Rev.1.1
Seiko Instruments Inc. 1
LOW DROPO UT VOL TAGE REGULATOR
HIGH RIPPLE-REJECTION CMOS S-L2980 Series
Features
y
Low dropout voltage:
Typically 120mV @ 50mA load for 3.0 V output
y
Low current consumption:
Typically 90 µA, 140 µA max. at operation
y
Sleep mode: Quiescence current
Typically 0.1 µA, 1 µA max. at power off
y
Output voltage: 1.5 V to 6.0 V, 0.1 V step
y
High accuracy output voltage: ±2.0%
y
High peak current capability:
150 mA @ VIN VOUT(S) +1 V Note
y
Ripple rejection: 70 dB typ. @1 kHz
y
Built-in power-off circuit:
y
Low ESR capacitor:
A 2.2 µF ceramic capacitor can be used as the output capacitor.
y
Ultra compact package: SOT-23-5, 5-Pin SON(A)
Note: Attention should be paid to power dissipation of the package when the load is large.
Package
SOT-23-5 (Package drawing code, MP005-A)
5-Pin SON(A) (Package drawing code, PN005-A)
Block Diagram
Reference
voltage
VOUT
ON/OFF
VSS
VIN
*Parastic diode
*
ON/OFF
circuit
Figure 1 Block Diagram
The S-L2980 series is a low dropout voltage regulator
designed for use in battery powered devices and
developed using CMOS technology. On-chip low on-
resistanc e transistor c an provide low dropout voltage and
large output current. A power-off switch ensures long
battery life.
Various types of output capacitors can be used in the
S-L2980 series compared with the form er CMOS voltage
regulators. A small ceramic capacitor can also be used.
Applications
y
Power source for battery-powered devices
y
Power source for personal communication
devices
y
Power source for home electric/electronic
appliances
HIGH RIPPLE-REJECTION LOW DRPOUT CMOS VOLTAGE REGULATOR
S-L2980 Series Rev.1.1
2 Seiko Instruments Inc.
Selection Guide
Product Name
S-L2980xxxxx - xxxTF IC direction in tape specific ations
Package code
MC: SOT -23-5
PN: 5-Pin SON(A)
Product code
Logic type A: ON/OFF pin posi tive logic
B: ON/OFF pin negative logic
Output voltage x 10
15 to 60 (1.5V to 6.0V)
Product List Table 1
Output Voltage SOT-23-5 5-Pin SON(A)
1.5 V ± 2.0% S-L2980A15PN-C6ATF
1.7 V ± 2.0% S-L2980A17MC-C6CTF S-L2980A17PN-C6CTF
1.8 V ± 2.0% S-L2980A18MC-C6DTF S-L2980A18PN-C6DTF
1.9 V ± 2.0% S-L2980A19PN-C6ETF
2.5 V ± 2.0% S-L2980A25MC-C6KTF S-L2980A25PN-C6KTF
2.7 V ± 2.0% S-L2980A27MC-C6MTF S-L2980A27PN-C6MTF
2.8 V ± 2.0% S-L2980A28MC-C6NTF S-L2980A28PN-C6NTF
2.9 V ± 2.0% S-L2980A29PN-C6OTF
3.0 V ± 2.0% S-L2980A30MC-C6PTF S-L2980A30PN-C6PTF
3.1 V ± 2.0% S-L2980A31MC-C6QTF
3.2 V ± 2.0% S-L2980A32MC-C6RTF
3.3 V ± 2.0% S-L2980A33MC-C6STF S-L2980A33PN-C6STF
3.8 V ± 2.0% S-L2980A38MC-C6XTF S-L2980A38PN-C6XTF
4.0 V ± 2.0% S-L2980A40MC-C6ZTF S-L2980A40PN-C6ZTF
4.1 V ± 2.0% S-L2980A41MC-C7ATF
4.4 V ± 2.0% S-L2980A44MC-C7DTF
4.5 V ± 2.0% S-L2980A45PN-C7ETF
4.8 V ± 2.0% S-L2980A48MC-C7HTF
5.0 V ± 2.0% S-L2980A50MC-C7JTF S-L2980A50PN-C7JTF
Note:
Contact SII sales office for products with output voltage not specified above.
