Parameter Typ. Max. Units
RθJC Junction-to-Case - IGBT ––– 1.2
RθJC Junction-to-Case - Diode 2.5
RθCS Case-to-Sink, Flat, Greased Surface 0. 5 ––– °C/W
RθJA Junction-to-Ambient ( PCB Mounted,steady-state)U––– 40
Wt Weight 1.44 ––– g
Parameter Max. Units
VCES Collector-to-Emitter Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 28
IC @ TC = 100°C Continuous Collector Current 16
ICM Pulsed Collector Current Q58 A
ILM Clamped Inductive Load Current R58
IF @ TC = 100°C Diode Continuous Forward Current 12
IFM Diode Maximum Forward Current 58
tsc Short Circuit Withstand Time 10 µ s
VGE Gate-to-Emitter Voltage ± 20 V
PD @ TC = 25°C Maximum Power Dissipation 100
PD @ TC = 100°C Maximum Power Dissipation 42
TJOperating Junction and -55 to +150
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw. 10 lbf•in (1.1 N•m)
IRG4BC30KD-S
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
FeaturesFeatures
FeaturesFeatures
Features
E
G
n-channel
C
VCES = 600V
VCE(on) typ. = 2.21V
@VGE = 15V, IC = 16A
Short Circuit Rated
UltraFast IGBT
4/24/2000
High short circuit rating optimized for motor control,
tsc =10µs, @360V VCE (start), TJ = 125°C,
VGE = 15V
Combines low conduction losses with high
switching speed
tighter parameter distribution and higher efficiency
than previous generations
IGBT co-packaged with HEXFREDTM ultrafast,
ultrasoft recovery antiparallel diodes
Benefits
Latest generation 4 IGBTs offer highest power
density motor controls possible
HEXFREDTM diodes optimized for performance
with IGBTs. Minimized recovery characteristic
reduce noise, EMI and switching losses
This part replaces the IRGBC30KD2-S and
IRGBC30MD2-S products
For hints see design tip 97003
PD -91594C
Absolute Maximum Ratings
W
2
D Pak
Thermal Resistance
www.irf.com 1
IRG4BC30KD-S
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
QgTotal Gate Charge (turn-on) 67 100 IC = 16A
Qge Gate - Emitter Charge (turn-on) 11 16 nC VCC = 400V See Fig.8
Qgc Gate - Collector Charge (turn-on) 25 37 VGE = 15V
td(on) Turn-On Delay Time 60
trRise Time 42 TJ = 25°C
td(off) Turn-Off Delay Time 160 250 IC = 16A, VCC = 480V
tfFall Time 80 120 VGE = 15V, RG = 23
Eon Turn-On Switching Loss 0.60 Energy losses include "tail"
Eoff Turn-Off Switching Loss 0.58 mJ and diode reverse recovery
Ets Total Switching Loss 1.18 1.6 See Fig. 9,10,14
tsc Short Circuit Withstand Time 10 —— µs VCC = 360V, TJ = 125°C
VGE = 15V, RG = 10 , VCPK < 500V
td(on) Turn-On Delay Time 58 TJ = 150°C, See Fig. 11,14
trRise Time 42 IC = 16A, VCC = 480V
td(off) Turn-Off Delay Time 210 VGE = 15V, RG = 23
tfFall Time 160 Energy losses include "tail"
Ets Total Switching Loss 1.69 mJ and diode reverse recovery
LEInternal Emitter Inductance 7.5 nH Measured 5mm from package
Cies Input Capacitance 920 VGE = 0V
Coes Output Capacitance 110 pF VCC = 30V See Fig. 7
Cres Reverse Transfer Capacitance 27 —ƒ = 1.0MHz
trr Diode Reverse Recovery Time 42 60 TJ = 25°C See Fig.
80 120 TJ = 125°C 14 IF = 12A
Irr Diode Peak Reverse Recovery Current 3.5 6.0 TJ = 25°C See Fig.
5.6 10 TJ = 125°C 15 VR = 200V
Qrr Diode Reverse Recovery Charge 80 180 TJ = 25°C See Fig.
220 600 TJ = 125°C 16 di/dt = 200Aµs
di(rec)M/dt Diode Peak Rate of Fall of Recovery 180 TJ = 25°C See Fig.
