NXP Semiconductors
Data Sheet: Technical Data
Document Number: IMXRT1050CEC
Rev. 1.3, 03/2019
MIMXRT1051DVL6A MIMXRT1052DVL6A
MIMXRT1051DVL6B MIMXRT1052DVL6B
MIMXRT1051DVJ6B MIMXRT1052DVJ6B
Package Information
Plastic Package
196-pin MAPBGA, 10 x 10 mm, 0.65 mm pitch
196-pin MAPBGA, 12 x 12 mm, 0.8 mm pitch
Ordering Information
See Table 1 on page 5
NXP reserves the right to change the production detail specifications as may be required
to permit improvements in the design of its products.
1 i.MX RT1050 introduction
The i.MX RT1050 is a new processor family featuring
NXP’s advanced implementation of the Arm
Cortex®-M7 core, which operates at speeds up to 600
MHz to provide high CPU performance and best
real-time response.
The i.MX RT1050 processor has 512 KB on-chip RAM,
which can be flexibly configured as TCM or
general-purpose on-chip RAM. The i.MX RT1050
integrates advanced power management module with
DCDC and LDO that reduces complexity of external
power supply and simplifies power sequencing. The
i.MX RT1050 also provides various memory interfaces,
including SDRAM, RAW NAND FLASH, NOR
FLASH, SD/eMMC, Quad SPI, and a wide range of
other interfaces for connecting peripherals, such as
WLAN, Bluetooth™, GPS, displays, and camera
sensors. The i.MX RT1050 also has rich audio and video
features, including LCD display, basic 2D graphics,
camera interface, SPDIF, and I2S audio interface. The
i.MX RT1050 Crossover
Processors Data Sheet
for Consumer Products
1. i.MX RT1050 introduction . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 5
2. Architectural overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3. Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1. Special signal considerations . . . . . . . . . . . . . . . 15
3.2. Recommended connections for unused analog
interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1. Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . 18
4.2. System power and clocks . . . . . . . . . . . . . . . . . . 25
4.3. I/O parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4. System modules . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5. External memory interface . . . . . . . . . . . . . . . . . 41
4.6. Display and graphics . . . . . . . . . . . . . . . . . . . . . . 51
4.7. Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.8. Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.9. Communication interfaces . . . . . . . . . . . . . . . . . . 64
4.10. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1. Boot mode configuration pins . . . . . . . . . . . . . . . 79
5.2. Boot device interface allocation . . . . . . . . . . . . . . 79
6. Package information and contact assignments . . . . . . . 84
6.1. 10 x 10 mm package information . . . . . . . . . . . . 84
6.2. 12 x 12 mm package information . . . . . . . . . . . . 96
7. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
2NXP Semiconductors
i.MX RT1050 introduction
i.MX RT1050 has analog interfaces, such as ADC, ACMP, and TSC.
The i.MX RT1050 is specifically useful for applications such as:
Industrial Human Machine Interfaces (HMI)
Motor Control
Home Appliance
1.1 Features
The i.MX RT1050 processors are based on Arm Cortex-M7 MPCore™ Platform, which has the
following features:
Supports single Arm Cortex-M7 MPCore with:
32 KB L1 Instruction Cache
32 KB L1 Data Cache
Full featured Floating Point Unit (FPU) with support of the VFPv5 architecture
Support the Armv7-M Thumb instruction set
Integrated MPU, up to 16 individual protection regions
Up to 512 KB I-TCM and D-TCM in total
Frequency of 600 MHz
Cortex M7 CoreSight™ components integration for debug
Frequency of the core, as per Table 10, "Operating ranges," on page 20.
The SoC-level memory system consists of the following additional components:
Boot ROM (96 KB)
On-chip RAM (512 KB)
Configurable RAM size up to 512 KB shared with M7 TCM
External memory interfaces:
8/16-bit SDRAM, up to SDRAM-166
8/16-bit SLC NAND FLASH, with ECC handled in software
—SD/eMMC
SPI NOR FLASH
Parallel NOR FLASH with XIP support
Single/Dual channel Quad SPI FLASH with XIP support
Timers and PWMs:
Two General Programmable Timers (GPT)
4-channel generic 32-bit resolution timer
Each support standard capture and compare operation
Four Periodical Interrupt Timer (PIT)
Generic 16-bit resolution timer
Periodical interrupt generation
i.MX RT1050 introduction
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 3
Four Quad Timers (QTimer)
4-channel generic 16-bit resolution timer for each
Each support standard capture and compare operation
Quadrature decoder integrated
Four FlexPWMs
Up to 8 individual PWM channels for each
16-bit resolution PWM suitable for Motor Control applications
Four Quadrature Encoder/Decoders
Each i.MX RT1050 processor enables the following interfaces to external devices (some of them are
muxed and not available simultaneously):
Display Interface:
Parallel RGB LCD interface
Support 8/16/24 bit interface
Support up to 1366 x 768 WXGA resolution
Support Index color with 256 entry x 24 bit color LUT
Smart LCD display with 8/16-bit MPU/8080 interface
Audio:
S/PDIF input and output
Three synchronous audio interface (SAI) modules supporting I2S, AC97, TDM, and
codec/DSP interfaces
MQS interface for medium quality audio via GPIO pads
Generic 2D graphics engine:
BitBlit
Flexible image composition options—alpha, chroma key
Image rotation (90, 180, 270)
Porter-Daff operation
Image size
Color space conversion
Multiple pixel format support (RGB, YUV444, YUV422, YUV420, YUV400)
Standard 2D-DMA operation
Camera sensors:
Support 24-bit, 16-bit, and 8-bit CSI input
Connectivity:
Two USB 2.0 OTG controllers with integrated PHY interfaces
Two Ultra Secure Digital Host Controller (uSDHC) interfaces
MMC 4.5 compliance with HS200 support up to 200 MB/sec
SD/SDIO 3.0 compliance with 200 MHz SDR signaling to support up to 100 MB/sec
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
4NXP Semiconductors
i.MX RT1050 introduction
Support for SDXC (extended capacity)
One 10/100 M Ethernet controller with support for IEEE1588
Eight universal asynchronous receiver/transmitter (UARTs) modules
Four I2C modules
Four SPI modules
Two FlexCAN modules
GPIO and Pin Multiplexing:
General-purpose input/output (GPIO) modules with interrupt capability
Input/output multiplexing controller (IOMUXC) to provide centralized pad control
Two FlexIOs
The i.MX RT1050 processors integrate advanced power management unit and controllers:
Full PMIC integration. On-chip DCDC and LDO
Temperature sensor with programmable trip points
GPC hardware power management controller
The i.MX RT1050 processors support the following system debug:
Arm CoreSight debug and trace architecture
Trace Port Interface Unit (TPIU) to support off-chip real-time trace
Support for 5-pin (JTAG) and SWD debug interfaces selected by eFuse
Security functions are enabled and accelerated by the following hardware:
High Assurance Boot (HAB)
Data Co-Processor (DCP):
AES-128, ECB, and CBC mode
SHA-1 and SHA-256
CRC-32
Bus Encryption Engine (BEE)
AES-128, ECB, and CTR mode
On-the-fly QSPI Flash decryption
True random number generation (TRNG)
Secure Non-Volatile Storage (SNVS)
Secure real-time clock (RTC)
Zero Master Key (ZMK)
Secure JTAG Controller (SJC)
NOTE
The actual feature set depends on the part numbers as described in Table 1.
Functions such as display and camera interfaces, connectivity interfaces,
and security features are not offered on all derivatives.
i.MX RT1050 introduction
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 5
1.2 Ordering information
Table 1 provides examples of orderable part numbers covered by this Data Sheet.
Table 1. Ordering information
Part Number Features Package
Junction
Temperature Tj
(C)
MIMXRT1051DVL6A
MIMXRT1051DVL6B
600 MHz, commercial
grade for general
purpose with
MPU/FPU
•eDMA
Boot ROM (96 KB)
On-chip RAM (512
KB)
•SEMC
•GPT x2
4-channel PIT
•PWM x4
ENC x4
WDOG x4
No LCD/CSI/PXP
SPDIF x1
•SAI x3
MQS x1
USB OTG x2
eMMC 4.5/SD 3.0 x2
SPI x4
Ethernet
•UART x8
•I
2C x4
FlexSPI
•CAN x2
FlexIO x2
127 GPIOs
HAB/DCP/BEE
TRNG
•SNVS
•SJC
ADC x2
•ACMP x4
•TSC
•DCDC
Temperature sensor
GPC hardware power
management
controller
10 x 10 mm, 0.65 mm pitch,
196-pin MAPBGA
0 to +95
MIMXRT1051DVJ6B 600 MHz, commercial
grade for general
purpose with
MPU/FPU
•eDMA
Boot ROM (96 KB)
On-chip RAM (512
KB)
•SEMC
•GPT x2
4-channel PIT
•PWM x4
ENC x4
WDOG x4
No LCD/CSI/PXP
SPDIF x1
•SAI x3
MQS x1
USB OTG x2
eMMC 4.5/SD 3.0 x2
SPI x4
Ethernet
•UART x8
•I
2C x4
FlexSPI
•CAN x2
FlexIO x2
127 GPIOs
HAB/DCP/BEE
TRNG
•SNVS
•SJC
ADC x2
•ACMP x4
•TSC
•DCDC
Temperature sensor
GPC hardware power
management
controller
12 x 12 mm, 0.8 mm pitch,
196-pin MAPBGA
0 to +95
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
6NXP Semiconductors
i.MX RT1050 introduction
Figure 1 describes the part number nomenclature so that characteristics of a specific part number can be
identified (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The
primary characteristic which describes which data sheet applies to a specific part is the temperature grade
(junction) field.
The i.MX RT1050 Crossover Processors for Consumer Products data sheet (IMXRT1050CEC)
covers parts listed with a “D (Consumer temp)”
MIMXRT1052DVL6A
MIMXRT1052DVL6B
600 MHz, commercial
grade for general
purpose with
MPU/FPU
•eDMA
Boot ROM (96 KB)
On-chip RAM (512
KB)
•SEMC
•GPT x2
4-channel PIT
•PWM x4
ENC x4
WDOG x4
LCD/CSI/PXP
SPDIF x1
•SAI x3
MQS x1
USB OTG x2
eMMC 4.5/SD 3.0 x2
SPI x4
Ethernet
•UART x8
•I
2C x4
FlexSPI
•CAN x2
FlexIO x2
127 GPIOs
HAB/DCP/BEE
TRNG
•SNVS
•SJC
ADC x2
•ACMP x4
•TSC
•DCDC
Temperature sensor
GPC hardware power
management
controller
10 x 10 mm, 0.65 mm pitch,
196-pin MAPBGA
0 to +95
MIMXRT1052DVJ6B 600 MHz, commercial
grade for general
purpose with
MPU/FPU
•eDMA
Boot ROM (96 KB)
On-chip RAM (512
KB)
•SEMC
•GPT x2
4-channel PIT
•PWM x4
ENC x4
WDOG x4
LCD/CSI/PXP
SPDIF x1
•SAI x3
MQS x1
USB OTG x2
eMMC 4.5/SD 3.0 x2
SPI x4
Ethernet
•UART x8
•I
2C x4
FlexSPI
•CAN x2
FlexIO x2
127 GPIOs
HAB/DCP/BEE
TRNG
•SNVS
•SJC
ADC x2
•ACMP x4
•TSC
•DCDC
Temperature sensor
GPC hardware power
management
controller
12 x 12 mm, 0.8 mm pitch,
196-pin MAPBGA
0 to +95
Table 1. Ordering information
Part Number Features Package
Junction
Temperature Tj
(C)
i.MX RT1050 introduction
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 7
Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field
and matching it to the proper data sheet. If there are any questions, visit the web page nxp.com/IMXRT or
contact an NXP representative for details.
