©2006 Fairchild Semiconductor Corporation
1
www.fairchildsemi.com
February 2006
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
FSCQ-Series
FSCQ0565RT/FSCQ0765RT/FSCQ0965RT/FSCQ1265RT/
FSCQ1465RT/FSCQ1565RT/FSCQ1565RP
Green Mode Fairchild Power Switch (FPS™)
Features
Optimized for Quasi-Resonant Converter (QRC)
Advanced Burst-Mode Operation for under 1W
Standby Power Consumption
Pulse-by-Pulse Current Limit
Over Load Protection (OLP) – Auto Restart
Over Voltage Protection (OVP) – Auto Restart
Abnormal Over Current Protection (AOCP) – Latch
Internal Thermal Shutdown (TSD) – Latch
Under Voltage Lock Out (UVLO) with Hysteresis
Low Startup Current (typical: 25µA)
Internal High Voltage SenseFET
Built-in Soft Start (20ms)
Extended Quasi-Resonant Switching
Applications
CTV
Audio Amplifier
Related Application Notes
AN4146: Design Guidelines for Quasi-Resonant
Converters Using FSCQ-Series Fairchild Power
Switch.
AN4140: Transformer Design Consideration for
Off-Line Flyback Converters Using Fairchild Power
Switch.
Description
A Quasi-Resonant Converter (QRC) typically shows
lower EMI and higher power conversion efficiency com-
pared to conventional hard-switched converter with a
fixed switching frequency. Therefore, a QRC is well
suited for noise-sensitive applications, such as color TV
and audio. Each product in the FSCQ-Series contains an
integrated Pulse Width Modulation (PWM) controller and
a SenseFET, and is specifically designed for quasi-
resonant off-line Switch Mode Power Supplies (SMPS)
with minimal external components. The PWM controller
includes an integrated fixed frequency oscillator , under v olt-
age lockout, leading edge blanking (LEB), optimized gate
driver, internal soft star t, temperature-compensated pre-
cise current sources for a loop compensation, and self
protection circuitry. Compared with a discrete MOSFET
and PWM controller solution, the FSCQ-Series can
reduce total cost, component count, size , and weight, while
simultaneously increasing efficiency, productivity, and sys-
tem reliability. These de vices provide a basic platform that
is well suited for cost-effective designs of quasi-resonant
switching flyback converters.
Ordering Information
YDTU: Forming Type
VDTU: Forming Type
Product Number Package Marking Code BVdss R
ds(ON)
Max.
FSCQ0565RTYDTU TO-220F-5L (Forming) CQ0565RT 650V 2.2
FSCQ0765RTYDTU TO-220F-5L (Forming) CQ0765RT 650V 1.6
FSCQ0965RTYDTU TO-220F-5L (Forming) CQ0965RT 650V 1.2
FSCQ1265RTYDTU TO-220F-5L (Forming) CQ1265RT 650V 0.9
FSCQ1465RTYDTU TO-220F-5L( Forming) CQ1465RT 650V 0.8
FSCQ1565RTYDTU TO-220F-5L (Forming) CQ1565RT 650V 0.7
FSCQ1565RPVDTU TO-3PF-7L (Forming) CQ1565RP 650V 0.7
2
www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Typical Circuit
Figure 1. Typical Flyback Application
Table 1. Maximum Output Power
Notes:
1. Maximum practical continuous power in an open frame design at 50
°
C ambient.
2. 230 VAC or 100/115 VAC with doubler.
3. The junction
t
emperature can limit the
maximum output power.
Output Power Table
3
Product
230 V AC
±
15%
2
85–265 V AC
Open Frame
1
Open Frame
1
FSCQ0565RT 70W 60W
FSCQ0765RT 100W 85W
FSCQ0965RT 130W 110W
FSCQ1265RT 170W 140W
FSCQ1465RT 190W 160W
FSCQ1565RT 210W 170W
FSCQ1565RP 250W 210W
VCC
GND
Drain
Sync
VO
PWM
VFB
AC
IN
FSCQ-Series
3
www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Internal Block Diagram
Figure 2. Functional Block Diagram of FSCQ-Series
9V/15V
3 1
2
4
Auxiliary
Vref Main Bias
S
Q
Q
R
OSC
VCC
Vref Vref
Idelay
IFB
VSD
TSD
Vovp
Sync
Vocp
S
Q
Q
R
R
2.5R
VCC good
VCC good
(VCC = 9V)
Vcc Drain
VFB
GND
AOCP
Gate
Driver
LEB
600ns
PWM
Soft Start
Internal
Bias
VBurst
IB
Vref
IBFB
Burst Mode
Controller
Normal Operation Normal
Operation
Burst Switching
5
Sync
Quasi-Resonant
(QR) Switching
Controller
+
-
+
-
S
Q
Q
R
Power Off Reset (VCC = 6V)
4.6V/2.6V: Normal QR
3.0V/1.8V: Extended QR
fs
Threshold
4
www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Pin Configuration
Figure 3. Pin Configuration (Top View)
Pin Definitions
Pin Number Pin Name Pin Function Description
1Drain High voltage power SenseFET drain connection.
2 GND This pin is the control ground and the SenseFET source.
3Vcc This pin is the positive supply input. This pin provides internal operating current for
both start-up and steady-state operation.
4Vfb This pin is internally connected to the inverting input of the PWM comparator.
The collector of an optocoupler is typically tied to this pin. For stable operation,
a capacitor should be placed between this pin and GND. If the voltage of this
pin reaches 7.5V, the over load protection triggers
,
which results in the FPS
shutting down.
5 Sync This pin is internally connected to the sync detect comparator
for quasi-resonant
switching. In normal quasi-resonant operation, the threshold of the sync
comparator is 4.6V/2.6V. Whereas, the sync threshold is changed to 3.0V/1.8V
in an extended quasi-resonant operation.
5. Sync
4. Vfb
3. Vcc
2. GND
1. Drain
TO-220F-5L
5. Sync
4. Vfb
3. Vcc
2. GND
1. Drain
TO-3PF-7L
5
www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Absolute Maximum Ratings
(T
A
= 25°C, unless otherwise specified)
Parameter Symbol Value Unit
Drain Pin Voltage V
DS
650 V
Supply Voltage V
CC
20 V
Analog Input Voltage Range V
sync
-0.3 to 13V V
V
FB
-0.3 to V
CC
V
Drain Current Pulsed
4
I
DM
FSCQ0565RT 11.2 A
FSCQ0765RT 15.2
FSCQ0965RT 16.4
FSCQ1265RT 21.2
FSCQ1465RT 22
FSCQ1565RT 26.4
FSCQ1565RP 33.2
Continuous Drain Current (Tc = 25
°
C)
(Tc: Case Back Surface Temperature) I
D
FSCQ0565RT 2.8 A
(rms)
FSCQ0765RT 3.8
FSCQ0965RT 4.1
FSCQ1265RT 5.3
FSCQ1465RT 5.5
FSCQ1565RT 6.6
FSCQ1565RP 8.3
Continuous Drain Current* (T
DL
= 25
°
C)
(T
DL:
Drain Lead Temperature) I
D
* FSCQ0565RT 5 A
(rms)
FSCQ0765RT 7
FSCQ0965RT 7.6
FSCQ1265RT 11
FSCQ1465RT 12
FSCQ1565RT 13.3
FSCQ1565RP 15
Continuous Drain Current (T
C
= 100
°
C) I
D
FSCQ0565RT 1.7 A
(rms)
FSCQ0765RT 2.4
FSCQ0965RT 2.6
FSCQ1265RT 3.4
FSCQ1465RT 3.5
FSCQ1565RT 4.4
FSCQ1565RP 5.5
Single-Pulsed Avalanche Energy
5
E
AS
FSCQ0565RT 400 mJ
FSCQ0765RT 570
FSCQ0965RT 630
FSCQ1265RT 950
FSCQ1465RT 1000
FSCQ1565RT 1050
FSCQ1565RP 1050
6
www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Notes:
4. Repetitive rating: pulse width limited by maximum junction temperature.
5. L = 15mH, starting T
j
= 25
°
C, These parameters, although guaranteed at the design, are not tested in mass production.
Thermal Impedance
(T
A
= 25°C unless otherwise specified)
Total Power Dissipation
(Tc = 25
°
C with Infinite Heat Sink) P
D
FSCQ0565RT 38 W
FSCQ0765RT 45
FSCQ0965RT 49
FSCQ1265RT 50
FSCQ1465RT 60
FSCQ1565RT 75
FSCQ1565RP 98
Operating Junction Temperature T
J
+150
°
C
Operating Ambient Temperature T
A
-25 to +85
°
C
Storage Temperature Range T
STG
-55 to +150
°
C
ESD Capability, HBM Model (All pins except Vfb) 2.0
(GND – Vfb = 1.7kV) kV
ESD Capability, Machine Model (All pins except Vfb) 300
(GND – Vfb = 170V) V
Parameter Symbol Value Unit
Junction to Case Thermal Impedance
θ
JC
FSCQ0565RT 3.29
°
C/W
FSCQ0765RT 2.60
FSCQ0965RT 2.55
FSCQ1265RT 2.50
FSCQ1465RT 2.10
FSCQ1565RT 2.00
FSCQ1565RP 1.28
Absolute Maximum Ratings
(Continued)
(T
A
= 25°C, unless otherwise specified)
7
www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Electrical Characteristics (SenseFET Part)
(T
A
= 25°C unless otherwise specified)
Parameter Symbol Condition Min. Typ. Max. Unit
Drain-Source Breakdown Voltage BV
DSS
V
GS
= 0V, I
D
= 250
µ
A 650 V
Zero Gate Voltage Drain Current I
DSS
V
DS
= 650V,V
GS
= 0V 250
µ
A
Drain-Source ON-State
Resistance R
DS(ON)
FSCQ0565RT V
GS
= 10V, I
D
= 1A 1.76 2.2
FSCQ0765RT V
GS
= 10V, I
D
= 1A 1.4 1.6
FSCQ0965RT V
GS
= 10V, I
D
= 1A 1.0 1.2
FSCQ1265RT V
GS
= 10V, I
D
= 1A 0.75 0.9
FSCQ1465RT V
GS
= 10V, I
D = 1A 0.7 0.8
FSCQ1565RT VGS = 10V, ID = 1A 0.53 0.7
FSCQ1565RP VGS = 10V, ID = 1A 0.53 0.7
Input Capacitance CISS FSCQ0565RT VGS = 0V, VDS = 25V,
f = 1MHz 1080 pF
FSCQ0765RT 1415
FSCQ0965RT 1750
FSCQ1265RT 2400
FSCQ1465RT 2400
FSCQ1565RT 3050
FSCQ1565RP 3050
Output Capacitance COSS FSCQ0565RT VGS = 0V, VDS = 25V,
f = 1MHz –90– pF
FSCQ0765RT 100
FSCQ0965RT 130
FSCQ1265RT 175
FSCQ1465RT 185
FSCQ1565RT 220
FSCQ1565RP 220
8www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Electrical Characteristics (Continued)
(TA = 25°C unless otherwise specified)
Notes:
