bidi rection al, gene ral-purpo se inpu t an d outp ut si gnals and sup port s u p to 3 2
external interrupts with trigger event configuration
System status and configuration
module (SSCM)
Provides system configuration and status data (suc h as memory size and
status, device mode and security status), device identification data, debug
status port enable and selection, and bus and peripheral abort enable/disable
Syste m timer module (STM) Provides a set of output compare events to support AUTOSAR
(1)
and oper atin g
system tasks
System watchdog timer (SWT) Provides protection from runaway code
Wakeup unit (WKPU) Supports up to 18 external sources that can generate interrupts or wakeup
events, 1 of which can cause non-maskable interrupt requests or wakeup
events
1. AUTOSAR: AUTomotive Open System ARchitecture (see www.autosar.org)
Table 4. SPC560P44Lx, SPC560P50Lx series block summary (continued)
Block Function
SPC560P44Lx, SPC560P50Lx Introduction
Doc ID 14723 Rev 9 13/112
1.5 Feature details
1.5.1 High performance e200z0 core processor
The e200z0 Power Architecture core provides the following features:
High performance e200z0 core processor for managing peripherals and interrupts
Single issue 4-stage pipeline in-order execution 32-bit Power Architecture CPU
Harvard architecture
Variable length encoding (VLE), allowing mixed 16-bit and 32-bit instructions
Results in smaller code size footprint
Minimizes impact on performance
Branch processing acceleration using lookahead instruction buffer
Load/store unit
1 cycle load latency
Misaligned access support
No load-to-use pipeline bubbles
Thirty -t wo 32- bit gen eral pur po se re gisters (GPRs)
Separate instruction bus and load/store bus Harvard architecture
Hardware vectored interrupt support
Reservation instructions for implementing read-modify-write constructs
Long cycle time instructions, except for guarded loads, do not increase interrupt
latency
Extens ive sy st em devel opm ent su ppor t through Nexus debu g port
Non-maskable interrupt support
1.5.2 Crossbar switch (XBAR)
The XBAR multi-port crossbar switch supports simultaneous connections between four
master ports and three slave ports. The crossbar supports a 32-bit address bus width and a
32-bit data bus width.
The crossbar allows for two concurrent transactions to occur from any master port to any
slave port; but one of those transfers must be an instruction fetch from internal flash
memory. If a slave port is simultaneously requested by more than one master port,
arbitration logic will select the higher priority master and grant it ownership of the slave port.
All other masters requesting that slave port will be stalled until the higher priority master
completes its transactions. Requesting masters will be treated with equal priority and will be
granted access to a slave port in round-robin fashion, based upon the ID of the last master
to be granted access.
Introduction SPC560P44Lx, SPC560P50Lx
14/112 Doc ID 14723 Rev 9
The crossbar provides the following features:
4 master ports:
e200z0 core complex Instruction port
e200z0 core complex Load/Store Data port
–eDMA
–FlexRay
3 slave ports:
Flash memory (code flash and data flash)
–SRAM
Peripheral bridge
32-bit internal address, 32-bit internal data paths
Fixed Priority Arbitration based on Port Master
Temporary dynamic priority elevation of masters
1.5.3 Enhanced direct memory access (eDMA)
The enhanced direct memory access (eDMA) controller is a second-generation module
capable of performing complex data movements via 16 programmable channels, with
minimal intervention from the host processor. The hardware micro architecture includes a
DMA engine which performs source and destination address calculations, and the actual
data movement operations, along with an SRAM-based memory containing the transfer
control descriptors (TCD) for the channels. This implementation is utilized to minimize the
overall block size.
The eDMA module provides the following features:
16 channels support independent 8, 16 or 32-bit single value or block transfers
Supports variable sized queues and circular queues
Source and destination address registers are independently configured to either post-
increment or to remain constant
Each transfer is initiated by a peripheral, CPU, or eDMA channel request
Each eDMA channel can optionally send an interrupt request to the CPU on completion
of a single value or block transfer
DMA transfers possible between system memories, DSPIs, ADC, FlexPWM, eTimer
and CTU
Programmable DMA channel multiplexer for assignment of any DMA source to any
available DMA channel with as many as 30 request sources
eDMA abort operation through software
1.5.4 Flash memory
The SPC560P44Lx, SPC560P50Lx provides as much as 576 KB of programmable, non-
volatile, flash memory. The non-volatile memory (NVM) can be used for instruction and/or
data storage. The flash memory module interfaces the system bus to a dedicated flash
memory array controller. It supports a 32-bit data bus width at the system bus port, and a
128-bit read data interface to flash memory. The module contains four 128-bit wide prefetch
buffers. Prefetch buffer hits allow no-wait responses. Normal flash memory array accesses
are registered and are forwarded to the system bus on the following cycle, incurring two
wait-states.
SPC560P44Lx, SPC560P50Lx Introduction
Doc ID 14723 Rev 9 15/112
The flash memory module provides the following features:
As much as 576 KB flash memory
8 blocks (32 KB + 2×16 KB + 32 KB + 32 KB + 3×128 KB) code flash
4 blocks (16 KB + 16 KB + 16 KB + 16 KB) data flash
Full Read While Write (RWW) capability between code and data flash
Four 128-bit wide prefetch buf fers to provide single cycle in-line accesses (prefetch
buffers can be configured to prefetch code or data or both)
Typical flash memory access time: 0 wait states for buffer hits, 2 wait states for page
buffer miss at 64 MHz
Hardware managed flash memory writes handled by 32-bit RISC Krypton engine
Hardware and software configurable read and write access protections on a per-master
basis
Configurable access timing allowing use in a wide range of system frequencies
Multiple-mapping support and mapping-based block access timing (up to 31 additional
cycles) allowing use for emulation of other memory types.
Software programmable block program/erase restriction control
Erase of selected block(s)
Read page sizes
Code flash memory: 128 bits (4 words)
Data flash memory: 32 bits (1 word)
ECC with single-bit correction, double-bit detection for data integrity
Code flash memory: 64-bit ECC
Data flash memory: 64-bit ECC
Embedded hardware program and erase algorithm
Erase sus pen d, pro gram sus pe nd and er ase- su sp end ed pro gr am
Censorship protection scheme to prevent flash memory content visibility
Hardware support for EEPROM emulation
1.5.5 Static random access memory (SRAM)
The SPC560P44Lx, SPC560P50Lx SRAM module provides up to 40 KB of general-purpose
memory.
The SRAM module provides the following features:
Supports read/write accesses mapped to the SRAM from any master
Up to 40 KB general purpose SRAM
Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of
memory
Typical SRAM access time: 0 wait-state for reads and 32-bit writes; 1 wait state for 8-
and 16-bit writes if back to back with a read to same memory block
1.5.6 Interrupt controller (INTC)
The interrupt controller (INTC) provides priority-based preemptive scheduling of interrupt
requests, suitable for statically scheduled hard real-time systems. The INTC handles 147
selectable-priority interrupt sources.
Introduction SPC560P44Lx, SPC560P50Lx
16/112 Doc ID 14723 Rev 9
For high priority interrupt requests, the time from the assertion of the interrupt request from
the peripheral to when the processor is executing the interrupt service routine (ISR) has
been minimized. The INTC provides a unique vector for each interrupt request source for
quick determination of which ISR has to be executed. It also provides a wide number of
priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To
allow the appropriate priorities for each source of interrupt request, the priority of each
interrupt request is software configurable.
When multiple tasks share a resource, coherent accesses to that resource need to be
supported. The INTC supports the priority ceiling protocol (PCP) for coherent accesses. By
providing a modifiable priority mask, the priority can be raised temporarily so that all tasks
which share the same resource can not preempt each other.
The INTC provides the following features:
Unique 9-bit vector for each separate interrupt source
8 software triggerable interrupt sources
16 priority levels with fixed hardware arbitration within priority levels for each interrupt
source
Ability to modify the ISR or task priority: modifying the priority can be used to implement
the Priority Ceiling Protocol for accessing shared resources.
2 external high priority interrupts directly accessing the main core and I/O processor
(IOP) critical interrupt mechanism
1.5.7 System status and configuration module (SSCM)
The system status and configuration module (SSCM) provides central device functionality.
The SSCM includes these features:
System configuration and status
Memory si ze s/s tatus
Device mode and security status
Determine boot vector
Search code flash for bootable sector
–DMA status
Debug status port enable and selection
Bus and peripheral abort enable/disable
1.5.8 System clocks and clock generation
The following list summarizes the system clock and clock generation on the SPC560P44Lx,
SPC560P50Lx:
Loc k dete ct ci rc ui try con t in uou sl y mon ito rs loc k status
Loss of clock (LOC) detection for PLL outputs
Programmable output clock divider (÷1, ÷2, ÷4, ÷8)
FlexPWM module and eTimer module can run on an independent clock source
On-chip oscillator with automatic level control
Internal 16 MHz RC oscillator for rapid start-up and safe mode: supports frequency
trimming by user application
SPC560P44Lx, SPC560P50Lx Introduction
Doc ID 14723 Rev 9 17/112
1.5.9 Frequency-modulated phase-locked loop (FMPLL)
The FMPLL allows the user to generate high speed system clocks from a 4–40 MHz input
clock. Further, the FMPLL supports programmable frequency modulation of the system
clock. The PLL multiplication factor, output clock divider ratio are all software configurable.
The PLL has the following major features:
Input clock frequency: 4–40 MHz
Maximum output frequency: 64 MHz
Voltage controlled oscillator (VCO)—frequency 256–512 MHz
Reduced frequency divider (RFD) for reduced frequency operation without forcing the
PLL to relock
Frequency-modulated PLL
Modulation enabled/disabled through software
Triang le wav e modulati on
Programmable modulation depth0.25% to ±4% deviation from center frequency):
programmable modulation frequency dependent on reference frequency
Self-clocked mode (SCM) operation
1.5.10 Main oscillator
The main oscillator provides these features:
Input frequency range: 4–40 MHz
Crystal input mode or oscillator input mode
PLL reference
1.5.11 Internal RC oscillator
This device has an RC ladder phase-shift oscillator. The architecture uses constant current
charging of a capacitor. The voltage at the capacitor is compared by the stable bandgap
reference voltage.
The RC oscillator provides these features:
Nominal frequency 16 MHz
±5% variation over voltage and temperature after process trim
Clock output of the RC oscillator serves as system clock source in case loss of lock or
loss of clock is detected by the PLL
RC oscillator is used as the default system clock during startup
1.5.12 Periodic interrupt timer (PIT)
The PIT module implements these features:
4 general purpose interrupt timers
32-bit counter resolution
Clocked by system clock frequency
Each channel can be used as trigger for a DMA request
Introduction SPC560P44Lx, SPC560P50Lx
18/112 Doc ID 14723 Rev 9
1.5.13 System timer module (STM)
The STM module implements these features:
One 32-bit up counter with 8-bit prescaler
Four 32-bit compare channels
Independent interrupt source for each channel
Counter can be stopped in debug mode
1.5.14 Software watchdog timer (SWT)
The SWT has the following features:
32-bit time-out register to set the time-out period
Programmable selection of system or oscillator clock for timer operation
Programmable selection of window mode or regular servicing
Programmable selection of reset or interrupt on an initial time-out
Master access protection
Hard and soft configuration lock bits
Reset configuration inputs allow timer to be enabled out of reset
1.5.15 Fault collection unit (FCU)
The FCU provides an independent fault reporting mechanism even if the CPU is
malfunctioning.
The FCU module has the following features:
FCU status register reporting the device status
Continuous monitoring of critical fault signals
User selection of critical signals from different fault sources inside the device
Critical fault events trigger 2 external pins (user selected signal protocol) that can be
used externally to reset the device and/or other circuitry (for example, safety relay or
FlexRay transceiver)
Faults are latched into a register
1.5.16 System integration unit – Lite (SIUL)
The SPC560P44Lx, SPC560P50Lx SIUL controls MCU pad configuration, external
interrupt, general purpose I/O (GPIO), and internal peripheral multiplexing.
The pad configuration block controls the static electrical characteristics of I/O pins. The
GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU.
SPC560P44Lx, SPC560P50Lx Introduction
Doc ID 14723 Rev 9 19/112
The SIU provides the following features:
Centralized general purpose input output (GPIO) control of as many as 80 input/output
pins and 26 analog input-only pads (package dependent)
All GPIO pins can be independently configured to support pull-up, pull down, or no pull
Reading and writing to GPIO supported both as individual pins and 16-bit wide ports
All peripheral pins (except ADC channels) can be alternatively configured as both
general purpose input or output pins
ADC channels support alternative configuration as general purpose inputs
Direct readback of the pin value is supported on all pins through the SIUL
Configurable digital input filter that can be applied to some general purpose input pins
for noise elimination: as many as 4 internal functions can be multiplexed onto 1 pin
1.5.17 Boot and censorship
Different booting modes are available in the SPC560P44Lx, SPC560P50Lx: booting from
intern al flash memory and booting via a serial link.
The default booting scheme uses the internal flash memory (an internal pull-down is used to
select this mode). Optionally, the user can boot via FlexCAN or LINFlex (using the boot
assist module software).
A censorship scheme is provided to protect the content of the flash memory and offer
increased security for the entire device.
A password mechanism is designed to grant the legitimate user access to the non-volatile
memory.
Boot assist module (BAM)
The BAM is a block of read-only one-time programmed memory and is identical for all
SPC560Pxx devices that are based on the e200z0h core. The BAM program is executed
every time the device is powered on if the alternate boot mode has been selected by the
user.
The BAM provides the following features:
Serial bootloading via FlexCAN or LINFlex
Ability to accept a password via the used serial communication channel to grant the
legitimate user access to the non-volatile memory
1.5.18 Error correction st atus module (E CSM)
The ECSM provides a myriad of miscellaneous control functions regarding program-visible
information about the platform configuration and revision levels, a reset status register, a
software watchdog timer, wakeup control for exiting sleep modes, and information on
platform memory errors reported by error-correctin g codes and/or generic access error
information for certain processor cores.
The Error Correction S tatus Module supports a number of miscellaneous control functions
for the platform. The ECSM includ es thes e featu r es:
Registers for capturing information on platform memory errors if error-correcting codes
(ECC) are implemented
For test purposes, optional registers to specify the generation of double-bit memory
errors are enabled on the SPC560P44Lx, SPC560P50Lx.
Introduction SPC560P44Lx, SPC560P50Lx
20/112 Doc ID 14723 Rev 9
The sources of the ECC errors are:
Flash memory
SRAM
1.5.19 Peripheral bridge (PBRIDGE)
The PBRIDGE implements the foll owing features:
Duplicated periphery
Master access privilege level per peripheral (per master: read access enable; write
access enable)
Write buffering for peripherals
Checker applied on PBRIDGE output toward periphery
Byte endianess swap capability
1.5. 20 Controller area n etwork (FlexCAN)
The SPC560P44Lx, SPC560P50Lx MCU contains one controller area network (FlexCAN)
module. This module is a communication controller implementing the CAN protocol
according to Bosch Specification version 2.0B. The CAN protocol was designed to be used
primarily as a vehicle serial data bus, meeting the specific requirements of this field: real-
time processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness
and required bandwidth. The FlexCAN module contains 32 message buffers.
SPC560P44Lx, SPC560P50Lx Introduction
Doc ID 14723 Rev 9 21/112
The FlexCAN module provides the following features:
Full implementation of the CAN protocol specification, version 2.0B
Standard data and remote frames
Extended data and remote frames
Up to 8-bytes data length
Programmable bit rate up to 1 Mbit/s
32 message buffers of up to 8-bytes data length
Each message buffer configurable as Rx or Tx, all supporting standard and extended
messages
Programmable loop-back mode supporting self-test operation
3 programmable mask registers
Programmable transmit-first scheme: lowest ID or lowest buffer number
Time stamp based on 16-bit free-running timer
Global network time, synchronized by a specific message
Maskable interrupts
Independent of the transmission medium (an external transceiver is assumed)
High immunity to EMI
Short latency time due to an arbitration scheme for high-priority messages
Transmit features
Supports configuration of multiple mailboxes to form message queues of scalable
depth
Arbitration scheme according to message ID or message buffer number
Internal arbitration to guarantee no inner or outer priority inversion
Transm it abo rt proc edure and notifica tio n
Receive features
Individual programmable filters for each mailbox
8 mailboxes configurable as a six-entry receive FIFO
8 programmable acceptance filters for receive FIFO
Programmable clock source
System clock
Direct oscillator clock to avoid PLL jitter
1.5.21 Safety por t (FlexCAN)
The SPC560P44Lx, SPC560P50Lx MCU has a second CAN controller synthesized to run at
high bit rates to be used as a safety port. The CAN module of the safety port provides the
following features:
Identical to the FlexCAN module
Bit rate as fast as 7.5 Mbit/s at 60 MHz CPU clock using direct connection between
CAN modules (no physical transceiver required)
32 message buffers of up to 8 bytes data length
Can be used as a second independent CAN module
Introduction SPC560P44Lx, SPC560P50Lx
22/112 Doc ID 14723 Rev 9
1.5.22 FlexRay
The FlexRay module provides the following features:
Full implementation of FlexRay Protocol Specification 2.1
32 configurable message buffers can be handled
Dual channel or single channel mode of operation, each as fast as 10 Mbit/s data rate
Message buffers configurable as Tx, Rx or RxFIFO
Message buffer size configurable
Message filtering for all message buffers based on FrameID, cycle count and message
ID
Programmable acceptance filters for RxFIFO message buffers
1.5.23 Serial communication interface module (LINFlex)
The LINFlex (local interconnect network flexible) on the SPC560P44Lx, SPC560P50Lx
features the following:
Supports LIN Master mode, LIN Slave mode and UART mode
LIN state machine compliant to LIN1.3, 2.0, and 2.1 specifications
Handles LIN frame transmission and reception without CPU intervention
LIN features
Autonomous LIN frame handling
Message buffer to store Identifier and as much as 8 data bytes
Supports message length as long as 64 bytes
Detection and flagging of LIN errors (sync field, delimiter, ID parity, bit framing,
checksum, and time-out)
Classic or extended checksum calculation
Configurable Break duration as long as 36-bit times
Programmable baud rate prescalers (13-bit mantissa, 4-bit fractional)
Diagnostic features: Loop back; Self Test; LIN bus stuck dominant detection
Interrupt-driven operation with 16 interrupt sources
LIN slave mode features
Autonomous LIN header handling
Autonomous LIN response handling
UART mode
Full-duplex operation
Standard non return-to-zero (NRZ) mark/space format
Data buffers with 4-byte receive, 4-byte transmit
Configura ble word length (8 -bit or 9-bit words )
Error detection and flagging
Parity, Noise and Framing errors
Interrupt-driven operation with four interrupt sources
Separate transmitter and recei ver CPU inte rru pt sourc es
16-bit programmable baud-rate modulus counter and 16-bit fractional
2 receiver wake-up methods
SPC560P44Lx, SPC560P50Lx Introduction
Doc ID 14723 Rev 9 23/112
1.5.24 Deserial serial peripheral interface (DSPI)
The deserial serial peripheral interface (DSPI) module provides a synchronous serial
interface for communication between the SPC560P44Lx, SPC560P50Lx MCU and external
devices.
The DSPI modules provide these features:
Full duplex, synchronous transfers
Master or slave operation
Programmable m aster bit rates
Programmable clock polarity and phase
End-of-transmission interrupt flag
Programmable transfer baud rate
Programmable data frames from 4 to 16 bits
Up to 20 chip select lines available
–8 on DSPI_0
4 each on DSPI_1, DSPI_2 and DSPI_3
8 clock and transfer attributes registers
Chip select strobe available as alternate function on one of the chip select pins for
deglitching
FIFOs for buffering as many as 5 transfers on the transmit and receive side
Queueing operation possible through use of the eDMA
General purpose I/O functionality on pins when not used for SPI
1.5.25 Pulse width modulator (FlexPWM)
The pulse width modulator module (PWM) contains four PWM submodules, each capable of
controlling a single half-bridge power stage. There are also four fault channels.
This PWM is capable of controlling most motor types: AC induction motors (ACIM),
permanent magnet AC motors (PMAC), both brushless (BLDC) and brush DC motors
(BDC), switched (SRM) and variable reluctance motors (VRM), and stepper motors.