Figure 1. Part number nomenclature—i.MX RT1050
Temperature
+
Consumer: 0 to + 95 °C D
Industrial: -40 to +105 °C C
Frequency $
400 MHz 4
500 MHz 5
600 MHz 6
700 MHz 7
800 MHz 8
1000 MHz A
VV Package Type
VL MAPBGA 10 x 10 mm, 0.65 mm pitch
VJ MAPBGA 12 x 12 mm, 0.8 mm pitch
Qualification Level M
Prototype Samples P
Mass Production M
Special S
Part # series XX
i.MX RT RT
Silicon Rev A
A0 A
A1 B
Tie %
1 Reduced Feature General Purpose
2 Full Feature General Purpose
MIMX X X @%+VV $A
Family @
First Generation RT family 1
Reserved 2
3
4
5
6
7
8
##
Sub-Family ##
02 RT1020
05 RT1050
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
8NXP Semiconductors
Architectural overview
2 Architectural overview
The following subsections provide an architectural overview of the i.MX RT1050 processor system.
2.1 Block diagram
Figure 2 shows the functional modules in the i.MX RT1050 processor system1.
.
Figure 2. i.MX RT1050 system block diagram
1. Some modules shown in this block diagram are not offered on all derivatives. See Ta ble 1 for details.
Internal Memory
512 KB OCRAM
shared with TCM
96 KB ROM
Multimedia
Connectivity
eMMC 4.5 / SD 3.0 x2
8 x 8 Keypad
External Memory
I2C x4
UART x8
S/PDIF Tx / Rx
GPIO
SPI x4
ADC
System Control
Secure JTAG
PLL / OSC
RTC and Reset
Enhanced DMA
IOMUX
GP Timer x6
CPU Platform
Arm Cortex-M7
32 KB I-cache 32 KB D-cache
FPU
FlexSPI (dual-channel QuadSPI
External Memory Controller
8-bit / 16-bit SDRAM
Parallel NOR FLASH
NAND FLASH
PSRAM
MPU NVIC
Up to 512 KB TCM
FlexCAN x2
USB 2.0 OTG with PHY x2
10 / 100 ENET
with IEEE 1588 x1
ADC x2 (20-Channel)
ACMP x4
8 / 16 / 24-bit Parallel CSI
24-bit Parallel LCD
A
rm C
o
rt
e
x-M
7
3
2 KB I-
cac
h
e
3
2 KB D-
cac
h
e
F
P
U
MP
U
NVI
C
U
to 51
KB TCM
PXP
2D Graphics Acceleration
Resize, CSC, Overlay, Rotation
Quadrature ENC x4
QuadTimer
FlexPWM
Watch Dog x4
Power Management
DCDC
LDO
Temp Monitor
Security
Ciphers and RNG Secure RTC eFuse HAB
I2S / SAI x3
(4-Channel) x4
NAND and NOR, Octal Flash, and RAM)
(8-Channel) x4
Modules list
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 9
3 Modules list
The i.MX RT1050 processors contain a variety of digital and analog modules. Table 2 describes these
modules in alphabetical order.
Table 2. i.MX RT1050 modules list
Block Mnemonic Block Name Subsystem Brief Description
ACMP1
ACMP2
ACMP3
ACMP4
Analog Comparator Analog The comparator (CMP) provides a circuit for comparing
two analog input voltages. The comparator circuit is
designed to operate across the full range of the supply
voltage (rail-to-rail operation).
ADC1
ADC2
Analog to Digital
Converter
Analog The ADC is a 12-bit general purpose analog to digital
converter.
AOI And-Or-Inverter Cross Trigger The AOI provides a universal boolean function
generator using a four team sum of products expression
with each product term containing true or complement
values of the four selected inputs (A, B, C, D).
Arm Arm Platform Arm The Arm Core Platform includes one Cortex-M7 core. It
includes associated sub-blocks, such as Nested
Vectored Interrupt Controller (NVIC), Floating-Point
Unit (FPU), Memory Protection Unit (MPU), and
CoreSight debug modules.
BEE Bus Encryption Engine Security On-The-Fly FlexSPI Flash Decryption
CCM
GPC
SRC
Clock Control Module,
General Power
Controller, System Reset
Controller
Clocks, Resets, and
Power Control
These modules are responsible for clock and reset
distribution in the system, and also for the system
power management.
CSI Parallel CSI Multimedia
Peripherals
The CSI IP provides parallel CSI standard camera
interface port. The CSI parallel data ports are up to 24
bits. It is designed to support 24-bit RGB888/YUV444,
CCIR656 video interface, 8-bit YCbCr, YUV or RGB,
and 8-bit/10-bit/16-bit Bayer data input.
CSU Central Security Unit Security The Central Security Unit (CSU) is responsible for
setting comprehensive security policy within the i.MX
RT1050 platform.
DAP Debug Access Port System Control
Peripherals
The DAP provides real-time access for the debugger
without halting the core to:
System memory and peripheral registers
All debug configuration registers
The DAP also provides debugger access to JTAG scan
chains. The DAP module is internal to the Cortex-M7
Core Platform.
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
10 NXP Semiconductors
Modules list
DCDC DCDC Converter Analog The DCDC module is used for generating power supply
for core logic. Main features are:
Adjustable high efficiency regulator
Supports 3.0 V input voltage for A0 and 3.3 V input
voltage for A1
Supports nominal run and low power standby modes
Supports at 0.9 ~ 1.3 V output in run mode
Supports at 0.9 ~ 1.0 V output in standby mode
Over current and over voltage detection
eDMA enhanced Direct Memory
Access
System Control
Peripherals
There is an enhanced DMA (eDMA) engine and two
DMA_MUX.
The eDMA is a 32 channel DMA engine, which is
capable of performing complex data transfers with
minimal intervention from a host processor.
The DMA_MUX is capable of multiplexing up to 128
DMA request sources to the 32 DMA channels of
eDMA.
ENC Quadrature
Encoder/Decoder
Timer Peripherals The enhanced quadrature encoder/decoder module
provides interfacing capability to position/speed
sensors. There are five input signals: PHASEA,
PHASEB, INDEX, TRIGGER, and HOME. This module
is used to decode shaft position, revolution count, and
speed.
ENET Ethernet Controller Connectivity
Peripherals
The Ethernet Media Access Controller (MAC) is
designed to support 10/100 Mbit/s Ethernet/IEEE 802.3
networks. An external transceiver interface and
transceiver function are required to complete the
interface to the media. The module has dedicated
hardware to support the IEEE 1588 standard. See the
ENET chapter of the reference manual for details.
EWM External Watchdog
Monitor
Timer Peripherals The EWM modules is designed to monitor external
circuits, as well as the software flow. This provides a
back-up mechanism to the internal WDOG that can
reset the system. The EWM differs from the internal
WDOG in that it does not reset the system. The EWM,
if allowed to time-out, provides an independent trigger
pin that when asserted resets or places an external
circuit into a safe mode.
FLEXCAN1
FLEXCAN2
Flexible Controller Area
Network
Connectivity
Peripherals
The CAN protocol was primarily, but not only, designed
to be used as a vehicle serial data bus, meeting the
specific requirements of this field: real-time processing,
reliable operation in the Electromagnetic interference
(EMI) environment of a vehicle, cost-effectiveness and
required bandwidth. The FlexCAN module is a full
implementation of the CAN protocol specification,
Version 2.0 B, which supports both standard and
extended message frames.
Table 2. i.MX RT1050 modules list (continued)
Block Mnemonic Block Name Subsystem Brief Description
Modules list
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 11
FlexIO1
FlexIO2
Flexible Input/output Connectivity and
Communications
The FlexIO is capable of supporting a wide range of
protocols including, but not limited to: UART, I2C, SPI,
I2S, camera interface, display interface, PWM
waveform generation, etc. The module can remain
functional when the chip is in a low power mode
provided the clock it is using remain active.
FlexPWM1
FlexPWM2
FlexPWM3
FlexPWM4
Pulse Width Modulation Timer Peripherals The pulse-width modulator (PWM) contains four PWM
sub-modules, each of which is set up to control a single
half-bridge power stage. Fault channel support is
provided. The PWM module can generate various
switching patterns, including highly sophisticated
waveforms.
FlexRAM RAM Memories The i.MX RT1050 has 512 KB of on-chip RAM which
could be flexible allocated to I-TCM, D-TCM, and
on-chip RAM (OCRAM) in a 32 KB granularity. The
FlexRAM is the manager of the 512 KB on-chip RAM
array. Major functions of this blocks are: interfacing to
I-TCM and D-TCM of Arm core and OCRAM controller;
dynamic RAM arrays allocation for I-TCM, D-TCM, and
OCRAM.
FlexSPI Quad Serial Peripheral
Interface
Connectivity and
Communications
FlexSPI acts as an interface to one or two external
serial flash devices, each with up to four bidirectional
data lines.
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
General Purpose I/O
Modules
System Control
Peripherals
Used for general purpose input/output to external ICs.
Each GPIO module supports up to 32 bits of I/O.
GPT1
GPT2
General Purpose Timer Timer Peripherals Each GPT is a 32-bit “free-running” or “set and forget”
mode timer with programmable prescaler and compare
and capture register. A timer counter value can be
captured using an external event and can be configured
to trigger a capture event on either the leading or trailing
edges of an input pulse. When the timer is configured to
operate in “set and forget” mode, it is capable of
providing precise interrupts at regular intervals with
minimal processor intervention. The counter has output
compare logic to provide the status and interrupt at
comparison. This timer can be configured to run either
on an external clock or on an internal clock.
KPP Keypad Port Human Machine
Interfaces
The KPP is a 16-bit peripheral that can be used as a
keypad matrix interface or as general purpose
input/output (I/O). It supports 8 x 8 external key pad
matrix. Main features are:
Multiple-key detection
Long key-press detection
Standby key-press detection
Supports a 2-point and 3-point contact key matrix
Table 2. i.MX RT1050 modules list (continued)
Block Mnemonic Block Name Subsystem Brief Description
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
12 NXP Semiconductors
Modules list
LCDIF LCD interface Multimedia
Peripherals
The LCDIF is a general purpose display controller used
to drive a wide range of display devices varying in size
and capabilities. The LCDIF is designed to support
dumb (synchronous 24-bit Parallel RGB interface) and
smart (asynchronous parallel MPU interface) LCD
devices.
LPI2C1
LPI2C2
LPI2C3
LPI2C4
Low Power
Inter-integrated Circuit
Connectivity and
Communications
The LPI2C is a low power Inter-Integrated Circuit (I2C)
module that supports an efficient interface to an I2C bus
as a master.
The I2C provides a method of communication between
a number of external devices. More detailed
information, see Section 4.9.2, LPI2C module timing
parameters.