6. These parameters, although guaranteed, are tested only in EDS (wafer test) process.
7. These parameters, although guaranteed at the design, are not tested in mass production.
Parameter Symbol Condition Min. Typ. Max. Unit
Control Section
Switching Frequency FOSC VFB = 5V, VCC = 18V 18 20 22 kHz
Switching Frequency Variation7FOSC -25°C TA 85°C0±5 ±10 %
Feedback Source Current IFB VFB = 0.8V, VCC = 18V 0.5 0.65 0.8 mA
Maximum Duty Cycle DMAX VFB = 5V, VCC = 18V 92 95 98 %
Minimum Duty Cycle DMIN VFB = 0V, VCC = 18V 0 %
UVLO Threshold Voltage VSTART VFB = 1V 14 15 16 V
VSTOP 8910
Soft Start Time6TSS 18 20 22 ms
Burst Mode Section
Burst Mode Enable Feedback Voltage VBEN 0.25 0.40 0.55 V
Burst Mode Feedback Source Current IBFB VFB = 0V 60 100 140 µA
Burst Mode Switching Time TBS VFB = 0.9V, Duty = 50% 1.2 1.4 1.6 ms
Burst Mode Hold Time TBH VFB = 0.9V 0V 1.2 1.4 1.6 ms
Protection Section
Shutdown Feedback Voltage VSD VCC = 18V 7.0 7.5 8.0 V
Shutdown Delay Current IDELAY VFB = 5V, VCC = 18V 4 5 6 µA
Over Voltage Protection V OVP VFB = 3V 11 12 13 V
Over Current Latch Voltage6VOCL VCC = 18V 0.9 1.0 1.1 V
Thermal Shutdown Temp7TSD 140 °C
9www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Electrical Characteristics (Continued)
(TA = 25°C unless otherwise specified)
Notes:
9. This parameter is the current flowing in the control IC.
10. These parameters indicate inductor current.
11. These parameters, although guaranteed, are tested only in EDS (wafer test) process.
Parameter Symbol Condition Min. Typ. Max. Unit
Sync Section
Sync Threshold in Normal QR (H) VSH1 VCC = 18V, VFB = 5V 4.2 4.6 5.0 V
Sync Threshold in Normal QR (L) VSL1 2.3 2.6 2.9 V
Sync Threshold in Extended QR (H) VSH2 2.7 3.0 3.3 V
Sync Threshold in Extended QR (L) VSL2 1.6 1.8 2.0 V
Extended QR Enable Frequency FSYH –90–kHz
Extended QR Disable Frequency FSYL –45–kHz
Total Device Section
Operating Supply Current9
- In Normal Operation IOP FSCQ0565RT VFB = 5V 4 6 mA
FSCQ0765RT 4 6
FSCQ0965RT 6 8
FSCQ1265RT 6 8
FSCQ1465RT 7 9
FSCQ1565RT 7 9
FSCQ1565RP 7 9
- In Burst Mode (Non-switching) IOB VFB = GND 0.25 0.50 mA
Startup Current ISTART VCC = VSTART – 0.1V 25 50 µA
Sustain Latch Current11 ISN VCC = VSTOP – 0.1V 50 100 µA
Current Sense Section
Maximum Current Limit10 ILIM FSCQ0565RT VCC = 18V, VFB = 5V 3.08 3.5 3.92 A
FSCQ0765RT 4.4 5 5.6
FSCQ0965RT 5.28 6.0 6.72
FSCQ1265RT 6.16 7 7.84
FSCQ1465RT 7.04 8.0 8.96
FSCQ1565RT 7.04 8 8.96
FSCQ1565RP 10.12 11.5 12.88
Burst Peak Current IBUR(pk) FSCQ0565RT VCC = 18V, VFB = Pulse 0.45 0.65 0.85 A
FSCQ0765RT 0.65 0.9 1.15
FSCQ0965RT 0.6 0.9 1.2
FSCQ1265RT 0.8 1.2 1.6
FSCQ1465RT 0.6 0.9 1.2
FSCQ1565RT 1
FSCQ1565RP 1
10 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Electrical Characteristics
-50 0 50 100 150
0.8
1.0
1.2
Temp (°C)
-50 0 50 100 150
Temp (°C) -50 0 50 100 150
Temp (°C)
-50 0 50 100 150
Temp (°C) -50 0 50 100 150
Temp (°C)
-50 0 50 100 150
Temp (°C)
Operating Supply Current
Start-Up Current Start Threshold Voltage
Stop Threshold Voltage Initial Frequency
Burst-mode Supply Current (Non-Switching)
Normalized to 25°CNormalized to 25°C
Normalized to 25°C
Normalized to 25°C
Normalized to 25°CNormalized to 25°C
0.6
0.8
1.0
1.2
1.4
0.6
0.8
1.0
1.2
1.4
0.90
0.95
1.00
1.05
1.10
0.90
0.95
1.00
1.05
1.10
0.90
0.95
1.00
1.05
1.10
11 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Electrical Characteristics (Continued)
0.90
0.95
1.00
1.05
1.10
0.90
0.95
1.00
1.05
1.10
0.8
0.9
1.0
1.1
1.2
0.8
0.9
1.0
1.1
1.2
0.8
0.9
1.0
1.1
1.2
-50 0 50 100 150
Temp (°C) -50 0 50 100 150
Temp (°C)
-50 0 50 100 150
Temp (°C)
-50 0 50 100 150
Temp (°C) -50 0 50 100 150
Temp (°C)
-50 0 50 100 150
Temp (°C)
Normalized to 25°C
Normalized to 25°C
0.90
0.95
1.00
1.05
1.10
Normalized to 25°C
Normalized to 25°C
Normalized to 25°C
Normalized to 25°C
Maximum Duty Cycle Over Voltage Protection
Shutdown Delay Current Shutdown Feedback Voltage
Feedback Source Current Burst Mode Feedback Source Current
12 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Electrical Characteristics (Continued)
0.6
0.8
1.0
1.2
1.4
0.6
0.8
1.0
1.2
1.4
0.90
0.95
1.00
1.05
1.10
0.90
0.95
1.00
1.05
1.10
0.90
0.95
1.00
1.05
1.10
0.90
0.95
1.00
1.05
1.10
-50 0 50 100 150
Temp (°C) -50 0 50 100 150
Temp (°C)
-50 0 50 100 150
Temp (°C) -50 0 50 100 150
Temp (°C)
-50 0 50 100 150
Temp (°C) -50 0 50 100 150
Temp (°C)
Normalized to 25°C
Normalized to 25°C
Normalized to 25°C
Normalized to 25°C
Normalized to 25°C
Normalized to 25°C
Feedback Offset Voltage Burst Mode Enable Feedback Voltage
Sync. Threshold in Normal QR(H) Sync. Threshold in Normal QR(L)
Sync. Threshold in Extended QR(H) Sync. Threshold in Extended QR(L)
13 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Electrical Characteristics (Continued)
0.90
0.95
1.00
1.05
1.10
-50 0 50 100 150
Temp (°C)
Normalized to 25°C
0.90
0.95
1.00
1.05
1.10
-50 0 50 100 150
Temp (°C)
Normalized to 25°C
0.90
0.95
1.00
1.05
1.10
-50 0 50 100 150
Temp (°C)
Normalized to 25°C
Extended QR Enable Frequency Extended QR Disable Frequency
Pulse-by-pulse Current Limit
14 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Functional Description
1. Star tup: Figure 4 shows the typical startup circuit and
the transformer auxiliary winding for the FSCQ-Series.
Before the FSCQ-Series begins switching, it consumes
only startup current (typically 25µA). The current sup-
plied from the AC line charges the external capacitor
(Ca1) that is connected to the Vcc pin. When Vcc
reaches the start voltage of 15V (VSTART), the FSCQ-
Series begins switching, and its current consumption
increases to IOP. Then, the FSCQ-Series continues its
normal switching operation and the power required for
the FSCQ-Series is supplied from the transfor mer auxil-
iar y winding, unless VCC drops below the stop voltage of
9V (VSTOP). To guarantee the stable operation of the
control IC, VCC has under voltage lockout (UVLO) with
6V hysteresis. Figure 5 shows the relationship between
the operating supply current of the FSCQ-Series and the
supply voltage (VCC).
