Standard Power MOSFETs IRF240, IRF241, IRF242, IRF243 File Number 1584 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 16 Aand 18A, 150 V - 200 V N-CHANNEL ENHANCEMENT MODE loston) = 0.18 OQ and 0.22.2 Features: w SOA is power-dissipation limited a Nanosecond switching speeds a Linear transfer characteristics . = High input impedance 6 Majority carrier device $s 92CS-3374! TERMINAL DIAGRAM The IRF240, IRF241, IRF242, and IRF243 are n-channel enhancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regula- wean . : TERMINAL DESIGNATION tors, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requir- DRAIN ing high speed and low gate-drive power. These types can SOURCE (FLANGE ) be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AE metal (O O package. GATE 92CS-37801 JEDEC TO-204AE Absolute Maximum Ratings Parameter IRF240 IRF241 IRF242 IRF243 Units Vos Drain - Source Voltage 200 150 200 150 Vv VpGR Drain - Gate Voltage (Rgg = 20 ka) 200 150 200 150 Vv Ip @ Tce = 25C Continuous Drain Current 18 18 16 16 A ip @ Te = 100C Continuous Drain Current 11 11 10 10 A lpm Pulsed Drain Current @ 72 72 64 64 A Vos Gate - Source Voltage +20 Vv Pp @Tc = 25C Max. Power Dissipation 125 (See Fig. 14) Ww Linear Derating Factor 1.0 (See Fig. 14) W/K lim Inductive Current, Clamped (See Fig. 15 and 16). = 100ynH A 72 l 72 | 64 l 64 Ty Operating Junction and 85 to 150 C Tstg Storage Temperature Range Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s) C 3-84Standard Power MOSFETs IRF240, IRF241, IRF242, IRF243 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BVpss _ Drain - Source Breakdown Voltage IRF240 _ = iRF242 | 209 | v Vas = OV (RF241 = IRF243 150 - v Ip = 250pA Vasith) Gate Threshold Voltage ALL 2.0 ~ 4.0 v Vos = Ves: 'p = 250xA Iess Gate-Source Leakage Forward ALL = = 100 nA Veg = 20V less Gate-Source Leakage Reverse ALL = ~ -100 nA VGgg = -20V loss Zero Gate Voltage Drain Current ALL - = 250 uA Vps = Max. Rating, Vas = OV = _ 1000 pA Vos = Max. Rating x 0.8, Vag = OV, Tc = 125C IDion) _ On-State Drain Current @ IRF240 wr2a1 | 18 | > | 7 A Vos? 'piont * Roston) max. Vas = 10V IRF242 | 1g _ _ A IRF243 Rpsion} Static Drain-Source On:State IRF240 _ Resistance IRF241 0.14) 018 | @ v 1OV. In = 108 iRF242 | _ 0.20] 0.22] ese iRF243 . . ts Forward Transconductance @ ALL 60 | 90|] - SW) Vos > 'pion) * aston) max. |p = 104 Ciss Input Capacitance ALL = 1275; pF Ves = OV, Vpg = 25V, f = 1.0MHz Coss Output Capacitance ALL - 500 pF See Fig. 10 Crss Reverse Transfer Capacitance ALL _ 160 pF tdton) _ Turn-On Delay Time ALL = 16 30 ns Vop = 75\. Ip = 10A, 2, = 4.79 t, Rise Time ALL - 27 60 ns See Fig. 17 tdioff) _ Turn-Off Delay Time ALL _ 40 80 ns (MOSFET switching times are essentially tr Fall Time ALL a 31 60 ns independent of operating temperature.) Q, Total Gate Charge Vag = 10V, I, = 22A, Ving = 0.8 Max. Rating. 9 . _ GS D os (Gate-Source Plus Gate-Drain) ALL 43 60 ne See Fig. 18 for test circuit. (Gate charge is essentially Qgs Gate-Source Charge ALL _ 16 24 nc independent of operating temperature.) Qgq Gate-Drain (Miller) Charge ALL _ 27 44 nc Lp Internal Drain inductance ALL _ 5.0 _ nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internat device source and gate pins inductances. and center of die. (] ts Internal Source Inductance ALL _ 12.5 _ aH Measured from the source pin, 6mm (0.25 in.) from header and source bonding pad. Thermal Resistance Rihic Junction-to-Case ALL = = 1.0 Kw Rihcs _Case-to-Sink ALL ~ 0.1 ad KAW Mounting surface flat, smooth, and greased. Rinya _ Junction-to-Ambient ALL = = 30 Kw Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current IRF240 _ _ 18 A Modified MOSFET symbol! (Body Diode} IRF241 showing the integral IRF242 reverse P-N junction rectifier. inr2aa. | { { 18 A : Ism Pulse Source Current IRF240 _ _ 72 A (Body Diode) @ IRF241 $ IRF242 IRF243 7 7 64 A Vsp _ Diode Forward Voltage @) IRF240 _ _ _ . iRF241 - 2.0 v Te = 25C, ig = 18A, Vag = OV IRF242 IRF243 _ - 1.9 v To = 25C, Ig = 16A, Vgg = OV ter Reverse Recovery Time ALL 650 - ns Ty = 150C, tp = 18A, dip/dt = 100A/zs Orr Reverse Recovered Charge ALL - 4.1 _ uc Ty = 150C, Ip = 18A, dip/dt = 100A/us ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. Ory = 25C to 150C. @Pulse Test: Pulse width < 300us, Duty Cycle < 2%. Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5). 3-85Standard Power MOSFETs: IRF240, IRF241, IRF242, IRF243 40 32 80 ss PULSE 24 Ss PULSE 1 1 Vos > !p(an} * ip, DRAIN CURRENT (AMPERES) (Ip, ORAIN CURRENT (AMPERES) 0 10 20 30 40 s0 0 2 4 6 8 Vos, ORAIN-TO-SQURCE VOLTAGE (VOLTS) Vg, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics 100 50 IRF242,3 ws PULSE TEST 20 1 IRF242, 3 Ip, ORAIN CURRENT (AMPERES) Ip. ORAIN CURRENT (AMPERES) Tp > 25C 0.5 [ 1) = 180C MAX. Rene = 1.0 KW SINGLE PULSE 0.2 1,3 a1 0 1 2 3 4 5 1.0 2 10 20 50 100 200 Vps, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vag. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area 0S 10 500 0.2 0.1 jo 81 Cr 0.05 SINGLE PULSE (TRANSIENT 1. DUTY FACTOR, D= 4 THERMAL 2 3. Ty - Te = Pom Zthaclt). Zynsclt Rinse. NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE (PER UNIT) 0.01 10-5 2 5 10-4 2 5 10-3 2 10-2 2 5 10-1 2 10 2 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-86 L 0.02 2. PER UNIT BASE = Ringe = 1.0 OG. CW.Standard Power MOSFETs Of, TRANSCONDUCTANCE {SIEMENS) 80 ys PULSE TEST ' t ' Vos > !o(on) X Boston) max. 16 24 ig, DRAIN CURRENT {AMPERES} 32 40 Fig. 6 Typical Transconductance Vs. Drain Current 1.25 1.15 s a Ss oo a 0.85 BVpgs, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) 0.75 -40 0 40 80 Ty, JUNCTION TEMPERATURE (C) 120 Fig. 8 Breakdown Voltage Vs. Temperature 2000 Cigg = Coy + Cog, Cys SHORTED Cress = Cyd V6s* Cos Cpa f= MHz Cogs = Cas + Tot Coa Cast 1600 1200 800 C, CAPACITANCE (pF) 400 5 10 18 20 28 30 3540 Vpg, ORAIN-TO-SQURCE VOLTAGE (VOLTS) 45 Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage 160 IRF240, IRF241, IRF242, IRF243 Ty = 250C ior, REVERSE DRAIN CURRENT (AMPERES) 0.4 0.8 1.2 16 2.0 Vsp, SOURCE-TO-ORAIN VOLTAGE (VOLTS) Fig. 7 Typical Source-Drain Diode Forward Voltage 25 2.0 (NORMALIZED) in 06 RpS(on}, ORAIN-TO-SOURCE ON-STATE RESISTANCE 0 ~40 0 40 80 160 7), JUNCTION TEMPERATURE (C} 420 Fig. 9 Normalized On-Resistance Vs. Temperature 20 os* | | Vps = 100V | Vpg = 160V. IRF240, 10 Ip = 22a FOR TEST CIRCUIT SEE FIGURE 18 Vag. GATE-TO-SOURCE VOLTAGE (VOLTS) 20 40 60 Qy, TOTAL GATE CHARGE (nC) 50 90 Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 3-87Standard Power MOSFETs IRF240, IRF241, IRF242, IRF243 05 04 0.3 02 0.1 Ros(on), ORAIN-TO-SOURCE ON RESISTANCE (OHMS) Ros{an} MEASURED WITH CURRENT PULSE OF 2.0 us DURATION. INITIAL Ty = 25C. (HEATING EFFECT OF 2.0 us PULSE IS MINIMAL.) 0 20 40 60 80 100 Ip, DRAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current Po. POWER DISSIPATION (WATTS) & 8 3s & 8 8 nN So 0 20 40 60 80 100 120 140 Tc, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve ADJUST R, TO OBTAIN SPECIFIED Ip Ves D.U.T. Fruse og, GENERATOR 4.782 SOURCE Iq | IMPEDANCE Fig. 17 Switching Time Test Circuit 3-88 20 12 IRF240, 241 IRF242, 243 tp, DRAIN CURRENT (AMPERES) 0 25 50 15 100 128 150 Tc, CASE TEMPERATURE (C} Fig. 13 Maximum Drain Current Vs. Case Temperature VARY ty TO OBTAIN REQUIRED PEAK 4, Vgg = 10V fet, " E,=0.58Voss Ec = 0.75 BVpss Fig. 15 -- Clamped Inductive Test Circuit Fig. 16 -- Clamped Inductive Waveforms Vos CURRENT USOLATED REGULATOR SUPPLY) SAME TYPE AS OUT lev 1 0 2ut BATTERY |} I _ | | fis 0 a \g 'p CURRENT CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 18 Gate Charge Test Circuit