LPSPI1
LPSPI2
LPSPI3
LPSPI4
Low Power Serial
Peripheral Interface
Connectivity and
Communications
The LPSPI is a low power Serial Peripheral Interface
(SPI) module that support an efficient interface to an
SPI bus as a master and/or a slave.
It can continue operating while the chip is in stop
modes, if an appropriate clock is available
Designed for low CPU overhead, with DMA off
loading of FIFO register access
LPUART1
LPUART2
LPUART3
LPUART4
LPUART5
LPUART6
LPUART7
LPUART8
UART Interface Connectivity
Peripherals
Each of the UART modules support the following serial
data transmit/receive protocols and configurations:
7- or 8-bit data words, 1 or 2 stop bits, programmable
parity (even, odd or none)
Programmable baud rates up to 5 Mbps.
MQS Medium Quality Sound Multimedia
Peripherals
MQS is used to generate 2-channel medium quality
PWM-like audio via two standard digital GPIO pins.
PXP Pixel Processing Pipeline Multimedia
Peripherals
A high-performance pixel processor capable of 1
pixel/clock performance for combined operations, such
as color-space conversion, alpha blending, and
rotation. The PXP is enhanced
with features specifically for gray scale applications. In
addition, the PXP supports traditional pixel/frame
processing paths for still-image and video processing
applications.
QuadTimer1
QuadTimer2
QuadTimer3
QuadTimer4
QuadTimer Timer Peripherals The quad-timer provides four time channels with a
variety of controls affecting both individual and
multi-channel features.Specific features include
up/down count, cascading of counters, programmable
module, count once/repeated, counter preload,
compare registers with preload, shared use of input
signals, prescaler controls, independent
capture/compare, fault input control, programmable
input filters, and multi-channel synchronization.
Table 2. i.MX RT1050 modules list (continued)
Block Mnemonic Block Name Subsystem Brief Description
Modules list
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 13
ROMCP ROM Controller with
Patch
Memories and
Memory Controllers
The ROMCP acts as an interface between the Arm
advanced high-performance bus and the ROM. The
on-chip ROM is only used by the Cortex-M7 core during
boot up. Size of the ROM is 96 KB.
RTC OSC Real Time Clock
Oscillator
Clock Sources and
Control
The RTC OSC provides the clock source for the
Real-Time Clock module. The RTC OSC module, in
conjunction with an external crystal, generates a 32.678
kHz reference clock for the RTC.
RTWDOG Watch Dog Timer Peripherals The RTWDG module is a high reliability independent
timer that is available for system to use. It provides a
safety feature to ensure software is executing as
planned and the CPU is not stuck in an infinite loop or
executing unintended code. If the WDOG module is not
serviced (refreshed) within a certain period, it resets the
MCU. Windowed refresh mode is supported as well.
SAI1
SAI2
SAI3
Synchronous Audio
Interface
Multimedia
Peripherals
The SAI module provides a synchronous audio
interface (SAI) that supports full duplex serial interfaces
with frame synchronization, such as I2S, AC97, TDM,
and codec/DSP interfaces.
SA-TRNG Standalone True Random
Number Generator
Security The SA-TRNG is hardware accelerator that generates
a 512-bit entropy as needed by an entropy consuming
module or by other post processing functions.
SEMC Smart External Memory
Controller
Memory and
Memory Controller
The SEMC is a multi-standard memory controller
optimized for both high-performance and low pin-count.
It can support multiple external memories in the same
application with shared address and data pins. The
interface supported includes SDRAM, NOR Flash,
SRAM, and NAND Flash, as well as 8080 display
interface.
SJC System JTAG Controller System Control
Peripherals
The SJC provides JTAG interface, which complies with
JTAG TAP standards, to internal logic. The i.MX
RT1050 processors use JTAG port for production,
testing, and system debugging. In addition, the SJC
provides BSR (Boundary Scan Register) standard
support, which complies with IEEE 1149.1 and IEEE
1149.6 standards.
The JTAG port is accessible during platform initial
laboratory bring-up, for manufacturing tests and
troubleshooting, as well as for software debugging by
authorized entities. The i.MX RT1050 SJC incorporates
three security modes for protecting against
unauthorized accesses. Modes are selected through
eFUSE configuration.
SNVS Secure Non-Volatile
Storage
Security Secure Non-Volatile Storage, including Secure Real
Time Clock, Security State Machine, and Master Key
Control.
Table 2. i.MX RT1050 modules list (continued)
Block Mnemonic Block Name Subsystem Brief Description
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
14 NXP Semiconductors
Modules list
SPDIF Sony Philips Digital
Interconnect Format
Multimedia
Peripherals
A standard audio file transfer format, developed jointly
by the Sony and Phillips corporations. Has Transmitter
and Receiver functionality.
Temp Monitor Temperature Monitor Analog The temperature sensor implements a temperature
sensor/conversion function based on a
temperature-dependent voltage to time conversion.
TSC Touch Screen Human Machine
Interfaces
With touch controller to support 4-wire and 5-wire
resistive touch panel.
USBO2 Universal Serial Bus 2.0 Connectivity
Peripherals
USBO2 (USB OTG1 and USB OTG2) contains:
Two high-speed OTG 2.0 modules with integrated
HS USB PHYs
Support eight Transmit (TX) and eight Receive (Rx)
endpoints, including endpoint 0
uSDHC1
uSDHC2
SD/MMC and SDXC
Enhanced Multi-Media
Card / Secure Digital Host
Controller
Connectivity
Peripherals
i.MX RT1050 specific SoC characteristics:
All four MMC/SD/SDIO controller IPs are identical and
are based on the uSDHC IP. They are:
Fully compliant with MMC command/response sets
and Physical Layer as defined in the Multimedia
Card System Specification, v4.5/4.2/4.3/4.4/4.41/
including high-capacity (size > 2 GB) cards HC
MMC.
Fully compliant with SD command/response sets
and Physical Layer as defined in the SD Memory
Card Specifications, v3.0 including high-capacity
SDXC cards up to 2 TB.
Fully compliant with SDIO command/response sets
and interrupt/read-wait mode as defined in the SDIO
Card Specification, Part E1, v3.0
Two ports support:
1-bit or 4-bit transfer mode specifications for SD and
SDIO cards up to UHS-I SDR104 mode (104 MB/s
max)
1-bit, 4-bit, or 8-bit transfer mode specifications for
MMC cards up to 52 MHz in both SDR and DDR
modes (104 MB/s max)
4-bit or 8-bit transfer mode specifications for eMMC
chips up to 200 MHz in HS200 mode (200 MB/s max)
WDOG1
WDOG2
Watch Dog Timer Peripherals The watchdog (WDOG) Timer supports two comparison
points during each counting period. Each of the
comparison points is configurable to evoke an interrupt
to the Arm core, and a second point evokes an external
event on the WDOG line.
XBAR Cross BAR Cross Trigger Each crossbar switch is an array of muxes with shared
inputs. Each mux output provides one output of the
crossbar. The number of inputs and the number of
muxes/outputs are user configurable and registers are
provided to select which of the shared inputs are routed
to each output.
Table 2. i.MX RT1050 modules list (continued)
Block Mnemonic Block Name Subsystem Brief Description
Modules list
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 15
3.1 Special signal considerations
Table 3 lists special signal considerations for the i.MX RT1050 processors. The signal names are listed in
alphabetical order.
The package contact assignments can be found in Section 6, Package information and contact
assignments.” Signal descriptions are provided in the i.MX RT1050 Reference Manual
(IMXRT1050RM).
Table 3. Special signal considerations
Signal Name Remarks
CCM_CLK1_P/
CCM_CLK1_N
One general purpose differential high speed clock Input/output (LVDS I/O) is provided.
It can be used:
To feed external reference clock to the PLLs and further to the modules inside SoC.
To output internal SoC clock to be used outside the SoC as either reference clock or as a
functional clock for peripherals.
See the i.MX RT1050 Reference Manual (IMXRT1050RM) for details on the respective clock trees.
Alternatively one may use single ended signal to drive CLK1_P input. In this case corresponding
CLK1_N input should be tied to the constant voltage level equal 1/2 of the input signal swing.
Termination should be provided in case of high frequency signals.
After initialization, the CLK1 input/output can be disabled (if not used). If unused either or both of
the CLK1_N/P pairs may remain unconnected.
DCDC_PSWITCH PAD is in DCDC_IN domain and connected the ground to bypass DCDC.
To enable DCDC function, assert to DCDC_IN with at least 1ms delay for DCDC_IN rising edge.
RTC_XTALI/RTC_XTALO If the user wishes to configure RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz
crystal, (100 k ESR, 10 pF load) should be connected between RTC_XTALI and RTC_XTALO.
Keep in mind the capacitors implemented on either side of the crystal are about twice the crystal
load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to
account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but
relatively weak. Care must be taken to limit parasitic leakage from RTC_XTALI and RTC_XTALO
to either power or ground (>100 M). This will debias the amplifier and cause a reduction of startup
margin. Typically RTC_XTALI and RTC_XTALO should bias to approximately 0.5 V.
If it is desired to feed an external low frequency clock into RTC_XTALI the RTC_XTALO pin must
remain unconnected or driven with a complimentary signal. The logic level of this forcing clock
should not exceed VDD_SNVS_CAP level and the frequency should be <100 kHz under typical
conditions.
In case when high accuracy real time clock are not required system may use internal low frequency
ring oscillator. It is recommended to connect RTC_XTALI to GND and keep RTC_XTALO
unconnected.
XTALI/XTALO A 24.0 MHz crystal should be connected between XTALI and XTALO.
The crystal must be rated for a maximum drive level of 250 W. An ESR (equivalent series
resistance) of typical 80 is recommended. NXP SDK software requires 24 MHz on
XTALI/XTALO.
The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this
case, XTALO must be directly driven by the external oscillator and XTALI mounted with 18 pF
capacitor. The logic level of this forcing clock cannot exceed NVCC_PLL level.
If this clock is used as a reference for USB, then there are strict frequency tolerance and jitter
requirements. See OSC24M chapter and relevant interface specifications chapters for details.
GPANAIO This signal is reserved for NXP manufacturing use only. This output must remain unconnected.
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
16 NXP Semiconductors
Modules list
3.2 Recommended connections for unused analog interfaces
Table 5 shows the recommended connections for unused analog interfaces.
JTAG_nnnn The JTAG interface is summarized in Table 4. Use of external resistors is unnecessary. However,
if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is
followed. For example, do not use an external pull down on an input that has on-chip pull-up.
JTAG_TDO is configured with a keeper circuit such that the non-connected condition is eliminated
if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and
should be avoided.
JTAG_MOD is referenced as SJC_MOD in the i.MX RT1050 reference manual(IMXRT1050RM).
Both names refer to the same signal. JTAG_MOD must be externally connected to GND for normal
operation. Termination to GND through an external pull-down resistor (such as 1 k) is allowed.
JTAG_MOD set to hi configures the JTAG interface to mode compliant with IEEE1149.1 standard.
JTAG_MOD set to low configures the JTAG interface for common SW debug adding all the system
TAPs to the chain.
NC These signals are No Connect (NC) and should be disconnected by the user.
POR_B This cold reset negative logic input resets all modules and logic in the IC.
May be used in addition to internally generated power on reset signal (logical AND, both internal
and external signals are considered active low).