Figure 4. Star tup circuit
Figure 5. Relationship Between Operating
Supply Current and Vcc Voltage
The minimum average of the current supplied from the
AC is given by:
where Vacmin is the minimum input voltage, Vstart is the
FSCQ-Series star t voltage (15V), and Rstr is the star tup
resistor. The startup resistor should be chosen so that
Isupavg is larger than the maximum startup current
(50µA).
Once the resistor value is determined, the maximum loss
in the startup resistor is obtained as:
where Vacmax is the maximum input voltage. The star tup
resistor should have properly-rated dissipation wattage.
2. Sync hr onization: The FSCQ-Series emplo ys a quasi-
resonant switching technique to minimize the switching
noise and loss. In this technique, a capacitor (Cr) is
added between the MOSFET drain and the source as
shown in Figure 6. The basic waveforms of the quasi-
resonant converter are shown in Figure 7. The external
capacitor lowers the rising slope of the drain voltage to
reduce the EMI caused when the MOSFET turns off. To
minimize the MOSFET’s switching loss, the MOSFET
should be turned on when the drain voltage reaches its
minimum value as shown in Figure 7.
Figure 6. Synchronization Circuit
FSCQ-Series
AC line
(Vacmin – Vacmax)
1N4007
Da
Isup
Rstr
VCC
Ca1 Ca2
CDC
ICC
Vstop = 9V VzVstart = 15V
IOP
VCC
IOP Value
ISTART
Power Down Power Up
FSCQ0565RT : 4mA (Typ.)
FSCQ0765RT : 4mA (Typ.)
FSCQ0965RT : 6mA (Typ.)
FSCQ1265RT : 6mA (Typ.)
FSCQ1465RT : 7mA (Typ.)
FSCQ1565RT : 7mA (Typ.)
FSCQ1565RP : 7mA (Typ.)
Isup
avg 2V
acmin
π
-----------------------------Vstart
2
--------------



1
Rstr
----------
=
Loss 1
Rstr
----------Vac
max
()
2Vstart2
+
2
-----------------------------------------------22 V
start
Vac
max
π
-----------------------------------------------------


=
CDC
Ca1 Ca2 DSY
CSY
RSY1
RSY2
RCC
VDC
Vds
VCC VCO Da
GND
Cr
Drain
Ids
Sync
+
Lm Vo
+
Np
Na
Ns
15 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Figure 7. Quasi-Resonant Operation
Waveforms
The minimum drain v oltage is indirectly detected b y mon-
itoring the Vcc winding voltage as shown in Figure 6 and
8. Choose voltage dividers, RSY1 and RSY2, so that the
peak voltage of the sync signal (Vsypk) is lower than the
OVP voltage (12V) to avoid triggering OVP in normal
operation. It is typical to set Vsypk to be lower than OVP
voltage by 3–4V. To detect the optimum time to turn on
MOSFET, the sync capacitor (CSY) should be deter-
mined so that TR is the same with TQ as shown in Figure
8. The TR and TQ are given as, respectively:
where Lm is the primary side inductance of the trans-
former, and Ns and Na are the number of turns for the
output winding and VCC winding, respectively, VFo and
VFa are the diode forward voltage drops of the output
winding and Vcc winding, respectively, and Ceo is the
sum of the output capacitance of the MOSFET and the
external capacitor, Cr.
Figure 8. Normal Quasi-Resonant
Operation Waveforms
Figure 9. Extended Quasi-Resonant Operation
In general, the QRC has a limitation in a wide load range
application, since the switching frequency increases as
the output load decreases, resulting in a severe switch-
ing loss in the light load condition. To overcome this limi-
tation, the FSCQ-Series employs an extended quasi-
resonant switching operation. Figure 9 shows the mode
change between normal and extended quasi-resonant
operations. In the normal quasi-resonant operation, the
FSCQ-Series enters into the extended quasi-resonant
operation when the switching frequency exceeds 90kHz
as the load reduces. To reduce the switching frequency,
the MOSFET is turned on when the drain voltage
VRO
VDC
Ipk
VRO
Vds
Ids
Vgs
MOSFET MOSFET
Off On
TRRSY2 CSY
In Vco
2.6
--------- RSY2
RSY1 RSY2
+
----------------------------------


=
TQπLmCeo
=
Vco NaVoVFO
+()Ns
------------------------------------------VFa
=
Vsync
Vds
MOSFET Gate
2VRO
Vrh (4.6V)
Vrf (2.6V)
ON
TQ
TR
ON
Vsypk
Switching
frequency
90kHz
Extended QR operation
Normal QR operation
Output power
45kHz
16 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
reaches the second minimum level, as shown in Figure
10. Once the FSCQ-Series enters into the extended
quasi-resonant operation, the first sync signal is ignored.
After the first sync signal is applied, the sync threshold
levels are changed from 4.6V and 2.6V to 3V and 1.8V,
respectively, and the MOSFET turn-on time is synchro-
nized to the second sync signal. The FSCQ-Series
returns to its nor mal quasi-resonant operation when the
switching frequency reaches 45kHz as the load
increases.
Figure 10. Extended Quasi-Resonant
Operation Waveforms
3. Feedback Control: The FSCQ-Series employs cur-
rent mode control, as shown in Figure 11. An optocou-
pler (such as Fairchild’s H11A817A) and shunt regulator
(such as Fairchild’s KA431) are typically used to imple-
ment the feedback network. Comparing the feedback
voltage with the voltage across the Rsense resistor plus
an offset voltage makes it possible to control the switch-
ing duty cycle. When the reference pin voltage of the
KA431 exceeds the internal reference voltage of 2.5V,
the H11A817A LED current increases, pulling down the
feedback voltage and reducing the duty cycle. This event
typically happens when the input voltage is increased or
the output load is decreased.
3.1 Pulse-by-Pulse Current Limit: Because current
mode control is employed, the peak current through the
SenseFET is limited by the inverting input of the PWM
comparator (Vfb*) as shown in Figure 11. The feedback
current (IFB) and internal resistors are designed so that
the maximum cathode voltage of diode D2 is about 2.8V,
which occurs when all IFB flows through the internal
resistors. Since D1 is blocked when the feedback voltage
(Vfb) exceeds 2.8V, the maximum voltage of the cathode
of D2 is clamped at this voltage, thus clamping Vfb*.
Therefore, the peak value of the current through the
SenseFET is limited.
3.2 Leading Edge Blanking (LEB): At the instant the
internal Sense FET is tur ned on, there is usually a high
current spike through the Sense FET, caused by the
external resonant capacitor across the MOSFET and
secondary-side rectifier reverse recovery. Excessive v olt-
age across the Rsense resistor can lead to incorrect feed-
back operation in the current mode PWM control. To
counter this effect, the FSCQ-Series employs a leading
edge blanking (LEB) circuit. This circuit inhibits the PWM
comparator for a shor t time (TLEB) after the Sense FET
is turned on.
Figure 11. Pulse Width
Modulation (PWM) Circuit
4. Protection Circuits: The FSCQ-Series has several
self-protective functions such as over load protection
(OLP), abnormal over current protection (AOCP), over
voltage protection (OVP), and thermal shutdown (TSD).
OLP and OVP are auto-restart mode protections, while
TSD and AOCP are latch mode protections. Because
these protection circuits are fully integrated into the IC
without external components, the reliability can be
improved without increasing cost.
–Auto-restart mode protection: Once the fault condi-
tion is detected, switching is terminated and the
SenseFET remains off. This causes VCC to fall. When
Vcc f alls to the under voltage lockout (UVLO) stop volt-
age of 9V, the protection is reset and the FSCQ-Series
consumes only startup current (25µA). Then, the Vcc
capacitor is charged up, since the current supplied
through the startup resistor is larger than the current
that the FPS consumes. When VCC reaches the start
voltage of 15V, the FSCQ-Series resumes its normal
operation. If the fault condition is not removed, the
SenseFET remains off and VCC drops to stop voltage
again. In this manner, the auto-restart can alternately
enable and disable the switching of the power
SenseFET until the fault condition is eliminated (see
Figure 12).
Vsync
Vds
MOSFET Gate
2VRO
4.6V
2.6V 3V
1.8V
ONON
OSC
Vcc Vref
I
delay
IFB
VSD
2.5R
Gate
Driver
OLP
D1 D2
+
Vfb*
-
Vfb
KA431
CB
VoH11A817A
Rsense
SenseFET
R
4
17 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Latch mode protection: Once this protection is trig-
gered, switching is terminated and the Sense FET
remains off until the A C power line is unplugged. Then,
VCC continues charging and discharging between 9V
and 15V. The latch is reset only when VCC is dis-
charged to 6V by unplugging the AC power line.
Figure 12. Auto Restart Mode Protection
4.1 Over Load Protection (OLP): Overload is defined
as the load current exceeding its normal level due to an
unexpected abnormal event. In this situation, the protec-
tion circuit should trigger to protect the SMPS. However,
even when the SMPS is in the normal operation, the o v er
load protection circuit can be triggered during the load
transition. To avoid this undesired operation, the over
load protection circuit is designed to trigger after a speci-
fied time to determine whether it is a transient situation
or an overload situation. Because of the pulse-by-pulse
current limit capability, the maximum peak current
through the SenseFET is limited, and theref ore the maxi-
mum input power is restr icted with a given input voltage.
If the output consumes more than this maximum power,
the output voltage (Vo) decreases below the set voltage.
This reduces the current through the optocoupler LED,
which also reduces the optocoupler transistor current,
thus increasing the feedback voltage (Vfb). If Vfb
exceeds 2.8V, D1 is blocked, and the 5µA current source
starts to charge CB slowly up to VCC. In this condition,
Vfb continues increasing until it reaches 7.5V, then the
switching operation is terminated as shown in Figure 13.