HIGH RIPPLE-REJECTION LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.1.1 S-L2980 Series
Seiko Instruments Inc. 3
Pin Configurations
Table 2 Pin Assignment
Figure 2 Table 3 Pin Assignment
Figure 3
Absolute Maximum Ratings
Table 4 Absolute Maximum Ratings (Ta=25°C unless otherwise specified)
Item Symbol Absolute Maximum
Rating Units
Input voltage VIN VSS-0.3 to VIN+12 V
VON/OFF VSS-0.3 to VIN+12 V
Output voltage VOUT VSS-0.3 to VIN+0.3 V
Power dissipation PDSOT-23-5 250 mW
5-Pin SON(A) 100
Operating temperature range Topr -40 to +85 °C
Storage temperature range Tstg -40 to +125 °C
Note:
Although the IC contains protection circuit against static electricity, excessive static electricity
or voltage which exceeds the limit of the protection circuit should not be applied to.
123
4
5
SOT-23-5
Top view
Pin No. Symbol Description
1VIN
Input voltage pin
2 VSS GND pin
3 ON/OFF Power-off pin
4NC
No connection Note
5 VOUT Output voltage pin
3
21
45
5-Pin SON(A)
Top view
Pin No. Symbol Description
1NC
No connection Note
2 VSS GND pin
3 ON/OFF Power-off pin
4VIN
Input voltage pin
5 VOUT Output voltage pin
N
o
t
eNC pin is electrically open. NC pin can be
connected to VIN or VSS.
HIGH RIPPLE-REJECTION LOW DRPOUT CMOS VOLTAGE REGULATOR
S-L2980 Series Rev.1.1
4 Seiko Instruments Inc.
Electrical Characteristics
1. S-L2980Axx, S-L2980Bxx Table 5 Electrical Characteristics (Ta=25°C unless otherwise specified)
Item Symbol Conditions Min. Typ. Max. Units Test
circuits
Output voltage 1) VOUT(E) VIN=VOUT(S)+1 V, IOUT=50 mA VOUT(S)
× 0.98 VOUT(S) VOUT(S)
× 1.02 V1
Output current 2) IOUT VIN=VOUT(S)+1 V 150 5) −−
mA 3
Dropout voltage 3) Vdrop IOUT = 50mA 1.5V VOUT(S) 1.7V 0.17 0.33 V 1
1.8V VOUT(S) 1.9V 0.16 0.29 V 1
2.0V VOUT(S) 2.4V 0.15 0.26 V 1
2.5V VOUT(S) 2.9V 0.13 0.20 V 1
3.0V VOUT(S) 3.2V 0.12 0.15 V 1
3.3V VOUT(S) 6.0V 0.11 0.14 V 1
Line regulation
V
VV
OUT1
IN OUT
VOUT(S) + 0.5 V VIN 10 V,
IOUT = 50 mA 0.05 0.2 %/V 1
Load regulation VOUT21VIN=VOUT(S)+1 V
1mA IOUT 80 mA, 12 40 mV 1
Output voltage 4)
temperature coefficient
V
Ta V
OUT
OUT
VIN = VOUT(S) + 1 V, IOUT = 50mA
-40°C Ta 85°C±100 ppm
/°C1
Current consumption
during operation ISS1 VIN = VOUT(S) +1 V,
ON/OFF pin = ON , no load 90 140 µA2
Current consumption
when power off ISS2 VIN = VOUT(S) +1 V,
ON/OFF pin = OFF, no load 0.1 1.0 µA2
Input voltage VIN 2.0 10 V 1
Power-off pin
input voltage “H” VSH VIN = VOUT(S) + 1 V, RL = 1k,
Checked by VOUT level. 1.5 −−V4
Power-off pin
input voltage “L” VSL VIN = VOUT(S) + 1 V, RL = 1k,
Checked by VOUT level. −−
0.3 V 4
Power off pin
input current “H” ISH VIN = VOUT(S) + 1 V,
VON/OFF = 7 V −−
0.1 µA4
Power off pin
input current “L” ISL VIN = VOUT(S) + 1 V,
VON/OFF = 0 V −−
0.1 µA4
Ripple rejection RR VIN = VOUT(S) + 1V 1.5 V VOUT(S) 3.3 V 70 dB 5
f = 1 kHz
Vrip=0.5 Vrms 3.4 V VOUT(S) 5.0 V 65 dB 5
IOUT=50 mA 5.1 V VOUT(S) 6.0 V 60 dB 5
1) VOUT(S) = Specified output voltage
VOUT(E) = Actual output voltage at the fixed load (IOUT=50 mA) and VOUT(S)+1.0 V input.