ONOFF ONOFF can be configured in debounce, off to on time, and max time-out configurations. The
debounce and off to on time configurations supports 0, 50, 100 and 500 ms. Debounce is used to
generate the power off interrupt. While in the ON state, if ONOFF button is pressed longer than the
debounce time, the power off interrupt is generated. Off to on time supports the time it takes to
request power on after a configured button press time has been reached. While in the OFF state,
if ONOFF button is pressed longer than the off to on time, the state will transition from OFF to ON.
Max time-out configuration supports 5, 10, 15 seconds and disable. Max time-out configuration
supports the time it takes to request power down after ONOFF button has been pressed for the
defined time.
TEST_MODE TEST_MODE is for NXP factory use. The user must tie this pin directly to GND.
WAKEUP A GPIO powered by SNVS domain power supply which can be configured as wakeup source in
SNVS mode.
Table 4. JTAG Controller interface summary
JTAG I/O Type On-chip Termination
JTAG_TCK Input 47 kpull-up
JTAG_TMS Input 47 kpull-up
JTAG_TDI Input 47 kpull-up
JTAG_TDO 3-state output Keeper
JTAG_TRSTB Input 47 kpull-up
JTAG_MOD Input 100 kpull-down
Table 3. Special signal considerations (continued)
Signal Name Remarks
Modules list
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 17
Table 5. Recommended connections for unused analog interfaces
Module Pad Name Recommendations
if Unused
CCM CCM_CLK1_N, CCM_CLK1_P Not connected
USB USB_OTG1_CHD_B, USB_OTG1_DN, USB_OTG1_DP, USB_OTG1_VBUS,
USB_OTG2_DN, USB_OTG2_DP, USB_OTG2_VBUS
Not connected
ADC VDDA_ADC_3P3 VDDA_ADC_3P3
must be powered
even if the ADC is
not used.
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
18 NXP Semiconductors
Electrical characteristics
4 Electrical characteristics
This section provides the device and module-level electrical characteristics for the i.MX RT1050
processors.
4.1 Chip-level conditions
This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference
to the individual tables and sections.
4.1.1 Absolute maximum ratings
CAUTION
Stress beyond those listed under Table 7 may cause permanent damage to the device. These are stress
ratings only. Functional operation of the device at these or any other conditions beyond those indicated
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated
conditions for extended periods may affect device reliability.
Table 7 shows the absolute maximum operating ratings.
Table 6. i.MX RT1050 chip-Level conditions
For these characteristics Topic appears
Absolute maximum ratings on page 18
Thermal resistance on page 19
Operating ranges on page 20
External clock sources on page 21
Maximum supply currents on page 22
Low power mode supply currents on page 24
USB PHY current consumption on page 24
Table 7. Absolute maximum ratings
Parameter Description Symbol Min Max Unit
Core supplies input voltage VDD_SOC_IN -0.3 1.6 V
VDD_HIGH_IN supply voltage VDD_HIGH_IN -0.3 3.7 V
Power for DCDC DCDC_IN -0.3 3.6 V
Supply input voltage to Secure Non-Volatile Storage
and Real Time Clock
VDD_SNVS_IN -0.3 3.6 V
USB VBUS supply USB_OTG1_VBUS
USB_OTG2_VBUS
5.5 V
Supply for 12-bit ADC VDDA_ADC -0.3 3.6 V
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 19
4.1.2 Thermal resistance
4.1.2.1 10 x 10 MM thermal resistance
Table 8 displays the 10 x 10 MM package thermal resistance data.
IO supply for GPIO in SDIO1 bank (3.3 V mode) NVCC_SD0 -0.3 3.6 V
IO supply for GPIO in SDIO1 bank (1.8 V mode) -0.3 1.95 V
IO supply for GPIO in SDIO2 bank (3.3 V mode) NVCC_SD1 -0.3 3.6 V
IO supply for GPIO in SDIO2 bank (1.8 V mode) -0.3 1.95 V
IO supply for GPIO in EMC bank (3.3 V mode) NVCC_EMC -0.3 3.6 V
IO supply for GPIO in EMC bank (1.8 V mode) -0.3 1.95 V
ESD damage Immunity:
Human Body Model (HBM)
Charge Device Model (CDM)
Vesd
1000
500
V
Input/Output Voltage range Vin/Vout -0.5 OVDD + 0.31V
Storage Temperature range TSTORAGE -40 150 o C
1OVDD is the I/O supply voltage.
Table 8. 10 x 10 MM thermal resistance data
Rating Test Conditions Symbol Value Unit Notes
Junction to Ambient
Natural convection
Single-layer board (1s) RJA 72.1 oC/W 1,2
1Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
2Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
Junction to Ambient
Natural convection
Four-layer board (2s2p) RJA 43.9 oC/W 1,2,3
3Per JEDEC JESD51-6 with the board horizontal.
Junction to Ambient (@200 ft/min) Single-layer board (1s) RJMA 57.5 oC/W 1,3
Junction to Ambient (@200 ft/min) Four-layer board (2s2p) RJMA 39.0 oC/W 1,3
Junction to Board RJB 26.1 oC/W 4
4Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on
the top surface of the board near the package.
Junction to Case RJC 19.1 oC/W 5
5Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method
1012.1).
Junction to Package Top Natural Convection JT 0.6 oC/W 6
Junction to Package Bottom Natural Convection RJB_CSB 22.3 oC/W 7
Table 7. Absolute maximum ratings (continued)
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
20 NXP Semiconductors
Electrical characteristics
4.1.2.2 12 x 12 MM thermal resistance
Table 9 shows the 12 x 12 MM package thermal resistance data.
4.1.3 Operating ranges
Table 10 provides the operating ranges of the i.MX RT1050 processors. For details on the chip's power
structure, see the “Power Management Unit (PMU)” chapter of the i.MX RT1050 Reference Manual
(IMXRT1050RM).
6Thermal characterization parameter indicating the temperature difference between package top and the junction temperature
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
7Thermal resistance between the die and the central solder balls on the bottom of the package based on simulation.
Table 9. 12 x 12 MM thermal resistance data
Rating Board type1
1Thermal test board meets JEDEC specification for this package (JESD51-9).
Symbol Value Unit
Junction to Ambient
Thermal resistance2
2Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is
solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not
meant to predict the performance of a package in an application-specific environment.
JESD51-9, 2S2P RJA 39.1 oC/W
Junction to Package Top
Thermal resistance2
JESD51-9, 2S2P JT 0.5 oC/W
Junction to Case Thermal Resistance3
3Junction-to-Case thermal resistance determined using an isothermal cold plate. Case temperature refers to the mold surface
temperature at eh package top side dead Centre.
JESD51-9, 2S2P RJC 16.2 oC/W
Junction to Board Thermal Resistance4
4Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on
the top surface of the board near the package.
JESD51-8, 2S2P RJB 23.04 oC/W
Table 10. Operating ranges
Parameter
Description Symbol Operating
Conditions Min Typ Max1Unit Comment
Run Mode VDD_SOC_IN Overdrive 1.25 1.3 V
VDD_SOC_IN M7 core at 528
MHz
1.15 1.3 V
M7 core at 132
MHz
1.15 1.3
M7 core at 24
MHz
0.925 1.3
IDLE Mode VDD_SOC_IN M7 core
operation at 528
MHz or below
1.15 1.3 V
SUSPEND (DSM)
Mode
VDD_SOC_IN 0.925 1.3 V Refer to Table 13 Low power mode
current and power consumption
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 21
4.1.4 External clock sources
Each i.MX RT1050 processor has two external input system clocks: a low frequency (RTC_XTALI) and
a high frequency (XTALI).
SNVS Mode VDD_SOC_IN 0 1.3 V
Power for DCDC DCDC_IN 3.0 3.6 V For A0 Silicon, DCDC_IN is in 2.8
V to 3.0 V domain.
VDD_HIGH
internal Regulator
VDD_HIGH_IN2 2.80 3.6 V Must match the range of voltages
that the rechargeable backup
battery supports.
Backup battery
supply range
VDD_SNVS_IN3 2.40 3.6 V Can be combined with
VDD_HIGH_IN, if the system does
not require keeping real time and
other data on OFF state.
USB supply
voltages
USB_OTG1_VBUS 4.40 5.5 V
USB_OTG2_VBUS 4.40 5.5 V
GPIO supplies NVCC_GPIO 3.0 3.3 3.6 V All digital I/O supplies
(NVCC_xxxx) must be powered
(unless otherwise specified in this
data sheet) under normal
conditions whether the associated
I/O pins are in use or not.
NVCC_SD1 1.65 1.8 1.95 V
3.0 3.3 3.6 V
NVCC_SD2 1.65 1.8 1.95 V
3.0 3.3 3.6 V
NVCC_EMC 1.65 1.8 1.95 V
3.0 3.3 1.95 V
A/D converter VDDA_ADC_3P3 3.0 3.15 3.6 V VDDA_ADC_3P3 must be
powered even if the ADC is not
used.
VDDA_ADC_3P3 cannot be
powered when the other SoC
supplies (except VDD_SNVS_IN)
are off.
Temperature Operating Ranges
Junction
temperature
Tj Standard
Commercial
0—95
oC See the application note, i.MX
RT1050 Product Lifetime Usage
Estimates for information on
product lifetime (power-on years)
for this processor.
1Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set
point = (Vmin + the supply tolerance). This result in an optimized power/speed ratio.
2Applying the maximum voltage results in shorten lifetime. 3.6 V usage limited to < 1% of the use profile. Reset of profile limited
to below 3.49 V.
3In setting VDD_SNVS_IN voltage with regards to Charging Currents and RTC, refer to the i.MX RT1050 Hardware
Development Guide (IMXRT1050HDG).
Table 10. Operating ranges (continued)
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
22 NXP Semiconductors
Electrical characteristics
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit,
power-down real time clock operation, and slow system and watch-dog counters. The clock input can be
connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is
an internal ring oscillator, which can be used instead of the RTC_XTALI if accuracy is not important.
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other
peripherals. The system clock input can be connected to either external oscillator or a crystal using internal
oscillator amplifier.
Table 11 shows the interface frequency requirements.
The typical values shown in Table 11 are required for use with NXP SDK to ensure precise time keeping
and USB operation. For RTC_XTALI operation, two clock sources are available.
On-chip 40 kHz ring oscillator—this clock source has the following characteristics:
Approximately 25 µA more Idd than crystal oscillator
Approximately ±50% tolerance
No external component required
Starts up quicker than 32 kHz crystal oscillator
External crystal oscillator with on-chip support circuit:
At power up, ring oscillator is utilized. After crystal oscillator is stable, the clock circuit
switches over to the crystal oscillator automatically.
Higher accuracy than ring oscillator
If no external crystal is present, then the ring oscillator is utilized
The decision of choosing a clock source should be taken based on real-time clock use and precision
time-out.
4.1.5 Maximum supply currents
The data shown in Table 12 represent a use case designed specifically to show the maximum current
consumption possible. All cores are running at the defined maximum frequency and are limited to L1
cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited
practical use case, if at all, and be limited to an extremely low duty cycle unless the intention were to
specifically show the worst case power consumption.
Table 11. External input clock frequency
Parameter Description Symbol Min Typ Max Unit
RTC_XTALI Oscillator1,2
1External oscillator or a crystal with internal oscillator amplifier.
2The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware
Development Guide for i.MX RT1050 Crossover Processors (IMXRT1050HDG).
fckil 32.7683/32.0
3Recommended nominal frequency 32.768 kHz.