Introduction SPC560P44Lx, SPC560P50Lx
24/112 Doc ID 14723 Rev 9
The FlexPWM block implements the following features:
16-bit resolution for center, edge-aligned, and asymmetrical PWMs
Maximum operating clock frequency of 120 MHz
PWM outputs can operate as complementary pairs or independent channels
Can accept signed numbers for PWM generation
Independent control of both edges of each PWM output
Synchronization to external hardware or other PWM supported
Double buffered PWM registers
Integral reload rates from 1 to 16
Half cycle reload capability
Multiple ADC trigger events can be generated per PWM cycle via hardware
Write protection for critical registers
Fault inputs can be assigned to control multiple PWM outputs
Programmable filters for fault inputs
Independently programmable PWM output polarity
Independent top and bottom deadtime insertion
Each complementary pair can operate with its own PWM frequency and deadtime
values
Individual software-control for each PWM output
All outputs can be programmed to change simultaneously via a “Force Out” event
PWMX pin can optionally output a third PWM signal from each submodule
Channels not used for PWM generation can be used for buffered output compare
functions
Channels not used for PWM generation can be used for input capture functions
Enhanced dual-edge capture functionality
eDMA support with automatic reload
2 fault inputs
Capture capability for PWMA, PWMB, and PWMX channels not supported
SPC560P44Lx, SPC560P50Lx Introduction
Doc ID 14723 Rev 9 25/112
1.5.26 eTimer
The SPC560P44Lx, SPC560P50Lx includes two eTimer modules. Each module provides
six 16-bit general purpose up/down timer/counter units with the following features:
Maximum operating clock frequency of 120 MHz
Individual channel capability
Input capture trigger
Output compare
Double buffer (to capture rising edge and falling edge)
Separate prescaler for each cou nter
Selectable clock source
0–100% pulse measurement
Rotation direction flag (Quad decoder mode)
Maxi mum count r ate
External event counting: max. count rate = peripheral clock/2
Internal clock counting: max. count rate = peripheral clock
Counters are:
Cascadable
Preloadable
Programmable count modulo
Quadrature decode capabilities
Counters can share available input pins
Count once or repeatedly
Pins available as GPIO when timer functionality not in use
1.5.27 Analog-to-digital converter (ADC) module
The ADC module provides the following features:
Analog part:
2 on-chip AD converters
10-bit AD resolution
1 sample and hold unit per ADC
Conversion time, including sampling time, less than 1 µs (at full precision)
Typical sampling time is 150 ns min. (at full precision)
Differential non-linearity error (DNL) ±1 LSB
Integral non-linearity error (INL) ±1.5 LSB
–TUE <3LSB
Single-ended input signal up to 5.0 V
The ADC and its reference can be supplied with a voltage independent from V
DDIO
The ADC supply can be equal or higher than V
DDIO
The ADC supply and the ADC reference are not independent from each other
(they are internally bonded to the same pad)
Sample times of 2 (default), 8, 64, or 128 ADC clock cycles
Introduction SPC560P44Lx, SPC560P50Lx
26/112 Doc ID 14723 Rev 9
Digital part:
2 × 13 input channels including 4 channels shared between the 2 converters
4 analog watchdogs comparing ADC results against predefined levels (low, high,
range) before results are stored in the appropriate ADC result location,
2 modes of operation: Normal mode or CTU control mode
Normal mode features
Register-based interface with the CPU: control register, status register, 1 result
register per channel
ADC state machine managing 3 request flows: regular command, hardware
injected command, software injected command
Selectable priority between software and hardware injected commands
4 analog watchdogs comparing ADC results against predefined levels (low, high,
range)
DMA compatible interface
CTU control mode features
Triggered mode only
4 independent result queues (2 × 16 entries, 2 × 4 entries)
Result alignment circuitry (left justified; right justified)
32-bit read mode allows to have channel ID on one of the 16-bit part
DMA compatible interfaces
1.5.28 Cross triggering unit (CTU)
The cross triggering unit allows automatic generation of ADC conversion requests on user
selected conditions without CPU load during the PWM period and with minimized CPU load
for dynam ic confi guration.
It implements the following features:
Double buffered trigger generation unit with as many as eight independent triggers
generated from external triggers
Trigger generation unit configurable in sequential mode or in triggered mode
Each Trigger can be appropriately delayed to compensate the delay of external low
pass filter
Double buffered global trigger unit allowing eTimer synchronization and/or ADC
command generation
Double buffered ADC command list pointers to minimize ADC-trigger unit update
Double buffered ADC conversion command list with as many as 24 ADC commands
Each trigger has the capability to generate consecutive commands
ADC conversion command allows to control ADC channel from each ADC, single or
synchronous sampling, independent result queue selection
1.5. 29 Nexus development interface (NDI )
The NDI (Nexus Development Interface) block provides real-time development support
capabilities for the SPC560P44Lx, SPC560P50Lx Power Architecture based MCU in
compliance with the IEEE-ISTO 5001-2003 standard. This development support is supplied
for MCUs without requiring external address and data pins for internal visibility. The NDI
SPC560P44Lx, SPC560P50Lx Introduction
Doc ID 14723 Rev 9 27/112
block is an integration of several individual Nexus blocks that are selected to provide the
development support interface for this device. The NDI block interfaces to the host
processor and internal busses to provide development support as per the IEEE -ISTO 5001-
2003 Class 2+ standard. The development support provided includes access to the MCU’s
internal memory map and access to the processor’s internal registers during run time.
The Nexus Interface provides the following features:
Configured via the IEEE 1149.1
All Nexus port pins operate at V
DDIO
(no dedicated power supply)
Nexus 2+ features supported
Static debug
Watchpoint messaging
Ownership trace messaging
Program trace messaging
Real time read/write of any internally memory mapped resources through JTAG
pins
Overrun control, which selects whether to stall before Nexus overruns or keep
executing and allow overwrite of information
Watchpoint triggering, watchpoint triggers program tracing
Auxiliary Output Port
4 MDO (Message Data Out) pins
MCKO (Message Clock Out) pin
2 MSEO (Messa ge Start/End Out) pins
–EVTO
(Event Out) pin
Auxiliary Input Port
–EVTI
(Event In) pin
1.5.30 Cyclic redundancy check (CRC)
The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The
CRC module features:
Support for CRC-16-CCITT (x25 protoc ol) :
x
16
+ x
12
+ x
5
+ 1
Support for CRC-32 (Ethernet protocol ):
x
32
+ x
26
+ x
23
+ x
22
+ x
16
+ x
12
+ x
11
+ x
10
+ x
8
+ x
7
+ x
5
+ x
4
+ x
2
+ x + 1
Zero wait states for each write/read operations to the CRC_CFG and CRC_INP
registers at the maximum frequency
1.5.31 IEEE 1149.1 JTAG controller
The JTAG controller (JTAGC) block provides the means to test chip functionality and
connectivity while remaining transparent to system logic when not in test mode. All data
input to and output from the JTAGC block is communicated in serial format. The JTAGC
block is compliant with the IEEE standard.
Introduction SPC560P44Lx, SPC560P50Lx
28/112 Doc ID 14723 Rev 9
The JTAG controller provides the following features:
IEEE Test Access Port (TAP) interface with 4 pins (TDI, TMS, TCK, TDO)
Selectable modes of operation include JTAGC/debug or normal system operation.
A 5-bit instruction register that supports the following IEEE 1149.1-2001 defined
instructions:
BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PR ELOAD
A 5-bit instruction register that supports the additional following public instructions:
ACCESS_AUX_TAP_NPC, ACCESS_AUX_TAP_ONCE
3 test data registers: a bypass register, a boundary scan register, and a device
identif ic ati on regis ter.
A TAP controller state machine that controls the operation of the data registers,
instruction register and associated circuitry.
1.5.32 On-chip voltage regulator (VREG)
The on-chip voltage regulator module provides the following features:
Uses external NPN (negative-positive-negative) transistor
Regulates external 3.3 V /5.0 V down to 1.2 V for the core logic
Low voltage detection on the internal 1.2 V and I/O voltage 3.3 V
SPC560P44Lx, SPC560P50Lx Package pinouts and signal descriptions
Doc ID 14723 Rev 9 29/112
2 Package pinouts and signal descriptions
2.1 Package pinouts
The LQFP pinouts are shown in the following figures.
Figure 2. 144-pin LQFP pinout – Full featured configuration (top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
NMI
A[6]
D[1]
F[4]
F[5]
VDD_HV_IO0
VSS_HV_IO0
F[6]
MDO[0]
A[7]
C[4]
A[8]
C[5]
A[5]
C[7]
C[3]
VSS_LV_COR0
VDD_LV_COR0
F[7]
F[8]
VDD_HV_IO1
VSS_HV_IO1
F[9]
F[10]
F[11]
D[9]
VDD_HV_OSC
VSS_HV_OSC
XTAL
EXTAL
RESET
D[8]
D[5]
D[6]
VSS_LV_COR3
VDD_LV_COR3
A[4]
VPP_TEST
F[12]
D[14]
G[3]
C[14]
G[2]
C[13]
G[4]
D[12]
G[6]
VDD_HV_FL
VSS_HV_FL
D[13]
VSS_LV_COR1
VDD_LV_COR1
A[3]
VDD_HV_IO2
VSS_HV_IO2
TDO
TCK
TMS
TDI
G[5]
A[2]
G[7]
C[12]
G[8]
C[11]
G[9]
D[11]
G[10]
D[10]
G[11]
A[1]
A[0]
D[7]
G[0]
E[1]
E[3]
C[1]
E[4]
B[7]
E[5]
C[2]
E[6]
B[8]
E[7]
E[2]
VDD_HV_ADC0
VSS_HV_ADC0
B[9]
B[10]
B[11]
B[12]
VDD_HV_ADC1
VSS_HV_ADC1
D[15]
E[8]
B[13]
E[9]
B[15]
E[10]
B[14]
E[11]
C[0]
E[12]
E[0]
BCTRL
VDD_LV_REGCOR
VSS_LV_REGCOR
VDD_HV_REG
A[15]
A[14]
C[6]
G[1]
D[2]
F[3]
B[6]
F[2]
A[13]
F[1]
A[9]
F[0]
VSS_LV_COR2
VDD_LV_COR2
C[8]
D[4]
D[3]
VSS_HV_IO3
VDD_HV_IO3
D[0]
C[15]
C[9]
A[12]
E[15]
A[11]
E[14]
A[10]
E[13]
B[3]
F[14]
B[2]
F[15]
F[13]
C[10]
B[1]
B[0]
LQFP144
Note: Availability of port pin alternate functions depends on product selection.
Package pinouts and signal descriptions SPC560P44Lx, SPC560P50Lx
30/112 Doc ID 14723 Rev 9
Figure 3. 100-pin LQFP pinout – Airbag configuration (top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
NMI
A[6]
D[1]
A[7]
C[4]
A[8]
C[5]
A[5]
C[7]
C[3]
VSS_LV_COR0
VDD_LV_COR0
VDD_HV_IO1
VSS_HV_IO1
D[9]
VDD_HV_OSC
VSS_HV_OSC
XTAL
EXTAL
RESET
D[8]
D[5]
D[6]
VSS_LV_COR3
VDD_LV_COR3
A[4]
VPP_TEST
D[14]
C[14]
C[13]
D[12]
VDD_HV_FL
VSS_HV_FL
D[13]
VSS_LV_COR1
VDD_LV_COR1
A[3]
VDD_HV_IO2
VSS_HV_IO2
TDO
TCK
TMS
TDI
A[2]
C[12]
C[11]
D[11]
D[10]
A[1]
A[0]
D[7]
E[1]
C[1]
B[7]
C[2]
B[8]
E[2]
VDD_HV_ADC0
VSS_HV_ADC0
B[9]
B[10]
B[11]
B[12]
VDD_HV_ADC1
VSS_HV_ADC1
D[15]
B[13]
B[15]
B[14]
C[0]
E[0]
BCTRL
VDD_LV_REGCOR
VSS_LV_REGCOR
VDD_HV_REG
A[15]
A[14]
C[6]
D[2]
B[6]
A[13]
A[9]
VSS_LV_COR2
VDD_LV_COR2
C[8]
D[4]
D[3]
VSS_HV_IO3
VDD_HV_IO3
D[0]
C[15]
C[9]
A[12]
A[11]
A[10]
B[3]
B[2]
C[10]
B[1]
B[0]
LQFP100
Note: Availability of port pin alternate functions depends on product selection.
SPC560P44Lx, SPC560P50Lx Package pinouts and signal descriptions
Doc ID 14723 Rev 9 31/112
Figure 4. 100-pin LQFP pinout – Full featured configuration (top view)
2.2 Pin description
The following sections provide signal descriptions and related information about the
functionality and configuration of the SPC560P44Lx, SPC560P50Lx devices.
2.2.1 Power supply and reference voltage pins
Table 5 lists the power supply and reference voltage for the SPC560P44Lx, SPC560P50Lx
devices.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
NMI
A[6]
D[1]
A[7]
C[4]
A[8]
C[5]
A[5]
C[7]
C[3]
VSS_LV_COR0
VDD_LV_COR0
VDD_HV_IO1
VSS_HV_IO1
D[9]
VDD_HV_OSC
VSS_HV_OSC
XTAL
EXTAL
RESET
D[8]
D[5]
D[6]
VSS_LV_COR3
VDD_LV_COR3
A[4]
VPP_TEST
D[14]
C[14]
C[13]
D[12]
VDD_HV_FL
VSS_HV_FL
D[13]
VSS_LV_COR1
VDD_LV_COR1
A[3]
VDD_HV_IO2
VSS_HV_IO2
TDO
TCK
TMS
TDI
A[2]
C[12]
C[11]
D[11]
D[10]
A[1]
A[0]
D[7]
E[1]
C[1]
B[7]
C[2]
B[8]
E[2]
VDD_HV_ADC0
VSS_HV_ADC0
B[9]
B[10]
B[11]
B[12]
VDD_HV_ADC1
VSS_HV_ADC1
D[15]
B[13]
B[15]
B[14]
C[0]
E[0]
BCTRL
VDD_LV_REGCOR
VSS_LV_REGCOR
VDD_HV_REG
A[15]
A[14]
C[6]
D[2]
B[6]
A[13]
A[9]
VSS_LV_COR2
VDD_LV_COR2
C[8]
D[4]
D[3]
VSS_HV_IO3
VDD_HV_IO3
D[0]
C[15]
C[9]
A[12]
A[11]
A[10]
B[3]
B[2]
C[10]
B[1]
B[0]
LQFP100
Note: Availability of port pin alternate functions depends on product selection.
Package pinouts and signal descriptions SPC560P44Lx, SPC560P50Lx
32/112 Doc ID 14723 Rev 9
Table 5. Supply pins
Supply Pin
Symbol Description 100-pin 144-pin
VREG control and power supply pins. Pins available on 100-pin and 144-pin package.
BCTRL Voltage regulator external NPN ballast base control pin 47 69
V
DD_HV_REG
(3.3 V
or 5.0 V) Voltage regulator supply voltage 50 72
V
DD_LV_REGCOR
1.2 V decoupli ng pins for c ore log ic and regulat or feedb ack.
Decoupling capacitor must be connected between this pins
and V
SS_LV_REGCOR
.48 70
V
SS_LV_REGCOR
1.2 V decoupli ng pins for c ore log ic and regulat or feedb ack.
Decoupling capacitor must be connected between this pins
and V
DD_LV_REGCOR
.49 71
ADC_0/ADC_1 reference and supply voltage. Pins available on 100-pin and 144-pin package.
V
DD_HV_ADC0(1)
ADC_0 supply and high reference voltage 33 50
V
SS_HV_ADC0
ADC_0 ground and low reference voltage 34 51
V
DD_HV_ADC1
ADC_1 supply and high reference voltage 39 56
V
SS_HV_ADC1
ADC_1 ground and low reference voltage 40 57
Power supply pins (3.3 V or 5.0 V). All pins available on 144-pin package.
Five pairs (V
DD
; V
SS
) available on 100-pin package.
V
DD_HV_IO0(2)
Input/Output supply voltage 6
V
SS_HV_IO0(2)
Input/Output ground 7
V
DD_HV_IO1
Input/Output supply voltage 13 21
V
SS_HV_IO1
Input/Output ground 14 22
V
DD_HV_IO2
Input/Output supply voltage 63 91
V
SS_HV_IO2
Input/Output ground 62 90
V
DD_HV_IO3
Input/Output supply voltage 87 126
V
SS_HV_IO3
Input/Output ground 88 127
V
DD_HV_FL
Code and data flash supply voltage 69 97
V
SS_HV_FL
Code and data flash supply ground 68 96
V
DD_HV_OSC
Crys t al os cil la tor amp lifier supply voltag e 16 27
V
SS_HV_OSC
Crys t al os cil la tor amp lif ier ground 17 28
Power supply pins (1.2 V). All pins available on 100-pin and 144-pin package.
V
DD_LV_COR0
1.2 V Decoupling pins for core logic. Decoupling capacitor
must be connected between these pins and the nearest
V
SS_LV_COR
pin. 12 18
V
SS_LV_COR0
1.2 V Decoupling pins for core logic. Decoupling capacitor
must be connected between these pins and the nearest
V
DD_LV_COR
pin. 11 17
SPC560P44Lx, SPC560P50Lx Package pinouts and signal descriptions
Doc ID 14723 Rev 9 33/112
2.2.2 System pins
Table 5 and Table 6 contain information on pin functions for the SPC560P44Lx,
SPC560P50Lx devices. The pins listed in Table 6 are single-function pins. The pins shown
in Table 7 are multi-function pins, programmable via their respective Pad Configuration
Register (PCR) values.
V
DD_LV_COR1
1.2 V Decoupling pins for core logic. Decoupling capacitor
must be connected between these pins and the nearest
V
SS_LV_COR
pin. 65 93
V
SS_LV_COR1
1.2 V Decoupling pins for core logic. Decoupling capacitor
must be connected between these pins and the nearest
V
DD_LV_COR
pin. 66 94
V
DD_LV_COR2
1.2 V Decoupling pins for core logic. Decoupling capacitor
must be connected between these pins and the nearest
V
SS_LV_COR
pin. 92 131
V
SS_LV_COR2
1.2 V Decoupling pins for core logic. Decoupling capacitor
must be connected between these pins and the nearest
V
DD_LV_COR
pin. 93 132
V
DD_LV_COR3
1.2 V Decoupling pins for on-chip PLL modules. Decoupling
capacitor must be connected between this pin and
V
SS_LV_COR3
.25 36
V
SS_LV_COR3
1.2 V Decoupling pins for on-chip PLL modules. Decoupling
capacitor must be connected between this pin and
V
DD_LV_COR3
.24 35
1. Analog supply/ground and high/low reference lines are internally physically separate, but are shorted via a double-bonding
connection on V
DD_HV_ADCx
/V
SS_HV_ADCx
pins.
2. Not available on 100-pin package.
Table 5. Supply pins (continued)
Supply Pin
Symbol Description 100-pin 144-pin
Table 6. System pins
Symbol Description Direction Pad speed
(1)
Pin
SRC = 0 SRC = 1 100-pin 144-pin
Dedicated pins. Available on 100-pin and 144-pin package.
MDO[0] Nexus Message Data Output—line 0 Output only Fast 9
NMI Non-Maskable Interrupt Input only Slow 1 1
XTAL Analog output of the oscillator amplifier
circuit; n eeds to be gr ounded if osci llator
is used in bypass mode ——1829
EXTAL
Analog input of oscillator amplifier
circuit, when oscilla tor not in bypass
mode
Analog input fo r clo ck ge nerator when
oscill ator in bypass mode
——1930
Package pinouts and signal descriptions SPC560P44Lx, SPC560P50Lx
34/112 Doc ID 14723 Rev 9
2.2.3 Pin muxing
Table 7 defines the pin list and muxing for the SPC560P44Lx, SPC560P50Lx devices.
Each row of Table 7 shows all the possible ways of configuring each pin, via alternate
functions. The default function assigned to each pin after reset is the ALT0 function.
SPC560P44Lx, SPC560P50Lx devices provide four main I/O pad types, depending on the
associa ted func tions :
Slow pads are the most common, providing a compromise between transition time and
low electrom agn eti c emiss ion.
Medium pads provide fast enough transition for serial communication channels with
controlled current to reduce electromagnetic emission.
Fast pads provide maximum speed. They are used for improved NEXUS debugging
capability.
Symmetric pads are designed to meet FlexRay requirements.
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at
the cost of reducing AC performance. For more information, see the datasheet’s “Pad AC
Specifications” section.
TMS JTAG state machine control Bidirectional Slow Fast 59 87
TCK JTAG clock Input only Slow 60 88
TDI Test Data In Input only Slow Medium 58 86
TDO Test Data Out Output only Slow Fast 61 89
Reset pin, available on 100-pin and 144-pin pack age.
RESET Bidirectional reset with Schmitt trig ger
characteristics and noise filter Bidirectional Medium 20 31
Test pin, availab le on 100 -pin and 144-pin p ac ka ge .
VPP_TEST Pin for testing purp ose only. To be tied to
ground in normal operating mode. ——74107
1. SCR values refer to the value assigned to the Slew Rate Control bits of the pad configuration register.
Table 6. System pins (continued)
Symbol Description Direction Pad speed
(1)
Pin
SRC = 0 SRC = 1 100-pin 144-pin
SPC560P44Lx, SPC560P50Lx Package pinouts and signal descriptions
Doc ID 14723 Rev 9 35/112
Table 7. Pin muxing
Port
pin
Pad
configuration
register (PCR)
Alternate
function
(1),
(2)
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
(5)
Pin No.