2) Output current at which output voltage becomes 95% of VOUT after gradually increasing output current.
3) Vdrop = VIN1(VOUT × 0.98), where VIN1 is the input voltage at which output voltage becomes 98% of VOUT after gradually
decreasing input voltage.
4) A change in temperatures [mV/°C] is calculated using the following equation.
[] [] []
V
Ta mV/ C V (S) V V
Ta V ppm/ C 1000
OUT OUT OUT
OUT
°= × °÷
5) The output current can be supplied at least to this value.
Specified output voltage Output voltage temperature coefficient
Change in temperature of output voltage
HIGH RIPPLE-REJECTION LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.1.1 S-L2980 Series
Seiko Instruments Inc. 5
Test Circuits
12.
VSS
VOUT
ON/OFF
Set to
power ON
VIN
V
A
VSS
VOUT
ON/OFF
Set to
VIN or GND
VIN
A
3. 4
Set to
power ON
VSS
VOUT
ON/OFF
VIN
V
A
VSS
VOUT
ON/OFF
VIN
AVRL
5
VSS
VOUT
ON/OFF
Set to
power ON
VIN
VRL
Figure 4 Test Circuits
Standard Circuit
ON/OFF
VSS
VOUTVIN
CIN CL
INPUT OUTPUT
GND
Single GND
Figure 5 Standard Circuit
Application Conditions
Input capacitor (CIN) : 0.47µF or more
Input series resistance (RIN) : 10 or less
Output capacitor (CL) : 2.2µF or more
Equivalent Series Resistance (ESR) for output capacitor: 10 or less
In addition to a tantalum capacitor, a ceramic
capacitor of 2.2 µF or more can be used for CL.
CIN is a capacitor used to stabilize input.
HIGH RIPPLE-REJECTION LOW DRPOUT CMOS VOLTAGE REGULATOR
S-L2980 Series Rev.1.1
6 Seiko Instruments Inc.
Explanation for Terms
1. Low dropout voltage regulator
The low dropout voltage regulator is a voltage regulator whose dropout voltage is low due to its on-chip low
on-resistance transistor.
2. Low ESR
Low ESR means the Equivalent Series Resistance of a capacitor is small.
The low ESR ceramics output capacitor (CL) can be used in the S-L2980 Series.
The ESR of the output capacitor (CL) should be 10 or less.
3. Output voltage (VOUT)
The accuracy of the output voltage is ensured at ± 2.0% under the specified conditions of input voltage,
which differ depending upon the product, fixed output current, and fixed temperature.
Note:
If the above conditions change, the output voltage value may vary and go out of the accuracy range of the
output voltage. See the electrical characteristics and attached characteristics data for details.
4. Line regulations (
V
VV
OUT1
IN OUT
)
Indicate the input voltage dependencies of output voltage. That is, the values show how much the output
voltage changes due to a change in the input voltage with the output current remained unchanged.
5. Load regulation (VOUT2)
Indicates the output cur rent dependencies of output voltage. T hat is, the values show how m uch the output
voltage changes due to a change in the output current with the input voltage remained unchanged.