—kHz
XTALI Oscillator2,4
4External oscillator or a fundamental frequency crystal with internal oscillator amplifier.
fxtal —24MHz
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 23
See the i.MX RT1050 Power Consumption Measurement Application Note for more details on typical
power consumption under various use case definitions.
Table 12. Maximum supply currents
Power Rail Conditions Max Current Unit
DCDC_IN Max power for FF chip at 95 oC100mA
VDD_HIGH_IN Include internal loading in analog 50 mA
VDD_SNVS_IN 250 A
USB_OTG1_VBUS
USB_OTG2_VBUS
25 mA for each active USB interface 50 mA
VDDA_ADC_3P3 3.3 V power supply for 12-bit ADC, 600
A typical, 750 A max, for each ADC.
100 Ohm max loading for touch panel,
cause 33 mA current.
40 mA
NVCC_GPIO
NVCC_SD0
NVCC_SD1
NVCC_EMC
Imax = N x C x V x (0.5 x F)
Where:
N—Number of IO pins supplied by the power line
C—Equivalent external capacitive load
V—IO voltage
(0.5 x F)—Data change rate. Up to 0.5 of the clock rate (F)
In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
24 NXP Semiconductors
Electrical characteristics
4.1.6 Low power mode supply currents
Table 13 shows the current core consumption (not including I/O) of i.MX RT1050 processors in selected
low power modes.
4.1.7 USB PHY current consumption
4.1.7.1 Power down mode
In power down mode, everything is powered down, including the USB VBUS valid detectors in typical
condition. Table 14 shows the USB interface current consumption in power down mode.
Table 13. Low power mode current and power consumption
Mode Test Conditions Supply Typical1
1The typical values shown here are for information only and are not guaranteed. These values are average values measured
on a typical process wafer at 25oC.
Units
SYSTEM IDLE LDO_2P5 set to 2.5 V, LDO_1P1 set to 1.1 V
CPU in WFI, CPU clock gated
24 MHz XTAL is ON
System PLL is active, other PLLs are power down
Peripheral clock gated, but remain powered
512 KB RAM retention
DCDC_IN (3.0 V for A0
and 3.3 V for A1)
2.97 mA
VDD_HIGH_IN (3.3 V) 7.69
VDD_SNVS_IN (3.3 V) 0.032
Total 35.28 mW
LOW POWER IDLE LDO_2P5 and LDO_1P1 are set to Weak mode
WFI, half FlexRAM power down in power gate
mode
All PLLs are power down
24 MHz XTAL is off, 24 MHz RCOSC used as
clock source
Peripheral clock gated, but remain powered
512 KB RAM retention
DCDC_IN (3.0 V for A0
and 3.3 V for A1)
0.90 mA
VDD_HIGH_IN (3.3 V) 0.296
VDD_SNVS_IN (3.3 V) 0.048
Tota l 4.1 0 mW
SUSPEND
(DSM)
LDO_2P5 and LDO_1P1 are shut off
CPU in Power Gate mode
All PLLs are power down
24 MHz XTAL is off, 24 MHz RCOSC is off
All clocks are shut off, except 32 kHz RTC
Peripheral clock gated, but remain powered
512 KB RAM retention
DCDC_IN (3.0 V for A0
and 3.3 V for A1)
0.11 mA
VDD_HIGH_IN (3.3 V) 0.028
VDD_SNVS_IN (3.3 V) 0.020
Total 0.521 mW
SNVS (RTC) All SOC digital logic, analog module are shut off
32 kHz RTC is alive
DCDC_IN (0 V) 0 mA
VDD_HIGH_IN (0 V) 0
VDD_SNVS_IN (3.3 V) 0.018
Total 0.059 mW
Table 14. USB PHY current consumption in power down mode
VDD_USB_CAP (3.0 V) VDD_HIGH_CAP (2.5 V) NVCC_PLL (1.1 V)
Current 5.1 A 1.7 A < 0.5 A
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 25
NOTE
The currents on the VDD_HIGH_CAP and VDD_USB_CAP were
identified to be the voltage divider circuits in the USB-specific level
shifters.
4.2 System power and clocks
This section provide the information about the system power and clocks.
4.2.1 Power supplies requirements and restrictions
The system design must comply with power-up sequence, power-down sequence, and steady state
guidelines as described in this section to guarantee the reliable operation of the device. Any deviation
from these sequences may result in the following situations:
Excessive current during power-up phase
Prevention of the device from booting
Irreversible damage to the processor (worst-case scenario)
4.2.1.1 Power-up sequence
The below restrictions must be followed:
VDD_SNVS_IN supply must be turned on before any other power supply or be connected
(shorted) with VDD_HIGH_IN supply.
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other
supply is switched on.
When internal DCDC is enabled, external delay circuit is required to delay the
“DCDC_PSWITCH” signal 1 ms after DCDC_IN is stable.
POR_B should be held low during the entire power up sequence.
NOTE
The POR_B input (if used) must be immediately asserted at power-up and
remain asserted until after the last power rail reaches its working voltage. In
the absence of an external reset feeding the POR_B input, the internal POR
module takes control. See the i.MX RT1050 Reference Manual
(IMXRT1050RM) for further details and to ensure that all necessary
requirements are being met.
NOTE
Need to ensure that there is no back voltage (leakage) from any supply on
the board towards the 3.3 V supply (for example, from the external
components that use both the 1.8 V and 3.3 V supplies).
NOTE
USB_OTG1_VBUS, USB_OTG2_VBUS, and VDDA_ADC_3P3 are not
part of the power supply sequence and may be powered at any time.
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
26 NXP Semiconductors
Electrical characteristics
4.2.1.2 Power-down sequence
The following restrictions must be followed:
VDD_SNVS_IN supply must be turned off after any other power supply or be connected (shorted)
with VDD_HIGH_IN supply.
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is removed after any other supply
is switched off.
4.2.1.3 Power supplies usage
All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF.
This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O
power supply of each pin, see “Power Rail” columns in pin list tables of Section 6, Package information
and contact assignments.”
4.2.2 Integrated LDO voltage regulator parameters
Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins
named *_CAP must be connected to external capacitors. The on-board LDOs are intended for internal use
only and should not be used to power any external circuitry. See the i.MX RT1050 Reference Manual
(IMXRT1050RM) for details on the power tree scheme.
NOTE
The *_CAP signals should not be powered externally. These signals are
intended for internal LDO operation only.
4.2.2.1 Digital regulators (LDO_SNVS)
There are one digital LDO regulator (“Digital”, because of the logic loads that they drive, not because of
their construction). The advantages of the regulator is to reduce the input supply variation because of its
input supply ripple rejection and its on-die trimming. This translates into more stable voltage for the
on-chip logics.
The regulator has two basic modes:
Power Gate. The regulation FET is switched fully off limiting the current draw from the supply.
The analog part of the regulator is powered down here limiting the power consumption.
Analog regulation mode. The regulation FET is controlled such that the output voltage of the
regulator equals the target voltage.
For additional information, see the i.MX RT1050 Reference Manual (IMXRT1050RM).
4.2.2.2 Regulators for analog modules
4.2.2.2.1 LDO_1P1
The LDO_1P1 regulator implements a programmable linear-regulator function from VDD_HIGH_IN (see
Table 10 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 27
V to 1.2 V with the nominal default setting as 1.1 V. The LDO_1P1 supplies the USB Phy, and PLLs. A
programmable brown-out detector is included in the regulator that can be used by the system to determine
when the load capability of the regulator is being exceeded to take the necessary steps. Current-limiting
can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can
also be enabled for systems requiring this feature.
For information on external capacitor requirements for this regulator, see the Hardware Development
Guide for i.MX RT1050 Crossover Processors (IMXRT1050HDG).
For additional information, see the i.MX RT1050 Reference Manual (IMXRT1050RM).
4.2.2.2.2 LDO_2P5
The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see
Table 10 for minimum and maximum input requirements). Typical Programming Operating Range is
2.25 V to 2.75 V with the nominal default setting as 2.5 V. LDO_2P5 supplies the USB PHY, E-fuse
module, and PLLs. A programmable brown-out detector is included in the regulator that can be used by
the system to determine when the load capability of the regulator is being exceeded, to take the necessary
steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed.
Active-pull-down can also be enabled for systems requiring this feature. An alternate self-biased
low-precision weak-regulator is included that can be enabled for applications needing to keep the output
voltage alive during low-power modes where the main regulator driver and its associated global bandgap
reference module are disabled. The output of the weak-regulator is not programmable and is a function of
the input supply as well as the load current. Typically, with a 3 V input supply the weak-regulator output
is 2.525 V and its output impedance is approximately 40 .
For information on external capacitor requirements for this regulator, see the Hardware Development
Guide for i.MX RT1050 Crossover Processors (IMXRT1050HDG).
For additional information, see the i.MX RT1050 Reference Manual (IMXRT1050RM).
4.2.2.2.3 LDO_USB
The LDO_USB module implements a programmable linear-regulator function from the USB VUSB
voltages (4.4 V–5.5 V) to produce a nominal 3.0 V output voltage. A programmable brown-out detector
is included in the regulator that can be used by the system to determine when the load capability of the
regulator is being exceeded, to take the necessary steps. This regulator has a built in power-mux that allows
the user to select to run the regulator from either USB VBUS supply, when both are present. If only one
of the USB VBUS voltages is present, then, the regulator automatically selects this supply. Current limit
is also included to help the system meet in-rush current targets.
For information on external capacitor requirements for this regulator, see the Hardware Development
Guide for i.MX RT1050 Crossover Processors (IMXRT1050HDG).
For additional information, see the i.MX RT1050 Reference Manual (IMXRT1050RM).
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
28 NXP Semiconductors
Electrical characteristics
4.2.2.2.4 DCDC
DCDC can be configured to operate on power-save mode when the load current is less than 50 mA. During
the power-save mode, the converter operates with reduced switching frequency in PFM mode and with a
minimum quiescent current to maintain high efficiency.
DCDC can detect the peak current in the P-channel switch. When the peak current exceeds the threshold,
DCDC will give an alert signal, and the threshold can be configured. By this way, DCDC can roughly
detect the current loading.
DCDC also includes the following protection functions:
Over current protection. In run mode, DCDC shuts down when detecting abnormal large current in
the P-type power switch.
Over voltage protection. DCDC shuts down when detecting the output voltage is too high.
Low voltage detection. DCDC shuts down when detecting the input voltage is too low.
For additional information, see the i.MX RT1050 Reference Manual (IMXRT1050RM).
4.2.3 PLL’s electrical characteristics
This section provides PLL electrical characteristics.
4.2.3.1 Audio/Video PLL’s electrical parameters
4.2.3.2 System PLL
Table 15. Audio/Video PLL’s electrical parameters
Parameter Value
Clock output range 650 MHz ~1.3 GHz
Reference clock 24 MHz
Lock time <11250 reference cycles
Table 16. System PLL’s electrical parameters
Parameter Value
Clock output range 528 MHz PLL output
Reference clock 24 MHz
Lock time <11250 reference cycles
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 29
4.2.3.3 Ethernet PLL
4.2.3.4 USB PLL
4.2.3.5 Arm PLL
4.2.4 On-chip oscillators
4.2.4.1 OSC24M
This block implements an amplifier that when combined with a suitable quartz crystal and external load
capacitors implement an oscillator. The oscillator is powered from NVCC_PLL.