SRC = 0 SRC = 1
100-pin
144-pin
Port A (16-bit)
A[0] PCR[0]
ALT0
ALT1
ALT2
ALT3
GPIO[0]
ETC[0]
SCK
F[0]
EIRQ[0]
SIUL
eTimer_0
DSPI_2
FCU_0
SIUL
I/O
I/O
O
O
I
Slow Medium 51 73
A[1] PCR[1]
ALT0
ALT1
ALT2
ALT3
GPIO[1]
ETC[1]
SOUT
F[1]
EIRQ[1]
SIUL
eTimer_0
DSPI_2
FCU_0
SIUL
I/O
I/O
O
O
I
Slow Medium 52 74
A[2]
(6)
PCR[2]
ALT0
ALT1
ALT2
ALT3
GPIO[2]
ETC[2]
A[3]
SIN
ABS[0]
EIRQ[2]
SIUL
eTimer_0
FlexPWM_0
DSPI_2
MC_RGM
SIUL
I/O
I/O
O
I
I
I
Slow Medium 57 84
A[3]
(6)
PCR[3]
ALT0
ALT1
ALT2
ALT3
GPIO[3]
ETC[3]
CS0
B[3]
ABS[2]
EIRQ[3]
SIUL
eTimer_0
DSPI_2
FlexPWM_0
MC_RGM
SIUL
I/O
I/O
I/O
O
I
I
Slow Medium 64 92
A[4]
(6)
PCR[4]
ALT0
ALT1
ALT2
ALT3
GPIO[4]
ETC[0]
CS1
ETC[4]
FAB
EIRQ[4]
SIUL
eTimer_1
DSPI_2
eTimer_0
MC_RGM
SIUL
I/O
I/O
O
I/O
I
I
Slow Medium 75 108
A[5] PCR[5]
ALT0
ALT1
ALT2
ALT3
GPIO[5]
CS0
ETC[5]
CS7
EIRQ[5]
SIUL
DSPI_1
eTimer_1
DSPI_0
SIUL
I/O
I/O
I/O
O
I
Slow Medium 8 14
A[6] PCR[6]
ALT0
ALT1
ALT2
ALT3
GPIO[6]
SCK
EIRQ[6]
SIUL
DSPI_1
SIUL
I/O
I/O
I
Slow Medium 2 2
Package pinouts and signal descriptions SPC560P44Lx, SPC560P50Lx
36/112 Doc ID 14723 Rev 9
A[7] PCR[7]
ALT0
ALT1
ALT2
ALT3
GPIO[7]
SOUT
EIRQ[7]
SIUL
DSPI_1
SIUL
I/O
O
I
Slow Medium 4 10
A[8] PCR[8]
ALT0
ALT1
ALT2
ALT3
GPIO[8]
SIN
EIRQ[8]
SIUL
DSPI_1
SIUL
I/O
I
I
Slow Medium 6 12
A[9] PCR[9]
ALT0
ALT1
ALT2
ALT3
GPIO[9]
CS1
B[3]
FAULT[0]
SIUL
DSPI_2
FlexPWM_0
FlexPWM_0
I/O
O
O
I
Slow Medium 94 134
A[10] PCR[10]
ALT0
ALT1
ALT2
ALT3
GPIO[10]
CS0
B[0]
X[2]
EIRQ[9]
SIUL
DSPI_2
FlexPWM_0
FlexPWM_0
SIUL
I/O
I/O
O
I/O
I
Slow Medium 81 118
A[11] PCR[11]
ALT0
ALT1
ALT2
ALT3
GPIO[11]
SCK
A[0]
A[2]
EIRQ[10]
SIUL
DSPI_2
FlexPWM_0
FlexPWM_0
SIUL
I/O
I/O
O
O
I
Slow Medium 82 120
A[12] PCR[12]
ALT0
ALT1
ALT2
ALT3
GPIO[12]
SOUT
A[2]
B[2]
EIRQ[11]
SIUL
DSPI_2
FlexPWM_0
FlexPWM_0
SIUL
I/O
O
O
O
I
Slow Medium 83 122
A[13] PCR[13]
ALT0
ALT1
ALT2
ALT3
GPIO[13]
B[2]
SIN
FAULT[0]
EIRQ[12]
SIUL
FlexPWM_0
DSPI_2
FlexPWM_0
SIUL
I/O
O
I
I
I
Slow Medium 95 136
Table 7. Pin muxing (continued)
Port
pin
Pad
configuration
register (PCR)
Alternate
function
(1),
(2)
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
(5)
Pin No.
SRC = 0 SRC = 1
100-pin
144-pin
SPC560P44Lx, SPC560P50Lx Package pinouts and signal descriptions
Doc ID 14723 Rev 9 37/112
A[14] PCR[14]
ALT0
ALT1
ALT2
ALT3
GPIO[14]
TXD
ETC[4]
EIRQ[13]
SIUL
Safety Port_0
eTimer_1
SIUL
I/O
O
I/O
I
Slow Medium 99 143
A[15] PCR[15]
ALT0
ALT1
ALT2
ALT3
GPIO[15]
ETC[5]
RXD
EIRQ[14]
SIUL
eTimer_1
Safety Port_0
SIUL
I/O
I/O
I
I
Slow Medium 100 144
Port B (16-bit)
B[0] PCR[16]
ALT0
ALT1
ALT2
ALT3
GPIO[16]
TXD
ETC[2]
DEBUG[0]
EIRQ[15]
SIUL
FlexCAN_0
eTimer_1
SSCM
SIUL
I/O
O
I/O
I
Slow Medium 76 109
B[1] PCR[17]
ALT0
ALT1
ALT2
ALT3
GPIO[17]
ETC[3]
DEBUG[1]
RXD
EIRQ[16]
SIUL
eTimer_1
SSCM
FlexCAN_0
SIUL
I/O
I/O
I
I
Slow Medium 77 110
B[2] PCR[18]
ALT0
ALT1
ALT2
ALT3
GPIO[18]
TXD
DEBUG[2]
EIRQ[17]
SIUL
LIN_0
SSCM
SIUL
I/O
O
I
Slow Medium 79 114
B[3] PCR[19]
ALT0
ALT1
ALT2
ALT3
GPIO[19]
DEBUG[3]
RXD
SIUL
SSCM
LIN_0
I/O
I
Slow Medium 80 116
B[6] PCR[22]
ALT0
ALT1
ALT2
ALT3
GPIO[22]
CLKOUT
CS2
EIRQ[18]
SIUL
MC_CGL
DSPI_2
SIUL
I/O
O
O
I
Slow Medium 96 138
Table 7. Pin muxing (continued)
Port
pin
Pad
configuration
register (PCR)
Alternate
function
(1),
(2)
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
(5)
Pin No.
SRC = 0 SRC = 1
100-pin
144-pin
Package pinouts and signal descriptions SPC560P44Lx, SPC560P50Lx
38/112 Doc ID 14723 Rev 9
B[7] PCR[23]
ALT0
ALT1
ALT2
ALT3
GPIO[23]
AN[0]
RXD
SIUL
ADC_0
LIN_0
Input only 29 43
B[8] PCR[24]
ALT0
ALT1
ALT2
ALT3
GPIO[24]
AN[1]
ETC[5]
SIUL
ADC_0
eTimer_0
Input only 31 47
B[9] PCR[25]
ALT0
ALT1
ALT2
ALT3
GPIO[25]
AN[11]
SIUL
ADC_0 / ADC_1
Input only 35 52
B[10] PCR[26]
ALT0
ALT1
ALT2
ALT3
GPIO[26]
AN[12]
SIUL
ADC_0 / ADC_1
Input only 36 53
B[11] PCR[27]
ALT0
ALT1
ALT2
ALT3
GPIO[27]
AN[13]
SIUL
ADC_0 / ADC_1
Input only 37 54
B[12] PCR[28]
ALT0
ALT1
ALT2
ALT3
GPIO[28]
AN[14]
SIUL
ADC_0 / ADC_1
Input only 38 55
B[13] PCR[29]
ALT0
ALT1
ALT2
ALT3
GPIO[29]
AN[0]
RXD
SIUL
ADC_1
LIN_1
Input only 42 60
Table 7. Pin muxing (continued)
Port
pin
Pad
configuration
register (PCR)
Alternate
function
(1),
(2)
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
(5)
Pin No.
SRC = 0 SRC = 1
100-pin
144-pin
SPC560P44Lx, SPC560P50Lx Package pinouts and signal descriptions
Doc ID 14723 Rev 9 39/112
B[14] PCR[30]
ALT0
ALT1
ALT2
ALT3
GPIO[30]
AN[1]
ETC[4]
EIRQ[19]
SIUL
ADC_1
eTimer_0
SIUL
Input only 44 64
B[15] PCR[31]
ALT0
ALT1
ALT2
ALT3
GPIO[31]
AN[2]
EIRQ[20]
SIUL
ADC_1
SIUL
Input only 43 62
Port C (16-bit)
C[0] PCR[32]
ALT0
ALT1
ALT2
ALT3
GPIO[32]
AN[3]
SIUL
ADC_1
Input only 45 66
C[1] PCR[33]
ALT0
ALT1
ALT2
ALT3
GPIO[33]
AN[2]
SIUL
ADC_0
Input only 28 41
C[2] PCR[34]
ALT0
ALT1
ALT2
ALT3
GPIO[34]
AN[3]
SIUL
ADC_0
Input only 30 45
C[3] PCR[35]
ALT0
ALT1
ALT2
ALT3
GPIO[35]
CS1
ETC[4]
TXD
EIRQ[21]
SIUL
DSPI_0
eTimer_1
LIN_1
SIUL
I/O
O
I/O
O
I
Slow Medium 10 16
C[4] PCR[36]
ALT0
ALT1
ALT2
ALT3
GPIO[36]
CS0
X[1]
DEBUG[4]
EIRQ[22]
SIUL
DSPI_0
FlexPWM_0
SSCM
SIUL
I/O
I/O
I/O
I
Slow Medium 5 11
Table 7. Pin muxing (continued)
Port
pin
Pad
configuration
register (PCR)
Alternate
function
(1),
(2)
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
(5)
Pin No.
SRC = 0 SRC = 1
100-pin
144-pin
Package pinouts and signal descriptions SPC560P44Lx, SPC560P50Lx
40/112 Doc ID 14723 Rev 9
C[5] PCR[37]
ALT0
ALT1
ALT2
ALT3
GPIO[37]
SCK
DEBUG[5]
FAULT[3]
EIRQ[23]
SIUL
DSPI_0
SSCM
FlexPWM_0
SIUL
I/O
I/O
I
I
Slow Medium 7 13
C[6] PCR[38]
ALT0
ALT1
ALT2
ALT3
GPIO[38]
SOUT
B[1]
DEBUG[6]
EIRQ[24]
SIUL
DSPI_0
FlexPWM_0
SSCM
SIUL
I/O
I/O
O
I
Slow Medium 98 142
C[7] PCR[39]
ALT0
ALT1
ALT2
ALT3
GPIO[39]
A[1]
DEBUG[7]
SIN
SIUL
FlexPWM_0
SSCM
DSPI_0
I/O
O
I
Slow Medium 9 15
C[8] PCR[40]
ALT0
ALT1
ALT2
ALT3
GPIO[40]
CS1
CS6
FAULT[2]
SIUL
DSPI_1
DSPI_0
FlexPWM_0
I/O
O
O
I
Slow Medium 91 130
C[9] PCR[41]
ALT0
ALT1
ALT2
ALT3
GPIO[41]
CS3
X[3]
FAULT[2]
SIUL
DSPI_2
FlexPWM_0
FlexPWM_0
I/O
O
I/O
I
Slow Medium 84 123
C[10] PCR[42]
ALT0
ALT1
ALT2
ALT3
GPIO[42]
CS2
A[3]
FAULT[1]
SIUL
DSPI_2
FlexPWM_0
FlexPWM_0
I/O
O
O
I
Slow Medium 78 111
C[11] PCR[43]
ALT0
ALT1
ALT2
ALT3
GPIO[43]
ETC[4]
CS2
CS0
SIUL
eTimer_0
DSPI_2
DSPI_3
I/O
I/O
O
I/O
Slow Medium 55 80
C[12] PCR[44]
ALT0
ALT1
ALT2
ALT3
GPIO[44]
ETC[5]
CS3
CS1
SIUL
eTimer_0
DSPI_2
DSPI_3
I/O
I/O
O
O
Slow Medium 56 82
Table 7. Pin muxing (continued)
Port
pin
Pad
configuration
register (PCR)
Alternate
function
(1),
(2)
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
(5)
Pin No.
SRC = 0 SRC = 1
100-pin
144-pin
SPC560P44Lx, SPC560P50Lx Package pinouts and signal descriptions
Doc ID 14723 Rev 9 41/112
C[13] PCR[45]
ALT0
ALT1
ALT2
ALT3
GPIO[45]
ETC[1]
EXT_IN
EXT_SYNC
SIUL
eTimer_1
CTU_0
FlexPWM_0
I/O
I/O
I
I
Slow Medium 71 101
C[14] PCR[46]
ALT0
ALT1
ALT2
ALT3
GPIO[46]
ETC[2]
EXT_TGR
SIUL
eTimer_1
CTU_0
I/O
I/O
O
Slow Medium 72 103
C[15] PCR[47]
ALT0
ALT1
ALT2
ALT3
GPIO[47]
CA_TR_EN
ETC[0]
A[1]
EXT_IN
EXT_SYNC
SIUL
FlexRay_0
eTimer_1
FlexPWM_0
CTU_0
FlexPWM_0
I/O
O
I/O
O
I
I
Slow Symmetric 85 124
Port D (16-bit)
D[0] PCR[48]
ALT0
ALT1
ALT2
ALT3
GPIO[48]
CA_TX
ETC[1]
B[1]
SIUL
FlexRay_0
eTimer_1
FlexPWM_0
I/O
O
I/O
O
Slow Symmetric 86 125
D[1] PCR[49]
ALT0
ALT1
ALT2
ALT3
GPIO[49]
ETC[2]
EXT_TRG
CA_RX
SIUL
eTimer_1
CTU_0
FlexRay_0
I/O
I/O
O
I
Slow Medium 3 3
D[2] PCR[50]
ALT0
ALT1
ALT2
ALT3
GPIO[50]
ETC[3]
X[3]
CB_RX
SIUL
eTimer_1
FlexPWM_0
FlexRay_0
I/O
I/O
I/O
I
Slow Medium 97 140
D[3] PCR[51]
ALT0
ALT1
ALT2
ALT3
GPIO[51]
CB_TX
ETC[4]
A[3]
SIUL
FlexRay_0
eTimer_1
FlexPWM_0
I/O
O
I/O
O
Slow Symmetric 89 128
D[4] PCR[52]
ALT0
ALT1
ALT2
ALT3
GPIO[52]
CB_TR_EN
ETC[5]
B[3]
SIUL
FlexRay_0
eTimer_1
FlexPWM_0
I/O
O
I/O
O
Slow Symmetric 90 129
Table 7. Pin muxing (continued)
Port
pin
Pad
configuration
register (PCR)
Alternate
function
(1),
(2)
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
(5)
Pin No.
SRC = 0 SRC = 1
100-pin
144-pin
Package pinouts and signal descriptions SPC560P44Lx, SPC560P50Lx
42/112 Doc ID 14723 Rev 9
D[5] PCR[53]
ALT0
ALT1
ALT2
ALT3
GPIO[53]
CS3
F[0]
SOUT
SIUL
DSPI_0
FCU_0
DSPI_3
I/O
O
O
O
Slow Medium 22 33
D[6] PCR[54]
ALT0
ALT1
ALT2
ALT3
GPIO[54]
CS2
SCK
FAULT[1]
SIUL
DSPI_0
DSPI_3
FlexPWM_0
I/O
O
I/O
I
Slow Medium 23 34
D[7] PCR[55]
ALT0
ALT1
ALT2
ALT3
GPIO[55]
CS3
F[1]
CS4
SIN
SIUL
DSPI_1
FCU_0
DSPI_0
DSPI_3
I/O
O
O
O
I
Slow Medium 26 37
D[8] PCR[56]
ALT0
ALT1
ALT2
ALT3
GPIO[56]
CS2
CS5
FAULT[3]
SIUL
DSPI_1
DSPI_0
FlexPWM_0
I/O
O
O
I
Slow Medium 21 32
D[9] PCR[57]
ALT0
ALT1
ALT2
ALT3
GPIO[57]
X[0]
TXD
SIUL
FlexPWM_0
LIN_1
I/O
I/O
O
Slow Medium 15 26
D[10] PCR[58]
ALT0
ALT1
ALT2
ALT3
GPIO[58]
A[0]
CS0
SIUL
FlexPWM_0
DSPI_3
I/O
O
I/O
Slow Medium 53 76
D[11] PCR[59]
ALT0
ALT1
ALT2
ALT3
GPIO[59]
B[0]
CS1
SCK
SIUL
FlexPWM_0
DSPI_3
DSPI_3
I/O
O
O
I/O
Slow Medium 54 78
D[12] PCR[60]
ALT0
ALT1
ALT2
ALT3
GPIO[60]
X[1]
RXD
SIUL
FlexPWM_0
LIN_1
I/O
I/O
I
Slow Medium 70 99
D[13] PCR[61]
ALT0
ALT1
ALT2
ALT3
GPIO[61]
A[1]
CS2
SOUT
SIUL
FlexPWM_0
DSPI_3
DSPI_3
I/O
O
O
O
Slow Medium 67 95
Table 7. Pin muxing (continued)
Port
pin
Pad
configuration
register (PCR)
Alternate
function
(1),
(2)
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
(5)
Pin No.
SRC = 0 SRC = 1
100-pin
144-pin
SPC560P44Lx, SPC560P50Lx Package pinouts and signal descriptions
Doc ID 14723 Rev 9 43/112
D[14] PCR[62]
ALT0
ALT1
ALT2
ALT3
GPIO[62]
B[1]
CS3
SIN
SIUL
FlexPWM_0
DSPI_3
DSPI_3
I/O
O
O
I
Slow Medium 73 105
D[15] PCR[63]
ALT0
ALT1
ALT2
ALT3
GPIO[63]
AN[4]
SIUL
ADC_1
Input only 41 58
Port E(16-bit)
E[0] PCR[64]
ALT0
ALT1
ALT2
ALT3
GPIO[64]
AN[5]
SIUL
ADC_1
Input only 46 68
E[1] PCR[65]
ALT0
ALT1
ALT2
ALT3
GPIO[65]
AN[4]
SIUL
ADC_0
Input only 27 39
E[2] PCR[66]
ALT0
ALT1
ALT2
ALT3
GPIO[66]
AN[5]
SIUL
ADC_0
Input only 32 49
E[3] PCR[67]
ALT0
ALT1
ALT2
ALT3
GPIO[67]
AN[6]
SIUL
ADC_0
Input only 40
E[4] PCR[68]
ALT0
ALT1
ALT2
ALT3
GPIO[68]
AN[7]
SIUL
ADC_0
Input only 42
Table 7. Pin muxing (continued)
Port
pin
Pad
configuration
register (PCR)
Alternate
function
(1),
(2)
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
(5)
Pin No.
SRC = 0 SRC = 1
100-pin
144-pin
Package pinouts and signal descriptions SPC560P44Lx, SPC560P50Lx
44/112 Doc ID 14723 Rev 9
E[5] PCR[69]
ALT0
ALT1
ALT2
ALT3
GPIO[69]
AN[8]
SIUL
ADC_0
Input only 44
E[6] PCR[70]
ALT0
ALT1
ALT2
ALT3
GPIO[70]
AN[9]
SIUL
ADC_0
Input only 46
E[7] PCR[71]
ALT0
ALT1
ALT2
ALT3
GPIO[71]
AN[10]
SIUL
ADC_0
Input only 48
E[8] PCR[72]
ALT0
ALT1
ALT2
ALT3
GPIO[72]
AN[6]
SIUL
ADC_1
Input only 59
E[9] PCR[73]
ALT0
ALT1
ALT2
ALT3
GPIO[73]
AN[7]
SIUL
ADC_1
Input only 61
E[10] PCR[74]
ALT0
ALT1
ALT2
ALT3
GPIO[74]
AN[8]
SIUL
ADC_1
Input only 63
E[11] PCR[75]
ALT0
ALT1
ALT2
ALT3
GPIO[75]
AN[9]
SIUL
ADC_1
Input only 65
E[12] PCR[76]
ALT0
ALT1
ALT2
ALT3
GPIO[76]
AN[10]
SIUL
ADC_1
Input only 67
Table 7. Pin muxing (continued)
Port
pin
Pad
configuration
register (PCR)
Alternate
function
(1),
(2)
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
(5)
Pin No.
SRC = 0 SRC = 1
100-pin
144-pin
SPC560P44Lx, SPC560P50Lx Package pinouts and signal descriptions
Doc ID 14723 Rev 9 45/112
E[13] PCR[77]
ALT0
ALT1
ALT2
ALT3
GPIO[77]
SCK
EIRQ[25]
SIUL
DSPI_3
SIUL
I/O
I/O
I
Slow Medium 117
E[14] PCR[78]
ALT0
ALT1
ALT2
ALT3
GPIO[78]
SOUT
EIRQ[26]
SIUL
DSPI_3
SIUL
I/O
O
I
Slow Medium 119
E[15] PCR[79]
ALT0
ALT1
ALT2
ALT3
GPIO[79]
SIN
EIRQ[27]
SIUL
DSPI_3
SIUL
I/O
I
I
Slow Medium 121
Port F (16-bit)
F[0] PCR[80]
ALT0
ALT1
ALT2
ALT3
GPIO[80]
DBG0
CS3
EIRQ[28]
SIUL
FlexRay_0
DSPI_3
SIUL
I/O
O
O
I
Slow Medium 133
F[1] PCR[81]
ALT0
ALT1
ALT2
ALT3
GPIO[81]
DBG1
CS2
EIRQ[29]
SIUL
FlexRay_0
DSPI_3
SIUL
I/O
O
O
I
Slow Medium 135
F[2] PCR[82]
ALT0
ALT1
ALT2
ALT3
GPIO[82]
DBG2
CS1
SIUL
FlexRay_0
DSPI_3
I/O
O
O
Slow Medium 137
F[3] PCR[83]
ALT0
ALT1
ALT2
ALT3
GPIO[83]
DBG3
CS0
SIUL
FlexRay_0
DSPI_3
I/O
O
I/O
Slow Medium 139
F[4] PCR[84]
ALT0
ALT1
ALT2
ALT3
GPIO[84]
MDO[3]
SIUL
NEXUS_0
I/O
O
Slow Fast 4
Table 7. Pin muxing (continued)
Port
pin
Pad
configuration
register (PCR)
Alternate
function
(1),
(2)
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
(5)
Pin No.
