AW5005 2017 8 V1.7 SLT AW5005 GPS (GNSS) 0.53dB 18.0dB ,, IIP3oob+6.5dBm 1dB -7.6dBm PCB AW5005 SLT, 1.5V 3.6V 50 ; 1.5V~3.6V; 1550~1615MHz; 1.5mmX1.0mmX 0.55mm DFN 6L AW5005 GNSS GNSS 3kV HBM RFIN RFOUT AW5005 1.5mm x 1.0 mm x 0.55 mm DFN-6L -40 85 GPS 1 3 AXY 2 6 6 1 5 5 2 4 4 3 Pin No. Pin Name 1 GND 2 GND 3 RFIN 4 VCC 5 EN 6 RFOUT A---AW5005DNRZXY--- 1. AW5005 (c) 2017 1 23 AW5005 datasheet Aug 2017 V1.7 Ultra-Low Noise Amplifier for Global Navigation Satellite Systems (GNSS) FEATURES INTRODUCTION The AW5005 is a Low Noise Amplifier designed for Global Navigation Satellite Systems (GNSS) as GPS, GLONASS, Galileo and Compass. The AW5005DNR requires only one external input matching inductor, reduces assembly complexity and the PCB area, enabling a cost-effective solution. Reduce RF environment Interference with patented Smart-Linearity-Technology (SLT); Ultra low noise figure(NF)=0.53dB; High power gain=18.0dB; High linearity IIP3oob=+6.5dBm; High input 1dB-compression point= -7.6dBm; Requires only one input matching inductor; RF output internally matched to 50 ohm; Supply voltage: 1.5V to 3.6V; Operating frequencies: 1550~1615MHz; Slim DFN-6L package:1.5mmX1.0mmX 0.55mm 3kV HBM ESD protection (including RFIN and RFOUT pin) The AW5005 with patented Smart Linearity Technology (SLT) achieves ultra low noise figure, high linearity, high gain, over a wide range of supply voltages from 1.5V up to 3.6V. All these features make AW5005 an excellent choice for GNSS LNA as it improves sensitivity with low noise figure and high gain, provide better immunity against out-of-band jammer signals with high linearity, reduces filtering requirement of preceding stage and hence reduces the overall cost of the GNSS receiver. APPLICATIONS Smart phones, feature phones, Tablet PCs, Personal Navigation Devices, Digital Still Cameras, Digital Video Cameras; RF Front End modules; Complete GPS chipset modules; Theft protection(laptop, ATM); The AW5005 is available in a small lead-free, RoHS-Compliant, 1.5mm x 1.0mm x 0.55mm 6-pin DFN package PIN CONFIGURATION AND MARKING Bottom View Top View 1 3 AXY 2 6 6 1 5 5 2 4 4 3 Pin No. Pin Name 1 GND 2 GND 3 RFIN 4 VCC 5 EN 6 RFOUT A---AW5005DNRZXY---Manufactory trace No. Figure 1. AW5005 Pin Configuration and Marking Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 2 of 23 AW5005 datasheet Aug 2017 V1.7 TYPICAL APPLICATION AW5005 GND GND RF INPUT 1 6 2 5 RFIN EN LOGIC CONTROL VCC 3 BIAS RF OUTPUT RFOUT R1 4 L1 SUPPLY VOLTAGE C1 (optional) L1=9.1nH C1=1nFR1=0 Closed to LNA Figure 2. Application Schematic AW5005 For a list of components see Table 6 and Table 7. ORDER INFORMATION Table 1 Order Information Part Number Temperature Package RoHS Mark SPQ MSL AW5005DNR -4085 1.5mm x 1.0 mm x 0.55mm DFN-6L Yes A Tape and Reel 3000pcs/Reel 3 AW 5005 R : Tape& Reel DN: DFN Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 3 of 23 AW5005 datasheet Aug 2017 V1.7 ABSOLUTE MAXIMUM RATINGS 1) Table 2 . Limiting Values Values Parameter Symbol Unit Min. Typ. Max. VCC -0.3 - 5.0 V Voltage at pin EN VEN -0.3 - 5.0 V Current into pin VCC ICC - - 30 mA RF input power PIN - - 10 dBm Package thermal resistance JA - 148.2 Junction temperature TJ - - 150 Storage temperature range TSTG -65 - 150 Ambient temperature range Tamb -40 - 85 - 260 - Supply Voltage at pin VCC 2) Solder temperature(10s) /W ESD range HBM CDM MM 3) 3000 V 4) 2000 V 250 V 5) Latch-up +IT: +400 mA -IT: -400 mA Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. StandardJEDEC STANDARD NO.78D NOVEMBER 2011 Note2: Warning: due to internal ESD diode protection, the applied DC voltage should not exceed 5.0V in order to avoid excess current. Note3: HBM standard: MIL-STD-883H Method 3015.8. Note4: CDM standard: JEDEC EIA/JESD22-C101F Note5: MM standard: JEDEC EIA/JESD22-A115. Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 4 of 23 AW5005 datasheet Aug 2017 V1.7 ELECTRICAL CHARACTERISTICS Table 3 . AW5005 EVB 1 Electrical Characteristics ; VCC=1.5 to 3.6V, TA=-40~+85, f=1550MHz to 1615MHz; Typical values are at VCC=2.8V and Tamb=+25, f=1575.42MHz, unless otherwise noted. PARAMETER CONDITIONS MIN TYP MAX UNITS 1.5 - 3.6 V 1 A 15.0 mA DC ELECTRICAL CHARACTERISTICS VCC Supply Voltage ISD Shut-Down Current EN=Low ICC Supply Current EN=High VEN Digital Input-Logic High VEN Digital Input-Logic Low 6.9 0.80 V 0.45 V 18.5 dB AC ELECTRICAL CHARACTERISTICS Gp Power Gain 16.0 18.0 RLin Input Return Loss 8.0 9.5 dB ISL Reverse Isolation 25.0 28.5 dB RLout Output Return Loss 12.0 14.2 dB NF Noise Figure Kf Stability factor NFj Noise Figure with jammer 2) Zs=50 ohm; No jammer 0.53 0.65 dB Pjam=-20dBm; fjam=850MHz 0.72 1.10 dB Pjam=-20dBm; fjam= 1850MHz 1.14 1.50 dB f=20MHz...10GHz 1.0 IP1dB Inband input 1dB-compression point f=1575.42MHz; -9.0 -7.6 dBm IIP3oob Out-of-band input 3rd-order intercept point f1= 1712.7MHz; f2=1850MHz; Pin=-20dBm +4.0 +6.1 dBm IIP3oob Out-of-band input 3rd-order intercept point f1= 1712.7MHz; f2=1850MHz; Pin=-30dBm +4.5 +6.5 dBm IIP2oob Out-of-band input 2nd-order intercept point f1= 824.6MHz; f2=2400MHz; Pin=-20dBm -2.0 -1.2 dBm IIP2oob Out-of-band input 2nd-order intercept point f1= 824.6MHz; f2=2400MHz; Pin=-30dBm -2.0 -1.2 dBm H2-input referred LTE band-13 2nd Harmonic f=787.76MHz; Pin=-25dBm; fH2=1575.52MHz Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 5 of 23 -74.4 -70.0 dBm AW5005 datasheet Aug 2017 V1.7 ton Turn-on time toff Turn-off time 3) 3) Table 4 . 2.2 2.5 s 1.7 2.0 s Electrical Characteristics (AW5005 EVB1); VCC=1.5 to 3.6V, TA=-40~+85, f=1550MHz to 1615MHz; Typical values are at VCC=1.8V and Tamb=+25, f=1575.42MHz, unless otherwise noted. PARAMETER CONDITIONS MIN TYP MAX UNITS 1.5 - 3.6 V 1.0 A 15.0 mA DC ELECTRICAL CHARACTERISTICS VCC Supply Voltage ISD Shut-Down Current EN=Low ICC Supply Current EN=High VEN Digital Input-Logic High VEN Digital Input-Logic Low 6.2 0.80 V 0.45 V 18.0 dB AC ELECTRICAL CHARACTERISTICS Gp Power Gain 16.0 17.5 RLin Input Return Loss 7.0 9.0 dB ISL Reverse Isolation 25.0 28.0 dB RLout Output Return Loss 12.0 14.5 dB NF Noise Figure Kf Stability factor NFj Noise Figure with jammer 2 Zs=50 ohm; No jammer 0.54 0.70 dB Pjam=-20dBm; fjam=850MHz 0.76 1.10 dB Pjam=-20dBm; fjam= 1850MHz 1.18 1.50 dB f=20MHz...10GHz 1.0 IP1dB Inband input 1dB-compression point f=1575.42MHz -14.0 -12.5 dBm IIP3oob Out-of-band input 3rd-order intercept point f1= 1712.7MHz; f2=1850MHz; Pin=-20dBm; -1 0.7 dBm IIP3oob Out-of-band input 3rd-order intercept point f1= 1712.7MHz; f2=1850MHz; Pin=-30dBm; 0 2.5 dBm IIP2oob Out-of-band input 2nd-order intercept point f1= 