The delay time for shutdown is the time required to
charge CB from 2.8V to 7.5V with 5µA. In general, a
20~50ms delay time is typical for most applications. OLP
is implemented in auto restart mode.
Figure 13. Over Load Protection
4.2 Abnormal Over Current Protection (AOCP): When
the secondary rectifier diodes or the transformer pins are
shorted, a steep current with extremely high di/dt can
flow through the SenseFET during the LEB time. Even
though the FSCQ-Series has OLP (Over Load Protec-
tion), it is not enough to protect the FSCQ-Series in that
abnormal case, since severe current stress will be
imposed on the SenseFET until the OLP triggers. The
FSCQ-Series has an internal AOCP (Abnormal Over
Current Protection) circuit as shown in Figure 14. When
the gate turn-on signal is applied to the power
SenseFET, the AOCP block is enabled and monitors the
current through the sensing resistor. The voltage across
the resistor is then compared with a preset AOCP level.
If the sensing resistor voltage is greater than the AOCP
le v el, the set signal is applied to the latch, resulting in the
shutdown of SMPS. This protection is implemented in
the latch mode.
Figure 14. AOCP Block
4.3 Over Voltage Protection (OVP): If the secondary
side feedback circuit malfunctions or a solder defect
causes an open in the feedback path, the current
through the optocoupler transistor becomes almost zero.
Then, Vfb climbs up in a similar manner to the over load
situation, forcing the preset maximum current to be sup-
plied to the SMPS until the over load protection tr iggers.
Because more energy than required is provided to the
9V
15V
Vds
VCC
ICC
IOP
t
Power
on
Fault
occurs Fault
removed
Normal
operation Normal
operation
Fault
situation
ISTART
VFB
t
2.8V
7.5V
Over load protection
T12 = CB * (7.5 – 2.8) / Idelay
T1T2
S
Q
Q
R
OSC
R
2.5R
GND
Gate
Driver
LEB
PWM
+
+
Vaocp
AOCP
Rsense 2
18 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
output, the output voltage may exceed the rated voltage
before the over load protection triggers, resulting in the
breakdown of the devices in the secondary side. In order
to prevent this situation, an over voltage protection
(OVP) circuit is employed. In general, the peak voltage of
the sync signal is propor tional to the output voltage and
the FSCQ-Series uses a sync signal instead of directly
monitoring the output voltage. If the sync signal exceeds
12V, an OVP is triggered resulting in a shutdown of
SMPS. In order to av oid undesired triggering of O VP dur-
ing normal operation, the peak voltage of the sync signal
should be designed to be below 12V. This protection is
implemented in the auto restart mode.
4.4 Thermal Shutdown (TSD): The SenseFET and the
control IC are built in one pac kage . This mak es it easy for
the control IC to detect abnormal over temperature of the
SenseFET. When the temperature exceeds approxi-
mately 150°C, the thermal shutdown triggers. This pro-
tection is implemented in the latch mode.
5. Soft Start: The FSCQ-Series has an internal soft-start
circuit that increases PWM comparator’s inverting input
voltage together with the SenseFET current slowly after
it star ts up. The typical soft start time is 20ms. The pulse
width to the power switching device is progressively
increased to establish the correct working conditions for
transformers, inductors, and capacitors. Increasing the
pulse width to the power switching device also helps pre-
vent transformer saturation and reduces the stress on
the secondar y diode during startup. For a fast build up of
the output voltage , an offset is introduced in the soft-start
reference current.
6. Burst Operation: In order to minimize the power con-
sumption in the standby mode, the FSCQ-Series
employs burst operation. Once FSCQ-Series enters into
the burst mode, FSCQ-Series allows all output voltages
and effective switching frequency to be reduced. Figure
15 shows the typical feedback circuit for C-TV applica-
tions. In normal operation, the picture on signal is
applied and the transistor Q1 is turned on, which decou-
ples R3, Dz and D1 from the feedback network. There-
fore, only Vo1 is regulated by the feedback circuit in
normal operation and determined by R1 and R2 as:
In the standby mode, the picture ON signal is disabled
and the transistor Q1 is turned off, which couples R3, Dz,
and D1 to the reference pin of KA431. Then, Vo2 is deter-
mined by the zener diode breakdown voltage. Assuming
that the f orward voltage drop of D1 is 0.7V, Vo2 in standb y
mode is approximately given by:
Figure 15. Typical Feedback Circuit to Drop
Output Voltage in Standby Mode
Figure 17 shows the burst mode operation waveforms.
When the picture ON signal is disabled, Q1 is turned off
and R3 and Dz are connected to the reference pin of
KA431 through D1. Before Vo2 drops to Vo2stby, the volt-
age on the reference pin of KA431 is higher than 2.5V,
which increases the current through the opto LED. This
pulls down the feedback voltage (VFB) of FSCQ-Series
and forces FSCQ-Series to stop switching. If the switch-
ing is disabled longer than 1.4ms, FSCQ-Series enters
into burst operation and the operating current is reduced
from IOP to 0.25mA (IOB). Since there is no s witching, Vo2
decreases until it reaches Vo2stby. As V o2 reaches Vo2stby,
the current through the opto LED decreases allowing the
feedback voltage to rise. When the feedback voltage
reaches 0.4V, FSCQ-Series resumes switching with a
predetermined peak drain current of 0.9A. After burst
switching for 1.4ms, FSCQ-Series stops switching and
checks the feedback voltage. If the feedback voltage is
below 0.4V, FSCQ-Ser ies stops switching until the feed-
back voltage increases to 0.4V. If the feedback voltage is
above 0.4V, FSCQ-Series goes back to the normal oper-
ation.
The output voltage drop circuit can be implemented
alternatively as shown in Figure 16. In the circuit of Fig-
ure 16, the FSCQ-Series goes into burst mode, when
picture off signal is applied to Q1. Then, Vo2 is deter-
mined by the zener diode breakdown voltage. Assuming
that the forward voltage drop of opto LED is 1V, the
approximate value of Vo2 in standby mode is given by:
Vo1
norm 2.5 R1R2
+
R2
--------------------


=
Vo2stby VZ0.7 2.5++=
Picture ON
Micom
VO2 Linear
Regulator
VO1
(B+)
KA431 R2
R1R3
Rbias
RD
RF
CFD1Q1
A
CR
DZ
Vo2stby VZ1+=
19 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Figure 16. Feedback Circuit to Drop Output
Voltage in Standby Mode
Picture OFF
Micom
Linear
Regulator
VO2
VO1 (B+)
KA431
Rbias
RD
RFR1
R2
CF
A
CR
DZ
Q1
20 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Figure 17. Burst Operation Waveforms
Vo2norm
Vo2stby
VFB
Vds
0.4V
IOP
IOB
IOP
Picture On Picture OnPicture Off
Burst Mode
(a) (c)(b)
0.4V
0.9A
VFB
Vds
Ids
0.3V
0.4V
1.4ms 1.4ms 1.4ms
(a) Mode Change to Burst Operation (b) Burst Operation (c) Mode Change to Normal Operation
0.4V
0.9A
21 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
FSCQ0565RT Typical Application Circuit