6. Dropout voltage (Vdrop)
Indicates a difference between input voltage (VIN1) and output voltage when output voltage falls by 98 % of
VOUT by gradually decreasing the input voltage.
Vdrop = VIN1-[VOUT × 0.98]
7. Temperature coefficient of output voltage [VOUT/(Ta VOUT)]
The shadowed area in Figur e 6 is the range where VOUT varies in the operating tem perature range when the
temperature coefficient of the output voltage is ±100 ppm/°C.
S-L2980A28
-40 25
+0.28mV/°C
VOUT
[V]
VOUT25 is a mesured value of
output volta
g
e at 25°C.
VOUT25
85 Ta [°C]
-0.28mV/°C
Figure 6
A change in temperatures of output voltage [mV/°C] is calculated using the following equation.
[] [] []
V
Ta mV/ C V (S) V V
Ta V ppm/ C 1000
OUT OUT OUT
OUT
°= × °÷
Specified output voltage Output voltage temperature coefficient
Change in temperatures of output voltage
HIGH RIPPLE-REJECTION LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.1.1 S-L2980 Series
Seiko Instruments Inc. 7
Operation
1. Basic operation
Figure 7 shows the block diagram of the S-L2980
Series.
The error amplifier compares a reference voltage
VREF with part of the output voltage divided by the
feedback resistors Rs and Rf. It supplies the output
transistor with the gate voltage, necessary to ensure
certain output voltage f ree of any fluctuations of input
voltage and temperature.
2. Output transistor
The S-L2980 Series uses a low on-resistance P-channel MOS FET as the output transistor.
Be sure that VOUT does not exceed VIN+0.3 V to prevent the voltage regulator from being broken due to
inverse current flowing from VOUT pin through a parasitic diode to VIN pin.
3. ON/OFF Pin (Power Off Pin)
This pin starts and stops the regulator.
W hen the ON/OFF pin is switched to the power off level, the operation of all internal c ircuits stops , the built-in
P-channel MOSFET output transistor between VIN and VOUT is switched off to make current consumption
drastically reduced. Sleep mode is thus attained. The VOUT pin becomes the Vss level due to internally
divided resistance of several M between VOUT and VSS.
Furthermore, the str uc ture of the ON/O FF pin is as s hown in Figure 8. Since the O N/O FF pin is neither pulled
down nor pulled up internally, do not use it in the floating state. In addition, please note that current
consumption incr eases if a voltage of 0.3 V to VIN-0.3 V is applied to the ON /OFF pin. When the ON/OFF pin
is not used, connect it to the VIN pin in case the logic type is ‘”A” and to the VSS pin in case of “B”.
Logic
type ON/OFF pin Internal
circuit VOUT pin
voltage Current
consumption
A “H” : Power on Operating Set value Iss1
A “L” : Power off Stop VSS level Iss2
B “H” : Power off Stop VSS level Iss2
B “L” : Power on Operating Set value Iss1
Selection of Output Capacitor (CL)
The S-L2980 series needs an output capacitor between VOUT pin and VSS pin for phase compensation.
When a ceramic or OS (Organic Semiconductor) capacitor is used, the capacitance should be 2.2 µF or more.
When a tantalum or an aluminum electrolyte capacitor is used, the c apacitance s hould be 2.2 µF or more and
the ESR should be 10 or less.
Special attention should be paid when an alum inum elec trolyte c apacitor is used, since an increase of ESR
at low temperature might lead to the oscillation of the regulator. Sufficient performance evaluation including
temperature dependency is thus needed.
Overshoot and undershoot characteristics differ depending upon the magnitude of the output capacitor in
use. Evaluation in the actual environment is needed.
