HIGH RIPPLE-REJECTION AND LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.6.0_00 S-1112/1122 Series
Seiko Instruments Inc. 9
Electrical Characteristics Table 7 (Ta = 25°C unless otherwise specified)
Item Symbol Conditions Min. Typ. Max. Unit
Test
Circuit
Output voltage*1 VOUT(E) V
IN = VOUT(S) + 1.0 V, IOUT = 30 mA VOUT(S)
× 0.99 VOUT(S)
VOUT(S)
× 1.01 V 1
Output current*2 IOUT V
IN ≥ VOUT(S) + 1.0 V 150*5 ⎯ ⎯ mA 3
Dropout voltage*3 Vdrop I
OUT = 100 mA 1.5 V ≤ VOUT(S) ≤ 1.6 V ⎯ 0.32 0.55 V 1
1.7 V ≤ VOUT(S) ≤ 1.8 V ⎯ 0.28 0.47 V 1
1.9 V ≤ VOUT(S) ≤ 2.3 V ⎯ 0.25 0.35 V 1
2.4 V ≤ VOUT(S) ≤ 2.7 V ⎯ 0.20 0.29 V 1
2.8 V ≤ VOUT(S) ≤ 5.5 V ⎯ 0.19 0.26 V 1
Line regulation OUTIN
OUT1
VVV
Δ
Δ VOUT(S) + 0.5 V ≤ VIN ≤ 6.5 V,
IOUT = 30 mA ⎯ 0.05 0.2 % / V 1
Load regulation ΔVOUT2 VIN = VOUT(S) + 1.0 V,
1.0 mA ≤ IOUT ≤ 80 mA ⎯ 12 40 mV 1
Output voltage
temperature coefficient*4 OUT
OUT
VTa
V
•Δ
Δ VIN = VOUT(S) + 1.0 V, IOUT = 10 mA,
−40°C ≤ Ta ≤ 85°C ⎯ ±100 ⎯ ppm/
°C 1
Current consumption
during operation ISS1 VIN = VOUT(S) + 1.0 V, ON/OFF pin = ON,
no load ⎯ 50 90 μA 2
Current consumption
during shutdown ISS2 VIN = VOUT(S) + 1.0 V, ON/OFF pin = OFF,
no load ⎯ 0.1 1.0 μA 2
Input voltage VIN ⎯ 2.0 ⎯ 6.5 V ⎯
Shutdown pin
input voltage “H” VSH V
IN = VOUT(S) + 1.0 V, RL = 1.0 kΩ 1.5 ⎯ ⎯ V 4
Shutdown pin
input voltage “L” VSL V
IN = VOUT(S) + 1.0 V, RL = 1.0 kΩ ⎯ ⎯ 0.3 V 4
Shutdown pin
input current “H” ISH V
IN = 6.5 V, VON/OFF = 6.5 V −0.1 ⎯ 0.1 μA 4
Shutdown pin
input current “L” ISL V
IN = 6.5 V, VON/OFF = 0 V −0.1 ⎯ 0.1 μA 4
Ripple rejection RR
VIN = VOUT(S) + 1.0 V, f = 1.0 kHz,
ΔVrip = 0.5 Vrms, IOUT = 30 mA ⎯ 80 ⎯ dB 5
Short-circuit current Ishort VIN = VOUT(S) + 1.0 V, ON/OFF pin = ON,
VOUT = 0 V ⎯ 200 ⎯ mA 3
*1. VOUT(S): Specified output voltage
VOUT(E): Actual output voltage at the fixed load
The output voltage when fixing IOUT(= 30 mA) and inputting VOUT(S) + 1.0 V
*2. The output current at which the output voltage becomes 95% of VOUT(E) after gradually increasing the output current.
*3. Vdrop = VIN1 − (VOUT3 × 0.98)
V
OUT3 is the output voltage when VIN = VOUT(S) + 1.0 V and IOUT = 100 mA.
VIN1 is the input voltage at which the output voltage becomes 98% of VOUT3 after gradually decreasing the input voltage.
*4. The change in temperature [mV/°C] is calculated using the following equation.
[] [] []
1000C/ppm
VTaV
VVC/mV
Ta
V OUT
OUT
OUT(S)
OUT ÷°
•Δ
Δ
×=°
Δ
Δ3*2*1*
*1. The change in temperature of the output voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
*5. The output current can be at least this value.
Due to restrictions on the package power dissipation, this value may not be satisfied. Attention should be paid to the
power dissipation of the package when the output current is large.
This specification is guaranteed by design.