During tb160 TJ = 125°C 17
Parameter Min. Typ. Max. Units Conditions
V(BR)CES Collector-to-Emitter Breakdown VoltageS600 —— VV
GE = 0V, IC = 250µA
V(BR)CES/TJTemperature Coeff. of Breakdown Voltage 0.54 V/°CV
GE = 0V, IC = 1.0mA
VCE(on) Collector-to-Emitter Saturation Voltage 2.21 2.7 IC = 16A VGE = 15V
2.88 IC = 28A See Fig. 2, 5
2.36 IC = 16A, TJ = 150°C
VGE(th) Gate Threshold Voltage 3.0 6.0 VCE = VGE, I C = 250µA
VGE(th)/TJTemperature Coeff. of Threshold Voltage -12 mV/°CV
CE = VGE, IC = 250µA
gfe Forward Transconductance T5.4 8.1 SV
CE = 100V, IC = 16A
ICES Zero Gate Voltage Collector Current ——250 VGE = 0V, VCE = 600V
——2500 VGE = 0V, VCE = 600V, TJ = 150°C
VFM Diode Forward Voltage Drop 1.4 1.7 IC = 12A See Fig. 13
1.3 1.6 IC = 12A, TJ = 150°C
IGES Gate-to-Emitter Leakage Current ——±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
ns
ns
V
µA
V
nC
A/µs
A
ns
IRG4BC30KD-S
www.irf.com 3
0.1 1 10 100
0.0
0.5
1.0
1.5
2.0
2.5
f, Frequency (KHz)
LOAD CURRENT (A)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
For both:
Duty cycle: 50%
T = 125°C
T = 9 0°C
G ate drive as specified
sink
J
P owe r D issip ation = W
60 % o f r a ted
v o ltag e
I
Ideal diodes
Squa re wave:
1.8
Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics
0.1
1
10
100
1 10
V , Collector-to-Emitter Volta
g
e (V)
I , Collector-to-Emitter Current (A)
CE
C
V = 15V
20
µ
s PULSE WIDTH
GE
T = 25 C
Jo
T = 150 C
Jo
0.1
1
10
100
510 15
V , Gate-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
GE
C
V = 50V
5
µ
s PULSE WIDTH
CC
T = 25 C
Jo
T = 150 C
Jo
55°C
IRG4BC30KD-S
4www.irf.com
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Fig. 4 - Maximum Collector Current vs. Case
Temperature
25 50 75 100 125 150
0
5
10
15
20
25
30
T , Case Temperature ( C)
Maximum DC Collector Current(A)
C°
0.01
0.1
1
10
0.00001 0.0001 0.001 0.01 0.1 1
Notes:
1. Duty factor D = t / t
2. Peak T =P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
-60 -40 -20 020 40 60 80 100 120 140 160
1.0
2.0
3.0
4.0
T , Junction Temperature ( C)
V , Collector-to-Emitter Voltage(V)
J°
CE
V = 15V
80 us PULSE WIDTH
GE
I = A8
C
I = A16
C
I = A32
C
8.0A
TJ , Junction Temperature ( °C )
IRG4BC30KD-S
www.irf.com 5
Fig. 9 - Typical Switching Losses vs. Gate
Resistance Fig. 10 - Typical Switching Losses vs.
Junction Temperature
010 20 30 40 50
1.00
1.10
1.20
1.30
1.40
1.50
R , Gate Resistance (Ohm)
Total Switching Losses (mJ)
G
V = 480V
V = 15V
T = 25 C
I = 16A
CC
GE
J
C
°
-60 -40 -20 020 40 60 80 100 120 140 160
0.1
1
10
T , Junction Temperature ( C )
Total Switching Losses (mJ)
J°
R = Ohm
V = 15V
V = 480V
G
GE
CC
I = A
32
C
I = A
16
C
I = A
8
C
23
RG , Gate Resistance ( Ω )
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
020 40 60 80
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Emitter Voltage (V)
G
GE
V= 400V
I = 16A
CC
C
1 10 100
0
300
600
900
1200
1500
V , Collector-to-Emitter Voltage (V)
C, Capacitance (pF)
CE
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GE
ies
g
e
g
c , ce
res
g
c
oes ce
g
c
Cies
Coes
Cres
8.0A
IRG4BC30KD-S
6www.irf.com
0 8 16 24 32 40
0.0
1.0
2.0
3.0
4.0
5.0
I , Collector-to-emitter Current (A)
Total Switching Losses (mJ)
C
R = Ohm
T = 150 C
V = 480V
V = 15V
G
J
CC
GE
°
1
10
100
1 10 100 1000
V = 20V
T = 125 C
GE
Jo
V , Collector-to-Emitter Volta
g
e (V)
I , Collector-to-Emitter Current (A)
CE
C
SAFE OPERATING AREA
Fig. 12 - Turn-Off SOA
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
125°C
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
1
10
100
0.4 0.8 1.2 1.6 2.0 2.4
FM
F
Instantaneous Forward C urrent - I (A)
Forward Volta
g
e D rop - V
(
V
T = 150°C
T = 125°C
T = 2 5°C
J
J
J
23
IRG4BC30KD-S
www.irf.com 7
Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 16 - Typical Stored Charge vs. dif/dt Fig. 17 - Typical di (rec)M/dt vs. dif/dt
0
200
400
600
100 1000
f
d i /d t -
(
A/
µ
s
)
RR
Q - (n C )
I = 6 .0 A
I = 1 2A
I = 2 4 A
V = 200V
T = 125 °C
T = 25°C
R
J
J
F
F
F
10
100
1000
10000
100 1000
f
di /d t -
(
A/
µ
s
)
d i(re c)M/d t - (A /µs)
I = 1 2 A
I = 2 4A
I = 6 .0 A
F
F
F
V = 200V
T = 125 °C
T = 25°C
R
J
J
0
40
80
120
160
100 1000
f
di /dt -
(
A/
µ
s
)
t - (n s )
rr
I = 2 4 A
I = 1 2 A
I = 6.0A
F
F
F
V = 200V
T = 125 °C
T = 25°C
R
J
J
1
10
100
100 1000
f
di /d t -
(
A/
µ
s
)
I - (A )
IRRM
I = 6 .0A
I = 1 2A
I = 2 4 A
F
F
F
V = 200V
T = 1 25°C
T = 2 5°C
R
J
J
IRG4BC30KD-S
8www.irf.com
Same typ e
device as
D.U.T.