Reference
voltage
VOUT
*1
*1 Parasitic diode
VSS
VIN
Rs
Rf
Error
amplifier
Current
source
Vref
ON/OFF
VIN
VSS
Figure 7 Block Diagram
Figure 8 ON/OFF Pin
HIGH RIPPLE-REJECTION LOW DRPOUT CMOS VOLTAGE REGULATOR
S-L2980 Series Rev.1.1
8 Seiko Instruments Inc.
Notice
Wiring patterns for VIN, VOUT and GND pins should be designed to hold low impedance. When mounting
an output capacitor, the distance from the capacitor to the VOUT pin and to the VSS pin should be as short
as possible.
Note that output voltage may increase when a voltage regulator is used at low load current (less than 1 mA).
To prevent oscillation, it is recommended to use the external components under the following conditions.
Input capacitor : 0.47 µF or more
Output capacitor (CL): 2.2 µF or more
Equivalent Series Resistance (ESR): 10 or less
Input series resistance (RIN): 10 or less
A voltage regulator may oscillate when the impedance of the power supply is high and the input capacitor is
small or not connected.
The application condition for input voltage, output voltage and load current should not exceed the package
power dissipation.
SII claims no responsibility for any and all disputes arising out of or in connection with any infringement of
the products including this IC upon patents owned by a third party.
In determining output current attention should be paid to the output current value specified in the table 5 for
electrical characteristics and the footnote 5) of the table.
HIGH RIPPLE-REJECTION LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.1.1 S-L2980 Series
Seiko Instruments Inc. 9
Typical Characteristics
(1) OUTPUT VOLTAGE versus OUTPUT CURRENT (when load current increases)
0.0
0.5
1.0
1.5
2.0
0 100 200 300 400 500
IOUT (mA)
VOUT (V)
VIN=1.8V2V
10V
3V
2.5V
S-L2980A15(Ta=25°C)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0 100 200 300 400 500
IOUT (mA)
VOUT (V)
VIN=3.3V
3.5V
4V
10V
5V
S-L2980A30(Ta=25°C)
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0 100 200 300 400 500
IOUT (mA)
VOUT (V)
VIN=5.3V
5.5V 7V
6V
10V
S-L2980A50(Ta=25°C)
(2) MAXIMUM OUTPUT CURRENT versus INPUT VOLTAGE
0
100
200
300
400
500
0246810
V
IN (V)
IOUTmax. (mA)
Ta=-40°C
S-L2980A15
25°C 85°C
0
100
200
300
400
500
246810
V
IN (V)
IOUTmax. (mA)
Ta=-40°C
S-L2980A30
25°C 85°C
0
100
200
300
400
500
46810
V
IN (V)
IOUTmax. (mA)
Ta=-40°C
S-L2980A50
25°C 85°C
The application condition for input voltage, output
voltage and load current should not exceed the
package power dissipation. In determining output
current att enti on shoul d be paid to t he output current
value specified in the table for electrical
characteristics and the footnote 5) of the table.
The application condition for input voltage, output
voltage and load current should not exceed the
package power dissipation. In determining output
current att enti on shoul d be paid to t he output current
value specified in the table for electrical
characteristics and the footnote 5) of the table.