Features
High Efficiency (>83% at 90 Vac Input)
Wider Load Range through the Extended
Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various
Protection Functions
Internal Soft-Start (20ms)
Key Design Notes
24V output is designed to drop to around 8V in
standby mode
1. Schematic
Application Output Power Input Voltage Output Voltage (Max Current)
C-TV 59W Universal Input
(90–270 V ac) 12V (0.5A)
18V (0.3A)
125V (0.3A)
24V (0.4A)
C103
10µF
50V
1
3
4
10
T1
EER3540
12V, 0.5A
C204
1000µF
35V
D205
EGP20D
11
LF101
C101
330nF
275VAC FUSE
250V
2.0A
C102
220µF
400V
RT101
5D-9
BD101
D101
1N4937 R103
5.1
0.25W
6
7
R104
1.5k
0.25W
24
5
1
3
GND
Drain SYNC
FB
Vcc
D103
1N4148
IC101
FSCQ0565RT
C106
47nF
50V
R105
470
0.25W
C105
3.9nF
50V
ZD101
18V
1W
C107
680pF
1kV
BEAD101
D102
1N4937
C210
470pF
1kV
18V, 0.3A
D204
EGP20D
C205
1000µF
35V
13
C209
470pF
1kV
12
125V, 0.3A
D202
EGP20J
C201
100µF
160V
14
C207
470pF
1kV
L201
BEAD
16
C202
47µF
160V
24V, 0.4A
D203
EGP20D
C203
1000µF
35V
17
C208
470pF
1kV
18
OPTO101
FOD817A
R201
1k
0.25W
C206
22nF
50V
C301
2.2nF
Q201
KA431
R203
39k
0.25W
R202
1k
0.25W
R205
220k
0.25W
R204
4.7k
0.25W
VR201
30k
D201 Q202
KSC945 R206
5.1k
0.25W
R207
5.1k
0.25W
SW201
15
R102
150k
0.25W
R101
100k
0.25W
R106
1.5k
1W
C104
10µF
50V
ZD202
5.1V
0.5W
R208
1k
0.25W
Normal
Standb
y
D104
UF4007
ZD201
22 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
2. Transformer Schematic Diagram
3. Winding Specification
4. Electrical Characteristics
5. Core & Bobbin
Core: EER3540
Bobbin: EER3540
Ae: 107 mm2
No Pin (sf) Wire Turns Winding Method
Np1 1–3 0.5φ × 132Center Winding
N125V/2 16–15 0.5φ × 132Center Winding
N24V 18–17 0.4φ × 213Center Winding
N12V 12–13 0.5φ × 27Center Winding
Np2 3–4 0.5φ × 132Center Winding
N125V/2 15–14 0.5φ × 132Center Winding
N18V 11–10 0.4φ × 210Center Winding
Na7–6 0.3φ × 120Center Winding
Pin Specification Remarks
Inductance 1–3 740µH ± 5% 1kHz, 1V
Leakage Inductance 1–3 10µH Max 2nd all short
EER3540
7
13
14
15
16
17
18
Np1 N24V
N12V
N18V
N125V/2
N125V/2
Np2
Na
1
2
3
4
5
6
8
9
11
10
12
N18V
Na
Np2
Np1
N125V/2
N125V/2
N12V
N24V
23 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
6. Demo Circuit Part List
Part Value Note Part Value Note
Fuse Capacitor (Continued)
FUSE 250V/2A C210 470pF/1kV Ceramic Capacitor
NTC C301 2.2nF/1kV AC Ceramic Capacitor
RT101 5D-9 Inductor
Resistor BEAD101 BEAD
R101 100k0.25W BEAD201 5µH 3A
R102 150k 0.25W Diode
R103 5.10.25W D101 1N4937 1A, 600V
R104 1.5k0.25W D102 1N4937 1A, 600V
R105 4700.25W D103 1N4148 0.15A, 50V
R106 1.5k1W D104 Short
R107 Open D105 Open
R201 1k0.25W ZD101 1N4746 18V, 1W
R202 1k0.25W ZD102 Open
R203 39k0.25W ZD201 1N5231 5.1V, 0.5W
R204 4.7k0.25W, 1% D201 1N4148 0.15A, 50V
R205 220k0.25W, 1% D202 EGP20J 2A, 600V
R206 5.1k0.25W D203 EGP20D 2A, 200V
R207 5.1k0.25W D204 EGP20D 2A, 200V
R208 1k0.25W D205 EGP20D 2A, 200V
VR201 30kBridge Diode
Capacitor BD101 GSIB660 6A, 600V
C101 330n/275VAC Box Capacitor Line Filter
C102 220µF/400V Electrolytic LF101 14mH
C103 10µF/50V Electrolytic Transformer
C104 10µF/50V Electrolytic T101 EER3540
C105 3.9nF/50V Film Capacitor Switch
C106 47nF/50V Film Capacitor SW201 ON/OFF For MCU Signal
C107 680pF/1kV Film Capacitor IC
C108 Open IC101 FSCQ0565RT TO-220F-5L
C201 100µF/160V Electrolytic OPT101 FOD817A
C202 47µF/160V Electrolytic Q201 KA431LZ TO-92
C203 1000µF/35V Electrolytic Q202 KSC945
C204 1000µF/35V Electrolytic
C205 1000µF/35V Electrolytic
C206 22nF/50V Film Capacitor
C207 470pF/1kV Ceramic Capacitor
C208 470pF/1kV Ceramic Capacitor
C209 470pF/1kV Ceramic Capacitor
24 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
FSCQ0765RT Typical Application Circuit
Features
High Efficiency (>83% at 90 Vac Input)
Wider Load Range through the Extended
Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various
Protection Functions
Internal Soft-Start (20ms)
Key Design Notes
24V output is designed to drop to around 8V in
standby mode
1. Schematic
Application Output Power Input Voltage Output Voltage (Max Current)
C-TV 83W Universal input
(90–270 V ac) 12V (1A)
18V (0.5A)
125V (0.4A)
24V (0.5A)
C103
10µF
50V
1
3
4
10
T1
EER3540
12V, 0.5A
C204
1000µF
35V
D205
EGP20D
11
LF101
C101
330nF
275VAC FUSE
250V
2.0A
C102
220µF
400V
RT101
5D-9
BD101
D101
1N4937 R103
5.1
0.25W
6
7
R104
1.5k
0.25W
24
5
1
3
GND
Drain SYNC
FB
Vcc
D103
1N4148
IC101
FSCQ0765RT
C106
47nF
50V
R105
470
0.25W
C105
3.9nF
50V
ZD101
18V
1W
C107
1nF
1kV
BEAD101
D102
1N4937
C210
470pF
1kV
18V, 0.3A
D204
EGP20D
C205
1000µF
35V
13
C209
470pF
1kV
12
125V, 0.3A
D202
EGP20J
C201
100µF
160V
14
C207
470pF
1kV
L201
BEAD
16
C202
47µF
160V
24V, 0.4A
D203
EGP20D
C203
1000µF
35V
17
C208
470pF
1kV
18
OPTO101
FOD817A
R201
1k
0.25W
C206
22nF
50V
C301
2.2nF
Q201
KA431
R203
39k
0.25W
R202
1k
0.25W
R205
220k
0.25W
R204
4.7k
0.25W
VR201
30k
D201 Q202
KSC945 R206
5.1k
0.25W
R207
5.1k
0.25W
SW201
15
R102
150k
0.25W
R101
100k
0.25W
R106
1.5k
1W
C104
10µF
50V
ZD202
5.1V
0.5W
R208
1k
0.25W
Normal
Standb
y
D104
UF4007
ZD201
25 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
2. Transformer Schematic Diagram
3. Winding Specification
4. Electrical Characteristics
5. Core & Bobbin
Core: EER3540
Bobbin: EER3540
Ae: 107 mm2
No Pin (sf) Wire Turns Winding Method
Np1 1–3 0.5φ × 132 Center Winding
N125V/2 16–15 0.5φ × 132 Center Winding
N24V 18–17 0.4φ × 213 Center Winding
N12V 12–13 0.5φ × 27 Center Winding
Np2 3–4 0.5φ × 132 Center Winding
N125V/2 15–14 0.5φ × 132 Center Winding
N18V 11–10 0.4φ × 210 Center Winding
Na7–6 0.3φ × 120 Center Winding
Pin Specification Remarks
Inductance 1–3 515µH ± 5% 1kHz, 1V
Leakage Inductance 1–3 10µH Max 2nd all short
EER3540
7
13
14
15
16
17
18
Np1 N24V
N12V
N18V
N125V/2
N125V/2
Np2
Na
1
2
3
4
5
6
8
9
11
10
12
N18V
Na
Np2
Np1
N125V/2
N125V/2
N12V
N24V
26 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
6. Demo Circuit Part List
Part Value Note Part Value Note
Fuse Capacitor (Continued)
FUSE 250V/2A C210 470pF/1kV Ceramic Capacitor
NTC C301 2.2nF/1kV AC Ceramic Capacitor
RT101 5D-9 Inductor
Resistor BEAD101 BEAD
R101 100k0.25W BEAD201 5µH 3A
R102 150k 0.25W Diode
R103 5.10.25W D101 1N4937 1A, 600V
R104 1.5k0.25W D102 1N4937 1A, 600V
R105 4700.25W D103 1N4148 0.15A, 50V
R106 1.5k1W D104 Short
R107 Open D105 Open
R201 1k0.25W ZD101 1N4746 18V, 1W
R202 1k0.25W ZD102 Open
R203 39k0.25W ZD201 1N5231 5.1V, 0.5W
R204 4.7k0.25W, 1% D201 1N4148 0.15A, 50V
R205 220k0.25W, 1% D202 EGP20J 2A, 600V
R206 5.1k0.25W D203 EGP20D 2A, 200V
R207 5.1k0.25W D204 EGP20D 2A, 200V
R208 1k0.25W D205 EGP20D 2A, 200V
VR201 30kBridge Diode
Capacitor BD101 GSIB660 6A, 600V
C101 330n/275VAC Box Capacitor Line Filter
C102 220µF/400V Electrolytic LF101 14mH
C103 10µF/50V Electrolytic Transformer
C104 10µF/50V Electrolytic T101 EER3540
C105 3.9nF/50V Film Capacitor Switch
C106 47nF/50V Film Capacitor SW201 ON/OFF For MCU Signal
C107 1nF/1kV Film Capacitor IC
C108 Open IC101 FSCQ0765RT TO-220F-5L
C201 100µF/160V Electrolytic OPT101 FOD817A
C202 47µF/160V Electrolytic Q201 KA431LZ TO-92
