File Number 2024 Avalanche Energy Rated N-Channel Power MOSFETs 7.0A and 8.0A, 60V-100V ros(on) = 0.180 and 0.250 Features: @ Single pulse avalanche energy rated @ SOA is power-dissipation limited @ Nanosecond switching speeds li Linear transfer characteristics @ High input impedance The IRFF130R, IRFF131R, IRFF132R and IRFF133R are ad- vanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. These are n-channel en- hancement-moade silicon-gate power field-effect transis- tors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and driv- ers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRFF-types are supplied in the JEDEC TO-205AF (LOW-PROFILE TO-39) metal package. Absolute Maximum Ratings N-CHANNEL ENHANCEMENT MODE 92C5- 42658 TERMINAL DIAGRAM TERMINAL DESIGNATION GATE SOURCE DRAIN (CASE) JEDEC TO-205AF Rugged Power MOSFETs IRFF130R, IRFF131R, IRFF132R, IRFF133R Parameter IRFF130R | IRFF131R | IRFF132R | IRFF133R Units Vos Drain - Source Voltage 100 60 100 60 v Vocr Drain - Gate Voltage (Ras = 20 KQ) @ 100 60 100 60 Vv In @ Te = 25C Continuous Drain Current 8.0 8.0 7.0 7.0 A lom Pulsed Drain Current @ 32 32 28 28 A Ves Gate - Source Voltage +20 Vv Pp @ Te = 26C Max. Power Dissipation 25 (See Fig. 14) Ww Linear Derating Factor 0.2 (See Fig.. 14) w/ec Eas Single Pulse Avalanche Energy Rating @ 69 mj Ts Operating Junction and -55 to 150 C Tato Storage Temperature Range Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s) C 6-219Rugged Power MOSFETs IRFF130R, IRFF131R, IRFF132A, IRFF133R Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. Max. | Units Test Conditions BVoss Drain - Source Breakdown Voitage | IRFF130R _ mFFI32R | 1 | | | V_ | Ves=ov IRFF131R IRFF133R 60 _ _ v Ip = 250uA Vesin_ Gate Threshold Voltage ALL 2.0 _ 4.0 Vv Vos = Ves, lo = 2504 A less Gate-Source Leakage Forward ALL = = 100 nA Vas = 20V lass Gate-Source Leakage Reverse ALL = = -100 nA Ves = -20V loss Zero Gate Voitage Drain Current = _ 250 HA Vos = Max. Rating, Ves = OV ALL _ 1000 HA Vos = Max. Rating x 0.8, Vas = OV, To = 125C Intom = On-State Drain Current @ IRFFIZ0R | gg _ _ A IRFFI3IR Vos > Ipten: X Reston max. Ves = 10V IRFFI32R | 79 _ _ A IRFF133R : Rosion Static Drain-Source On-State IRFF130R Resistance @ IRFF131R | 0.14 | 0.18 Q _ _ \RFFI32R Ves = 10V, lo = 4.0A IRFFI33R | | 920 | 925 | 9 Qte Forward Transconductance @ ALL 4.0 6.5 - S(U)_| Vos > loton X Rosionmax, 1p = 4.0A Cisse Input Capacitance ALL 600 = pF Ves = OV, Vos = 25V, f= 1.0 MHz Coss Output Capacitance ALL 300 = pF See Fig. 10 Crs _ Reverse Transfer Capacitance ALL _ 100 = pF : taton Turn-On Delay Time ALL _ 30 50 ns Voe = 0.5 BVoss, Ip = 4.0A, Zo = 502 t Rise Time ALL _ 80 150 ns See Fig. 17 tatotn Turn-Oft Delay Time ALL 50 100 ns (MOSFET switching times are essentially t Fall Time ALL _ 80 150 ns independent of operating temperature.) Q, Totat Gate Charge ALL _ 18 30 nc Ves = 10V, Ip = 18A, Vos = 0.8V Max. Rating. (Gate-Source Pius Gate-Drain) See Fig. 18 for test circuit. (Gate charge is Qes Gate-Source Charge ALL 9.0 = nc__| essentially independent of operating Qys__ Gate-Drain (Miller) Charge ALL = [90 | [nc_| temperature.) Lo Internal Drain Inductance ALL ~ 5.0 _ nH Measured from the Modified MOSFET drain lead, 5 mm symbol showing the (0.2 in.) from header internal device , to center of die. inductances , uD Ls Internal Source Inductance ALL - 15 - nH Measured from the source lead, 5 mm (0.2 in.) from s header to source s bonding pad. ence orees Thermal Resistance RaJC Junction-to-Case ALL = = 5.0 C/W. RaJA Junction-to-Ambient ALL _ = 175 C/W | Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current IRFF130R | _ 8.0 A Modified MOSFET symbol (Body Diode) IRFFISIR showing the integral > IRFF132R 0 A reverse P-N junction rectifier. iRFF133R | | | - Ism Pulse Source Current IRFF130R | _ 32 A bo (Body Diode) @ IRFF131R IRFF132R set neen IRFFI33R | ~ | | 76 | A Vso Diode Forward Voltage @ iRFF130R _ _ _ = iRFF131R _ 2.5 v Tc = 28C, Is = 8.0A, Vas = OV IRFF132R = = = IRFF133R _- 2.3 Vv Te = 25C, is = 7.0A, Vas = OV te Reverse Recovery Time ALL = 300 = ns Ts = 150C, te = 8.0A, dip/dt = 100A/us, Qaa Reverse Recovered Charge ALL = 15 _ 9 Ty = 150C, Ir = 8.0A, die/dt = 100A/us ton Forward Turn-on Time ALi Intrinsic turn-on time is negligible. Turn-on speed is substantially controtled by Ls + Lo. @ Ts = 25C ta 150C. @ Pulse Test: Pulse width <= 300yus, Duty Cycle < 2%. Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5). @ Voo = 25V, starting Ts = 25C, L = 1.62mH, Ros = 250, Ipeax = 8A. 6-220Rugged Power MOSFETs Zrngelt/ Ryn se. NORMALIZED EFFECTIVE TRANSIENT THEAMAL IMPEDANCE (PER UNIT) 16 a 2 = = z 2 - = & = = 3 zt < = a 3 a 0 10 20 30 0 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics 10 Wus PULSE TEST 8 g = = = 6 = = = 2 = S 3 z < = a 2 2 0 a4 as 42 16 Vps. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics LS THERMAL IMPEDANCE) tos 2 5 wt 2 5 193 $0 IRFF130R, IRFF131R, IRFF132R, IRFF133R 20 Vos > 'bton) * Rastont mex. tp, ORAIN CURRENT (AMPERES) Ty* Tye 0 i 4 6 8 10 Vs. GATE-TO-SQUACE VOLTAGE (VOLTS) Fig. 2 Typical Transfer Characteristics 100 QPERATION IN THIS $0 AREA IS LIMITED 8Y Roston) 20 [IRF 182R, a = = 10 2 = < = $ = a = 2B 2 z = 10 S 2 Te = 25C 0s Ty = 150C MAX Rinuc 7 50C W 02 SINGLE PULSE oc IAFF131R, 37 IAFF 130R, 2R a1 10 2 5 10 20 $0 100 200 500 Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 4 Maximum Safe Operating Area t cos 1 DUTY FACTOR. 0 = z 2. PER UNIT BASE - Rinyc = 50 DEG CW 3. Tam - Te = Pom 2tnuctt 2 5 wl 2 5 10 z 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 6-221Rugged Power MOSFETs IRFF130R, IRFF131R, IRFF132A, IRFF133R 6-222 fy. TRANSCONDUCTANCE (SIEMENS) Vos > 'ptony * 8psion) max. 90 a PULSE TEST 8 s 0 8 2 % Ip. DRAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current BV pss DRAIN-TO- SOURCE BREAKOOWN VOLTAGE INORMALIZED} 125 120 2 g 2 we a 60 40-200 O70 BD 120 Ty, JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature 1 1600 Cig * Cyy? Cyd. Cap SHORTED Cong = Cog = Cas? Cog C, CAPACITANCE taf) o 10 20 nn 40 0 Vos. OMAIN TO SOURCE VOLTAGE (VOLTS) 440 Fig. 10 Typical Capacitance Vs. Orain-to-Source Voltage Ty + 250C ipp. REVERSE DRAIN CURRENT (AMPERES) 0 as 10 8 20 25 30 Vgp. SOURCE TO DRAIN VOLTAGE (VOLTS! Fig. 7 Typical Source-Drain Diode Forward Voltage O SQURCE ON STATE RESISTANCE ANORMALIZEG) Vgg* tov 1p 7 4A Alasiony. ORAIN T! -60 400-20 Q 20 40 a0 6100120 140) Ty, SUNCTION TEMPERATURE 10C} Fig. 9 Normalized On-Resistance Vs. Temperature Ip * 10a FOR TEST CIRCUIT t * ~ SEE FIGURE 18 ~~ i | J Lo 16 28 a 8 2 40 Vgg. GATE TO SOURCE VOLTAGE VOLTS! Qy. TOTAL GATE CHARGE tnC) Fig. 11 Typical Gate Charge Vs. Gate-to-Source VoltageRugged Power MOSFETs IRFF130R, IRFF131R, IRFF132R, IRFF133R 19 06 T gz Rpsion MEASURED WITH CURRENT PULSE OF z 2.0 ys DURATION. INITIAL Ty = 25C (HEATING = 05 [ EFFECT OF 20 ys PULSE IS MINIMAL.) 8 3 z a < a 3 4 gos z=, IRFF 130A, 1R z Vgs > tov = w S e 03 | = 5 > o a z4 IRFF132A, 3R 2 / z= 02 a z 7 3 ny 2 = 2 01 v 2 z cs | 20 = 0 0 40 20 30 40 50 60 25 so 5 100 175 150 Ip. ORAIN CURRENT (AMPERES) Tc, CASE TEMPERATURE (C) Fig. 12 Typical On-Resistance Vs. Drain Current Fig. 13 Maximum Drain Current Vs. Case Temperature: 40 Po, POWER DISSIPATION (WATTS) ~ 0 2 a0 60 80 100 12000 (140 Tr. CASE TEMPERATURE {C} Fig. 14 Power Vs. Temperature Derating Curve VARY tp TO OBTAIN REQUIRED PEAK I, + = Yoo Vest tov i Fe 0.012 92CS- 42660 Fig. 16 Unclamped Energy Waveforms 92CS- 472659 Fig. 15 Unclamped Energy Test Circuit Vos CURAENT {ISOLATED REGULATOR SUPPLY) & SAME TYPE Aosust m, ro oaTain | - SPECIFIED Ip 1av RL BATTERY "" , >- 10 SCOPE ol E Wa encavencr PL. | [sea 0 ---- Fig. 17 Switching Time Test Circuit -Vos CURRENT = CURRENT SHUNT SHUNT Fig. 18 Gate Charge Test Circuit 6-223