SRC = 0 SRC = 1
100-pin
144-pin
Package pinouts and signal descriptions SPC560P44Lx, SPC560P50Lx
46/112 Doc ID 14723 Rev 9
F[5] PCR[85]
ALT0
ALT1
ALT2
ALT3
GPIO[85]
MDO[2]
SIUL
NEXUS_0
I/O
O
Slow Fast 5
F[6] PCR[86]
ALT0
ALT1
ALT2
ALT3
GPIO[86]
MDO[1]
SIUL
NEXUS_0
I/O
O
Slow Fast 8
F[7] PCR[87]
ALT0
ALT1
ALT2
ALT3
GPIO[87]
MCKO
SIUL
NEXUS_0
I/O
O
Slow Fast 19
F[8] PCR[88]
ALT0
ALT1
ALT2
ALT3
GPIO[88]
MSEO1
SIUL
NEXUS_0
I/O
O
Slow Fast 20
F[9] PCR[89]
ALT0
ALT1
ALT2
ALT3
GPIO[89]
MSEO0
SIUL
NEXUS_0
I/O
O
Slow Fast 23
F[10] PCR[90]
ALT0
ALT1
ALT2
ALT3
GPIO[90]
EVTO
SIUL
NEXUS_0
I/O
O
Slow Fast 24
F[11] PCR[91]
ALT0
ALT1
ALT2
ALT3
GPIO[91]
EVTI
SIUL
NEXUS_0
I/O
I
Slow Medium 25
F[12] PCR[92]
ALT0
ALT1
ALT2
ALT3
GPIO[92]
ETC[3]
SIUL
eTimer_1
I/O
I/O
Slow Medium 106
F[13] PCR[93]
ALT0
ALT1
ALT2
ALT3
GPIO[92]
ETC[4]
SIUL
eTimer_1
I/O
I/O
Slow Medium 112
Table 7. Pin muxing (continued)
Port
pin
Pad
configuration
register (PCR)
Alternate
function
(1),
(2)
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
(5)
Pin No.
SRC = 0 SRC = 1
100-pin
144-pin
SPC560P44Lx, SPC560P50Lx Package pinouts and signal descriptions
Doc ID 14723 Rev 9 47/112
F[14] PCR[94]
ALT0
ALT1
ALT2
ALT3
GPIO[94]
TXD
SIUL
LIN_1
I/O
O
Slow Medium 115
F[15] PCR[95]
ALT0
ALT1
ALT2
ALT3
GPIO[95]
RXD
SIUL
LIN_1
I/O
I
Slow Medium 113
Port G (12-bit)
G[0] PCR[96]
ALT0
ALT1
ALT2
ALT3
GPIO[96]
F[0]
EIRQ[30]
SIUL
FCU_0
SIUL
I/O
O
I
Slow Medium 38
G[1] PCR[97]
ALT0
ALT1
ALT2
ALT3
GPIO[97]
F[1]
EIRQ[31]
SIUL
FCU_0
SIUL
I/O
O
I
Slow Medium 141
G[2] PCR[98]
ALT0
ALT1
ALT2
ALT3
GPIO[98]
X[2]
SIUL
FlexPWM_0
I/O
I/O
Slow Medium 102
G[3] PCR[99]
ALT0
ALT1
ALT2
ALT3
GPIO[99]
A[2]
SIUL
FlexPWM_0
I/O
O
Slow Medium 104
G[4] PCR[100]
ALT0
ALT1
ALT2
ALT3
GPIO[100]
B[2]
SIUL
FlexPWM_0
I/O
O
Slow Medium 100
G[5] PCR[101]
ALT0
ALT1
ALT2
ALT3
GPIO[101]
X[3]
SIUL
FlexPWM_0
I/O
I/O
Slow Medium 85
G[6] PCR[102]
ALT0
ALT1
ALT2
ALT3
GPIO[102]
A[3]
SIUL
FlexPWM_0
I/O
O
Slow Medium 98
Table 7. Pin muxing (continued)
Port
pin
Pad
configuration
register (PCR)
Alternate
function
(1),
(2)
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
(5)
Pin No.
SRC = 0 SRC = 1
100-pin
144-pin
Package pinouts and signal descriptions SPC560P44Lx, SPC560P50Lx
48/112 Doc ID 14723 Rev 9
G[7] PCR[103]
ALT0
ALT1
ALT2
ALT3
GPIO[103]
B[3]
SIUL
FlexPWM_0
I/O
O
Slow Medium 83
G[8] PCR[104]
ALT0
ALT1
ALT2
ALT3
GPIO[104]
FAULT[0]
SIUL
FlexPWM_0
I/O
I
Slow Medium 81
G[9] PCR[105]
ALT0
ALT1
ALT2
ALT3
GPIO[105]
FAULT[1]
SIUL
FlexPWM_0
I/O
I
Slow Medium 79
G[10] PCR[106]
ALT0
ALT1
ALT2
ALT3
GPIO[106]
FAULT[2]
SIUL
FlexPWM_0
I/O
I
Slow Medium 77
G[11] PCR[107]
ALT0
ALT1
ALT2
ALT3
GPIO[107]
FAULT[3]
SIUL
FlexPWM_0
I/O
I
Slow Medium 75
1. ALT0 is the primary (default) function for each port after reset.
2. Alternate functions are chosen by setting the values of the PCR[PA] bitfields inside the SIU module.
PCR[PA] = 00 ALT0; PCR[PA] = 01 ALT1; PCR[PA] = 10 ALT2; PCR[PA] = 11 ALT3. This is intended to select
the output functions; to use one of the input-only functions, the PCR[IBE] bit must be written to ‘1’, regardless of the values
selected in the PCR[PA] bitfields. For this reason, the value corresponding to an input only function is reported as “—”.
3. Module included on the MCU.
4. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the
values of the PSMI[PADSELx] bitfields inside the SIUL module.
5. Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register.
6. Weak pull down during reset.
Table 7. Pin muxing (continued)
Port
pin
Pad
configuration
register (PCR)
Alternate
function
(1),
(2)
Functions Peripheral
(3)
I/O
direction
(4)
Pad speed
(5)
Pin No.
SRC = 0 SRC = 1
100-pin
144-pin
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 49/112
3 Electrical characteristics
3.1 Introduction
This section contains device electrical characteristics as well as temperature and power
considerations.
This microcontroller contains input protection against damage due to high static voltages.
However, it is advisable to take precautions to avoid application of any voltage higher than
the specified maximum rated voltages.
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V
DD
or V
SS
). This can be done by the internal pull-up or pull-down resistors, which are provided
by the device for most general purpose pins.
The following tables provide the device characteristics and its demands on the system.
In the tables where the device logic provides signals with their respective timing
characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol
column.
In the tables where the external system must provide signals with their respective timing
characteristics to the device, the symbol “SR” for System Requirement is included in the
Symbol column.
Caution: All of the following parameter values can vary depending on the application and must be
confirmed during silicon characterization or silicon reliability trial.
3.2 Parameter classificati on
The electrical parameters are guaranteed by various methods. To give the customer a better
understanding, the classifications listed in Table 8 are used and the parameters are tagged
accordingly in the tables where appropriate.
Note: The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
Table 8. Parameter classifications
Classification tag Tag description
P Those parameters are guaranteed during production testing on each individual device.
CThose parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
TThose parameters are achieved by design characterization on a small sample size from
typica l devices under typi cal condi tions u nless othe rwise noted. All values shown in th e typical
column are within this category.
D Those parameters are derived mainly from simulations.
Electrical characteristics SPC560P44Lx, SPC560P50Lx
50/112 Doc ID 14723 Rev 9
3.3 Absolute maximum ratings
Table 9. Absolute maximum ratings
(1)
Symbol Parameter Conditions Value Unit
Min Max
(2)
V
SS
SR Device ground 0 0 V
V
DD_HV_IOx(3)
SR 3.3 V / 5.0 V input/output supply
voltage with respect to ground (V
SS
)—–0.3 6.0V
V
SS_HV_IOx
SR Input/output ground voltage with
respect to ground (V
SS
)—–0.1 0.1V
V
DD_HV_FL
SR 3.3 V / 5.0 V code and data flash
supply volt age w ith resp ect to grou nd
(V
SS
)
–0.3 6.0 V
Relative to
V
DD_HV_IOx
V
DD_HV_IOx
+ 0.3
V
SS_HV_FL
SR Code and data flash ground with
respect to ground (V
SS
)—–0.1 0.1V
V
DD_HV_OSC
SR 3.3 V / 5.0 V crystal oscilla tor
amplifier supply voltage with respect
to ground (V
SS
)
–0.3 6.0 V
Relative to
V
DD_HV_IOx
V
DD_HV_IOx
+ 0.3
V
SS_HV_OSC
SR 3.3 V / 5.0 V crystal oscilla tor
amplifier reference voltage with
respect to ground (V
SS
)—–0.1 0.1V
V
DD_HV_REG
SR 3.3 V / 5.0 V voltage regu lat or sup ply
voltage with respect to ground (V
SS
)
–0.3 6.0 V
Relative to
V
DD_HV_IOx
V
DD_HV_IOx
+ 0.3
V
DD_HV_ADC0
(4)
SR 3.3 V / 5.0 V ADC_0 supply and high
reference voltage with respect to
ground (V
SS
)
V
DD_HV_REG
<
2.7 V –0.3
V
DD_HV_REG
+
0.3 V
V
DD_HV_REG
>
2.7 V 6.0
V
SS_HV_ADC0
SR ADC_0 ground and low reference
voltage with respect to ground (V
SS
)—–0.1 0.1V
V
DD_HV_ADC1(
4)
SR 3.3 V / 5.0 V ADC_0 supply and high
reference voltage with respect to
ground (V
SS
)
V
DD_HV_REG
<
2.7 V –0.3
V
DD_HV_REG
+
0.3 V
V
DD_HV_REG
>
2.7 V 6.0
V
SS_HV_ADC1
SR ADC_1 ground and low reference
voltage with respect to ground (V
SS
)—–0.1 0.1V
TV
DD
SR Slope characteristics on all V
DD
during pow e r up
(5)
with respect to
ground (V
SS
)—3.0
500 x 10
3
(0.5 [V/µs]) V/s
V
IN
SR Voltage on any pin with respect to
ground (V
SS_HV_IOx
) with respect to
ground (V
SS
)
–0.3 6.0 V
Relative to
V
DD_HV_IOx
V
DD_HV_IOx
+0.3
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 51/112
Figure 5 shows the constraints of the different power supplies.
V
INAN0
SR ADC0 and shared ADC0/1 analog
input volta ge
(6)
V
DD_HV_REG
>
2.7 V V
SS_HV_ADV0
0.3 V
DD_HV_ADV0
+
0.3 V
V
DD_HV_REG
<
2.7 V V
SS_HV_ADV0
V
DD_HV_ADV0
V
V
INAN1
SR ADC1 analog input voltage
(7)
V
DD_HV_REG
>
2.7 V V
SS_HV_ADV1
0.3 V
DD_HV_ADV1
+
0.3 V
V
DD_HV_REG
<
2.7 V V
SS_HV_ADV1
V
DD_HV_ADV1
V
I
INJPAD
SR Injected inp ut cur rent on any pin
during overload condition —–10 10mA
I
INJSUM
SR Absolute sum of all injected input
curre nts during overload condition —–50 50 mA
I
VDD_LV
SR Low voltage static current sink
through V
DD_LV
——155mA
T
STG
SR Storage temperature –55 150 °C
T
J
SR Junction temperature under bias –40 150 °C
1. Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings
only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device
reliability or cause permanent damage to the device.
2. Absolute maximum voltages are current ly maxim um burn-in voltages . Absolute maxim um specif ications for device stress
have not yet been determined.
3. The difference between each couple of voltage supplies must be les s than 300 mV,
|V
DD_HV_IOy
– V
DD_HV_IOx
| < 300 mV.
4. The difference between ADC voltage supplies must be less than 100 mV, |V
DD_HV_ADC1
– V
DD_HV_ADC0
| < 100 mV.
5. Guaranteed by device validation
6. Not allowed to refer this voltage to V
DD_HV_ADV1
, V
SS_HV_ADV1
7. Not allowed to refer this voltage to V
DD_HV_ADV0
, V
SS_HV_ADV0
Table 9. Absolute maximum ratings
(1)
(continued)
Symbol Parameter Conditions Value Unit
Min Max
(2)
Electrical characteristics SPC560P44Lx, SPC560P50Lx
52/112 Doc ID 14723 Rev 9
Figure 5. Power supplies constraints (–0.3 V
V
DD_HV_IOx
6.0 V)
The SPC560P44Lx, SPC560P50Lx supply architecture allows of having ADC supply
managed independently from standard V
DD_HV
supply. Figure 6 shows the constraints of
the ADC power supply.
Figure 6. Independent ADC supply (–0.3 V
V
DD_HV_REG
6.0 V)
VDD_HV_xxx
VDD_HV_IOx
–0.3 V
6.0 V
–0.3 V 6.0 V
VDD_HV_ADCx
6.0 V
VDD_HV_REG
–0.3 V
2.7 V
–0.3 V 6.0 V
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 53/112
3.4 Recommended operating conditions
Table 10. Recommended operating conditions (5.0 V)
Symbol Parameter Conditions Value Unit
Min Max
(1)
V
SS
SR Device gr ound 0 0 V
V
DD_HV_IOx(2)
SR 5.0 V input/output supply
voltage —4.5 5.5V
V
SS_HV_IOx
SR Input/output ground voltage 0 0 V
V
DD_HV_FL
SR 5.0 V code and data flash
supply voltage
—4.5 5.5
V
Relative to
V
DD_HV_IOx
V
DD_HV_IOx
– 0.1 V
DD_HV_IOx
+0.1
V
SS_HV_FL
SR Code and data flash ground 0 0 V
V
DD_HV_OSC
SR 5.0 V crystal oscillator a mplifier
supply voltage
—4.5 5.5
V
Relative to
V
DD_HV_IOx
V
DD_HV_IOx
– 0.1 V
DD_HV_IOx
+0.1
V
SS_HV_OSC
SR 5.0 V crystal oscillator a mplifier
reference vol t age —0 0V
V
DD_HV_REG
SR 5.0 V voltage regulator supply
voltage
—4.5 5.5
V
Relative to
V
DD_HV_IOx
V
DD_HV_IOx
– 0.1 V
DD_HV_IOx
+0.1
V
DD_HV_ADC0(3)
SR 5.0 V ADC_0 supply and high
reference vol t age
—4.5 5.5
V
Relative to
V
DD_HV_REG
V
DD_HV_REG
– 0.1
V
SS_HV_ADC0
SR ADC_0 ground and low
reference vol t age —0 0V
V
DD_HV_ADC1(3)
SR 5.0 V ADC_1 supply and high
reference vol t age
—4.5 5.5
V
Relative to
V
DD_HV_REG
V
DD_HV_REG
– 0.1
V
SS_HV_ADC1
SR ADC_1 ground and low
reference vol t age —0 0V
V
DD_LV_REGCOR(4),
(5)
CC Internal supply voltage V
V
SS_LV_REGCOR(4)
SR Internal reference voltage 0 0 V
V
DD_LV_CORx(4),(5)
CC Internal supply voltage V
V
SS_LV_CORx(4)
SR Internal reference voltage 0 0 V
T
A
SR Ambient temperature under
bias f
CPU
= 64 MHz –40 105 °C
f
CPU
= 60 MHz –40 125
1. Parametric figures can be out of specification when voltage drops below 4.5 V, however, guaranteeing the full functionality.
In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed.
2. The difference between each couple of voltage supplies must be les s than 100 mV, |V
DD_HV_IOy
– V
DD_HV_IOx
| < 100 mV.
Electrical characteristics SPC560P44Lx, SPC560P50Lx
54/112 Doc ID 14723 Rev 9
3. The difference between ADC voltage supplies must be less than 100 mV, |V
DD_HV_ADC1
V
DD_HV_ADC0
| < 100 mV.
4. To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an on-
chip voltage regulator—but for the device to function properly the low voltage grounds (V
SS_LV_xxx
) must be shorted to high
voltage grounds (V
SS_HV_xxx
) and the low voltage supply pins (V
DD_LV_xxx
) must be connected to the external ballast
emitter.
5. The low voltage supplies (V
DD_LV_xxx
) are not all independent.
V
DD_LV_COR1
and V
DD_LV_COR2
are shorted internally via do ubl e b ond ing connection s wit h li ne s that provide the low
voltage supply to the data flash module. Similarly, V
SS_LV_COR1
and V
SS_LV_COR2
are internal ly shorted.
V
DD_LV_REGCOR
and V
DD_LV_REGCORx
are physically shorted internally, as are V
SS_LV_REGCOR
and V
SS_LV_CORx
.
Table 11. Recommended operating c onditions (3.3 V)
Symbol Parameter Conditions Value Unit
Min Max
(1)
V
SS
SR Device ground 0 0 V
V
DD_HV_IOx(2)
SR 3.3 V input/output supply
voltage —3.0 3.6V
V
SS_HV_IOx
SR Input/output ground voltage 0 0 V
V
DD_HV_FL
SR 3.3 V code and data flash
supply voltage
—3.0 3.6
V
Relative to
V
DD_HV_IOx
V
DD_HV_IOx
– 0.1 V
DD_HV_IOx
+0.1
V
SS_HV_FL
SR Code and data flash ground 0 0 V
V
DD_HV_OSC
SR 3.3 V crystal o sc ill ato r am pl ifi er
supply voltage
—3.0 3.6
V
Relative to
V
DD_HV_IOx
V
DD_HV_IOx
– 0.1 V
DD_HV_IOx
+0.1
V
SS_HV_OSC
SR 3.3 V crystal o sc ill ato r am pl ifi er
reference vol t age —0 0V
V
DD_HV_REG
SR 3.3 V voltage regulator supply
voltage
—3.0 3.6
V
Relative to
V
DD_HV_IOx
V
DD_HV_IOx
– 0.1 V
DD_HV_IOx
+0.1
V
DD_HV_ADC0(3)
SR 3.3 V ADC_0 supply and high
reference vol t age
—3.0 5.5
V
Relative to
V
DD_HV_REG
V
DD_HV_REG
– 0.1 5.5
V
SS_HV_ADC0
SR ADC_0 ground and low
reference vol t age —0 0V
V
DD_HV_ADC1(3)
SR 3.3 V ADC_1 supply and high
reference vol t age
—3.0 5.5
V
Relative to
V
DD_HV_REG
V
DD_HV_REG
– 0.1 5.5
V
SS_HV_ADC1
SR ADC_1 ground and low
reference vol t age —0 0V
V
DD_LV_REGCOR(4),
(5)
CC Internal supply voltage V
V
SS_LV_REGCOR(4)
SR Internal ref erence voltage 0 0 V
V
DD_LV_CORx(4),(5)
CC Internal supply voltage V
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 55/112
Figure 7 shows the constraints of the different power supplies.
Figure 7. Power supplies constraints (3.0 V
V
DD_HV_IOx
5.5 V)
V
SS_LV_CORx(4)
SR Internal ref erence voltage 0 0 V
T
A
SR Ambient temperature under
bias f
CPU
= 64 MHz –40 105 °C
f
CPU
= 60 MHz –40 125
1. Parametric figures can be out of specification when voltage drops below 4.5 V, however, guaranteeing the full functionality.
In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed.
2. The difference between each couple of voltage supplies must be les s than 100 mV, |V
DD_HV_IOy
– V
DD_HV_IOx
| < 100 mV.
3. The difference between each couple of voltage supplies must be les s than 100 mV, |V
DD_HV_ADC1
– V
DD_HV_ADC0
| < 100
mV. As long as that condition is met, ADC_0 and ADC_1 can be operated at 5 V with the rest of the device operating at 3.3
V.
4. To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an on-
chip voltage regulator—but for the device to function properly the low voltage grounds (V
SS_LV_xxx
) must be shorted to high
voltage grounds (V
SS_HV_xxx
) and the low voltage supply pins (V
DD_LV_xxx
) must be connected to the external ballast
emitter.
5. The low voltage supplies (V
DD_LV_xxx
) are not all independent.
V
DD_LV_COR1
and V
DD_LV_COR2
are shorted internally via do ubl e b ond ing connection s wit h li ne s that provide the low
voltage supply to the data flash module. Similarly, V
SS_LV_COR1
and V
SS_LV_COR2
are internal ly shorted.
V
DD_LV_REGCOR
and V
DD_LV_REGCORx
are physically shorted internally, as are V
SS_LV_REGCOR
and V
SS_LV_CORx
.
Table 11. Recommended operating conditions (3.3 V) (continued)
Symbol Parameter Conditions Value Unit
Min Max
(1)
VDD_HV_xxx
VDD_HV_IOx
3.0 V
5.5 V
3.0 V 5.5 V
3.3 V
3.3 V
Note: IO AC and DC characteristics are guaranteed only in the range of 3.0–3.6 V when
PAD3V5V is low, and in the range of 4.5–5.5 V when PAD3V5V is high.
Electrical characteristics SPC560P44Lx, SPC560P50Lx
56/112 Doc ID 14723 Rev 9
The SPC560P44Lx, SPC560P50Lx supply architecture allows the ADC supply to be
managed independently from the standard V
DD_HV
supply. Figure 8 shows the constraints
of the ADC power supply.