C203 1000µF/35V Electrolytic Q202 KSC945
C204 1000µF/35V Electrolytic
C205 1000µF/35V Electrolytic
C206 22nF/50V Film Capacitor
C207 470pF/1kV Ceramic Capacitor
C208 470pF/1kV Ceramic Capacitor
C209 470pF/1kV Ceramic Capacitor
27 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
FSCQ0965RT Typical Application Circuit
Features
High Efficiency (>83% at 90 Vac Input)
Wider Load Range through the Extended
Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various
Protection Functions
Internal Soft-Start (20ms)
Key Design Notes
24V output is designed to drop to around 8V in
standby mode
1. Schematic
Application Output Power Input Voltage Output Voltage (Max Current)
C-TV 102W Universal input
(90–270 V ac) 12V (0.5A)
18V (0.5A)
125V (0.5A)
24V (1.0A)
C103
10µF
50V
1
3
4
10
T1
EER3540
12V, 0.5A
C204
1000µF
35V
D205
EGP20D
11
LF101
C101
330nF
275VAC FUSE
250V
2.0A
C102
220µF
400V
RT101
5D-9
BD101
D101
1N4937 R103
5.1
0.25W
6
7
R104
1.5k
0.25W
24
5
1
3
GND
Drain SYNC
FB
Vcc
D103
1N4148
IC101
FSCQ0965RT
C106
47nF
50V
R105
470
0.25W
C105
3.9nF
50V
ZD101
18V
1W
C107
1nF
1kV
BEAD101
D102
1N4937
C210
470pF
1kV
18V, 0.3A
D204
EGP20D
C205
1000µF
35V
13
C209
470pF
1kV
12
125V, 0.3A
D202
EGP20J
C201
100µF
160V
14
C207
470pF
1kV
L201
BEAD
16
C202
47µF
160V
24V, 0.4A
D203
EGP20D
C203
1000µF
35V
17
C208
470pF
1kV
18
OPTO101
FOD817A
R201
1k
0.25W
C206
22nF
50V
C301
2.2nF
Q201
KA431
R203
39k
0.25W
R202
1k
0.25W
R205
220k
0.25W
R204
4.7k
0.25W
VR201
30k
D201 Q202
KSC945 R206
5.1k
0.25W
R207
5.1k
0.25W
SW201
15
R102
150k
0.25W
R101
100k
0.25W
R106
1.5k
1W
C104
10µF
50V
ZD202
5.1V
0.5W
R208
1k
0.25W
Normal
Standb
y
D104
UF4007
ZD201
28 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
2. Transformer Schematic Diagram
3. Winding Specification
4. Electrical Characteristics
5. Core & Bobbin
Core: EER3540
Bobbin: EER3540
Ae: 107 mm2
EER3540
7
13
14
15
16
17
18
Np1 N24V
N12V
N18V
N125V/2
N125V/2
Np2
Na
1
2
3
4
5
6
8
9
11
10
12
N18V
Na
Np2
Np1
N125V/2
N125V/2
N12V
N24V
No Pin (sf) Wire Turns Winding Method
Np1 1–3 0.6φ × 132 Center Winding
N125V/2 16–15 0.6φ × 132 Center Winding
N24V 18–17 0.4φ × 213 Center Winding
N12V 12–13 0.5φ × 27 Center Winding
Np2 3–4 0.6φ × 132 Center Winding
N125V/2 15–14 0.6φ × 132 Center Winding
N18V 11–10 0.4φ × 210 Center Winding
Na7–6 0.3φ × 120 Center Winding
Pin Specification Remarks
Inductance 1–3 410µH ± 5% 1kHz, 1V
Leakage Inductance 1–3 10µH Max 2nd all short
29 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
6. Demo Circuit Part List
Part Value Note Part Value Note
Fuse Capacitor (Continued)
FUSE 250V/3A C210 470pF/1kV Ceramic Capacitor
NTC C301 3.3nF/1kV AC Ceramic Capacitor
RT101 5D-9 Inductor
Resistor BEAD101 BEAD
R101 100k0.25W BEAD201 5µH 3A
R102 150k 0.25W Diode
R103 5.10.25W D101 1N4937 1A, 600V
R104 1.5k0.25W D102 1N4937 1A, 600V
R105 4700.25W D103 1N4148 0.15A, 50V
R106 1.5k1W D104 Short
R107 Open D105 Open
R201 1k0.25W ZD101 1N4746 18V, 1W
R202 1k0.25W ZD102 Open
R203 39k0.25W ZD201 1N5231 5.1V, 0.5W
R204 4.7k0.25W, 1% D201 1N4148 0.15A, 50V
R205 220k0.25W, 1% D202 EGP30J 3A, 600V
R206 5.1k0.25W D203 EGP30D 3A, 200V
R207 5.1k0.25W D204 EGP20D 2A, 200V
R208 1k0.25W D205 EGP20D 2A, 200V
VR201 30kBridge Diode
Capacitor BD101 GSIB660 6A, 600V
C101 330n/275VAC Box Capacitor Line Filter
C102 220µF/400V Electrolytic LF101 14mH
C103 10µF/50V Electrolytic Transformer
C104 10µF/50V Electrolytic T101 EER3540
C105 3.9nF/50V Film Capacitor Switch
C106 47nF/50V Film Capacitor SW201 ON/OFF For MCU Signal
C107 1nF/1kV Film Capacitor IC
C108 Open IC101 FSCQ0965RT TO-220F-5L
C201 100µF/160V Electrolytic OPT101 FOD817A
C202 47µF/160V Electrolytic Q201 KA431LZ TO-92
C203 1000µF/35V Electrolytic Q202 KSC945
C204 1000µF/35V Electrolytic
C205 1000µF/35V Electrolytic
C206 22nF/50V Film Capacitor
C207 470pF/1kV Ceramic Capacitor
C208 470pF/1kV Ceramic Capacitor
C209 470pF/1kV Ceramic Capacitor
30 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
FSCQ1265RT Typical Application Circuit
Features
High Efficiency (>83% at 90 Vac Input)
Wider Load Range through the Extended
Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various
Protection Functions
Internal Soft-Start (20ms)
Key Design Notes
24V output is designed to drop to around 8V in
standby mode
1. Schematic
Application Output Power Input Voltage Output Voltage (Max Current)
C-TV 132W Universal input
(90–270 V ac) 8.5V (0.5A)
15V (0.5A)
140V (0.6A)
24V (1.5A)
C103
10µF
50V
1
3
4
10
T1
EER4042
15V, 0.5A
C204
1000µF
35V
D205
EGP20D
11
LF101
C101
330nF
275VAC FUSE
250V
5.0A
C102
330µF
400V
RT101
5D-11
BD101
D103
1N4937 R103
5.1
0.25W
6
7
R104
1.5k
0.25W
24
5
1
3
GND
Drain SYNC
FB
Vcc
D106
1N4148
IC101
FSCQ1265RT
C106
47nF
50V
R105
470
0.25W
C105
3.3nF
50V
ZD102
18V
1W
C107
1nF
1kV
BEAD101
D105
1N4937
C210
470pF
1kV
8.5V, 0.5A
D204
EGP20D
C205
1000µF
35V
13
C209
470pF
1kV
12
140V, 0.6A
D202
EGP30J
C201
150µF
160V
14
C207
470pF
1kV
L202
BEAD
16
C202
68µF
160V
24V, 1.5A
D203
EGP30D
C203
1000µF
35V
17
C208
470pF
1kV
18
OPTO101
FOD817A
R201
1k
0.25W
C206
150nF
50V
C301
3.3nF Q201
KA431
LZ
R203
39k
0.25W
R202
1k
0.25W R205
240k
0.25W
R204
4.7k
0.25W
VR201
30k
D201
1N4148
Q202
KSC945 R206
10k
0.25W
R207
5.1k
0.25W
SW201
15
R102
150k
0.25W
R101
100k
0.25W R106
1k
1W
C104
10µF
50V
ZD201
5.1V
0.5W
R208
1k
0.25W
31 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
2. Transformer Schematic Diagram
3. Winding Specification
4. Electrical Characteristics
5. Core & Bobbin
Core: EER4042
Bobbin: EER4042(18Pin)
Ae: 153 mm2
No Pin (sf) Wire Turns Winding Method
N24 18–17 0.65φ × 28 Space Winding
Np1 1–3 0.1φ × 10 × 220 Center Winding
N140V/2 16–15 0.1φ × 10 × 223 Center Winding
Np2 3–4 0.1φ × 10 × 220 Center Winding
N140V/2 15–14 0.1φ × 10 × 222 Center Winding
N8.5V 12–13 0.6φ × 13 Space Winding
N15V 11–10 0.6φ × 1 6Space Winding
Na7–6 0.3φ × 113 Space Winding
Pin Specification Remarks
Inductance 1–4 315µH ± 5% 1kHz, 1V
Leakage Inductance 1–4 10µH Max 2nd all short
EER4042
7
13
14
15
16
17
18
Np1 N24V
N8.5V
N15V
N140V/2
N140V/2
Np2
Na
1
2
3
4
5
6
8
9
11
10
12
N15V
Na
N140V/2
N24V
N8.5V
NP1
NP2
N140V/2
32 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
6. Demo Circuit Part List
Part Value Note Part Value Note
Fuse Capacitor (Continued)
FUSE 250V/5A C210 470pF/1kV Ceramic Capacitor
NTC C301 3.3nF/1kV AC Ceramic Capacitor
RT101 5D-11 Inductor
Resistor BEAD101 BEAD
R101 100k0.25W BEAD201 5µH 3A
R102 150k 0.25W Diode
R103 5.10.25W D101 1N4937 1A, 600V
R104 1.5k0.25W D102 1N4937 1A, 600V
R105 4700.25W D103 1N4148 0.15A, 50V
R106 1k1W D104 Short
R107 Open D105 Open
R201 1k0.25W ZD101 1N4746 18V, 1W
R202 1k0.25W ZD102 Open
R203 39k0.25W ZD201 1N5231 5.1V, 0.5W
R204 4.7k0.25W, 1% D201 1N4148 0.15A, 50V
R205 240k0.25W, 1% D202 EGP30J 3A, 600V
R206 10k0.25W D203 EGP30D 3A, 200V
R207 5.1k0.25W D204 EGP20D 2A, 200V
R208 1k0.25W D205 EGP20D 2A, 200V
VR201 30kBridge Diode
Capacitor BD101 GSIB660 6A, 600V
C101 330n/275 V ac Box Capacitor Line Filter
C102 330µF/400V Electrolytic LF101 14mH
C103 10µF/50V Electrolytic Transformer