824.6MHz; f2=2400MHz; Pin=-20dBm; -3 -1.9 dBm IIP2oob Out-of-band input 2nd-order intercept point f1= 824.6MHz; f2=2400MHz; Pin=-30dBm; -3 -1.7 dBm H2-input referred LTE band-13 2nd Harmonic f=787.76MHz; Pin=-25dBm; fH2=1575.52MHz ton Turn-on time 3) Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 6 of 23 -72.6 -70.0 dBm 2.2 2.5 s AW5005 datasheet Aug 2017 V1.7 toff Turn-off time 3) Note1: input matched to 50 ohm using a high quality-factor 9.1nH inductor. Note2: 0.08dB PCB losses are subtracted. Note3: Within 10% of the final gain. Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 7 of 23 1.7 2.0 s AW5005 datasheet Aug 2017 V1.7 TYPICAL OPERATING CHARACTERISTICS AW5005 EVB; Typical values are at VCC=2.8V and TA=+25, fRFIN=1575.42MHz, unless otherwise noted. Noise Figure ICC 1 12 0.9 10 0.8 (3) (3) 0.7 0.6 (2) 6 NF (dB) ICC (mA) 8 (1) (2) 0.5 (1) 0.4 4 0.3 0.2 2 0.1 0 0 1 1.5 2 2.5 1 3 VCC (V) 3.5 Pi=-45dBm. (1) TA=-25 (2) TA=+25 (3) TA=+85 2 2.5 3 f1=1575.42MHz, no jammer. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 3. Supply current as a function of supply voltage; typical values 3.5 VCC (V) Figure 4. Noise Figure as a function of supply voltage; typical values Power Gain Noise Figure 20 1.8 1.6 19 (1) 18 1.4 (2) 1.2 NF (dB) PG (dB) 1.5 17 (3) 16 1 (3) 0.8 (2) 0.6 (1) 0.4 15 0.2 14 1 1.5 2 2.5 3 VCC (V) Pi=-45dBm, f1=1575.42MHz, no jammer. (1) TA=-25 (2) TA=+25 (3) TA=+85 3.5 0 1000 1200 1400 VCC=1.8V, no jammer. (1) TA=-25 (2) TA=+25 (3) TA=+85 Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 8 of 23 1600 2000 1800 f(MHz) AW5005 datasheet Aug 2017 V1.7 Figure 5. Power Gain as a function of supply voltage; typical values Figure 6. Noise Figure as a function of frequency; typical values Power Gain Noise Figure 1.6 20 1.4 18 1.2 16 1 14 (3) 0.8 (1) 0.4 1200 1400 12 8 1600 6 1000 1800 2000 f(MHz) Figure 7. Noise Figure as a function of frequency; typical values 1200 1800 f(MHz) 2000 Power Gain Power Gain 20 (1) (2) (3) (3) (1) (2) 18 16 PG (dB) 16 PG (dB) 1600 Figure 8. Power Gain as a function of frequency; typical values 20 14 14 12 12 10 10 8 1000 1400 VCC=1.8V, Pi=-45dBm,no jammer. (1) TA=-25 (2) TA=+25 (3) TA=+85 VCC=2.8V, no jammer. (1) TA=-25 (2) TA=+25 (3) TA=+85 18 (3) (2) 10 (2) 0.6 0.2 1000 PG (dB) NF (dB) (1) 8 1200 1400 1600 1800 2000 f(MHz) VCC=2.8V, Pi=-45dBm,no jammer. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 9. Power Gain as a function of frequency; -35 -31 -27 -23 -20 -16 -12 -8 Pi(dBm) -4 VCC=1.8V, f1=1575.42MHz. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 10. Power Gain as a function of input Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 9 of 23 AW5005 datasheet Aug 2017 V1.7 typical values power; typical values Power Gain Power Gain 20.0 19 (1) 18.5 (2) 18 (3) 17.5 (2) (3) (4) 16.0 PG (dB) 17 PG (dB) (1) 18.0 16.5 14.0 (5) 12.0 16 10.0 15.5 15 8.0 14.5 6.0 14 -30 -35 -31 -27 -23 -20 -16 -12 -8 Pi(dBm) -27 -24 -21 -18 -15 -12 -9 -4 Figure 11. Power Gain as a function of input power; typical values -3 0 Pi(dBm) TA=+25, f1=1575.42MHz. (1) VCC=3.6V (2) VCC=3.1V (3) VCC=2.8V (4) VCC=1.8V (5) VCC=1.5V VCC=2.8V, f1=1575.42MHz. (1) TA=-25 (2) TA=+25 (3) TA=+85 -6 Figure 12. Power Gain as a function of input power; typical values out-of-band IIP3 out-of-band IIP3 3 9 2 7 (2) (3) (1) 5 (2) (3) 0 IIP3(dBm) IIP3(dBm) 1 3 -1 1 -2 -1 -3 (1) -3 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 Pi(dBm) -10 VCC=1.8V, f1=1713MHz, f2=1851MHz. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 13. out-of-band input IP3 as a function of -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 Pi(dBm) -10 VCC=2.8V, f1=1713MHz, f2=1851MHz. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 14. out-of-band input IP3 as a function of Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 10 of 23 AW5005 datasheet Aug 2017 V1.7 input power; typical values input power; typical values out-of-band IIP2 out-of-band IIP2 3 2 (3) 1 1 0 0 -1 (2) IIP2 (dBm) IIP2 (dBm) (3) 2 -2 -3 -4 -2 -3 (1) -4 (1) -5 (2) -1 -5 -6 -6 -7 -7 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 Pi(dBm) -30 -10 VCC=1.8V, f1=824.6MHz, f2=2400MHz. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 15. out-of-band input IP2 as a function of input power; typical values -2 -2 (3) -8 -10 -10 1600 -18 -16 -14 -12 Pi(dBm) -10 1800 2000 f(MHz) VCC=1.8V, Pi=-35dBm. (1) TA=-25 (2) TA=+25 (3) TA=+85 (1) (2) -6 -8 1400 -20 -4 RLin (dB) RLin (dB) (1) (2) 1200 -22 Input Return Loss 0 -12 1000 -24 Figure 16. out-of-band input IP2 as a function of input power; typical values; Input Return Loss -6 -26 VCC=2.8V, f1=824.6MHz, f2=2400MHz. (1) TA=-25 (2) TA=+25 (3) TA=+85 0 -4 -28 -12 1000 (3) 1200 1400 1600 1800 f(MHz) 2000 VCC=2.8V, Pi=-35dBm. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 17. Input Return Loss as a function of frequency; typical values Figure 18. Input Return Loss as a function of frequency; typical values Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 11 of 23 AW5005 datasheet Aug 2017 V1.7 Input Return Loss,dB Ouput Return Loss, dB 0 0 -2 -5 -4 (1) -10 (2) (3) (2) (3) -6 S22(dB) S11dB) (1) (4) (5) -8 (4) (5) -15 -20 -10 -25 -12 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 -30 1000 1100 TA=+25; Pi=-35dBm. (1) VCC=1.5V (2) VCC=1.8V (3) VCC=2.8V (4) VCC=3.1V (5) VCC=3.6V 1400 1500 1600 1700 1800 0 -2 -2 -4 (1) (2) (3) -8 -10 -12 (1) (2) (3) -6 RLout (dB) -6 2000 f(MHz) Output Return Loss 0 -4 1900 Figure 20. Output Return Loss as a function of frequency; typical values Output Return Loss RLout (dB) 1300 TA=+25; Pi=-35dBm. (1) VCC=1.5V (2) VCC=1.8V (3) VCC=2.8V (4) VCC=3.1V (5) VCC=3.6V Figure 19. Input Return Loss as a function of frequency; typical values -8 -10 -12 -14 -14 -16 -16 -18 -18 1000 1200 f(MHz) 1200 1400 VCC=1.8V, Pi=-35dBm. (1) TA=-25 (2) TA=+25 (3) TA=+85 1600 1800 2000 f(MHz) -20 1000 1200 1400 VCC=2.8V, Pi=-35dBm. (1) TA=-25 (2) TA=+25 (3) TA=+85 Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 12 of 23 1600 1800 2000 f(MHz) AW5005 datasheet Aug 2017 V1.7 Figure 21. Output Return Loss as a function of frequency; typical values Figure 22. Output Return Loss as a function of frequency; typical values Reverse Isolation Reverse Isolation -20 -20 -25 -25 -30 ISL (dB) -30 -35 -35 -40 -45 1000 (1) (2) (3) ISL (dB) (1) (2) (3) -40 1200 1400 1600 1800 f(MHz) -45 1000 2000 VCC=1.8V, Pi=-35dBm. (1) TA=-25 (2) TA=+25 (3) TA=+85 1200 1800 f(MHz) 2000 Figure 24. Reverse Isolation as a function of frequency; typical values; Reverse Isolation Stability factor -20 100000 -25 10000 (1) (2) 1000 (2) (3) K ISL dB) 1600 VCC=2.8V, Pi=-35dBm. (1) TA=-25 (2) TA=+25 (3) TA=+85 Figure 23. Reverse Isolation as a function of frequency; typical values; -30 1400 (4) (5) (1) 100 -35 10 -40 1 -45 0 2500 5000 7500 10000 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 TA=+25; Pi=-35dBm. (1) VCC=1.5V (2) VCC=1.8V (3) VCC=2.8V (4) VCC=3.1V (5) VCC=3.6V f(MHz) f(MHz) TA=+25;Pin=-35dBm (1) VCC=1.8V (2) VCC=2.8V Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 13 of 23 AW5005 datasheet Aug 2017 V1.7 Figure 25. Reverse Isolation as a function of frequency; typical values Figure 26. Stability factor as a function of frequency; typical values Stability factor 100000 10000 K 1000 (1) (2) (3) 100 10 1 0 2500 VCC=2.8V,Pin=-35dBm. (1) TA=-25 (2) TA=+25 (3) TA=+85 5000 7500 10000 f(MHz) Figure 27. Stability factor as a function of frequency; typical values Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 14 of 23 AW5005 datasheet Aug 2017 V1.7 AW5005 APPLICATION BOARD Figure 26. Drawing of Application Board Vias Copper 35um FR4 AW5005DNR_application_board_sideview Figure 27. Application Board Cross-Section Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 15 of 23 AW5005 datasheet Aug 2017 V1.7 TEST CIRCUITS 1. DC Characteristics test: including power supply, pin voltage, supply current, standby current AW5005 GND GND RF INPUT 1 6 2 5 RFIN EN LOGIC CONTROL VCC 3 BIAS RF OUTPUT RFOUT R1 4 SUPPLY VOLTAGE A L1 C1 (optional) V L1=9.1nH C1=1nFR1=0 Closed to LNA Figure 28. Circuit for DC test 2. S Parameter test: including input return loss, output return loss, reverse isolation, forward gain, 1dB gain compression. RF INPUT AW5005 EVB RF OUTPUT NetWork Analyzer Figure 29. Circuit for S Parameter test 3. Noise Figure test: including noise figure, power gain. RF INPUT AW5005 EVB Noise Source Figure 30. RF OUTPUT NF Analyzer Circuit for Noise Figure test Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 16 of 23 AW5005 datasheet Aug 2017 V1.7 4. Intermodulation distortion test: including third-order intercept point. Signal Generator Power Combiner RF AW5005 EVB INPUT RF OUTPUT Signal Analyzer Signal Generator Figure 31. Circuit for intermodulation distortion test Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 17 of 23 AW5005 datasheet Aug 2017 V1.7 APPLICATION INFORMATIONS 2. The output of AW5005 is internally matched to 50 ohm and a DC blocking capacitor is integrated on-chip, thus no external component is required at the output. 1.1 EN control The AW5005 includes an internal switch to turn off the entire chip: apply logic high to EN to turn on, and a logic low to shut down. 1.2 List of components 1. The AW5005 requires only one external inductor for input matching. If the device/phone manufacturers implement very good power supply filtering on their boards, the bypass capacitor mentioned in this application circuit may be optional. With the capacitor we can get better performance like a little higher gain etc. The value is optimized for the best gain, noise figure, return loss performance. Typical value of inductor is 9.1nH, capacitor is 1nF. For schematics see Figure2. 