HIGH RIPPLE-REJECTION LOW DRPOUT CMOS VOLTAGE REGULATOR
S-L2980 Series Rev.1.1
10 Seiko Instruments Inc.
(3) OUTPUT VOLTAGE versus INPUT VOLTAGE
1.40
1.45
1.50
1.55
1.60
11.522.533.5
V
IN (V)
VOUT (V)
IOUT=1mA
30mA
S-L2980A15(Ta=25°C)
50mA
100mA
2.85
2.90
2.95
3.00
3.05
3.10
3.15
2.533.544.55
V
IN (V)
VOUT (V)
IOUT=1mA
30mA
S-L2980A30(Ta=25°C)
50mA 100mA
4.75
4.85
4.95
5.05
5.15
5.25
4.555.566.57
V
IN (V)
VOUT (V)
IOUT=1mA
30mA
S-L2980A50(Ta=25°C)
50mA 100mA
(4) DROPOUT VOLTAGE versus OUTPUT CURRENT
0
100
200
300
400
500
600
0 50 100 150
IOUT (mA)
Vdrop (mV)
Ta=-40°C
S-L2980A15
25°C
85°C
0
50
100
150
200
250
300
350
400
0 50 100 150
IOUT (mA)
Vdrop (mV)
Ta=-40°C
S-L2980A30
25°C
85°C
0
50
100
150
200
250
300
350
0 50 100 150
IOUT (mA)
Vdrop (mV)
Ta=-40°C
S-L2980A50
25°C
85°C
HIGH RIPPLE-REJECTION LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.1.1 S-L2980 Series
Seiko Instruments Inc. 11
(5) OUTPUT VOLTAGE versus AMBIENT TEMPERATURE
1.47
1.48
1.49
1.50
1.51
1.52
1.53
-50 0 50 100
Ta (°C)
VOUT
(V)
S-L2980A15
2.94
2.96
2.98
3.00
3.02
3.04
3.06
-50 0 50 100
Ta (°C)
VOUT
(V)
S-L2980A30
4.90
4.95
5.00
5.05
5.10
-50 0 50 100
Ta (°C)
VOUT
(V)
S-L2980A50
(6) LINE REGULATION versus (7) LOAD REGULATION versus
AMBIENT TEMPERATURE AMBIENT TEMPERATURE
0
10
20
30
40
-50 0 50 100
Ta (°C)
VOUT1
(mV)
S-L2980A15
S-L2980Axx CIN=4.7µF,CL=10µF
S-L2980A30
S-L2980A50
0
10
20
30
40
-50 0 50 100
Ta (°C)
VOUT2
(mV)
S-L2980A15
S-L2980Axx CIN=4.7µF,CL=10µF
S-L2980A30
S-L2980A50
(8) THRESHOLD VOLTAGE OF ON/OFF PIN versus INPUT VOLTAGE
0.0
0.5
1.0
1.5
024681012
V
IN (V)
VSH/VSL (V)
Ta=-40°C
25°C
S-L2980A15
85°C
Ta=-40°C
25°C
85°C
RL=100,CIN=4.7µF CL=10µF
HIGH RIPPLE-REJECTION LOW DRPOUT CMOS VOLTAGE REGULATOR
S-L2980 Series Rev.1.1
12 Seiko Instruments Inc.
(9) CURRENT CONSUMPTION versus INPUT VOLTAGE
0
20
40
60
80
100
0246810
V
IN (V)
ISS1 (µA)
S-L2980A15
25°C 85°C
Ta=-40°C
0
20
40
60
80
100
0246810
V
IN (V)
ISS1 (µA)
S-L2980A30
25°C 85°C
Ta=-40°C
0
20
40
60
80
100
0246810
V
IN (V)
ISS1 (µA)
S-L2980A50
25°C 85°C
Ta=-40°C
(10)RIPPLE REJECTION
0
20
40
60
80
100
Frequency (Hz)
Ripple Rejection (dB
)
50mA
IOUT=1mA
VIN=4V,CL=2.2µF
S-L2980A30 ( Ta=25°C)
10 100 1k 10k 100k 1M 0
20
40
60
80
100
Frequency (Hz)
Ripple Rejection (dB
)
50mA
IOUT=1mA
VIN=6V,CL=2.2µF
S-L2980A50
(
Ta=25°C
)
10 100 1k 10k 100k 1M
HIGH RIPPLE-REJECTION LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.1.1 S-L2980 Series
Seiko Instruments Inc. 13
TRANSIENT RESPONSE CHARACTERISTICS (S-L2980A30MC Typical data: Ta=25°C)
Overshoot
INPUT VOLTAGE
OUTPUT VOLTAGE
or
LOAD CURRENT
Undershoot
(1)POWER SOURCE FLUCTUATION
Overshoot Undershoot
TIME

µs/div
VOUT (0.05 V/div)
VIN
CL=2.2µF
VIN,ON/OFF=45V, IOUT=1mA
5V
4V
3V
TIME

µs/div
VOUT (0.05 V/div)
VIN
CL=2.2µF
VIN,ON/OFF=54V, IOUT=1mA