D.U.T.
430µF
80%
of Vce
Fig. 18a - Test Circuit for Measurement of
ILM, E on, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
Vce ie dt
t2
t1
5% V ce
Ic
Ipk
Vcc 10% Ic
Vce
t1 t2
DUT VOLTAGE
AN D CURRE NT
GATE VO LTAG E D.U .T.
+Vg
10% +Vg
90% Ic
tr
td(on)
DIO DE REVE RSE
RECO VERY ENERG Y
tx
E on =
Erec = t4
t3
Vd id dt
t4
t3
DIO DE RE CO V E RY
WAVEFORMS
Ic
Vpk
10% V cc
Irr
10% Irr Vcc
trr
Qrr = trr
tx
id d t
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
Vd Ic dt
Vce Ic dt
Ic dt
t=5µs
d(on)
t
t
f
tr
90%
t
d(off)
10%
90%
10%
5%
C
IC
Eon Eoff
ts o n off
E = (E +E )
V
Vge
IRG4BC30KD-S
www.irf.com 9
Vg GATE SI GN AL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0 t1 t2
D.U.T.
V *
c
50V
L
1000V
6000µF
100V
Figure 19. Clamped Inductive Load Test Circuit Figure 20. Pulsed Collector Current
Test Circuit
RL=480V
4 X IC @25°C
0 - 480V
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
Tape & Reel Information
D2Pak
3
4
4
TRR
FEED DIRECTION
1.8 5
(
.073
)
1.6 5
(
.065
)
1.60
(
.063
)
1.50
(
.059
)
4.10
(
.161
)
3.90
(
.153
)
TRL
FEED DIRECTION
10.90
(
.429
)
10.70
(
.421
)
16.10
(
.634
)
15.90
(
.626
)
1.75
(
.069
)
1.25
(
.049
)
11.60
(
.457
)
11.40
(
.449
)
15 .42
(
.609
)
15 .22
(
.601
)
4.72
(
.136
)
4.52
(
.178
)
24.30
(
.957
)
23.90
(
.941
)
0.368
(
.0145
)
0.342
(
.0135
)
1.60
(
.063
)
1.50
(
.059
)
13.50
(
.532
)
12.80
(
.504
)
330.00
(
14.173
)
MAX.
27 .40
(
1.079
)
23 .90
(
.941
)
60.00
(
2.362
)
MIN.
30 .40
(
1.197
)
MAX.
26.40
(
1.039
)
24.40
(
.961
)
NOTES :
1. C O MFORMS TO E IA-418.
2. CONTR O LLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES F LAN GE DISTOR T ION @ OUTER ED GE.
IRG4BC30KD-S
10 www.irf.com
Notes:
QRepetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
RVCC=80%(VCES), VGE=20V, L=10µH, RG= 23(figure 19)
SPulse width 80µs; duty factor 0.1%.
TPulse width 5.0µs, single shot.
U When mounted on 1" square PCB (FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
10.16
(
.400
)
REF.
6.47
(
.255
)
6.18
(
.243
)
2.61
(
.103
)
2.32
(
.091
)
8.89
(
.350
)
REF.
- B -
1.32
(
.052
)
1.22
(
.048
)
2.79
(
.110
)
2.29
(
.090
)
1.39
(
.055
)
1.14
(
.045
)
5.28
(
.208
)
4.78
(
.188
)
4.69
(
.185
)
4.20
(
.165
)
10.54
(
.415
)
10.29
(
.405
)
- A -
2
1 3 15.49
(
.610
)
14.73
(
.580
)
3X 0.93
(
.037
)
0.69
(
.027
)
5.08
(
.200
)
3X 1.40
(
.055
)
1.14
(
.045
)
1.78
(
.070
)
1.27
(
.050
)
1.40
(
.055
)
MAX .
NOTES:
1 DIMEN SIONS AFT ER SOL DE R DIP .
2 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
3 CONTROLLING DIMENSION : INCH.
4 HEATSINK & LEAD DIMENSIONS DO NOT INCLUDE BURRS.
0.55
(
.022
)
0.46
(
.018
)
0.25
(
.010
)
M B A M MINIMUM RECOMM ENDED FOOTPRINT
11.43
(
.450
)
8.89
(
.350
)
17.78
(
.700
)
3.81
(
.150
)
2.08
(
.082
)
2X
LEAD ASSIG NME NTS
1 - GA TE
2 - DR AIN
3 - S OURCE
2.54
(
.100
)
2 X
D2Pak Package Outline
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 G odstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: + + 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 10/00
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/