3. The AW5005 should be placed close to the GPS antenna with the input-matching inductor. Use 50ohm microstrip lines to connect RF INPUT and RF OUTPUT. Bypass capacitor should be located close to the device. For long Vcc lines, it may be necessary to add more decoupling capacitors. Proper grounding of the GND pins is very important. Table6 lists the recommended inductor types and values; Table 7 lists the recommended capacitor types and values. Table6: list of inductor Part Number Inductance Q(min) Units nH LQW15A 9.1 25 SDWL1005C 9.1 HQ1005C 9.1 Q Test Frequency Supplier Size 250 Murata 0402 24 250 Sunlord 0402 22 250 Sunlord 0402 MHz Table7: list of capacitor Part Number Capacitance Rated Voltage Units pF V GRM155 1000 50 Supplier Size Murata 0402 Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 18 of 23 AW5005 datasheet Aug 2017 V1.7 PACKAGE INFORMATION A D aaa C bbb C A E A2 A1 B SEATING PLANE LASER MARK FOR PIN 1 IDENTIFICATION IN THIS AREA TOP VIEW C SIDE VIEW 0.10 M e * CONTROLLING DIEMENSION:MM CAB SYMBOL L b MAX MIN NOM A 0.50 0.55 0.60 0. 02 0.022 0.024 A1 --- --- 0.05 --- L2 b 0.15 0.20 --- 0.25 0.002 0.006 0.008 1. 50 bsc 0. 060 bsc E 1. 00 bsc 0. 040 bsc E2 1.000REF D MAX 0.006REF 0.152 REF 0.010 0.040REF L 0.30 0.35 0.40 0.012 0.014 0.016 L2 0.35 0.40 0.45 0.014 0.018 0. 50 bsc e BOTTOM VIEW INCH NOM A2 PIN1 ID E2 MILLIMETER MIN 0.016 0. 020 bsc TOLERANCES OF FORM AND POSITION aaa bbb 0.05 0.05 0.002 0.002 Note 1.AW5005 is produced based on MSL level-3 according to the JEDEC industry standard classification. Figure 32. Package Outline Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 19 of 23 AW5005 datasheet Aug 2017 V1.7 TAPE&REEL DESCRIPTION 2.00.05 1.550.05 B 4.00.1 Pin1 Marking 1.720.05 A A REF 5 4.00.1 1.120.05 B 0.550.05 0.70.05 S ect ion A-A Notes: 1.10 procket hole pitch cumulative tolerance 0.2 2.The meander of the tape is assumed with 1mm or less every 100mm between 250mm 3.MATERIAL:CONDUCTIVE POYSTYRENE 4.ALL DIMS IN MM 5.Threr must not be foreign body adhesion and the state of the surface must be excellent 6.17"PAPER-Reel125000 pockets(500m) 7.Surface resistance 1X10E11(max) OHMS/SQ NOTES: 1. ALL DIMS IN MM; 2. General Tolerance0.25mm. Figure 33. 8.00.3 3.50.05 1.750.1 0.250.05 Tape and Reel Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 20 of 23 S ect ion B -B AW5005 datasheet Aug 2017 V1.7 REFLOW Figure 34. Package Reflow Oven Thermal Profile Reflow Note Spec Average ramp-up rate (217c to Peak) Max. 3/sec Time of Preheat temp.(from 150 to 200) 60-120sec Time to be maintained above 217 60-150sec Peak Temperature >260 Time within 5 of actual peak temp 20-40sec. Ramp-down rate Max. 6/sec Time from 25 to peak temp Max. 8min. Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 21 of 23 AW5005 datasheet Aug 2017 V1.7 FOOTPRINT INFORMATION 1.250mm 0.370mm 0.675mm 0.500mm 1.700mm 0.270mm 0.500mm Solder resist Solder paste Occupied area 0.325mm 0.425mm Figure 35. Footprint Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 22 of 23 AW5005 datasheet Aug 2017 V1.7 REVISION HISTORY Table 8. Revision history Document ID Release date Change notice Supersedes AW5005_V1.7 2017-08 Add MSL 3 note in Order Information. -- NoticeShanghai Awinic Technology Co. ltd cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an Awinic product. No circuit patent licenses are implied. Awinic reserves the right to change the circuitry and specifications without notice at any time. Copyright (c) 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD Page 23 of 23