C104 10µF/50V Electrolytic T101 EER4042
C105 3.3nF/50V Film Capacitor Switch
C106 47nF/50V Film Capacitor SW201 ON/OFF For MCU Signal
C107 1nF/1kV Film Capacitor IC
C108 Open IC101 FSCQ1265RT TO-220F-5L
C201 150µF/160V Electrolytic OPT101 FOD817A
C202 68µF/160V Electrolytic Q201 KA431LZ TO-92
C203 1000µF/35V Electrolytic Q202 KSC945
C204 1000µF/35V Electrolytic
C205 1000µF/35V Electrolytic
C206 150nF/50V Film Capacitor
C207 470pF/1kV Ceramic Capacitor
C208 470pF/1kV Ceramic Capacitor
C209 470pF/1kV Ceramic Capacitor
33 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
FSCQ1465RT Typical Application Circuit
Features
High Efficiency (>83% at 90Vac Input)
Wider Load Range through the Extended
Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various
Protection Functions
Internal Soft-Start (20ms)
Key Design Notes
24V output is designed to drop to around 8V in
standby mode
1. Schematic
Application Output Power Input Voltage Output Voltage (Max Current)
C-TV 146W Universal input
(90–270Vac) 8.5V (0.5A)
15V (0.5A)
140V (0.7A)
24V (1.5A)
C103
10µF
50V
1
3
4
10
T1
EER4245
15V, 0.5A
C204
1000µF
35V
D205
EGP20D
11
LF101
C101
330nF
275VAC FUSE
250V
5.0A
C102
330µF
400V
RT101
6D-22
BD101
D103
1N4937 R103
5.1
0.25W
6
7
R104
1.5k
0.25W
24
5
1
3
GND
Drain SYNC
FB
Vcc
D106
1N4148
IC101
FSCQ1465RT
C106
47nF
50V
R105
470
0.25W
C105
2.7nF
50V
ZD102
18V
1W
C107
1nF
1kV
BEAD101
D105
1N4937
C210
470pF
1kV
8.5V, 0.5A
D204
EGP20D
C205
1000µF
35V
13
C209
470pF
1kV
12
140V, 0.6A
D202
EGP30J
C201
150µF
160V
14
C207
470pF
1kV
L202
BEAD
16
C202
68µF
160V
24V, 1.5A
D203
EGP30D
C203
1000µF
35V
17
C208
470pF
1kV
18
OPTO101
FOD817A
R201
1k
0.25W
C206
150nF
50V
C301
3.3nF Q201
KA431
LZ
R203
39k
0.25W
R202
1k
0.25W R205
240k
0.25W
R204
4.7k
0.25W
VR201
30k
D201
1N4148
Q202
KSC945 R206
10k
0.25W
R207
5.1k
0.25W
SW201
15
R102
150k
0.25W
R101
100k
0.25W R106
1k
1W
C104
10µF
50V
ZD201
5.1V
0.5W
R208
1k
0.25W
34 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
2. Transformer Schematic Diagram
3. Winding Specification
4. Electrical Characteristics
5. Core & Bobbin
Core: EER4245
Bobbin: EER4245(18Pin)
Ae: 201.8 mm2
No Pin (sf) Wire Turns Winding Method
N24 18–17 0.65φ × 25 Space Winding
Np1 1–3 0.08φ × 20 × 213 Center Winding
N140V/2 16–15 0.08φ × 20 × 215 Center Winding
Np2 3–4 0.08φ × 20 × 213 Center Winding
N140V/2 15–14 0.08φ × 20 × 214 Center Winding
N8.5V 12–13 0.6φ × 12 Space Winding
N15V 11–10 0.6φ × 1 3Space Winding
Na7–6 0.3φ × 18 Space Winding
Pin Specification Remarks
Inductance 1–4 260µH ± 5% 1kHz, 1V
Leakage Inductance 1–4 10µH Max 2nd all short
EER4245
7
13
14
15
16
17
18
Np1 N24V
N8.5V
N15V
N140V/2
N140V/2
Np2
Na
1
2
3
4
5
6
8
9
11
10
12
N15V
Na
N140V/2
N24V
N8.5V
NP1
NP2
N140V/2
35 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
6. Demo Circuit Part List
Part Value Note Part Value Note
Fuse Capacitor (Continued)
FUSE 250V/5A C210 470pF/1kV Ceramic Capacitor
NTC C301 3.3nF/1kV AC Ceramic Capacitor
RT101 6D-22 Inductor
Resistor BEAD101 BEAD
R101 100k0.25W BEAD201 5µH 3A
R102 150k 0.25W Diode
R103 5.10.25W D101 1N4937 1A, 600V
R104 1.5k0.25W D102 1N4937 1A, 600V
R105 4700.25W D103 1N4148 0.15A, 50V
R106 1k1W D104 Short
R107 Open D105 Open
R201 1k0.25W ZD101 1N4746 18V, 1W
R202 1k0.25W ZD102 Open
R203 39k0.25W ZD201 1N5231 5.1V, 0.5W
R204 4.7k0.25W, 1% D201 1N4148 0.15A, 50V
R205 240k0.25W, 1% D202 EGP30J 3A, 600V
R206 10k0.25W D203 EGP30D 3A, 200V
R207 5.1k0.25W D204 EGP20D 2A, 200V
R208 1k0.25W D205 EGP20D 2A, 200V
VR201 30kBridge Diode
Capacitor BD101 GSIB660 6A, 600V
C101 330n/275VAC Box Capacitor Line Filter
C102 330µF/400V Electrolytic LF101 14mH
C103 10µF/50V Electrolytic Transformer
C104 10µF/50V Electrolytic T101 EER3540
C105 2.7nF/50V Film Capacitor Switch
C106 47nF/50V Film Capacitor SW201 ON/OFF For MCU Signal
C107 1nF/1kV Film Capacitor IC
C108 Open IC101 FSCQ1465RT TO-220F-5L
C201 150µF/160V Electrolytic OPT101 FOD817A
C202 68µF/160V Electrolytic Q201 KA431LZ TO-92
C203 1000µF/35V Electrolytic Q202 KSC945
C204 1000µF/35V Electrolytic
C205 1000µF/35V Electrolytic
C206 150nF/50V Film Capacitor
C207 470pF/1kV Ceramic Capacitor
C208 470pF/1kV Ceramic Capacitor
C209 470pF/1kV Ceramic Capacitor
36 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
FSCQ1565RT Typical Application Circuit
Features
High Efficiency (>83% at 90 Vac Input)
Wider Load Range through the Extended
Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various
Protection Functions
Internal Soft-Start (20ms)
Key Design Notes
24V output is designed to drop to around 8V in
standby mode
1. Schematic
Application Output Power Input Voltage Output Voltage (Max Current)
C-TV 160W Universal input
(90–270 V ac) 8.5V (0.5A)
15V (0.5A)
140V (0.8A)
24V (1.5A)
C103
10µF
50V
1
3
4
10
T1
EER4245
15V, 0.5A
C204
1000µF
35V
D205
EGP20D
11
LF101
C101
330nF
275VAC FUSE
250V
5.0A
C102
470µF
400V
RT101
6D-22
BD101
D103
1N4937 R103
5.1
0.25W
6
7
R104
1.5k
0.25W
24
5
1
3
GND
Drain SYNC
FB
Vcc
D106
1N4148
IC101
FSCQ1565RT
C106
47nF
50V
R105
470
0.25W
C105
2.7nF
50V
ZD102
18V
1W
C107
1nF
1kV
BEAD101
D105
1N4937
C210
470pF
1kV
8.5V, 0.5A
D204
EGP20D
C205
1000µF
35V
13
C209
470pF
1kV
12
140V, 0.6A
D202
EGP30J
C201
220µF
160V
14
C207
470pF
1kV
L202
BEAD
16
C202
68µF
160V
24V, 1.5A
D203
EGP30D
C203
1000µF
35V
17
C208
470pF
1kV
18
OPTO101
FOD817A
R201
1k
0.25W
C206
150nF
50V
C301
3.3nF Q201
KA431
LZ
R203
39k
0.25W
R202
1k
0.25W R205
240k
0.25W
R204
4.7k
0.25W
VR201
30k
D201
1N4148
Q202
KSC945 R206
10k
0.25W
R207
5.1k
0.25W
SW201
15
R102
150k
0.25W
R101
100k
0.25W R106
1k
1W
C104
10µF
50V
ZD201
5.1V
0.5W
R208
1k
0.25W
37 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
2. Transformer Schematic Diagram
3. Winding Specification
4. Electrical Characteristics
5. Core & Bobbin
Core: EER4245
Bobbin: EER4245(18Pin)
Ae: 201.8 mm2
No Pin (sf) Wire Turns Winding Method
N24 18–17 0.65φ × 25 Space Winding
Np1 1–3 0.08φ × 20 × 213 Center Winding
N140V/2 16–15 0.08φ × 20 × 215 Center Winding
Np2 3–4 0.08φ × 20 × 213 Center Winding
N140V/2 15–14 0.08φ × 20 × 214 Center Winding
N8.5V 12–13 0.6φ × 12 Space Winding
N15V 11–10 0.6φ × 1 3Space Winding
Na7–6 0.3φ × 18 Space Winding
Pin Specification Remarks
Inductance 1–4 220µH ± 5% 1kHz, 1V
Leakage Inductance 1–4 10µH Max 2nd all short
EER4245
7
13
14
15
16
17
18
Np1 N24V
N8.5V
N15V
N140V/2
N140V/2
Np2
Na
1
2
3
4
5
6
8
9
11
10
12
N15V
Na
N140V/2
N24V
N8.5V
NP1
NP2
N140V/2
38 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
6. Demo Circuit Part List
Part Value Note Part Value Note
Fuse Capacitor (Continued)
FUSE 250V/5A C210 470pF/1kV Ceramic Capacitor
NTC C301 3.3nF/1kV AC Ceramic Capacitor
RT101 6D-22 Inductor
Resistor BEAD101 BEAD
R101 100k0.25W BEAD201 5µH 3A
R102 150k 0.25W Diode
R103 5.10.25W D101 1N4937 1A, 600V
R104 1.5k0.25W D102 1N4937 1A, 600V
R105 4700.25W D103 1N4148 0.15A, 50V
R106 1k1W D104 Short
R107 Open D105 Open
R201 1k0.25W ZD101 1N4746 18V, 1W
R202 1k0.25W ZD102 Open
R203 39k0.25W ZD201 1N5231 5.1V, 0.5W
R204 4.7k0.25W, 1% D201 1N4148 0.15A, 50V