Figure 8. Independent ADC supply (3.0 V
V
DD_HV_REG
5.5 V)
3.5 Thermal characteristics
3.5.1 Package thermal characteristics
5.5 V
3.0 V
VDD_HV_REG
3.0 V 5.5 V
VDD_HV_ADCx
Table 12. Thermal characteristics for 144-pin LQFP
Symbol Parameter Conditions Typical
value Unit
R
θJA
Thermal resistance junction-to- ambient ,
natural convection
(1)
1. Junction-to-ambient thermal resist ance determined per JEDE C JESD51-7. Thermal test board meets
JEDEC specification for this package.
Single layer board—1s 54.2 °C/
W
Four layer board—
2s2p 44.4 °C/
W
R
θJB
Thermal resistance junction-to-board
(2)
Four layer board—
2s2p 29.9 °C/
W
R
θJCtop
Thermal resistance junction-to-case
(top)
(3)
Single layer board—1s 9.3 °C/
W
Ψ
JB
Junction-to-board, natural convection
(4)
Operating conditions 30.2 °C/
W
Ψ
JC
Junct ion -to-c as e, natu ral conv ec tion
(5)
Operating conditions 0.8 °C/
W
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 57/112
3.5.2 General notes for specifications at maximum junction temperature
An estimation of the chip junction temperature, T
J
, can be obtained from Equation 1:
Equation 1 T
J
= T
A
+ (R
θJA
* P
D
)
where:
T
A
= ambient temperature for the package (°C)
R
θJA
= junction to ambient thermal resistance (°C/W)
P
D
= power dissipation in the package (W)
The junction to ambient thermal resistance is an industry standard value that provides a
quick and easy estimation of thermal performance. Unfortunately, there are two values in
2. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC
specification for the specified package.
3. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate
temperature is used for the case temperature. Reported value includes the thermal resistance of the
interface layer.
4. Thermal characterization parameter indicating the temperature difference between the board and the
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal
characterization parameter is written as Psi-JB.
5. Thermal characterization parameter indicating the temperature difference between the case and the
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal
characterization parameter is written as Psi-JC.
Table 13. Thermal characteristics for 100-pin LQFP
Symbol Parameter Conditions Typical value Unit
R
θJA
Thermal resi stance junction-t o-am bi ent ,
natural convection
(1)
1. Junction-to-ambient thermal resist ance determined per JEDE C JESD51-7. Thermal test board meets
JEDEC specification for this package.
Single layer boa rd—1s 47.3 °C/
W
Four layer b oard—2s 2p 35.3 °C/
W
R
θJB
Thermal resi stance junction-t o-bo ard
(2)
2. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC
specification for the specified package.
Four layer b oard—2s 2p 19.1 °C/
W
R
θJCtop
Thermal resi stance junction-t o-c ase
(top)
(3)
3. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate
temperature is used for the case temperature. Reported value includes the thermal resistance of the
interface layer.
Single layer boa rd—1s 9.7 °C/
W
Ψ
JB
Junctio n-to -board, natural convection
(4)
4. Thermal characterization parameter indicating the temperature difference between the board and the
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal
characterization parameter is written as Psi-JB.
Operating conditions 19.1 °C/
W
Ψ
JC
Junction-to-case, natural convection
(5)
5. Thermal characterization parameter indicating the temperature difference between the case and the
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal
characterization parameter is written as Psi-JC.
Operating conditions 0.8 °C/
W
Electrical characteristics SPC560P44Lx, SPC560P50Lx
58/112 Doc ID 14723 Rev 9
common usage: the value determined on a single layer board and the value obtained on a
board with two planes. For packages such as the PBGA, these values can be different by a
factor of two. Which value is closer to the application depends on the power dissipated by
other components on the board. The value obtained on a single layer board is appropriate
for the tightly packed printed circuit board. The value obtained on the board with the internal
planes is usually appropriate if the board has low power dissipation and the components are
well separated.
When a heat sink is used, the thermal resistance is expressed in Equation 2 as the sum of a
junction to case thermal resistance and a case to ambient thermal resistance:
Equation 2 R
θJA
= R
θJC
+ R
θCA
where:
R
θJA
= junction to ambient thermal resistance (°C/W)
R
θJC
= junction to case thermal resistance (°C/W)
R
θCA
= case to ambient thermal resistance (°C/W)
R
θJC
is device related and cannot be influenced by the user. The user controls the thermal
environment to change the case to ambient thermal resistance, R
θCA
. For instance, the user
can change the size of the heat sink, the air flow around the device, the interface material,
the mounting arrangement on printed circuit board, or change the thermal dissipation on the
printed circuit board surrounding the device.
To determine the junction temperature of the device in the application when heat sinks are
not used, the Thermal Characterization Parameter (Ψ
JT
) can be used to determine the
junction temperature with a measurement of the temperature at the top center of the
package case using Equation 3:
Equation 3 T
J
= T
T
+ (Ψ
JT
x P
D
)
where:
T
T
= thermocouple temperature on top of the package (°C)
Ψ
JT
= thermal characterization parameter (°C/W)
P
D
= power dissipation in the package (W)
The thermal characterization parameter is measured per JESD51-2 specification using a 40
gauge type T thermocouple epoxied to the top center of the package case. The
thermocouple should be positioned so that the thermocouple junction rests on the package.
A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of
wire extending from the junction. The thermocouple wire is placed flat against the package
case to avoid measurement errors caused by cooling effects of the thermocouple wire.
References:
Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134 U.S.A.
(408) 943-6900
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global
Engineering Documents at 800-854-7179 or 303-397-7956.
JEDEC specifications are available on the WEB at http://www.jedec.org.
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 59/112
1. C.E. T riplett and B. Joiner , An Experimental Characterization of a 272 PBGA Within an
Automotive Engine Controller Module, Proceedings of SemiTherm, San Diego, 1998,
pp. 47–54.
2. G. Kromann, S. Shidore, and S. Addison, Thermal Modeling of a PBGA for Air-Cooled
Applications, Electronic Packaging and Production, pp. 53–58, March 1998.
3. B. Joiner and V. Adams, Measurement and Simulation of Junction to Board Thermal
Resistance and Its Application in Thermal Modeling, Proceedings of SemiTherm, San
Diego, 1999, pp. 212–220.
3.6 Electromagnetic in terference (EMI) characteristics
3.7 Electrostatic discharge (ESD) characterist ics
3.8 Power management electrical character istics
3.8.1 Voltage reg ulat or electrical characteristics
The internal voltage regulator requires an external NPN ballast to be connected as shown in
Figure 9. Table 16 contains all approved NPN ballast components. Capacitances should be
placed on the board as near as possible to the associated pins. Care should also be taken
to limit the serial inductance of the V
DD_HV_REG
, BCTRL and V
DD_LV_CORx
pins to less than
Table 14. EMI testing specifications
Symbol Parameter Conditions Clocks Frequency Level
(Max) Unit
V
EME
Radiated emissions
Device configura tion, test
conditions and EM testing per
standard IEC61967-2
Supply voltage = 5 V DC
Ambient temperat ure = 25 °C
Worst-case orientation
f
OSC
8MHz
f
CPU
64 MHz
No PLL frequency
modulation
150 kHz–150 MHz 16 dBµV
150–1000 MHz 15
IEC Level M
f
OSC
8MHz
f
CPU
64 MHz
1% PLL frequency
modulation
150 kHz–150 MHz 15 dBµV
150–1000 MHz 14
IEC Level M
Table 15. ESD ratings
(1),(2)
Symbol Parameter Conditions Value Unit
V
ESD(HBM)
S
RElectrostatic discharge (Human Body Model) 2000 V
V
ESD(CDM)
S
RElectrostatic discharge (Charged Device Model) 750 (corners) V
500 (other)
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification
requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at
room temperature followed by hot temperature, unless specified otherwise in the device specification.
Electrical characteristics SPC560P44Lx, SPC560P50Lx
60/112 Doc ID 14723 Rev 9
L
Reg
, see Table 17.
Note: The voltage regulator output cannot be used to drive external circuits. Output pins are used
only for decoupling capacitances.
V
DD_LV_COR
must be generated using internal regulator and external NPN transistor. It is
not possible to provide V
DD_LV_COR
through external regulator.
For the SPC560P44Lx, SPC560P50Lx microcontroller, capacitors, with total values not
below C
DEC1
, should be placed between V
DD_LV_CORx
/V
SS_LV_CORx
close to external
ballast transistor emitter. 4 capacitors, with total values not below C
DEC2
, should be placed
close to microcontroller pins between each V
DD_LV_CORx
/V
SS_LV_CORx
supply pairs and the
V
DD_LV_REGCOR
/V
SS_LV_REGCOR
pair . Additionally, capacitors with total values not below
C
DEC3
, should be placed between the V
DD_HV_REG
/V
SS_HV_REG
pins close to ballast
collector. Capacitors values have to take into account capacitor accuracy, aging and
variation versus temperature.
All reported information are valid for voltage and temperature ranges described in
recommended operating condition, Table 10 and Table 11.
Figure 9. Configuration with resis tor on base
Table 16. Approved NPN ballast components (configuration with resistor on base)
Part Manufacturer Approved derivatives
(1)
BCP68
ON Semi BCP68
NXP BCP68-25
Infineon BCP68-25
BCX68 Infineon BCX68-10;BCX68-16;BCX68-25
BC868 NXP BC868
BCTRL
VDD_LV_COR
C
DEC3
C
DEC2
C
DEC1
VDD_HV_REG
BJT
(1)
SPC560P44Lx,
1. Refer to Table 16.
R
B
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 61/112
BC817 Infineon BC817-16;BC817-25;BC817SU;
NXP BC817-16;BC817-25
BCP56
ST BCP56-16
Infineon BCP56-10;BCP56-16
ON Semi BCP56-10
NXP BCP56-10;BCP56-16
1. For automotive applications please check with the appropriate transistor vendor for automotive grade
certification
Table 16. Approved NPN ballast components (configuration with resistor on base)
Part Manufacturer Approved derivatives
(1)
Table 17. Voltage regulator electrical characteristics (configuration with resistor on base)
Symbol C Parameter Conditions Value Unit
Min Typ Max
V
DD_LV_REGCOR
CC P Output voltage under
maximum load run supply
current configuration Post-trimming 1.15 1.32 V
R
B
SR External resistance on bipolar
junction transistor (BJT) base —1822kΩ
C
DEC1
SR External decoupling/stability
ceramic capacitor
BJT from Table 16. 3
capacitances (i.e. X7R or
X8R cap acitor s) with nom inal
value of 10 µF
19.5 30 µF
BJT BC817, one capacitance
of 22 µF 14.3 22 µF
R
REG
SR
Resulting ESR of all three
capacitors of C
DEC1
BJT from Table 16. 3x10 µF.
Absol ute maximum value
between 100 kHz and
10 MHz
——50mΩ
Resulting ESR of the unique
capacitor C
DEC1
BJT BC817, 1x 22 µF.
Absol ute maximum value
between 100 kHz and
10 MHz
10 40 mΩ
C
DEC2
SR External decoupling/stability
ceramic capacitor
4 capa citances (i.e. X7R or
X8R cap acitor s) with nom inal
value of 44 0 nF 1200 1760 nF
C
DEC3
SR External decoupling/stability
ceramic capacito r on
V
DD_HV_REG
3 capa citances (i.e. X7R or
X8R cap acitor s) with nom inal
value of 10 µF; C
DEC3
has to
be equal or greater than
C
DEC1
19.5 30 µF
L
Reg
SR Resulting ESL of V
DD_HV_REG
,
BCTRL and V
DD_LV_CORx
pins ——15nH
Electrical characteristics SPC560P44Lx, SPC560P50Lx
62/112 Doc ID 14723 Rev 9
Figure 10. Configuration without resistor on base
BCTRL
VDD_LV_COR
C
DEC3
C
DEC2
C
DEC1
VDD_HV_REG
SPC560P44Lx,
BCP56,
BCP68,
BCX68,
BC817
Table 18. Voltage regulator electrical characteristics (configuration without resistor on base)
Symbol C Parameter Conditions Value Unit
Min Typ Max
V
DD_LV_REGCOR
CC P Output voltage under
maximum load run supply
current configuration Post-trimming 1.15 1.32 V
C
DEC1
SR External decoupling/stability
ceramic capacitor 4 capacitances 40 56 µF
R
REG
SR Resulti ng ESR of all four
C
DEC1
Absol ute maximum value
between 100 kHz and
10 MHz ——45mΩ
C
DEC2
SR External decoupling/stability
ceramic capacitor 4 capacitances of 100 nF
each 400 nF
C
DEC3
SR External decoupling/stability
ceramic capacito r on
VDD_HV_REG —40µF
L
Reg
SR Resulting ESL of V
DD_HV_REG
,
BCTRL and V
DD_LV_CORx
pins ——15nH
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 63/112
3.8.2 Voltage monitor electrical characteristi cs
The device implements a Power-on Reset module to ensure correct power-up initialization,
as well as three low voltage detectors to monitor the V
DD
and the V
DD_LV
voltage while
device is supplied:
POR monito rs V
DD
during the power-up phase to ensure device is maintained in a safe
reset state
LVDHV3 monitors V
DD
to ensure device reset below minimum functional supply
LVDHV5 monitors V
DD
when application uses device in the 5.0 V ± 10 % range
LVDLVCOR monitors low voltage digital power domain
3.9 Power up/down sequencing
To prevent an overstress event or a malfunction within and outside the device, the
SPC560P44Lx, SPC560P50Lx implements the following sequence to ensure each module
is started only when all conditions for switching it ON are available:
A POWER_ON module working on voltage regulator supply controls the correct start-
up of the regulator. This is a key module ensuring safe configuration for all voltage
regulator functionality when supply is below 1.5V. Associated POWER_ON (or POR)
signal is active low.
Several low voltage detectors, working on voltage regulator supply monitor the voltage
of the critical modules (voltage regulator, I/Os, flash memory and low voltage domain).
LVDs are gated low when POWER_ON is active.
A POWER_OK signal is generated when all critical supplies monitored by the LVD are
available. This signal is active high and released to all modules including I/Os, flash
Table 19. Low voltage monitor electrical characteristics
Symbol C Parameter Conditions
(1)
Value Unit
Min Max
V
PORH
T Power-on reset threshold 1.5 2.7 V
V
PORUP
P Supply for functional POR module T
A
= 25 °C 1.0 V
V
REGLVDMOK_H
P Regulator low voltage detector high threshold 2.95 V
V
REGLVDMOK_L
P Regulator low voltage detector low threshold 2.6 V
V
FLLVDMOK_H
P Flash low voltage detector high threshold 2.95 V
V
FLLVDMOK_L
P Flash low voltage detector low threshold 2.6 V
V
IOLVDMOK_H
P I/O low voltage detector high threshold 2.95 V
V
IOLVDMOK_L
P I/O low voltage detector low threshold 2.6 V
V
IOLVDM5OK_H
P I/O 5V low vo ltage detector high threshold 4 .4 V
V
IOLVDM5OK_L
P I/O 5V low voltage detector low threshold 3.8 V
V
MLVDDOK_H
P Digital supply low voltage detector high 1.145 V
V
MLVDDOK_L
P Digital supply low voltage detector low 1.08 V
1. V
DD
= 3.3V ± 10% / 5.0V ± 10%, T
A
= –40 °C to T
A MAX
, unless otherwise specified
Electrical characteristics SPC560P44Lx, SPC560P50Lx
64/112 Doc ID 14723 Rev 9
memory and RC16 oscillator needed during power-up phase and reset phase. When
POWER_OK is low the associated module are set into a safe state.
Figure 11. Power-up typical sequence
Figure 12. Power-down typical sequ ence
VDD_HV_REG
0V
3.3V
0V
3.3V
VDD_LV_REGCOR
0V
1.2V
0V
3.3V
POWER_ON
LVDM (HV)
0V
LVDD (LV)
3.3V
0V
POWER_OK
3.3V
RC16MHz Oscillator
0V
1.2V
P0 P1
0V
1.2V
Internal Reset Generation Module
FSM
~1us
V
POR_UP
V
PORH
V
LVDHV3H
V
MLVDOK_H
VDD_HV_REG
0V
3.3V
0V
3.3V
VDD_LV_REGCOR
0V
1.2V
3.3V
POWER_ON
LVDM (HV)
0V
LVDD (LV)
3.3V
0V
POWER_OK
3.3V
RC16MHz Oscillator
0V
1.2V
P0IDLE
0V
1.2V
Internal Reset Generation Module
FSM
V
LVDHV3L
V
PORH
0V
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 65/112
Figure 13. Brown-out typical sequence
3.10 DC electrical characteristics
3.10.1 NVUSRO register
Portions of the device configuration, such as high voltage supply, and watchdog
enable/disable after reset are controlled via bit values in the non-volatile user options
(NVUSRO) regist er.
For a detailed description of the NVUSRO register, please refer to the device reference
manual.
NVUSRO[PAD3V5V] field description
The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 20 shows
how NVUSRO[PAD3V5V] controls the device configuration.
VDD_HV_REG
0V
3.3V
0V
3.3V
VDD_LV_REGCOR
0V
1.2V
3.3V
POWER_ON
LVDM (HV)
0V
LVDD (LV)
3.3V
0V
POWER_OK
3.3V
RC16MHz Oscillator
0V
1.2V
P0IDLE
0V
1.2V
Internal Reset Generation Module
FSM
V
LVDHV3L
0V
V
LVDHV3H
P1
~1us
Table 20. PAD3V5V field description
Value
(1)
1. Default manufacturing value before flash initialization is ‘1’ (3.3 V).
Description
0 High voltage supply is 5.0 V
1 High voltage supply is 3.3 V
Electrical characteristics SPC560P44Lx, SPC560P50Lx
66/112 Doc ID 14723 Rev 9
3.10.2 DC electrical characteristics (5 V)
Table 21 gives the DC electrical characteristics at 5 V (4.5 V < V
DD_HV_IOx
< 5.5 V,
NVUSRO[PAD3V5V] = 0); see Figure 14.
Table 21. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)
Symbol C Parameter Conditions Value Unit
Min Max
V
IL
DLow level input voltage –0.1
(1)
—V
P—0.35V
DD_HV_IOx
V
V
IH
PHigh level input voltage —0.65V
DD_HV_IOx
—V
D—V
DD_HV_IOx
+0.1
(1)
V
V
HYS
T Schmitt trigger hyste resis 0.1 V
DD_HV_IOx
—V
V
OL_S
P Slow, low level output voltage I
OL
=3mA 0.1V
DD_HV_IOx
V
V
OH_S
P Slow, high level output voltage I
OH
=–3mA 0.8V
DD_HV_IOx
—V
V
OL_M
P Medium, low level output voltage I
OL
=3mA 0.1V
DD_HV_IOx
V
V
OH_M
P Medium, high level output voltage I
OH
=–3mA 0.8V
DD_HV_IOx
—V
V
OL_F
P Fast, low level output voltage I
OL
=3mA 0.1V
DD_HV_IOx
V
V
OH_F
P Fast, high leve l output voltage I
OH
=–3mA 0.8V
DD_HV_IOx
—V
V
OL_SYM
P Symmetric, low level output voltage I
OL
=3mA 0.1V
DD_HV_IOx
V
V
OH_SYM
P Symmetric, high level output voltage I
OH
=–3mA 0.8V
DD_HV_IOx
—V
I
PU
P Equivalent pull-up c urrent V
IN
=V
IL
–130 µA
V
IN
=V
IH
–10
I
PD
P Equivalent pull-down current V
IN
=V
IL
10 µA
V
IN
=V
IH
130
I
IL
PInput leaka ge current (all
bidir ect ion al ports) T
A
= –40 to 125 °C –1 1 µA
I
IL
PInput leaka ge current (all ADC input-
only ports) T
A
= –40 to 125 °C –0.5 0.5 µA
C
IN
D Input ca pacitanc e 10 pF
I
PU
D RESET, equivalent pull-up current V
IN
=V
IL
–130 µA
V
IN
=V
IH
–10
1. “SR” parameter values must not exceed the absolute maximum ratings shown in Table 9.
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 67/112
3.10.3 DC electrical characteristics (3.3 V)
Table 23 gives the DC electrical characteristics at 3.3 V (3.0 V < V
DD_HV_IOx
< 3.6 V,
NVUSRO[PAD3V5V] = 1); see Figure 14.
Table 22. Supply current (5.0 V, NVUSRO[PAD3V5V] = 0)
Symbol C Parameter Conditions Value Unit
Typ Max
I
DD_LV_CORx
T
Supply cu rrent
RUN—Maximum mode
(1)
V
DD_LV_CORx
externall y forced at 1.3 V
40 MHz 62 77
mA
64 MHz 71 88
RUN—Typical mo de
(2)
40 MHz 45 56
64 MHz 52 65
P
RUN—Maximum mode
(3)
V
DD_LV_CORx
externall y forced at 1.3 V 64 MHz 60 75
HALT mode
(4)
V
DD_LV_CORx
externall y forced at 1.3 V —1.510
STOP mode
(5)
V
DD_LV_CORx
externall y forced at 1.3 V —110
I
DD_FLASH
TFlash durin g read V
DD_HV_FL
at 5.0 V 10 12
Flash du ring erase operation on 1
flash module V
DD_HV_FL
at 5.0 V 15 19
I
DD_ADC
T
ADC—Maximum mode
(1)
V
DD_HV_ADC0
at 5.0 V
V
DD_HV_ADC1
at 5.0 V
f
ADC
= 16MHz
ADC_1 3.5 5
ADC_0 3 4
ADC—Typical mode
(2)
ADC_1 0.8 1
ADC_0 0.005 0.006
I
DD_OSC
T Oscillator V
DD_OSC
at 5.0 V 8 MHz 2.6 3.2
1. Maximum mode: FlexPWM , ADCs, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, 1st and 2nd PLL enabled. I/O supply
current excluded.