The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight
forward biased-inverter implementation is used.
4.2.4.2 OSC32K
This block implements an amplifier that when combined with a suitable quartz crystal and external load
capacitors implement a low power oscillator. It also implements a power mux such that it can be powered
from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes
Table 17. Ethernet PLL’s electrical parameters
Parameter Value
Clock output range 1 GHz
Reference clock 24 MHz
Lock time <11250 reference cycles
Table 18. USB PLL’s electrical parameters
Parameter Value
Clock output range 480 MHz PLL output
Reference clock 24 MHz
Lock time <383 reference cycles
Table 19. Arm PLL’s electrical parameters
Parameter Value
Clock output range 648 MHz ~ 1296 MHz
Reference clock 24 MHz
Lock time <2250 reference cycles
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
30 NXP Semiconductors
Electrical characteristics
power from VDD_HIGH_IN when that supply is available and transitions to the backup battery when
VDD_HIGH_IN is lost.
In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 K
will automatically switch to a crude internal ring oscillator. The frequency range of this block is
approximately 10–45 kHz. It highly depends on the process, voltage, and temperature.
The OSC32k runs from VDD_SNVS_CAP supply, which comes from the
VDD_HIGH_IN/VDD_SNVS_IN. The target battery is a ~3 V coin cell. Proper choice of coin cell type
is necessary for chosen VDD_HIGH_IN range. Appropriate series resistor (Rs) must be used when
connecting the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell. For
example, for Panasonic ML621:
Average Discharge Voltage is 2.5 V
Maximum Charge Current is 0.6 mA
For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k.
4.3 I/O parameters
This section provide parameters on I/O interfaces.
4.3.1 I/O DC parameters
This section includes the DC parameters of the following I/O types:
Table 20. OSC32K main characteristics
Min Typ Max Comments
Fosc 32.768 KHz This frequency is nominal and determined mainly by the crystal selected.
32.0 K would work as well.
Current consumption 4 A—The 4 A is the consumption of the oscillator alone (OSC32k). Total supply
consumption will depend on what the digital portion of the RTC consumes.
The ring oscillator consumes 1 A when ring oscillator is inactive, 20 A
when the ring oscillator is running. Another 1.5 A is drawn from vdd_rtc in
the power_detect block. So, the total current is 6.5 A on vdd_rtc when the
ring oscillator is not running.
Bias resistor 14 M This integrated bias resistor sets the amplifier into a high gain state. Any
leakage through the ESD network, external board leakage, or even a
scope probe that is significant relative to this value will debias the amp. The
debiasing will result in low gain, and will impact the circuit's ability to start
up and maintain oscillations.
Crystal Properties
Cload 10 pF Usually crystals can be purchased tuned for different Cloads. This Cload
value is typically 1/2 of the capacitances realized on the PCB on either side
of the quartz. A higher Cload will decrease oscillation margin, but
increases current oscillating through the crystal.
ESR 50 k 100 kEquivalent series resistance of the crystal. Choosing a crystal with a higher
value will decrease the oscillating margin.
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 31
XTALI and RTC_XTALI (Clock Inputs) DC Parameters
General Purpose I/O (GPIO)
LVDS I/O DC Parameters
NOTE
The term ‘NVCC_XXXX’ in this section refers to the associated supply rail
of an input or output.
Figure 3. Circuit for parameters Voh and Vol for I/O cells
4.3.1.1 XTALI and RTC_XTALI (clock inputs) DC parameters
Table 21 shows the DC parameters for the clock inputs.
4.3.1.2 Single voltage general purpose I/O (GPIO) DC parameters
Table 22 shows DC parameters for GPIO pads. The parameters in Table 22 are guaranteed per the
operating ranges in Table 10, unless otherwise noted.
Table 21. XTALI and RTC_XTALI DC parameters1
1The DC parameters are for external clock input only.
Parameter Symbol Test Conditions Min Max Unit
XTALI high-level DC input voltage Vih 0.8 x NVCC_PLL NVCC_PLL V
XTALI low-level DC input voltage Vil 0 0.2 V
RTC_XTALI high-level DC input voltage Vih 0.8 1.1 V
RTC_XTALI low-level DC input voltage Vil 0 0.2 V
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
32 NXP Semiconductors
Electrical characteristics
Table 22. Single voltage GPIO DC parameters
Parameter Symbol Test Conditions Min Max Units
High-level output voltage1
1Overshoot and undershoot conditions (transitions above NVCC_XXXX and below GND) on switching pads must be held below
0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot
must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other
methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device.
VOH Ioh= -0.1mA (ipp_dse=001,010)
Ioh= -1mA
(ipp_dse=011,100,101,110,111)
NVCC_XX
XX-0.15
–V
Low-level output voltage1VOL Iol= 0.1mA (ipp_dse=001,010)
Iol= 1mA
(ipp_dse=011,100,101,110,111)
–0.15V
High-Level input voltage1,2
2To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC
level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.
VIH 0.7*NVCC_
XXXX
NVCC_XX
XX
V
Low-Level input voltage1,2 VIL 0 0.3 x
NVCC_XX
XX
V
Input Hysteresis (NVCC_XXXX= 1.8V) VHYS_LowVDD NVCC_XXXX=1.8V 250 mV
Input Hysteresis (NVCC_XXXX=3.3V) VHYS_HighVDD NVCC_XXXX=3.3V 250 mV
Schmitt trigger VT+2,3
3Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.
VTH+ 0.5 x
NVCC_XX
XX
—mV
Schmitt trigger VT-2,3 VTH- 0.5 x
NVCC_XX
XX
mV
Pull-up resistor (22_k PU) RPU_22K Vin=0V 212 A
Pull-up resistor (22_k PU) RPU_22K Vin=NVCC_XXXX 1 A
Pull-up resistor (47_k PU) RPU_47K Vin=0V 100 A
Pull-up resistor (47_k PU) RPU_47K Vin=NVCC_XXXX 1 A
Pull-up resistor (100_k PU) RPU_100K Vin=0V 48 A
Pull-up resistor (100_k PU) RPU_100K Vin=NVCC_XXXX 1 A
Pull-down resistor (100_k PD) RPD_100K Vin=NVCC_XXXX 48 A
Pull-down resistor (100_k PD) RPD_100K Vin=0V 1 A
Input current (no PU/PD) IIN VI = 0, VI = NVCC_XXXX -1 1 A
Keeper Circuit Resistance R_Keeper VI =0.3*NVCC_XXXX, VI = 0.7*
NVCC_XXXX
105 175 k
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 33
4.3.1.3 LVDS I/O DC parameters
The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A,
“Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.
Table 23 shows the Low Voltage Differential Signaling (LVDS) I/O DC parameters.
4.3.2 I/O AC parameters
This section includes the AC parameters of the following I/O types:
General Purpose I/O (GPIO)
Figure 4 shows load circuit for output, and Figure 5 show the output transition time waveform.
Figure 4. Load circuit for output
Figure 5. Output transition time waveform
4.3.2.1 General purpose I/O AC parameters
The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 24 and Table 25,
respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the
IOMUXC control registers.
Table 23. LVDS I/O DC characteristics1
1The LVDS interface is limited to CCM_CLK1_P and CCM_CLK1_N.
Parameter Symbol Test Conditions Min Typ Max Unit
Output Differential Voltage VOD Rload-100 Diff 250 350 450 mV
Output High Voltage VOH IOH = 0 mA 1.25 1.375 1.6 V
Output Low Voltage VOL IOL = 0 mA 0.9 1.025 1.25 V
Offset Voltage VOS 1.125 1.2 1.375 V
Test Point
From Output
Under Test
CL
CL includes package, probe and fixture capacitance
0V
OVDD
20%
80% 80%
20%
tr tf
Output (at pad)
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
34 NXP Semiconductors
Electrical characteristics
4.3.3 Output buffer impedance parameters
This section defines the I/O impedance parameters of the i.MX RT1050 processors for the following I/O
types:
Single Voltage General Purpose I/O (GPIO)
NOTE
GPIO I/O output driver impedance is measured with “long” transmission
line of impedance Ztl attached to I/O pad and incident wave launched into
transmission line. Rpu/Rpd and Ztl form a voltage divider that defines
specific voltage of incident wave relative to NVCC_XXXX. Output driver
impedance is calculated from this voltage divider (see Figure 6).
Table 24. General purpose I/O AC parameters 1.8 V mode
Parameter Symbol Test Condition Min Typ Max Unit
Output Pad Transition Times, rise/fall
(Max Drive, ipp_dse=111)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 2.72/2.79
1.51/1.54
ns
Output Pad Transition Times, rise/fall
(High Drive, ipp_dse=101)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 3.20/3.36
1.96/2.07
Output Pad Transition Times, rise/fall
(Medium Drive, ipp_dse=100)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 3.64/3.88
2.27/2.53
Output Pad Transition Times, rise/fall
(Low Drive. ipp_dse=011)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 4.32/4.50
3.16/3.17
Input Transition Times1
1Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
trm 25 ns
Table 25. General purpose I/O AC parameters 3.3 V mode
Parameter Symbol Test Condition Min Typ Max Unit
Output Pad Transition Times, rise/fall
(Max Drive, ipp_dse=101)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 1.70/1.79
1.06/1.15
ns
ns
Output Pad Transition Times, rise/fall
(High Drive, ipp_dse=011)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 2.35/2.43
1.74/1.77
Output Pad Transition Times, rise/fall
(Medium Drive, ipp_dse=010)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 3.13/3.29
2.46/2.60
Output Pad Transition Times, rise/fall
(Low Drive. ipp_dse=001)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 5.14/5.57
4.77/5.15
Input Transition Times1
1Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
trm 25 ns
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 35
Figure 6. Impedance matching load for measurement
ipp_do
Cload = 1p
Ztl , L = 20 inches
predriver
PMOS (Rpu)
NMOS (Rpd)
pad
OVDD
OVSS
t,(ns)
0
U,(V)
OVDD
t,(ns)
0
VDD
Vin (do)
Vout (pad)
U,(V)
Vref
Rpu = Vovdd - Vref1
Vref1
Ztl
Rpd = Ztl
Vref2
Vovdd - Vref2
Vref1 Vref2
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
36 NXP Semiconductors
Electrical characteristics
4.3.3.1 Single voltage GPIO output buffer impedance
Table 26 shows the GPIO output buffer impedance (NVCC_XXXX 1.8 V).
Table 27 shows the GPIO output buffer impedance (NVCC_XXXX 3.3 V).
4.4 System modules
This section contains the timing and electrical parameters for the modules in the i.MX RT1050 processor.
4.4.1 Reset timings parameters
Figure 7 shows the reset timing and Table 28 lists the timing parameters.
Figure 7. Reset timing diagram
Table 26. GPIO output buffer average impedance (NVCC_XXXX 1.8 V)
Parameter Symbol Drive Strength (DSE) Typ Value Unit
Output Driver
Impedance
Rdrv
001
010
011
100
101
110
111
260
130
88
65
52
43
37
Table 27. GPIO output buffer average impedance (NVCC_XXXX 3.3 V)
Parameter Symbol Drive Strength (DSE) Typ Value Unit
Output Driver
Impedance
Rdrv
001
010
011
100
101
110
111
157
78
53
39
32
26
23
Table 28. Reset timing parameters
ID Parameter Min Max Unit
CC1 Duration of POR_B to be qualified as valid. 1 RTC_XTALI cycle
POR_B
CC1
(Input)
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 37
4.4.2 WDOG reset timing parameters
Figure 8 shows the WDOG reset timing and Table 29 lists the timing parameters.