5V
4V
3V
Overshoot Undershoot
TIME

µs/div
VOUT (0.05 V/div)
VIN
CL=2.2µF
VIN,ON/OFF=45V, IOUT=50mA
5V
4V
3V
TIME

µs/div
VOUT (0.05 V/div)
VIN
CL=2.2µF
VIN,ON/OFF=54V, IOUT=50mA
5V
4V
3V
(2)LOAD FLUCTUATION
Overshoot Undershoot
TIME

µs/div
VOUT (0.05V/div)
VIN
CL=2.2µF
VIN,ON/OFF=4V, IOUT=50mA1mA
50mA
1mA
3V
TIME

µs/div
VOUT (0.05V/div)
VIN
CL=2.2µF
VIN,ON/OFF=4V, IOUT=50mA1mA
50mA
1mA
3V
REFERENCE DATA
HIGH RIPPLE-REJECTION LOW DRPOUT CMOS VOLTAGE REGULATOR
S-L2980 Series Rev.1.1
14 Seiko Instruments Inc.
(3) ON/OFF SWITCHING
Overshoot Undershoot
0
1
2
3
4
5
6
7
TI ME (20 µs/div)
VOUT (V)
ON/OFF
VIN=6V,RL=5k,CL=2.2µF
VOUT
0
1
2
3
4
5
6
7
TIME (20 ms/div)
VOUT (V)
ON/OFF
VIN=6V,RL=5k,CL=2.2µF
VOUT
l Reel Specifications
l Tape Specifications
l Dimensions
n SOT-23-5 MP005-A 010907
Unit : mm
2.9±0.2
1.9±0.2
0.95±0.1
0.4±0.1
0.16 +0.1
-0.06
123
4
5
No. MP005-A-P-SD-1.1
12.5max.
9.0±0.3
ø13±0.2
(60°) (60°)
+0
-3
ø180
ø60
+1
-0
2±0.2
No. MP005-A-R-SD-1 0
3000 pcs./reel
Winding core
ø1.5+0.1
-0 2.0±0.05
4.0±0.1(10-pitches tota :40.0±0.2)
ø1.0+0.2
-0 4.0±0.1 1.4±0.2
0.25±0.1
3.2±0.2
T2(TF)
1
2
3
45
Feed direction
1.75±0.1
No. : MP005-A-C-SD-2.0
Unit:mm
lDimensions
lTaping Specifications lReel Specifications
1 reel holds 3000 ICs.
No. PN005-A-R-SD-1.0
n 5-Pin SON(A) [SON5A(2017)]
No. PN005-A-C-SD-1.0
No PN005-A-P-SD-1.0
PN005-A Rev.1.0 020205
2.0±0.2
1
5
0.2
0.65
4
23
+0.1
-0.05
0.65
1.3±0.1
ø1.55±0.05
ø1.05±0.1
4.0±0.1
4.0±0.1 0.2±0.05
1.1±0.1
2.05±0.1
(2.25)
Feed direction
TF
1
2
54
3
2.0±0.1 12.5max
.
9.0±0.3
Winding core
The information described herein is subject to change without notice.
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein
whose related industrial properties, patents, or other rights belong to third parties. The application circuit
examples explain typical applications of the products, and do not guarantee the success of any specific
mass-production design.
When the products described herein are regulated products subject to the Wassenaar Arrangement or other
agreements, they may not be exported without authorization from the appropriate governmental authority.
Use of the information described herein for other purposes and/or reproduction or copying without the
express permission of Seiko Instruments Inc. is strictly prohibited.
The products described herein cannot be used as part of any device or equipment affecting the human
body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus
installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the
failure or malfunction of semiconductor products may occur. The user of these products should therefore
give thorough consideration to safety design, including redundancy, fire-prevention measures, and
malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.