2. Typical mode configurations: DSPI, LINFlex, FlexCAN, 15 output pins, 1st PLL only. I/O supply current excluded.
3. Code fetched from RAM, PLL_0: 64 MHz system clock (x4 multiplier with 16 MHz XTAL), PLL_1 is ON at
PHI_div2 = 120 MHz and PHI_div3 = 80 MH z, auxiliary clock sources set that all peripherals receive maximum frequency,
all peripherals enabled.
4. Halt mode configurations: code fetched from RAM, code and data flash memories in low power mode, OSC/PLL_0/PLL_1
are OFF, core clock frozen, all peripherals are disabled.
5. STOP “P” mode Device Under Test (DUT) configura tion: code fetched from RAM, code and data flash memories OFF,
OSC/PLL_0/PLL_1 are OFF, core clock frozen, all peripherals are disabled.
Table 23. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)
(1)
Symbol C Parameter Conditions Value Unit
Min Max
V
IL
DLow level input voltage –0.1
(2)
—V
P—0.35V
DD_HV_IOx
V
Electrical characteristics SPC560P44Lx, SPC560P50Lx
68/112 Doc ID 14723 Rev 9
V
IH
PHigh level input voltage —0.65V
DD_HV_IOx
—V
D—V
DD_HV_IOx
+0.1
(2)
V
V
HYS
T Schmitt trigger hys ter esi s 0.1 V
DD_HV_IOx
—V
V
OL_S
P Slow, low level ou tput voltage I
OL
= 1.5 mA 0.5 V
V
OH_S
P Slow, high level output voltage I
OH
=–1.5mA V
DD_HV_IOx
–0.8 V
V
OL_M
P Medium, low level output voltage I
OL
=2mA 0.5 V
V
OH_M
P Medium, high level output voltage I
OH
=–2mA V
DD_HV_IOx
–0.8 V
V
OL_F
P Fast, low level output voltage I
OL
= 1.5 mA 0.5 V
V
OH_F
P Fas t, high level output voltage I
OH
=–1.5mA V
DD_HV_IOx
–0.8 V
V
OL_SYM
P Symmetric, low level output voltage I
OL
= 1.5 mA 0.5 V
V
OH_SYM
P Symmetric, high level output voltage I
OH
=–1.5mA V
DD_HV_IOx
–0.8 V
I
PU
P E qu iv ale nt pul l-up curren t V
IN
=V
IL
–130 µA
V
IN
=V
IH
–10
I
PD
P Equivalent pull-down curre nt V
IN
=V
IL
10 µA
V
IN
=V
IH
130
I
IL
PInput leaka ge current (all
bidirectional ports) T
A
= –40 to 125 °C 1 µA
I
IL
PInput leaka ge current (all ADC input-
only ports) T
A
= –40 to 125 °C 0.5 µ A
C
IN
D Input cap ac itance 10 pF
I
PU
D RESET, equivalent pull-up current V
IN
=V
IL
–130 µA
V
IN
=V
IH
–10
1. These specifications are design targets and subject to change per device characterization.
2. “SR” parameter values must not exceed the absolute maximum ratings shown in Table 9.
Table 23. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)
(1)
(continued)
Symbol C Parameter Conditions Value Unit
Min Max
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 69/112
3.10.4 Input DC electrical characteristics definition
Figure 14 shows the DC electrical characteristics behavior as function of time.
Table 24. Supply current (3.3 V, NVUSRO[PAD3V5V] = 1)
Symbol C Parameter Conditions Value Unit
Typ Max
I
DD_LV_CORx
T
Supply cu rrent
RUN—Maximum mode
(1)
V
DD_LV_CORx
externall y forced at 1.3 V
40 MHz 62 77
mA
64 MHz 71 89
RUN—Typical mode
(2)
40 MHz 45 56
64 MHz 53 66
P
RUN—Maximum mode
(3)
V
DD_LV_CORx
externall y forced at 1.3 V 64 MHz 60 75
HALT mode
(4)
V
DD_LV_CORx
externall y forced at 1.3 V —1.510
STOP mode
(5)
V
DD_LV_CORx
externall y forced at 1.3 V —110
I
DD_FLASH
TFlash durin g read on single mode V
DD_HV_FL
at 3.3 V 8 10
Flash during erase ope rati on on
single mode V
DD_HV_FL
at 3.3 V 10 12
I
DD_ADC
T
ADC —Maximum mode
(1)
V
DD_HV_ADC0
at 3.3 V
V
DD_HV_ADC1
at 3.3 V
f
ADC
=16MHz
ADC_1 2.5 4
ADC_0 2 4
ADC—Typical mode
(2)
ADC_1 0.8 1
ADC_0 0.005 0.006
I
DD_OSC
T Oscillator V
DD_OSC
at 3.3 V 8 MHz 2.4 3
1. Maximum mode: FlexPWM , ADCs, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, 1st and 2nd PLL enabled. I/O supply
current excluded.
2. Typical mode: DSPI, LINFlex, FlexCAN, 15 output pins, 1st PLL only. I/O supply current excluded.
3. Code fetched from RAM, PLL_0: 64 MHz system clock (x4 multiplier with 16 MHz XTAL), PLL_1 is ON at
PHI_div2 = 120 MHz and PH I_div3 = 80 MHz, auxiliary clock sources set that all peripherals receive maximum frequency,
all peripherals enabled.
4. Halt mode configurations: code fetched from RAM, code and data flash memories in low power mode, OSC/PLL_0/PLL_1
are OFF, core clock frozen, all peripherals are disabled.
5. STOP “P” mode Device Under Test (DUT) configura tion: code fetched from RAM, code and data flash memories OFF,
OSC/PLL_0/PLL_1 are OFF, core clock frozen, all peripherals are disabled.
Electrical characteristics SPC560P44Lx, SPC560P50Lx
70/112 Doc ID 14723 Rev 9
Figure 14. Input DC electrical characteristics definition
3.10.5 I/O pad current specification
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is
associa ted to a V
DD
/V
SS
supply pair as described in Table 25.
Table 26 provides the weight of concurrent switching I/Os.
In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on
a single segment should remain below 100%.
V
IL
V
IN
V
IH
PDIx = ‘1’
V
DD
V
HYS
(GPDI register of SIUL)
PDIx = ‘0’
Table 25. I/O supply segment
Package Supply segment
12345 6 7
LQFP144 pin8 – pi n20 pin23 – pin38 pin39 – pin55 pin58 – pin68 pin73 – pin89 pin92 – pin125 pin128 – pin5
LQFP100 pin15 – pin26 pin27 – pin38 pin41 – pin46 pin51 – pin61 pin64 – pin86 pin89 – pin10
Table 26. I/O weight
Pad LQFP144 LQFP100
Weight 5V Weight 3.3V Weight 5V Weight 3.3V
NMI1%1%1%1%
PAD[6] 6% 5% 14% 13%
PAD[49] 5% 4% 14% 12%
PAD[84] 14% 10%
PAD[85] 9% 7%
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 71/112
PAD[86] 9% 6%
MODO[0] 12% 8%
PAD[7] 4% 4% 11% 10%
PAD[36] 5% 4% 11% 9%
PAD[8] 5% 4% 10% 9%
PAD[37] 5% 4% 10% 9%
PAD[5] 5% 4% 9% 8%
PAD[39]5%4%9%8%
PAD[35]5%4%8%7%
PAD[87] 12% 9%
PAD[88] 9% 6%
PAD[89] 10% 7%
PAD[90] 15% 11%
PAD[91] 6% 5%
PAD[57]8%7%8%7%
PAD[56] 13% 11% 13% 11%
PAD[53] 14% 12% 14% 12%
PAD[54] 15% 13% 15% 13%
PAD[55] 25% 22% 25% 22%
PAD[96] 27% 24%
PAD[65]1%1%1%1%
PAD[67] 1% 1%
PAD[33]1%1%1%1%
PAD[68] 1% 1%
PAD[23]1%1%1%1%
PAD[69] 1% 1%
PAD[34]1%1%1%1%
PAD[70] 1% 1%
PAD[24]1%1%1%1%
PAD[71] 1% 1%
PAD[66]1%1%1%1%
PAD[25]1%1%1%1%
PAD[26]1%1%1%1%
Table 26. I/O weight (continued)
Pad LQFP144 LQFP100
Weight 5V Weight 3.3V Weight 5V Weight 3.3V
Electrical characteristics SPC560P44Lx, SPC560P50Lx
72/112 Doc ID 14723 Rev 9
PAD[27]1%1%1%1%
PAD[28]1%1%1%1%
PAD[63]1%1%1%1%
PAD[72] 1% 1%
PAD[29]1%1%1%1%
PAD[73] 1% 1%
PAD[31]1%1%1%1%
PAD[74] 1% 1%
PAD[30]1%1%1%1%
PAD[75] 1% 1%
PAD[32]1%1%1%1%
PAD[76] 1% 1%
PAD[64]1%1%1%1%
PAD[0] 23% 20% 23% 20%
PAD[1] 21% 18% 21% 18%
PAD[107] 20% 17%
PAD[58] 19% 16% 19% 16%
PAD[106] 18% 16%
PAD[59] 17% 15% 17% 15%
PAD[105] 16% 14%
PAD[43] 15% 13% 15% 13%
PAD[104] 14% 13%
PAD[44] 13% 12% 13% 12%
PAD[103] 12% 11%
PAD[2] 11% 10% 11% 10%
PAD[101] 11% 9%
PAD[21] 10% 8% 10% 8%
TMS1%1%1%1%
TCK1%1%1%1%
PAD[20] 16% 11% 16% 11%
PAD[3] 4% 3% 4% 3%
PAD[61]9%8%9%8%
PAD[102] 11% 10%
Table 26. I/O weight (continued)
Pad LQFP144 LQFP100
Weight 5V Weight 3.3V Weight 5V Weight 3.3V
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 73/112
PAD[60] 11% 10% 11% 10%
PAD[100] 12% 10%
PAD[45] 12% 10% 12% 10%
PAD[98] 12% 11%
PAD[46] 12% 11% 12% 11%
PAD[99] 13% 11%
PAD[62] 13% 11% 13% 11%
PAD[92] 13% 12%
VPP_TEST 1% 1% 1% 1%
PAD[4] 14% 12% 14% 12%
PAD[16] 13% 12% 13% 12%
PAD[17] 13% 11% 13% 11%
PAD[42] 13% 11% 13% 11%
PAD[93] 12% 11%
PAD[95] 12% 11%
PAD[18] 12% 10% 12% 10%
PAD[94] 11% 10%
PAD[19] 11% 10% 11% 10%
PAD[77] 10% 9%
PAD[10] 10% 9% 10% 9%
PAD[78] 9% 8%
PAD[11]9%8%9%8%
PAD[79] 8% 7%
PAD[12]7%7%7%7%
PAD[41]7%6%7%6%
PAD[47]5%4%5%4%
PAD[48]4%4%4%4%
PAD[51]4%4%4%4%
PAD[52]5%4%5%4%
PAD[40]5%5%6%5%
PAD[80] 9% 8%
PAD[9] 10% 9% 11% 10%
PAD[81] 10% 9%
Table 26. I/O weight (continued)
Pad LQFP144 LQFP100
Weight 5V Weight 3.3V Weight 5V Weight 3.3V
Electrical characteristics SPC560P44Lx, SPC560P50Lx
74/112 Doc ID 14723 Rev 9
PAD[13] 10% 9% 12% 11%
PAD[82] 10% 9%
PAD[22] 10% 9% 13% 12%
PAD[83] 10% 9%
PAD[50] 10% 9% 14% 12%
PAD[97] 10% 9%
PAD[38] 10% 9% 14% 13%
PAD[14] 9% 8% 14% 13%
PAD[15] 9% 8% 15% 13%
Table 26. I/O weight (continued)
Pad LQFP144 LQFP100
Weight 5V Weight 3.3V Weight 5V Weight 3.3V
Table 27. I/O consumption
Symbol C Parameter Conditions
(1)
Value Unit
Min Typ Max
I
SWTSLW(2)
CC D Dynamic I/O current
for SLOW
configuration C
L
= 25 pF
V
DD
= 5.0 V ± 10%,
PAD3V5V = 0 ——20
mA
V
DD
= 3.3 V ± 10%,
PAD3V5V = 1 ——16
I
SWTMED(2)
CC D Dynamic I/O current
for MEDIUM
configuration C
L
= 25 pF
V
DD
= 5.0 V ± 10%,
PAD3V5V = 0 ——29
mA
V
DD
= 3.3 V ± 10%,
PAD3V5V = 1 ——17
I
SWTFST(2)
CC D Dynamic I/O current
for FAST
configuration C
L
= 25 pF
V
DD
= 5.0 V ± 10%,
PAD3V5V = 0 ——110
mA
V
DD
= 3.3 V ± 10%,
PAD3V5V = 1 ——50
I
RMSSLW
CC D Root medium square
I/O current for SLOW
configuration
C
L
= 25 pF, 2 MHz V
DD
= 5.0 V ± 10%,
PAD3V5V = 0
——2.3
mA
C
L
= 25 pF, 4 MHz 3.2
C
L
= 100 pF, 2 MHz 6.6
C
L
= 25 pF, 2 MHz V
DD
= 3.3 V ± 10%,
PAD3V5V = 1
——1.6
C
L
= 25 pF, 4 MHz 2.3
C
L
= 100 pF, 2 MHz 4.7
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 75/112
3.11 Main oscillator el ectrical character istics
The SPC560P44Lx, SPC560P50Lx provides an oscillator/resonator driver.
I
RMSMED
CC D
Root medium square
I/O current for
MEDIUM
configuration
C
L
= 25 pF, 13 MHz V
DD
= 5.0 V ± 10%,
PAD3V5V = 0
——6.6
mA
C
L
= 25 pF, 40 MHz 13.4
C
L
= 100 pF, 13 MHz 18.3
C
L
= 25 pF, 13 MHz V
DD
= 3.3 V ± 10%,
PAD3V5V = 1
—— 5
C
L
= 25 pF, 40 MHz 8.5
C
L
= 100 pF, 13 MHz 11
I
RMSFST
CC D Root medium square
I/O current for FAST
configuration
C
L
= 25 pF, 40 MHz V
DD
= 5.0 V ± 10%,
PAD3V5V = 0
——22
mA
C
L
= 25 pF, 64 MHz 33
C
L
= 100 pF, 40 MHz 56
C
L
= 25 pF, 40 MHz V
DD
= 3.3 V ± 10%,
PAD3V5V = 1
——14
C
L
= 25 pF, 64 MHz 20
C
L
= 100 pF, 40 MHz 35
I
AVGSEG
SR D Sum of all the static
I/O current within a
suppl y seg me nt
V
DD
= 5.0 V ± 10% , PAD3V5V = 0 70 mA
V
DD
= 3.3 V ± 10% , PAD3V5V = 1 65
1. V
DD
= 3.3 V ± 10% / 5.0 V ± 10%, T
A
= –40 to 125 °C, unless otherwise specified
2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.
Table 27. I/O consumption (continued)
Symbol C Parameter Conditions
(1)
Value Unit
Min Typ Max
Table 28. Main oscillator output electrical characteristics (5.0 V,
NVUSRO[PAD3V5V] = 0)
Symbol C Parameter Value Unit
Min Max
f
OSC
SR Oscillator
frequency 440MHz
g
m
—P
Transconduc
tance 6.5 25 mA/V
V
OSC
—T
Oscillation
amplitude on
XTAL pin 1—V
t
OSCSU
—T
Start-up
time
(1),(2)
1. The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive
capacitive loads can cause long start-up time.
2. Value captured when amplitude reaches 90% of XTAL
8—ms
Electrical characteristics SPC560P44Lx, SPC560P50Lx
76/112 Doc ID 14723 Rev 9
3.12 FMPLL ele ctrical character istics
Table 29. Main oscillator output electrical characteristics (3.3 V,
NVUSRO[PAD3V5V] = 1)
Symbol C Parameter Value Unit
Min Max
f
OSC
SR Oscillator frequency 4 40 MHz
g
m
P Transconductance 4 20 mA/V
V
OSC
T Oscillation amplitude on XTAL pin 1 V
t
OSCSU
T Start-up time
(1),(2)
1. The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive
capacitive loads can cause long start-up time.
2. Value captured when amplitude reaches 90% of XTAL
8—ms
Table 30. Input clock characteristics
Symbol Parameter Value Unit
Min Typ Max
f
OSC
SR Oscillator frequency 4 40 MHz
f
CLK
SR Frequency in bypass 64 MHz
t
rCLK
SR Rise/fall time in bypass 1 ns
t
DC
SR Duty cycle 47.5 50 5 2.5 %
Table 31. FMPLL electrical characteristics
Symbol C Parameter Conditions
(1)
Value Unit
Min Max
f
ref_crystal
f
ref_ext
D PLL reference frequency range
(2)
Crystal reference 4 40 MHz
f
PLLIN
DPhase detector input frequency range
(after pre-divider) —416MHz
f
FMPLLOUT
D Clock frequency range in normal mode 16 120 MHz
f
FREE
P Free-running frequency Measured usi ng clock
division — typically /16 20 150 MHz
t
CYC
D System clock per iod 1 / f
SYS
ns
f
LORL
f
LORH
D Loss of reference frequency window
(3)
Lower limit 1.6 3.7 MHz
Upper lim it 24 56
f
SCM
D Self-clocked mo de frequency
(4),(5)
—20150MHz
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 77/112
C
JITTER
TCLKOUT period
jitter
(6),(7),(8),(9)
Short-term jitter
(10)
f
SYS
maximum
44%f
CLKOUT
Long-term jitter (avg.
over 2 ms interval)
f
PLLIN
= 16 MHz
(resonator)
,
f
PLLCLK
at
64 MHz, 4000 cy cles —10 ns
t
lpll
D PLL lock time
(11), ( 12)
——200µs
t
dc
D Duty cycle of reference
—4060%
f
LCK
D Frequency LOCK range
66% f
SYS
f
UL
D Frequency un-LOCK range -18 18 % f
SYS
f
CS
f
DS
D Modulation depth Center spread ±0.25 ±4.0
(13)
% f
SYS
Down spread
0.5
8.0
f
MOD
D Modulation frequency
(14)
——70kHz
1. V
DD_LV_CORx
= 1.2 V ±10%; V
SS
= 0 V; T
A
= –40 to 125 °C, unless otherwise specified
2. Considering operation with PLL not bypassed
3. “Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self-clocked mode.
4. Self-clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the f
LOR
window.
5. f
VCO
self clock range is 20–150 MHz. f
SCM
represents f
SYS
after PLL output divider (ERFD) of 2 through 16 in enhanced
mode.
6. This value is determined by the crystal manufacturer and board design.
7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f
SYS
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise
injected into the PLL circuitry via V
DDPLL
and V
SSPLL
and variation in crystal oscillator frequency increase the C
JITTER
percentage for a given interval.
8. Proper PC board layout procedures must be followed to achieve specifications.
9. Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of C
JITTER
and either
f
CS
or f
DS
(depending on whether center spread or down spread modulation is enabled).
10. Short term jitter is measured on the clock rising edge at cycle n and cycle n+4.
11. T his value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this
PLL, load capacitors should not exceed these limits.
12. This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the
synthesizer control register (SYNCR).
13. This value is true when operating at frequencies above 60 MHz, otherwise f
CS
is 2% (above 64 MHz).
14. Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz.
Table 31. FMPLL electrical characteristics (continued)
Symbol C Parameter Conditions
(1)
Value Unit
Min Max
Electrical characteristics SPC560P44Lx, SPC560P50Lx
78/112 Doc ID 14723 Rev 9
3.13 16 MHz RC oscillator electrical characteristics
3.14 Analog-to-digital converter (ADC) electrical characteristics
The device provides a 10-bit successive approximation register (SAR) analog-to-digital
converter.
Table 32. 16 MHz RC oscillator electrical characteristics
Symbol C Parameter Conditions Value Unit
Min Typ Max
f
RC
P RC oscillator frequency T
A
= 25 °C 16 MHz
Δ
RCMVAR
P
Fast internal RC oscillator variation over temperature
and
supply with respect to f
RC
at T
A
= 25 °C in high-
frequency configuration
—–55%
Δ
RCMTRIM
TPost Trim Accuracy: The variation of the PTF
(1)
from
the 16 MHz T
A
= 25 °C –1 1 %
Δ
RCMSTEP
T Fast internal RC oscillator trimming step T
A
= 25 °C 1.6 %
1. PTF = Post Trimming Frequency: The frequency of the output clock after trimming at typical supply voltage and
temperature
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 79/112
Figure 15. ADC characteristics and error definitions
3.14.1 Input impedance and ADC accuracy
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have
low AC impedance. Placing a capacitor with good high frequency characteristics at the input
pin of the device can be effective: the capacitor should be as large as possible, ideally
infinite. This capacitor contributes to attenuating the noise present on the input pin; further , it
sources charge during the sampling phase, when the analog signal source is a high-
impedance source.
A real filter can typically be obtained by using a series resistance with a capacitor on the
input pin (simple RC filter). The RC filtering may be limited according to the source
impedance value of the transducer or circuit supplying the analog signal to be measured.