Figure 8. WDOGn_B timing diagram
NOTE
RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or
approximately 30 s.
NOTE
WDOGn_B output signals (for each one of the Watchdog modules) do not
have dedicated pins, but are muxed out through the IOMUX. See the IOMUX
manual for detailed information.
4.4.3 SCAN JTAG Controller (SJC) timing parameters
Figure 9 depicts the SJC test clock input timing. Figure 10 depicts the SJC boundary scan timing.
Figure 11 depicts the SJC test access port. Signal parameters are listed in Table 30.
Figure 9. Test clock input timing diagram
Table 29. WDOGn_B timing parameters
ID Parameter Min Max Unit
CC3 Duration of WDOGn_B Assertion 1 RTC_XTALI cycle
WDOGn_B
CC3
(Output)
JTAG_TCK
(Input) VM VM
VIH
VIL
SJ1
SJ2 SJ2
SJ3
SJ3
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
38 NXP Semiconductors
Electrical characteristics
Figure 10. Boundary Scan (JTAG) timing diagram
JTAG_TCK
(Input)
Data
Inputs
Data
Outputs
Data
Outputs
Data
Outputs
VIH
VIL
Input Data Valid
Output Data Valid
Output Data Valid
SJ4 SJ5
SJ6
SJ7
SJ6
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 39
Figure 11. Test access port timing diagram
Figure 12. JTAG_TRST_B timing diagram
Table 30. JTAG timing
ID Parameter1,2
All Frequencies
Unit
Min Max
SJ0 JTAG_TCK frequency of operation 1/(3•TDC)10.001 22 MHz
SJ1 JTAG_TCK cycle time in crystal mode 45 ns
SJ2 JTAG_TCK clock pulse width measured at VM222.5 ns
SJ3 JTAG_TCK rise and fall times 3 ns
SJ4 Boundary scan input data set-up time 5 ns
SJ5 Boundary scan input data hold time 24 ns
SJ6 JTAG_TCK low to output data valid 40 ns
SJ7 JTAG_TCK low to output high impedance 40 ns
SJ8 JTAG_TMS, JTAG_TDI data set-up time 5 ns
JTAG_TCK
(Input)
JTAG_TDI
(Input)
JTAG_TDO
(Output)
JTAG_TDO
(Output)
JTAG_TDO
(Output)
VIH
VIL
Input Data Valid
Output Data Valid
Output Data Valid
JTAG_TMS
SJ8 SJ9
SJ10
SJ11
SJ10
JTAG_TCK
(Input)
JTAG_TRST_B
(Input)
SJ13
SJ12
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
40 NXP Semiconductors
Electrical characteristics
4.4.4 Debug trace timing specifications
Figure 13. ARM_TRACE_CLK specifications
SJ9 JTAG_TMS, JTAG_TDI data hold time 25 ns
SJ10 JTAG_TCK low to JTAG_TDO data valid 44 ns
SJ11 JTAG_TCK low to JTAG_TDO high impedance 44 ns
SJ12 JTAG_TRST_B assert time 100 ns
SJ13 JTAG_TRST_B set-up time to JTAG_TCK low 40 ns
1TDC = target frequency of SJC
2VM = mid-point voltage
Table 31. Debug trace operating behaviors
Symbol Description Min Max Unit
T1 ARM_TRACE_CLK frequency of operation 70 MHz
T2 ARM_TRACE_CLK period 1/T1 MHz
T3 Low pulse width 6 ns
T4 High pulse width 6 ns
T5 Clock and data rise time 1 ns
T6 Clock and data fall time 1 ns
T7 Data setup 2 ns
T8 Data hold 0.7 ns
Table 30. JTAG timing (continued)
ID Parameter1,2
All Frequencies
Unit
Min Max
!2-?42!#%?#,+
4
T4
T6
4
4
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 41
Figure 14. Trace data specifications
4.5 External memory interface
The following sections provide information about external memory interfaces.
4.5.1 SEMC specifications
The following sections provide information on SEMC interface.
Measurements are with a load of 15 pf and an input slew rate of 1 V/ns.
4.5.1.1 SEMC output timing
There are ASYNC and SYNC mode for SEMC output timing.
4.5.1.1.1 SEMC output timing in ASYNC mode
Table 32 shows SEMC output timing in ASYNC mode.
Table 32. SEMC output timing in ASYNC mode
Symbol Parameter Min. Max. Unit Comment
Frequency of operation 166 MHz
TCK Internal clock period 6 ns
TAVO Address output valid time 2 ns These timing parameters
apply to Address and ADV#
for NOR/PSRAM in ASYNC
mode.
TAHO Address output hold time (TCK - 2) 1
1Address output hold time is configurable by SEMC_*CR0.AH. AH field setting value is 0x0 in above table. When AH is set
with value N, TAHO min time should be ((N + 1) x TCK). See the i.MX RT1050 Reference Manual (IMXRT1050RM) for more
detail about SEMC_*CR0.AH register field.
—ns
TADVL ADV# low time (TCK - 1) 2
TDVO Data output valid time 2 ns These timing parameters
apply to Data/CLE/ALE and
WE# for NAND, apply to
Data/DM/CRE for
NOR/PSRAM, apply to
Data/DCX and WRX for DBI
interface.
TDHO Data output hold time (TCK - 2) 3—ns
TWEL WE# low time (TCK - 1) 4ns
T8
T7 T7 T8
ARM_TRACE_CLK
ARM_TRACE0-3
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
42 NXP Semiconductors
Electrical characteristics
Figure 15 shows the output timing in ASYNC mode.
Figure 15. SEMC output timing in ASYNC mode
4.5.1.1.2 SEMC output timing in SYNC mode
Table 33 shows SEMC output timing in SYNC mode.
2ADV# low time is configurable by SEMC_*CR0.AS. AS field setting value is 0x0 in above table. When AS is set with value N,
TADL min time should be ((N + 1) x TCK - 1). See the i.MX RT1050 Reference Manual (IMXRT1050RM) for more detail about
SEMC_*CR0.AS register field.
3Data output hold time is configurable by SEMC_*CR0.WEH. WEH field setting value is 0x0 in above table. When WEH is set
with value N, TDHO min time should be ((N + 1) x TCK). See the i.MX RT1050 Reference Manual (IMXRT1050RM) for more
detail about SEMC_*CR0.WEH register field.
4WE# low time is configurable by SEMC_*CR0.WEL. WEL field setting value is 0x0 in above table. When WEL is set with value
N, TWEL min time should be ((N + 1) x TCK - 1). See the i.MX RT1050 Reference Manual (IMXRT1050RM) for more detail
about SEMC_*CR0.WEL register field.
Table 33. SEMC output timing in SYNC mode
Symbol Parameter Min. Max. Unit Comment
Frequency of operation 166 MHz
TCK Internal clock period 6 ns
TDVO Data output valid time 1 ns These timing parameters apply to
Address/Data/DM/CKE/control
signals with SEMC_CLK for
SDRAM.
TDHO Data output hold time -1 ns
)NTERNALCLOCK
!$$2 !
!$6 4!6/
4!(/
$!4!
7%
4#+
$
4$6/
4$(/
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 43
Figure 16 shows the output timing in SYNC mode.
Figure 16. SEMC output timing in SYNC mode
4.5.1.2 SEMC input timing
There are ASYNC and SYNC mode for SEMC input timing.
4.5.1.2.1 SEMC input timing in ASYNC mode
Table 34 shows SEMC output timing in ASYNC mode.
Figure 17 shows the input timing in ASYNC mode.
Table 34. SEMC output timing in ASYNC mode
Symbol Parameter Min. Max. Unit Comment
TIS Data input setup 8.67 ns For NAND/NOR/PSRAM/DBI,
these timing parameters apply
to RE# and Read Data.
TIH Data input hold 0 ns
3%-#?#,+
$!4! $
4
$(/
4
$6/
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
44 NXP Semiconductors
Electrical characteristics
Figure 17. SEMC input timing in ASYNC mode
4.5.1.2.2 SEMC input timing in SYNC mode
Table 35 and Table 36 show SEMC input timing in SYNC mode.
Figure 18 shows the input timing in SYNC mode.
Table 35. SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x0)
Symbol Parameter Min. Max. Unit Comment
TIS Data input setup 8.67 ns
TIH Data input hold 0 ns
Table 36. SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x1)
Symbol Parameter Min. Max. Unit Comment
TIS Data input setup 0.6 ns
TIH Data input hold 1 ns
$!4! $
/%
/%
$!4!
$
$ $
4)3 4)(
4)3 4)(
.!.$NON%$/MODEAND./2032!-TIMING
.!.$%$/MODETIMING
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 45
Figure 18. SEMC input timing in SYNC mode
4.5.2 FlexSPI parameters
Measurements are with a load 15 pf and input slew rate of 1 V/ns.
4.5.2.1 FlexSPI input/read timing
There are four sources for the internal sample clock for FlexSPI read data:
Dummy read strobe generated by FlexSPI controller and looped back internally
(FlexSPIn_MCR0[RXCLKSRC] = 0x0)
Dummy read strobe generated by FlexSPI controller and looped back through the
DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x1)
Read strobe provided by memory device and input from DQS pad
(FlexSPIn_MCR0[RXCLKSRC] = 0x3)
The following sections describe input signal timing for each of these four internal sample clock sources.
4.5.2.1.1 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1
Table 37. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0
Symbol Parameter Min Max Unit
Frequency of operation 60 MHz
TIS Setup time for incoming data 8.67 ns
TIH Hold time for incoming data 0 ns
Table 38. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X1
Symbol Parameter Min Max Unit
Frequency of operation 133 MHz
TIS Setup time for incoming data 2 ns
TIH Hold time for incoming data 1 ns
3%-#?#,+
$!4! $
3%-#?$13 4
)3
4
)(
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
46 NXP Semiconductors
Electrical characteristics
Figure 19. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0, 0X1
NOTE
Timing shown is based on the memory generating read data on the SCK
falling edge, and FlexSPI controller sampling read data on the falling edge.
4.5.2.1.2 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3
There are two cases when the memory provides both read data and the read strobe in SDR mode:
A1 - Memory generates both read data and read strobe on SCK rising edge (or falling
edge)
A2 - Memory generates read data on SCK falling edge and generates read strobe on
SCK rising edgeSCK rising edge
Figure 20. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A1)
Table 39. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A1)
Symbol Parameter
Value
Unit
Min Max
Frequency of operation 166 MHz
TSCKD Time from SCK to data valid ns
TSCKDQS Time from SCK to DQS ns
TSCKD - TSCKDQS Time delta between TSCKD and TSCKDQS -2 2 ns
T
IS
T
IH
SCK
SIO[0:7]
T
IS
T
IH
Internal Sample Clock
T
SCKDQS
SCK
SIO[0:7]
DQS
T
SCKD
T
SCKDQS
T
SCKD
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 47
NOTE
Timing shown is based on the memory generating read data and read strobe
on the SCK rising edge. The FlexSPI controller samples read data on the
DQS falling edge.