R205 240k0.25W, 1% D202 EGP30J 3A, 600V
R206 10k0.25W D203 EGP30D 3A, 200V
R207 5.1k0.25W D204 EGP20D 2A, 200V
R208 1k0.25W D205 EGP20D 2A, 200V
VR201 30kBridge Diode
Capacitor BD101 GSIB660 6A, 600V
C101 330n/275 V ac Box Capacitor Line Filter
C102 470µF/400V Electrolytic LF101 14mH
C103 10µF/50V Electrolytic Transformer
C104 10µF/50V Electrolytic T101 EER4245
C105 2.7nF/50V Film Capacitor Switch
C106 47nF/50V Film Capacitor SW201 ON/OFF For MCU Signal
C107 1nF/1kV Film Capacitor IC
C108 Open IC101 FSCQ1565RT TO-220F-5L
C201 220µF/160V Electrolytic OPT101 FOD817A
C202 68µF/160V Electrolytic Q201 KA431LZ TO-92
C203 1000µF/35V Electrolytic Q202 KSC945
C204 1000µF/35V Electrolytic
C205 1000µF/35V Electrolytic
C206 150nF/50V Film Capacitor
C207 470pF/1kV Ceramic Capacitor
C208 470pF/1kV Ceramic Capacitor
C209 470pF/1kV Ceramic Capacitor
39 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
FSCQ1565RP Typical Application Circuit
Features
High Efficiency (>83% at 90 Vac Input)
Wider Load Range through the Extended
Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various
Protection Functions
Internal Soft-Start (20ms)
Key Design Notes
24V output is designed to drop to around 8V in
standby mode
1. Schematic
Application Output Power Input Voltage Output Voltage (Max Current)
C-TV 198W Universal input
(90–270 V ac) 8.5V (1A)
15V (1A)
140V (0.9A)
24V (2A)
C103
10µF
50V
1
3
4
10
T1
EER4942
15V, 0.5A
C204
1000µF
35V
D205
EGP20D
11
LF101
C101
330nF
275VAC FUSE
250V
5.0A
C102
470µF
400V
RT101
6D-22
BD101
D103
1N4937 R103
5.1
0.25W
6
7
R104
1.5k
0.25W
24
5
1
3
GND
Drain SYNC
FB
Vcc
D106
1N4148
IC101
FSCQ1565RP
C106
47nF
50V
R105
470
0.25W
C105
2.7nF
50V
ZD102
18V
1W
C107
1nF
1kV
BEAD101
D105
1N4937
C210
470pF
1kV
8.5V, 0.5A
D204
EGP20D
C205
1000µF
35V
13
C209
470pF
1kV
12
140V, 0.6A
D202
EGP30J
C201
220µF
160V
14
C207
470pF
1kV
L202
BEAD
16
C202
100µF
160V
24V, 1.5A
D203
EGP30D
C203
2200µF
35V
17
C208
470pF
1kV
18
OPTO101
FOD817A
R201
1k
0.25W
C206
22nF
50V
C301
3.3nF Q201
KA431
LZ
R203
39k
0.25W
R202
1k
0.25W R205
240k
0.25W
R204
4.7k
0.25W
VR201
30k
D201
1N4148
Q202
KSC945 R206
10k
0.25W
R207
5.1k
0.25W
SW201
15
R102
150k
0.25W
R101
100k
0.25W R106
1k
1W
C104
10µF
50V
ZD201
5.1V
0.5W
R208
1k
0.25W
40 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
2. Transformer Schematic Diagram
3. Winding Specification
4. Electrical Characteristics
5. Core & Bobbin
Core: EER4942
Bobbin: EER4942(18Pin)
Ae: 231 mm2
No Pin (sf) Wire Turns Winding Method
N24 18–17 0.65φ × 25 Space Winding
Np1 1–3 0.08φ × 20 × 213 Center Winding
N140V/2 16–15 0.08φ × 20 × 215 Center Winding
Np2 3–4 0.08φ × 20 × 213 Center Winding
N140V/2 15–14 0.08φ × 20 × 214 Center Winding
N8.5V 12–13 0.6φ × 12 Space Winding
N15V 11–10 0.6φ × 1 3Space Winding
Na7–6 0.3φ × 18 Space Winding
Pin Specification Remarks
Inductance 1–4 210µH ± 5% 1kHz, 1V
Leakage Inductance 1–4 10µH Max 2nd all short
EER4942
7
13
14
15
16
17
18
Np1 N24V
N8.5V
N15V
N140V/2
N140V/2
Np2
Na
1
2
3
4
5
6
8
9
11
10
12
N15V
Na
N140V/2
N24V
N8.5V
NP1
NP2
N140V/2
41 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
6. Demo Circuit Part List
Part Value Note Part Value Note
Fuse Capacitor (Continued)
FUSE 250V/5A C210 470pF/1kV Ceramic Capacitor
NTC C301 3.3nF/1kV AC Ceramic Capacitor
RT101 6D-22 Inductor
Resistor BEAD101 BEAD
R101 100k0.25W BEAD201 5µH 3A
R102 150k 0.25W Diode
R103 5.10.25W D101 1N4937 1A, 600V
R104 1.5k0.25W D102 1N4937 1A, 600V
R105 4700.25W D103 1N4148 0.15A, 50V
R106 1k1W D104 Short
R107 Open D105 Open
R201 1k0.25W ZD101 1N4746 18V, 1W
R202 1k0.25W ZD102 Open
R203 39k0.25W ZD201 1N5231 5.1V, 0.5W
R204 4.7k0.25W, 1% D201 1N4148 0.15A, 50V
R205 240k0.25W, 1% D202 EGP30J 3A, 600V
R206 10k0.25W D203 EGP30D 3A, 200V
R207 5.1k0.25W D204 EGP20D 2A, 200V
R208 1k0.25W D205 EGP20D 2A, 200V
VR201 30kBridge Diode
Capacitor BD101 GSIB660 6A, 600V
C101 330n/275 V ac Box Capacitor Line Filter
C102 470µF/400V Electrolytic LF101 14mH
C103 10µF/50V Electrolytic Transformer
C104 10µF/50V Electrolytic T101 EER4942
C105 2.7nF/50V Film Capacitor Switch
C106 47nF/50V Film Capacitor SW201 ON/OFF For MCU Signal
C107 1nF/1kV Film Capacitor IC
C108 Open IC101 FSCQ1565RP TO-220F-5L
C201 220µF/200V Electrolytic OPT101 FOD817A
C202 100µF/200V Electrolytic Q201 KA431LZ TO-92
C203 2200µF/35V Electrolytic Q202 KSC945
C204 1000µF/35V Electrolytic
C205 1000µF/35V Electrolytic
C206 22nF/50V Film Capacitor
C207 470pF/1kV Ceramic Capacitor
C208 470pF/1kV Ceramic Capacitor
C209 470pF/1kV Ceramic Capacitor
42 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
PCB Layout
43 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Package Dimensions
Dimensions in Millimeters
TO-220F-5L(Forming)
44 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Package Dimensions
Dimensions in Millimeters
TO-3PF-7L(Forming)
POLISH AREA
1. ( ) THESE DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION.
2. ( ) IS REFERENCE
3. ( ) IS ASS’Y OUT QUAILTY
15.50
(9.90)
(13.90)
(8.40)
(9.90)
(1.61)
#1 #5
(1.51)
±0.20
9.50
±0.20
2.35
#2, 4 #1, 3, 5
±0.20
3.35
±0.30
0.60
+0.20
–0.10
2.76
±0.30
3.18
±0.30
1.60 LEAD FRAME
EMC
SCALE 15 / 1
DETAIL A
±0.30
4–MAX1.00
5–0.60
MAX2.00
ø3.60
±0.20
(5–ø1.50 Dp 0.10MAX)
(5–ø1.60
Dp 0.10MAX)
5°5°
1.5°
1.5°
10°
A
10°
10°
5°5°
2–ø2.40
±0.05
Dp 1.60
±0.03
±0.10
3–1.50
±0.30
2.54
±0.30
24.50
±
0.20
10.00 ±0.2014.50 ±0.20
23.00 ±0.20
1.50 ±0.20
4.00 ±0.30
2.50 ±0.30
5.00 ±0.30
(1.80)
(1.00)
(12.10) (7.00) (2.00)
(10.90)
7.00 ±0.30
3.35 ±0.20
2.35 ±0.20
5.85 ±0.20
4.50
±
0.20
1.90
±
0.20
4.50
±
0.20
2.50
±
0.20
5.85
±0.20
3.35
±0.20
(1.65)
R0.90
R0.90
R0.90
45 www.fairchildsemi.com
FSCQ-Series Rev. 1.1.2
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY
ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT
CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
LIFE SUPPORT POLICY
FAIRCHILDíS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant into
the body, or (b) support or sustain life, or (c) whose
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the
user.
2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Obsolete
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Formative or
In Design
First Production
Full Production
Not In Production
ISOPLANAR™
LittleFET™
MICROCOUPLER™
MicroFET™
MicroPak™
MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC®
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerEdge™
FAST®
FASTr™
FPS™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
I2C™
i-Lo
ImpliedDisconnect™
IntelliMAX™
Rev. I18
ACEx™
ActiveArray™
Bottomless™
Build it Now™
CoolFET™
CROSSVOLT
DOME™
EcoSPARK™
E2CMOS™
EnSigna™
FACT™
FACT Quiet Series™
PowerSaver™
PowerTrench®
QFET®
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
RapidConnect™
µSerDes™
ScalarPump™
SILENT SWITCHER®
SMART START™
SPM™
Stealth™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TCM™
TinyLogic®
TINYOPTO™
TruTranslation™
UHC™
UltraFET®
UniFET™
VCX™
Wire™
Across the board. Around the world.™
The Power Franchise®
Programmable Active Droop™