(2)
(1)
(3)
(4)
(5)
Offset Error OSE
Offset Error OSE
Gain Error GE
1 LSB (ideal)
1023
1022
1021
1020
1019
1018
5
4
3
2
1
0
7
6
1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Differential non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfer curve
1 LSB ideal = V
DD_ADC
/ 1024
V
in(A)
(LSB
ideal
)
code out
Electrical characteristics SPC560P44Lx, SPC560P50Lx
80/112 Doc ID 14723 Rev 9
The filter at the input pins must be designed taking into account the dynamic characteristics
of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.
In fact a current sink contributor is represented by the charge sharing effects with the
sampling capacitance: C
S
and C
P2
being substantially two switched capacitances, with a
frequency equal to the ADC conversion rate, it can be seen as a resistive path to ground.
For instance, assuming a conversion rate of 1 MHz, with C
S
+C
P2
equal to 3 pF, a resistance
of 330 kΩ is obtained (R
EQ
= 1 / (f c × (C
S
+C
P2
)), w h er e f c re pr esents t h e co nversion rate at
the considered channel). To minimize the error induced by the voltage partitioning between
this resistance (sampled voltage on C
S
+C
P2
) and the sum of R
S
+ R
F
, the external circuit
must be designed to respect the Equation 4:
Equation 4
Equation 4 generates a constraint for external network design, in particular on resistive
path.
Figure 16. Input equivalent circuit
VA
RSRF
+
REQ
---------------------
1
2
---LSB
<
R
F
C
F
R
S
R
L
R
SW1
C
P2
C
S
V
DD
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
C
P1
R
AD
Channel
Selection
V
A
R
S
: Source impedance
R
F
: Filter resistance
C
F
: Filter capacitance
R
L
: Current limiter resistanc e
R
SW1
: Channel selection switch impedance
R
AD
: Sampling switch impedance
C
P
: Pin capacitance (two contri butions, C
P1
and C
P2
)
C
S
: Sampling capacitanc e
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 81/112
A second aspect involving the capacitance network shall be considered. Assuming the three
capacitances C
F
, C
P1
and C
P2
are initially charged at the source voltage V
A
(refer to the
equivalent circuit reported in Figure 16): A charge sharing phenomenon is installed when
the sampling phase is started (A/D switch closed).
Figure 17. Transient behavior during sa mpling phase
In particular two different transient periods can be distinguished:
A first and quick charge transfer from the internal capacitance C
P1
and C
P2
to the
sampling capacitance C
S
occurs (C
S
is supposed initially completely discharged):
considering a worst case (since the time constant in reality would be faster) in which
C
P2
is reported in parallel to C
P1
(call C
P
= C
P1
+ C
P2
), the two capacitances C
P
and
C
S
are in series, and the time constant is
Equation 5
Equation 5 can again be simplified considering only C
S
as an additional worst
condition. In reality, the transient is faster, but the A/D converter circuitry has been
designed to be robust also in the very worst case: the sampling time T
S
is always much
longer than the internal time constant:
Equation 6
The charge of C
P1
and C
P2
is redistributed also on C
S
, determining a new value of the
voltage V
A1
on the capacitance according to Equation 7:
V
A
V
A1
V
A2
t
T
S
V
CS Voltage Transient on CS
Δ
V <
0.5 LSB
12
τ
1
< (R
SW
+ R
AD
) C
S
<< T
S
τ
2
= R
L
(C
S
+ C
P1
+ C
P2
)
τ1RSW RAD
+()=CPCS
CPCS
+
---------------------
τ1RSW RAD
+()
<
CSTS
«
Electrical characteristics SPC560P44Lx, SPC560P50Lx
82/112 Doc ID 14723 Rev 9
Equation 7
A second charge transfer involves also C
F
(that is typically bigger than the on-chip
capacitance) through the resistance R
L
: again considering the worst case in which C
P2
and C
S
were in parallel to C
P1
(since the time constant in reality would be faster), the
time constant is:
Equation 8
In this case, the time constant depends on the external circuit: in particular imposing
that the transient is completed well before the end of sampling time T
S
, a constraints on
R
L
sizing is obtained:
Equation 9
Of cou rse, R
L
shall be sized also according to the current limitation constraints, in
combi nation with R
S
(source impedance) and R
F
(filter resistance). Being C
F
definitively bigger than C
P1
, C
P2
and C
S
, then the final voltage V
A2
(at the end of the
charge transfer transient) will be much higher than V
A1
. Equation 10 must be respected
(charge balance assuming now C
S
already charged at V
A1
):
Equation 10
The two transients above are not influenced by the voltage source that, due to the presence
of the R
F
C
F
filter, is not able to provide the extra charge to compensate the voltage drop on
C
S
with respect to the ideal source V
A
; the time constant R
F
C
F
of the filter is very high with
respect to the sampling time (T
S
). The filter is typically designed to act as anti-aliasing.
Figure 18. Spectral representation of input signal
VA1 CSCP1 CP2
++()
VACP1 CP2
+()
=
τ2RL
<
CSCP1 CP2
++()
8.5
τ2
8.5
RLCSCP1 CP2
++()
=T
S
<
VA2 CSCP1 CP2 CF
+++()
VACF
VA1
+C
P1 CP2
+C
S
+()
=
f
0
f
Analog Source Bandwidth (V
A
)
f
0
f
Sampled Signal Spectrum (f
C
= conversion Rate)
f
C
f
Anti-Aliasing Filter (f
F
= RC Filter pole)
f
F
2 f
0
f
C
(Nyquist)
f
F
= f
0
(Anti-aliasing Filtering Condition)
T
C
2 R
F
C
F
(Conversion Rate vs. Filter Pole)
Noise
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 83/112
Calling f
0
the bandwidth of the source signal (and as a consequence the cut-off frequency of
the anti-aliasing filter, f
F
), according to the Nyquist theorem the conversion rate f
C
must be
at least 2f
0
; it means that the constant time of the filter is greater than or at least equal to
twice the conversion period (T
C
). Ag ain the conversion period T
C
is longer than the
sampling time T
S
, which is just a portion of it, even when fixed channel continuous
conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it
is evident that the time constant of the filter R
F
C
F
is definitively much higher than the
sampl ing tim e T
S
, so the charge level on C
S
cannot be modified by the analog signal source
during the time in which the sampling switch is closed.
The considerations above lead to impose new constraints on the external circuit, to reduce
the accuracy error due to the voltage drop on C
S
; from the two charge balance equations
above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C
S
:
Equation 11
From this formula, in the worst case (when V
A
is maximum, that is for instance 5 V),
assuming to accept a maximum error of half a count, a constraint is evident on C
F
value:
Equation 12
3.14.2 AD C conversion characteristics
VA
VA2
------------CP1 CP2
+C
F
+
CP1 CP2
+C
FCS
++
--------------------------------------------------------=
Table 33. ADC conversion characteri stics
Symbol C Parameter Conditions
(1)
Value Unit
Min Typ Max
V
INAN0
SR ADC0 and shared ADC0/1
analog input voltage
(2), (3)
V
SS_HV_ADV0
0.3 V
DD_HV_ADV0
+ 0.3 V
V
INAN1
SR ADC1 anal og input volt age
(2),
(4)
V
SS_HV_ADV1
0.3 V
DD_HV_ADV1
+ 0.3 V
f
CK
SR
ADC clock frequency
(depends on ADC
configuration)
(The duty cycle depends on
AD_clk
(5)
frequency )
—3
(6)
—60MHz
f
s
SR Sampling frequency 1.53 MHz
t
ADC_S
D Sample time
(7)
f
ADC
= 20 M Hz,
INPSAMP = 3 125 ns
f
ADC
= 9 MHz,
INPSAMP = 255 28.2 µs
t
ADC_C
P Conversion time
(8)
f
ADC
= 20 MHz
(9)
,
INPCMP = 1 0.650 µs
Electrical characteristics SPC560P44Lx, SPC560P50Lx
84/112 Doc ID 14723 Rev 9
t
ADC_PU
SR
ADC power-up delay (time
needed for ADC to settle
exiting from software power
down; PWDN bit = 0)
——1.5µs
C
S(10)
—D
ADC input sampling
capacitance ——2.5pF
C
P1(10)
D ADC input pin capacitance 1 3 p F
C
P2(10)
D ADC input pin capacitance 2 1 p F
R
SW1(10)
—D
Internal resistance of analog
source
V
DD_HV_ADC
=
5V±10% ——0.6k
Ω
V
DD_HV_ADC
=
3.3 V ± 10% ——3k
Ω
R
AD(10)
—D
Internal resistance of analog
source ——2k
Ω
I
INJ
T Input current injection
Current injection
on one ADC input,
different from the
co nverted one.
Remains within
TUE spec.
–5 5 mA
INL CC P Integral non-linearity No overload –1.5 1.5 LSB
DNL CC P Differential non-linearity No overload –1.0 1.0 LSB
OSE CC T Offset error ±1 LSB
GE CC T Gain error ±1 LSB
TUE CC P Total unadjusted error without
current injection –2.5 2.5 LSB
TUE CC T Total unadj us ted error w ith
current injection —–33LSB
1. V
DD
= 3.3 V to 3.6 V / 4.5 V to 5.5 V, T
A
= –40 °C to T
A MAX
, unless otherwise specified and analog input voltage from
V
SS_HV_ADCx
to V
DD_HV_ADCx
.
2. V
AINx
may exceed V
SS_HV_AD
and V
DD_HV_AD
limits, remaining on absolute maximum ratings, but the results of the
conversion will be clamped respectively to 0x000 or 0x3FF.
3. Not allowed to refer this voltage to V
DD_HV_ADV1
, V
SS_HV_ADV1
4. Not allowed to refer this voltage to V
DD_HV_ADV0
, V
SS_HV_ADV0
5. AD_clk clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC.
6. When configured to allow 60 MHz ADC, the minimum ADC clock speed is 9 MHz, below which precision is lost.
7. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final voltage level within t
ADC_S
. After the end of the
sample time t
ADC_S
, changes of the analog input voltage have no effect on the conversion result. Values for the sample
clock t
ADC_S
depend on programming.
8. This parameter includes the sample time t
ADC_S
.
9. 20 MHz ADC clock. Spe cific prescaler is programm ed on MC_PLL_CLK to provide 20 MHz clock to the ADC.
10. See Figure 16.
Table 33. ADC conversion characteristics (continued)
Symbol C Parameter Conditions
(1)
Value Unit
Min Typ Max
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 85/112
3.15 Flash memory electrical characteristics
Table 34. Program and erase specifications
Symbol C Parameter
Value
Unit
Min Typical
(1)
Initial
max
(2)
Max
(3)
T
dwprogram
P Double Word (64 bits) Program Time
(4)
—2250500µs
T
BKPRG
P Bank Program (512 KB)
(4)(5)
1.45 1.65 33 s
P Bank Program (64 KB)
(4)(5)
0.18 0.21 4.10 s
T
16kpperase
P 16 KB Block Pre-program and Erase Time 300 500 5000 ms
T
32kpperase
P 32 KB Block Pre-program and Erase Time 400 600 5000 ms
T
128kpperase
P128 KB Block Pre-program and Erase
Time 800 1300 7500 ms
1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change
pending device characterization.
2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values
are characterized but not guaranteed.
4. Actual hardware programming times. This does not include software overhead.
5. Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will require
more than one pulse, adding a small overhead to total bank programming time (see Initial Max column).
Table 35. Flash memory module life
Symbol C Parameter Conditions Value Unit
Min Typ
P/E C Number of pr ogram/eras e cycles per b lock
for 16 KB blocks over the operating
temperature range (T
J
) 100000 cycles
P/E C Number of pr ogram/eras e cycles per b lock
for 32 KB blocks over the operating
temperature range (T
J
) 10000 100000 cycles
P/E C Number of pr ogram/eras e cycles per b lock
for 128 KB blocks over the operating
temperature range (T
J
) 1000 100000 cycles
Retention C Minimum data retention at 85 °C average
ambient temperature
(1)
Blocks with 0–1000 P/E
cycles 20 years
Blocks with 10000 P/E
cycles 10 years
Blocks with 100000 P/E
cycles 5—years
1. Ambient temperature averaged over duration of application, not to exceed recom mended produc t operating temperature
range.
Electrical characteristics SPC560P44Lx, SPC560P50Lx
86/112 Doc ID 14723 Rev 9
3.16 AC specifications
3.16.1 Pad AC specif ica ti ons
Table 36. Flash memory read access timing
Symbol C Parameter Conditions
(1)
Max value Unit
f
max
CMaximum working frequency at given number of
wait states in wors t conditions 2 wait sta tes 66 MHz
0 wait sta tes 18
1. V
DD
= 3.3 V ± 10% / 5.0 V ± 10%, T
A
= –40 to 125 °C, unless otherwise specified
Table 37. Output pin transition times
Symbol C Parameter Conditions
(1)
Value Unit
Min Typ Max
t
tr
CC
D
Output transition time output pin
(2)
SLOW configuration
C
L
= 25 pF V
DD
= 5.0 V ± 10%,
PAD3V5V = 0
——50
ns
TC
L
= 50 pF 100
DC
L
= 100 pF 125
DC
L
= 25 pF V
DD
= 3.3 V ± 10%,
PAD3V5V = 1
——40
TC
L
= 50 pF 50
DC
L
= 100 pF 75
t
tr
CC
D
Output transition time output pin
(2)
MEDIUM configuration
C
L
= 25 pF V
DD
= 5.0 V ± 10%,
PAD3V5V = 0
SIUL.PCRx.SRC = 1
——10
ns
TC
L
= 50 pF 20
DC
L
= 100 pF 40
DC
L
= 25 pF V
DD
= 3.3 V ± 10%,
PAD3V5V = 1
SIUL.PCRx.SRC = 1
——12
TC
L
= 50 pF 25
DC
L
= 100 pF 40
t
tr
CC D Output transition time output pin
(2)
FAST configuration
C
L
= 25 pF V
DD
= 5.0 V ± 10%,
PAD3V5V = 0
SIUL.PCRx.SRC = 1
—— 4
ns
C
L
= 50 pF 6
C
L
= 100 pF 12
C
L
= 25 pF V
DD
= 3.3 V ± 10%,
PAD3V5V = 1
SIUL.PCRx.SRC = 1
—— 4
C
L
= 50 pF 7
C
L
= 100 pF 12
t
SYM(3)
CC T Symmetric transition time, same drive
strength between N and P transistor V
DD
= 5.0 V ± 10%, PAD3V5V = 0 4 ns
V
DD
= 3.3 V ± 10%, PAD3V5V = 1 5
1. V
DD
= 3.3 V ± 10% / 5.0 V ± 10%, T
A
= –40 °C to T
A MAX
, unless otherwise specified
2. C
L
includes device and package capacitances (C
PKG
< 5 pF).
3. Transition timing of both positive and negative slopes will differ maximum 50%
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 87/112
Figure 19. Pad output delay
3.17 AC timing characterist ics
3.17.1 RESET pin characteristics
The SPC560P44Lx, SPC560P50Lx implements a dedicated bidirectional RESET pin.
Figure 20. Start-up reset requirements
V
DD_HV_IOx
/2
V
OH
V
OL
Rising
Edge
Output
Delay
Falling
Edge
Output
Delay
Pad
Data Inpu t
Pad
Output
V
IL
V
DD
device reset forced by
V
RESET
V
DDMIN
V
RESET
V
IH
device start-up phase
T
POR
Electrical characteristics SPC560P44Lx, SPC560P50Lx
88/112 Doc ID 14723 Rev 9
Figure 21. Noise filtering on reset signal
V
RESET
V
IL
V
IH
V
DD
filtered by
hysteresis filtered by
lowpass filter
W
FRST
W
NFRST
hw_rst
‘1’
‘0’
filtered by
lowpass filter
W
FRST
unknown reset
state device under hardware reset
Table 38. RESET electrical characteristics
Symbol C Parameter Conditions
(1)
Value Unit
Min Typ Max
V
IH
SR P Input High Lev el CMOS
(Schmitt Trigger) —0.65V
DD
—V
DD
+0.4 V
V
IL
SR P Input low Level CMOS
(Schmitt Trigger) –0.4 0.35V
DD
V
V
HYS
CC C Input hysteresis CMOS
(Schmitt Trigger) —0.1V
DD
——V
V
OL
CC P Output low level
Push Pull, I
OL
= 2mA ,
V
DD
= 5.0 V ±
10%, PAD3V5V = 0
(recommended) 0.1V
DD
V
Push Pull, I
OL
= 1mA ,
V
DD
= 5.0 V ±
10%, PAD3V5V = 1
(2)
0.1V
DD
Push Pull, I
OL
= 1mA ,
V
DD
= 3.3 V ±
10%, PAD3V5V = 1
(recommended) ——0.5
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 89/112
3.17.2 IEEE 1149.1 interfac e timing
t
tr
CC D Output transition time
output pin
(3)
MEDIUM configuration
C
L
= 25pF,
V
DD
= 5.0 V ± 10%, PAD3V5V = 0 ——10
ns
C
L
= 50pF,
V
DD
= 5.0 V ± 10%, PAD3V5V = 0 ——20
C
L
= 100pF,
V
DD
= 5.0 V ± 10%, PAD3V5V = 0 ——40
C
L
= 25pF,
V
DD
= 3.3 V ± 10%, PAD3V5V = 1 ——12
C
L
= 50pF,
V
DD
= 3.3 V ± 10%, PAD3V5V = 1 ——25
C
L
= 100pF,
V
DD
= 3.3 V ± 10%, PAD3V5V = 1 ——40
W
FRST
SR P RESET input filtered
pulse ——40ns
W
NFRST
SR P RESET input not
filtered pulse 500 ns
t
POR
CC D
Maximum de lay before
internal reset is
released after all
V
DD_HV
reach nominal
supply
Monotonic V
DD_HV
suppl y ramp 1 ms
|I
WPU
|CCP
Weak pul l-up current
absolute val ue
V
DD
= 3.3 V ± 10%, PAD3V5V = 1 10 150
µAV
DD
= 5.0 V ± 10%, PAD3V5V = 0 10 150
V
DD
= 5.0 V ± 10%, PAD3V5V = 1
(4)
10 250
1. V
DD
= 3.3 V ± 10% / 5.0 V ± 10%, T
A
= –40 °C to T
A MAX
, unless otherwise specified
2. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of device
reference manual).
3. C
L
includes device and package capacitance (C
PKG
<5pF).
4. The configuration PAD3V5 = 1 when V
DD
= 5 V is only transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 38. RESET electrical characteristics (continued)
Symbol C Parameter Conditions
(1)
Value Unit
Min Typ Max
Tabl e 39. JTAG pin AC electrical characteristics
No. Symbol C Parameter Conditions Value Unit
Min Max
1t
JCYC
CC D TCK cycle time 100 ns
2t
JDC
CC D TCK clock pulse width (measured at V
DD_HV_IOx
/2) 40 60 ns
3t
TCKRISE
CC D TCK rise and fall times (40% – 70%) 3 ns
4t
TMSS,
t
TDIS
CC D TMS, TDI data setup time 5 ns
Electrical characteristics SPC560P44Lx, SPC560P50Lx
90/112 Doc ID 14723 Rev 9
Figure 22. JTAG test clock input timing
5t
TMSH,
t
TDIH
CC D TMS, TDI data hold time 25 ns
6t
TDOV
CC D TCK low to TDO data valid 40 ns
7t
TDOI
CC D TCK low to TDO data invalid 0 ns
8t
TDOHZ
CC D TCK low to TDO high impedance 40 ns
11 t
BSDV
CC D TCK falling edge to output valid 50 ns
12 t
BSDVZ
CC D TCK falling edge to output valid out of high
impedance ——50ns
13 t
BSDHZ
CC D TCK falling edge to output high impedance 50 ns
14 t
BSDST
CC D Boundary scan input valid to TCK rising edge 50 ns
15 t
BSDHT
CC D TCK rising edge to boundary scan input invalid 50 ns
Table 39. JTAG pin AC electrical characteristics (continued)
No. Symbol C Parameter Conditions Value Unit
Min Max
TCK
1
2
2
3
3
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 91/112
Figure 23. JTAG test access port timing
TCK
4
5
6
78
TMS, TDI
TDO
Electrical characteristics SPC560P44Lx, SPC560P50Lx
92/112 Doc ID 14723 Rev 9
Figure 24. JTAG boundary scan timing
3.17.3 Nexus timing
TCK
Output
Signals
Input
Signals
Output
Signals
11
12
13
14
15
Table 40. Nexus debug port timing
(1)
No. Symbol C Parameter Value Unit
Min Typ Max
1t
MCYC
CC D MCKO cycle time 32 ns
2t
MDOV
CC D MCKO low to MDO data valid
(2)
——6ns
3t
MSEOV
CC D MCKO low to MSEO data valid
(2)
——6ns
4t
EVTOV
CC D MCKO low to EVTO data valid
(2)
——6ns
5t
TCYC
CC D TCK cycle time 64
(3)
——ns
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 93/112
Figure 25. Nexus output timing
Figure 26. Nexus event trigger and test clock timings
6t
NTDIS
CC D TDI data setup time 6 n s
t
NTMSS
CC D TMS data setup time 6 ns
7t
NTDIH
CC D TDI data hold time 10 ns
t
NTMSH
CC D TMS data hold time 10 ns
8t
TDOV
CC D TCK low to TDO data valid 35 ns
9t
TDOI
CC D TCK low to TDO data invalid 6 ns
1. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.
2. MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
3. Lower frequency is required to be fully compliant to standard.
Table 40. Nexus debug port timing
(1)
(continued)
No. Symbol C Parameter Value Unit
Min Typ Max
1
3
4
MCKO
MDO
MSEO
EVTO Output Data Valid
2
TCK
5
EVTI
EVTO
Electrical characteristics SPC560P44Lx, SPC560P50Lx
94/112 Doc ID 14723 Rev 9
Figure 27. Nexus TDI, TMS, TDO timing
3.17.4 External interrupt timing (IRQ pin)
TDO
6
7
TMS, TDI
8
TCK
9
Table 41. External interrupt timing
(1)
No. Symbol C Parameter Conditions Value Unit
Min Max
1t
IPWL
CC D IRQ pulse width low 4 t
CYC
2t
IPWH
CC D IRQ pulse width high 4 t
CYC
3t
ICYC
CC D IRQ edge to edge time
(2)
—4 + N
(3)
—t
CYC
1. IRQ timing specified at f
SYS
= 64 M Hz and V
DD_HV_IOx
= 3.0 V to 5.5 V, T
A
= T
L
to T
H
, and C
L
= 200 pF with
SRC = 0b00.
2. Applies when IRQ pins are configured for rising edge or falling edge events, but not both.
3. N = ISR time to clear the flag
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 95/112
Figure 28. External interrupt timing
3.17.5 DSPI timing
IRQ
2
3
1
Table 42. DSPI timing
(1)
No. Symbol C Parameter Conditions Value Unit
Min Max
1t
SCK
CC D DSPI cycle time Master (MTFE = 0) 60 ns
Slave (MTFE = 0) 60
2t
CSC
CC D CS to SCK delay 16 ns
3t
ASC
CC D After SCK delay 26 ns
4t
SDC
CC D SCK duty cycle 0.4 * t
SCK
0.6 * t
SCK
ns
5t
A
CC D Slave access time SS active to SOUT vali d 30 ns
6t
DIS
CC D Slave SOUT disable time SS inactive to SOUT high
impedance or invalid —16ns
7t
PCSC
CC D PCSx to PCSS time 13 ns
8t
PASC
CC D PCSS to PCSx time 13 ns
9t
SUI
CC D Data setup time for inputs
Master (MTFE = 0) 35
ns
Slave 4
Master (MTFE = 1, CPHA = 0) 35
Master (MTFE = 1, CPHA = 1) 35
10 t
HI
CC D Data hold time for inputs
Master (MTFE = 0) –5
ns
Slave 4
Master (MTFE = 1, CPHA = 0) 11
Master (MTFE = 1, CPHA = 1) –5
Electrical characteristics SPC560P44Lx, SPC560P50Lx
96/112 Doc ID 14723 Rev 9
Figure 29. DSPI classic SPI timing – Master, CPHA = 0
11 t
SUO
CC D Data v alid (after SCK edge)
Master (MTFE = 0) 12
ns
Slave 36
Master (MTFE = 1, CPHA = 0) 12
Master (MTFE = 1, CPHA = 1) 12
12 t
HO
CC D Data hold time for outputs
Master (MTFE = 0) –2
ns
Slave 6
Master (MTFE = 1, CPHA = 0) 6
Master (MTFE = 1, CPHA = 1) –2
1. All timing is provided with 50 pF capacitance on output, 1 ns transition time on input signal.
Table 42. DSPI timing
(1)
(continued)
No. Symbol C Parameter Conditions Value Unit
Min Max
Data Last Data
First Data
First Data Data Last Data
SIN
SOUT
PCSx
SCK Output 4
9
12
1
11
10
4
SCK Output
(CPOL=0)
(CPOL=1)
3
2
Note
: Numbers shown reference
Table 42
.
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 97/112
Figure 30. DSPI classic SPI timing – Master, CPHA = 1
Figure 31. DSPI classic SPI timing – Slave, CPHA = 0
Data Last Data
First Data
SIN
SOUT
12 11
10
Last Data
Data
First Data
SCK Output
SCK Output
PCSx
9
(CPOL=0)
(CPOL=1)
Note
: Numbers shown reference
Table 42
.
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
12
SCK Input
First Data Last Data
SCK Input
2
(CPOL=0)
(CPOL=1)
Note
: Numbers shown reference
Table 42
.
Electrical characteristics SPC560P44Lx, SPC560P50Lx
98/112 Doc ID 14723 Rev 9
Figure 32. DSPI classic SPI timing – Slave, CPHA = 1
Figure 33. DSPI modified transfer format timing – Master, CPHA = 0
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL=0)
(CPOL=1)
Note
: Numbers shown refe renc e
Table 42
.
PCSx 3
1
4
10
4
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last D ata
2
(CPOL=0)
(CPOL=1)
Note
: Numbers shown reference
Table 42
.
SPC560P44Lx, SPC560P50Lx Electrical characteristics
Doc ID 14723 Rev 9 99/112
Figure 34. DSPI modified transfer format timing – Master, CPHA = 1
Figure 35. DSPI modified transfer format timing – Slave, CPHA = 0
PCSx
10
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
(CPOL=0)
(CPOL=1)
Note
: Numbers shown reference
Table 42
.
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
SCK Input
First Data Last Data
SCK Input
2
(CPOL=0)
(CPOL=1)
12
Note
: Numbers shown reference
Table 42
.
Electrical characteristics SPC560P44Lx, SPC560P50Lx
100/112 Doc ID 14723 Rev 9
Figure 36. DSPI modified transfer format timing – Slave, CPHA = 1
Figure 37. DSPI PCS strobe (PCSS) timing
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL=0)
(CPOL=1)
Note
: Numbers shown re ference
Table 42
.
PCSx
78
PCSS
Note
: Numbers shown reference
Table 42
.
SPC560P44Lx, SPC560P50Lx Package characteristics
Doc ID 14723 Rev 9 101/112
4 Package characteristics
4.1 ECOPACK
®
IIn order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK
®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK
®
is an ST trademark.
4.2 Package mechanical data
4.2.1 L QFP144 mechanical out line d rawing
L
Figure 38. LQFP144 package mechanical drawing
D1
D3
D
E1E3 E
e
Pin 1
identification
73
72
37
36
109
144
108
1
AA2A1 bc
A1 L
L1
k
Seating plane
C
ccc C
0.25 mm
gage plane
ME_1A
Package characteristics SPC560P44Lx, SPC560P50Lx
102/112 Doc ID 14723 Rev 9
Table 43. LQFP144 mechanical data
Symbol
Dimensions
mm inches
(1)
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.8740
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 17.500 0.6890
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 17.500 0.6890
e 0.500 0.0197
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
k 0.0° 3.5° 7.0° 3.5° 0.0° 7.0°
ccc
(2)
0.080 0.0031
1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits.
2. Tolerance
SPC560P44Lx, SPC560P50Lx Package characteristics
Doc ID 14723 Rev 9 103/112
4.2.2 L QFP100 mechanical out line d rawing
Figure 39. LQFP100 package mechanical drawing
D
D1
D3
75 51
50
76
100 26
125
E3 E1 E
e
b
Pin 1
identification
SEATING PLANE
GAGE PLANE
C
A
A2
A1
Cccc
0.25 mm
0.10 inch
L
L1
k
C
1L_ME
Package characteristics SPC560P44Lx, SPC560P50Lx
104/112 Doc ID 14723 Rev 9
Table 44. LQFP100 package mechanical data
Symbol
Dimensions
mm inches
(1)
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 12.000 0.4724
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 12.000 0.4724
e 0.500 0.0197
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc
(2)
0.08 0.0031
1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits.
2. Tolerance
SPC560P44Lx, SPC560P50Lx Ordering information
Doc ID 14723 Rev 9 105/112
5 Ordering information
Figure 40. Commercial product code structure
(a)
Memory ConditioningCore Family
Y = Tray
R = Tape and Reel
X = Tape and Reel 90°
A=64MHz, 5V
B = 64 MHz, 3.3 V
C=40MHz, 5V
D = 40 MHz, 3.3 V
F = Full feat ured
A = Airbag
E = Data flash memory
B = –40 to 105 °C
C = –40 to 125 °C
L3 = LQFP100
L5 = LQFP144
50 = 512 KB
44 = 384 KB
P = SPC560Px family
0 = e200z0
SPC56 = Power Architecture in 90 nm
TemperaturePackage Custom vers.
SPC56 50 Y0P CL5 EFA
Example code:
Product identifier
a. Not all configurations are available on the market. Please contact your ST sales representative to get the list of
orderable commercial part number.
Abbreviations SPC560P44Lx, SPC560P50Lx
106/112 Doc ID 14723 Rev 9
Appendix A Abbreviations
Table 45 lists abbreviations used in this document.
Table 45. Abbreviations
Abbreviation Meaning
CMOS Complementary metal–oxide–semiconductor
CPHA Clock p ha se
CPOL Clock polarity
CS Peripheral chip select
DUT Device under test
ECC Error code correction
EVTO Event out
GPIO General purpose input/output
MC Modulus counter
MCKO Message clock out
MCU Microcontroller unit
MDO Message data out
MSEO Message start /end out
MTFE Modified timing format enable
NPN Negative-positive-negative
NVUSRO Non-volatile user options register
PTF Post trimming frequency
PWM Puls e width modul ation
RBW Resolution bandwidth
SCK Serial communications clock
SOUT Serial data out
TCK Test clock input
TDI Test data input
TDO Test data output
TMS Test mode select
SPC560P44Lx, SPC560P50Lx Revision history
Doc ID 14723 Rev 9 107/112
6 Revision history
Table 46 summarizes revisions to this document.
Table 46. Revision history
Date Revision Changes
28-Aug-2008 1 Initial release
25-Nov-2008 2
Table 7
:
TDO and TDI pins (Port pins B[4:5] are single function pins.
Table 12
,
Table 13
:
Thermal ch arac teri stics added.
Table 11
,
Table 12
:
EMI testing specifications split into separate tables for Normal mode and Airbag mode;
data to be added in a later revision.
Table 16
,
Table 17
,
Table 19
,
Table 20
:
Supply current specifications split into separate tables for Normal mode and Airbag
mode; data to be added in a later revision.
Table 23
:
Values for I
OL
and I
OH
(in Conditi ons colu mn ) chang ed .
Max values for V
OH_S
, V
OH_M
, V
OH_F
and V
OH_SYM
deleted.
V
ILR
max value changed.
I
PUR
min and max values changed.
Table 27
:
Sensitivity value changed.
Table 30
:
Most valu es in table changed.
05-Mar-2009 3
Description of system requirements, controller characteristics and how controller
cha racteristics are guaranteed updated .
Electrical parameters upda ted.
EMI characteristics are now in one table; values have been updated.
ESD characteristics are now in one table.
Electrical parameters are identified as ei ther system re quire m ents or controller
characteristics. Method used to guarantee each controller characteristic is noted in
table.
AC Timings: 1149.1 (JTAG) Timing, Nexus Timing, External Interrupt Timing, and
DSPI Timing sections deleted
Revision history SPC560P44Lx, SPC560P50Lx
108/112 Doc ID 14723 Rev 9
07-Jul-2009 4
Through all document:
Replaced all “RESET_B” occurrences with “RESET” through all document.
AC Tim ings : 1149.1 (JTAG) Ti ming, Nexus Timing, External I nterrupt Timing, and DSPI
Timing sections inserted again.
Electrical para me ters updat ed.
Section , Features
:
S pe cified LIN 2.1 in communications interfaces featur e.
Table 2
Added row for Data Flash.
Table 4
Added a footnote regarding the decoupling capacitors.
Table 6
Removed the “other function“ column.
Rearranged the contents.
Table 14
Updated definition of Condition column.
Table 19
merged in an unique Table the power consumption data related to "Maximum mode"
and "Airbag mode".
Table 21
merged in an unique Table the power consumption data related to "Maximum mode"
and "Airbag mode".
Table 29
Updated the parameter definition of
Δ
RCMVAR.
Removed the condition definition of
Δ
RCMVAR.
Table 29
Added t
ADC_C
and TUE rows.
Table 30
Added t
ADC_C
and TUE rows.
Removed R
sw2.
Table 33
Added.
Table 29
Updated and added footnotes.
Section 3.16.1 RESET Pin Characteristics
Replaces whole section.
Table 38
Renamed the “Flash (KB)“ heading column in “Code Flash / Data Flash (EE) (KB)“
Replaced the value of RAM from 32 to 36KB in the last four rows.
Table 46. Revision history (continued)
Date Revision Changes
SPC560P44Lx, SPC560P50Lx Revision history
Doc ID 14723 Rev 9 109/112
27-Oct-2009 5
- Added “Full Feature“ and “Airbag“ customization.
- Removed B[4] and B[5] rows from “Pin muxing” ta ble and inserted them on “System pins”
table.
- Updated package pinout.
- Rewrote entirely section “Power Up/dpwn Sequencing“ section.
- Renamend “V
DD_LV_PLL
“ and “V
SS_LV_PLL
“ supply pins with respectively “V
DD_LV_COR3
and “V
SS_LV_COR3”.
- Added explicative figures on “Electrical characteristics” section.
- Updated “Thermal characteristics“ for 100-pin.
- Proposed two different configuration of “voltage regulator. - Inserted Power Up/Down
sequence.
- Added explicative figures on “DC Electrical characteristics”.
- Added “I/O pad current specification” section.
- Renamed the “Airbag mode” with “Typical mode“and updated the values on “supply
current” tables.
- Added more order code.
06-Apr-2010 6
Inserted label of Y-axis in the “Independent ADC supply“ figure.
“Recommended Operating Conditions” tables:
Moved the T
J
row to “Absolute Maximum Ratings“ table.
Rewrite note 1 and 3
Inverted M in a Typ value of C
DEC2
on ”Voltage Regul ato r Electrical Characteris ti cs ” t ab le.
Removed an useles s duplicate of “Voltage Regulator Electrical Characteristics“ table.
Inserted the name of C
S
into “Input Equivalent Circuit“ figure.
Removed leakage Iv pp from datasheet.
Updated “Supply Current” tables.
Added note on “Output pin transition times“ table.
Updated ”Temperature Sensor Electrical Characteristics” table.
Updated “16 MHz RC Oscillator Electrical Characteristics” table.
Removed the note about the condition from “Flash read access timing“ table.
Removed the notes that assert the values need to be confirmed before validation.
07-Apr-2011 7
Formattin g and edi torial changes through out
Removed all content referencing Junction Temperature Sensor
Cover page Features:
CPU core— specified 64 MHz frequency
updated memory features
eTimer units: changed “up/down capabilities” to “up/down count capabilities”
ADC—change d “2 × 13 input chan nels” to “2 × 11 input channels , + 4 shar ed chan nels”
replaced “On-chip CAN/UART/FlexRay bootstrap loader” with “On-chip CAN/UART
bootstrap loader”
Section 1: Introduction
: changed title (was: Overview); reorganized contents
SPC560P44Lx, SPC560P50Lx device comparis on:
ADC feature: chang ed “16 chann els” to “15-ch annel”; ad ded foo tnote t o to in dicat e that
four channels are shared between the two ADCs
removed SPC560P40 column
changed “dual channel” to “selectable single or dual channel support” in FlexRay
footnote
updated “eTimer” feature
updated footnote relative to “Digital power supply” feature
Table 46. Revision history (continued)
Date Revision Changes
Revision history SPC560P44Lx, SPC560P50Lx
110/112 Doc ID 14723 Rev 9
07-Apr-2011 7
(cont’d)
SPC560P4 4Lx, SPC560P50L x device c onfiguratio n diffe rences: Re moved “temper ature”
row (temperature information is provided in Order codes)
Updated SPC560P44Lx, SPC560P50Lx block diagram
Added SPC560P44Lx, SPC560P50Lx series block summary
Added
Section 1.5 Feature details
Section 2.1, Package pinouts
: removed alternate functions from pinout diagrams
Supply pins: updated descriptions of power supply pins (1.2 V)
System pin s: upd ated ta ble
Pin muxing: added rows “B[4]” and “B[5]
Sect ion 3. 3, Absolute maximum ratings
: added voltage specifications to titles of
Figure 5
and
Figure 6
; in
Table 9
, changed row “V
SS_HV
/ Digital Ground” to “V
SS
/ Device
Ground”; updated symbols
Section 3.4, Rec ommende d o peratin g con dition s
: added volt age sp ecificat ions to titles of
Figure 7
and
Figure 8
Recommended operating conditions (5.0 V), and Recommended operating conditions
(3.3 V): changed row “V
SS_HV
/ Digital Ground” to “V
SS
/ Device Ground”; updated
symbols
Updated
Section 3.5.1, Package thermal characteristics
Updated
Section 3.6, Electromagnetic interference (EMI) characteristics
Section 3.8.1, Voltage reg ula tor el ec tric al cha rac teri sti cs
: amended titl es of
Table 16
and
Table 19
Voltage regulator electrical characteristics (configuration without resistor on base) and
Voltage regulator electrical characteristics (configuration with resistor on base):
updat ed sy mb ol and value s for V
DD_LV_REGCOR
Low voltage monitor electrical characteristics: Updated V
MLVDDOK_H
max val ue—w a s
1.15 V; is 1.145 V
Section 3.10, DC electrical characteristics
: reorganize d con t ents
Updated
Section 3.10.1, NVUSRO register
(includes adding
Section NVUSRO[OSCILLATOR_MARGIN] field description
)
Supply current (5.0 V, NVUSRO[PAD3V5V] = 0): updated symbols
Corrected parameter descriptions in DC electrical characteristics (3.3 V,
NVUSRO[PAD3V5V] = 1):
–V
OL_F
—was “Fast, high level output voltage”; is “Fast, low level output voltage”
–V
OL_SYM
—was “Symmetric, high level output voltage”; is “Symmetric, low level output
voltage”
Supply current (3.3 V, NVUSRO[PAD3V5V] = 1): updated symbols
Main oscillator output electrical characteristics (5.0 V , NVUSRO[P AD3V5 V] = 0): replaced
instances of EXTAL with XTAL
Main oscillator output electrical characteristics (3.3 V , NVUSRO[P AD3V5 V] = 1): replaced
instances of EXTAL with XTAL
FMPLL electrical characteristics: replaced “PLLMRFM” with “FMPLL” in table title;
updat ed con di tion s; remov ed f
sys
row; updated f
FMPLLOUT
min value
ADC conversion characteristics: updated symbols; added row t
ADC_PU
Flash memory read ac cess timing: added footnote to “Conditions” column
Section 3.16.1, Pad AC spec ifications
: added P ad outp ut dela y dia gram
In the range of figures “DSPI Classic SPI Timing — Master, CPHA = 0” to “DSPI PCS
Strobe (PCSS) Timing”: added note
Updated Order codes
Updated “Commercial product code structure” figure
Table 45
: Added abbreviations “DUT”, “NPN”, and “RBW”
Table 46. Revision history (continued)
Date Revision Changes
SPC560P44Lx, SPC560P50Lx Revision history
Doc ID 14723 Rev 9 111/112
18-Jul-2012 8
Updated
Table 1 (D evice summary)
Section 1.5.4, Flash memory
: Changed “Data flash memory: 32-bit ECC” to “Data flash
memory: 64-bit ECC”
Figure 40 (Commercial product code structure)
, replaced "C = 60 MHz, 5 V" and "D = 60
MHz, 3.3 V" with respectively "C = 40 MHz, 5 V" and "D = 40 MHz, 3.3 V"
Table 9 (Absolute maximum ratings)
, updated TV
DD
parameter, the mini mum value to
3.0 V/s and the maximum value to 0.5 V/µs
Table 7 (Pin muxing)
, changed the description in the column "I/O direction" from "I/O" to
"O" for the followi ng port pin s:
A[10] with function B[0]
A[11] with function A[0]
A[11] with function A[2]
A[12] with function A[2]
A[12] with function B[2]
A[13] with function B[2]
C[7] with function A[1]
C[10] with function A[3]
C[15] with function A[1]
D[0] with function B[1]
D[10] with function A[0]
D[11] with function B[0]
D[13] with function A[1]
D[14] with function B[1]
Updated
Section 3.8.1, Voltage regulator electrical characteristics
Added
Table 27 (I/O consumption)
Section 3.10, DC electrical characteristics
:
deleted refe renc es to “oscillator margin”
deleted subsection “NVUSRO[OSCILLATOR_MARGIN] field description”
Table 21 (DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0))
, added IPU row
for RESET pin
Table 23 (DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1))
, added IPU row
for RESET pin
Table 33 (ADC conversion characteristics)
, added V
INAN
entry
Removed “Order codes” table
Figure 40 (Commercial product code structure)
:
added a footnote
updated “E = Data flash memory
18-Sep-2013 9 Updated Disclaimer
Table 46. Revision history (continued)
Date Revision Changes
SPC560P44Lx, SPC560P50Lx
112/112 Doc ID 14723 Rev 9
Please Read Carefully:
Informa tion in this do cument is prov ided solely in connec tion with ST products. STMic roelect ronics NV and its subsidiari es (“ST”) reser ve the
right to mak e chang es, c or recti ons , modif ic ations or improv ement s, t o th is documen t, and the prod ucts an d servic es des crib ed he rein a t any
time, without notice.
All ST produ cts are sold purs uant to ST’s terms and condit ions of sale.
Purchasers are solely responsible for the choice, selec tion and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST product s and services described herein.
No license, express o r implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST produ cts with provis ions different f rom the statement s and/or technic al features set forth in this document shall i mmediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liabili ty of ST.
ST and the ST logo are trademarks or registered trademark s of ST in various countries.
Information in this document supersedes and replaces all informa tion previously supplied.
The ST logo is a registered t rademark of STMicroelectronics. All other names are the property of their respec tive owners.
© 2013 STMicroelec tronics - All right s re se rv ed
STMicroelectronic s group of compani es
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switz erland - United Kingdom - United States of America
www.st.com