Figure 21. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A2)
NOTE
Timing shown is based on the memory generating read data on the SCK
falling edge and read strobe on the SCK rising edge. The FlexSPI controller
samples read data on a half cycle delayed DQS falling edge.
4.5.2.1.3 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1
Table 40. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A2)
Symbol Parameter
Value
Unit
Min Max
Frequency of operation 166 MHz
TSCKD Time from SCK to data valid ns
TSCKDQS Time from SCK to DQS ns
TSCKD - TSCKDQS Time delta between TSCKD and TSCKDQS -2 2 ns
Table 41. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0
Symbol Parameter Min Max Unit
Frequency of operation 30 MHz
TIS Setup time for incoming data 8.67 ns
TIH Hold time for incoming data 0 ns
TSCKDQS
TSCKD
SCK
SIO[0:7]
DQS
Internal Sample Clock
TSCKDQS
TSCKD
TSCKDQS
TSCKD
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
48 NXP Semiconductors
Electrical characteristics
Figure 22. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1
4.5.2.1.4 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3
There are two cases when the memory provides both read data and the read strobe in DDR mode:
B1 - Memory generates both read data and read strobe on SCK edge
B2 - Memory generates read data on SCK edge and generates read strobe on SCK2
edge
Table 42. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1
Symbol Parameter Min Max Unit
Frequency of operation 66 MHz
TIS Setup time for incoming data 2 ns
TIH Hold time for incoming data 1 ns
Table 43. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1)
Symbol Parameter Min Max Unit
Frequency of operation 166 MHz
TSCKD Time from SCK to data valid ns
TSCKDQS Time from SCK to DQS ns
TSCKD - TSCKDQS Time delta between TSCKD and TSCKDQS -1 1 ns
T
IS
T
IH
T
IS
T
IH
SCLK
SIO[0:7]
Internal Sample Clock
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 49
Figure 23. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1)
Figure 24. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2)
4.5.2.2 FlexSPI output/write timing
The following sections describe output signal timing for the FlexSPI controller including control signals
and data outputs.
4.5.2.2.1 SDR mode
Table 44. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2)
Symbol Parameter Min Max Unit
Frequency of operation 166 MHz
TSCKD Time from SCK to data valid ns
TSCKD - TSCKDQS Time delta between TSCKD and TSCKDQS -1 1 ns
Table 45. FlexSPI output timing in SDR mode
Symbol Parameter Min Max Unit
Frequency of operation 1661MHz
Tck SCK clock period 6.0 ns
TDVO Output data valid time 1 ns
TDHO Output data hold time -1 ns
TSCKD
TSCKDQS
SIO[0:7]
DQS
SCK
T
SCKD
T
SCK2DQS
SCK2
SIO[0:7]
DQS
SCK
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
50 NXP Semiconductors
Electrical characteristics
NOTE
TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1
register, the default values are shown above. See more details in the i.MX
RT1050 Reference Manual (IMXRT1050RM).
Figure 25. FlexSPI output timing in SDR mode
4.5.2.2.2 DDR mode
NOTE
TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1
register, the default values are shown above. See more details in the i.MX
RT1050 Reference Manual (IMXRT1050RM).
TCSS Chip select output setup time 3 x TCK - 1 ns
TCSH Chip select output hold time 3 x TCK + 2 ns
1The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing
specifications.
Table 46. FlexSPI output timing in DDR mode
Symbol Parameter Min Max Unit
Frequency of operation1
1The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing
specifications.
—166MHz
Tck SCK clock period 6.0 ns
TDVO Output data valid time 2.2 ns
TDHO Output data hold time 0.8 ns
TCSS Chip select output setup time 3 x TCK / 2 - 0.7 ns
TCSH Chip select output hold time 3 x TCK / 2 + 0.8 ns
Table 45. FlexSPI output timing in SDR mode (continued)
Symbol Parameter Min Max Unit
T
CSS
T
CK TCSH
T
DVO
T
DHO
T
DVO
T
DHO
SCK
CS
SIO[0:7]
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 51
Figure 26. FlexSPI output timing in DDR mode
4.6 Display and graphics
The following sections provide information on display and graphic interfaces.
4.6.1 CMOS Sensor Interface (CSI) timing parameters
The following sections describe the CSI timing in gated and ungated clock modes.
4.6.1.0.1 Gated clock mode timing
Figure 27 and Figure 28 shows the gated clock mode timings for CSI, and Table 47 describes the timing
parameters (P1–P7) shown in the figures. A frame starts with a rising/falling edge on CSI_VSYNC
(VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock,
CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted.
Figure 27. CSI Gated clock mode—sensor data at falling edge, latch data at rising edge
T
CSS
T
CK
T
DVO
T
DHO
T
DVO
T
DHO
T
CSH
SCK
CS
SIO[0:7]
CSI_PIXCLK
CSI_VSYNC
CSI_DATA[23:00]
P5
P1
P3 P4
CSI_HSYNC
P2 P6
P7
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
52 NXP Semiconductors
Electrical characteristics
Figure 28. CSI Gated clock mode—sensor data at rising edge, latch data at falling edge
Table 47. CSI gated clock mode timing parameters
ID Parameter Symbol Min. Max. Units
P1 CSI_VSYNC to CSI_HSYNC time tV2H 33.5 ns
P2 CSI_HSYNC setup time tHsu 1 ns
P3 CSI DATA setup time tDsu 1 ns
P4 CSI DATA hold time tDh 1 ns
P5 CSI pixel clock high time tCLKh 3.75 ns
P6 CSI pixel clock low time tCLKl 3.75 ns
P7 CSI pixel clock frequency fCLK 80 MHz
CSI_PIXCLK
CSI_VSYNC
CSI_DATA[23:00]
P6
P1
P3 P4
CSI_HSYNC
P2 P5
P7
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 53
4.6.1.0.2 Ungated clock mode timing
Figure 29 shows the ungated clock mode timings of CSI, and Table 48 describes the timing parameters
(P1–P6) that are shown in the figure. In ungated mode the CSI_VSYNC and CSI_PIXCLK signals are
used, and the CSI_HSYNC signal is ignored.
Figure 29. CSI ungated clock mode—sensor data at falling edge, latch data at rising edge
The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as
dumb or smart as follows:
Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync
(HSYNC)) and output-only Bayer and statistics data.
Smart sensors support CCIR656 video decoder formats and perform additional processing of the
image (for example, image compression, image pre-filtering, and various data output formats).
Table 48. CSI ungated clock mode timing parameters
ID Parameter Symbol Min. Max. Units
P1 CSI_VSYNC to pixel clock time tVSYNC 33.5 ns
P2 CSI DATA setup time tDsu 1 ns
P3 CSI DATA hold time tDh 1 ns
P4 CSI pixel clock high time tCLKh 3.75 ns
P5 CSI pixel clock low time tCLKl 3.75 ns
P6 CSI pixel clock frequency fCLK 80 MHz
CSI_PIXCLK
CSI_VSYNC
CSI_DATA[23:00]
P4
P1
P2 P3
P5
P6
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
54 NXP Semiconductors
Electrical characteristics
4.6.2 LCD Controller (LCDIF) timing parameters
Figure 30 shows the LCDIF timing and Table 49 lists the timing parameters.
Figure 30. LCD timing
4.7 Audio
This section provide information about SAI/I2S and SPDIF.
4.7.1 SAI/I2S switching specifications
This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes.
All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP]
= 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock
and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal
(SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.
Table 49. LCD timing parameters
ID Parameter Symbol Min Max Unit
L1 LCD pixel clock frequency tCLK(LCD) 75 MHz
L2 LCD pixel clock high (falling edge capture) tCLKH(LCD) 3 ns
L3 LCD pixel clock low (rising edge capture) tCLKL(LCD) 3 ns
L4 LCD pixel clock high to data valid (falling edge capture) td(CLKH-DV) -1 1 ns
L5 LCD pixel clock low to data valid (rising edge capture) td(CLKL-DV) -1 1 ns
L6 LCD pixel clock high to control signal valid (falling edge capture) td(CLKH-CTRLV) -1 1 ns
L7 LCD pixel clock low to control signal valid (rising edge capture) td(CLKL-CTRLV) -1 1 ns
L1 L2 L3
L4
LCDn_CLK
(falling edge capture)
LCDn_CLK
(rising edge capture)
LCDn_DATA[23:00]
LCDn Control Signals
L5
L6
L7
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 55
Figure 31. SAI timing—Master modes
Table 50. Master mode SAI timing
Num Characteristic Min Max Unit
S1 SAI_MCLK cycle time 15 ns
S2 SAI_MCLK pulse width high/low 40% 60% MCLK period
S3 SAI_BCLK cycle time 40 ns
S4 SAI_BCLK pulse width high/low 40% 60% BCLK period
S5 SAI_BCLK to SAI_FS output valid 15 ns
S6 SAI_BCLK to SAI_FS output invalid 0 ns
S7 SAI_BCLK to SAI_TXD valid 15 ns
S8 SAI_BCLK to SAI_TXD invalid 0 ns
S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 15 ns
S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 ns
Table 51. Slave mode SAI timing
Num Characteristic Min Max Unit
S11 SAI_BCLK cycle time (input) 40 ns
S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period
S13 SAI_FS input setup before SAI_BCLK 10 ns
S14 SAI_FA input hold after SAI_BCLK 2 ns
S15 SAI_BCLK to SAI_TXD/SAI_FS output valid 20 ns
S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 ns
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
56 NXP Semiconductors
Electrical characteristics
Figure 32. SAI timing—Slave mode
4.7.2 SPDIF timing parameters
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.
Table 52 and Figure 33 and Figure 34 show SPDIF timing parameters for the Sony/Philips Digital
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for
SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.
S17 SAI_RXD setup before SAI_BCLK 10 ns
S18 SAI_RXD hold after SAI_BCLK 2 ns
Table 52. SPDIF timing parameters
Characteristics Symbol
Timing Parameter Range
Unit
Min Max
SPDIF_IN Skew: asynchronous inputs, no specs apply 0.7 ns
SPDIF_OUT output (Load = 50pf)
Skew
Transition rising
Transition falling
1.5
24.2
31.3
ns
SPDIF_OUT1 output (Load = 30pf)
Skew
Transition rising
Transition falling
1.5
13.6
18.0
ns
Modulating Rx clock (SPDIF_SR_CLK) period srckp 40.0 ns
Table 51. Slave mode SAI timing
Num Characteristic Min Max Unit
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 57
Figure 33. SPDIF_SR_CLK timing diagram
Figure 34. SPDIF_ST_CLK timing diagram
4.8 Analog
The following sections provide information about analog interfaces.
4.8.1 DCDC
Table 53 introduces the DCDC electrical specifications.
SPDIF_SR_CLK high period srckph 16.0 ns
SPDIF_SR_CLK low period srckpl 16.0 ns
Modulating Tx clock (SPDIF_ST_CLK) period stclkp 40.0 ns
SPDIF_ST_CLK high period stclkph 16.0 ns
SPDIF_ST_CLK low period stclkpl 16.0 ns
Table 53. DCDC electrical specifications
Mode Buck mode, one output Notes
Input voltage 2.9 V (A0);
3.3 V (A1) Min = 2.8 V
Max = 3.0 V (A0) and 3.6 V (A1)
Output voltage 1.1 V Configurable 0.8 ~ 1.575 V with 25 mV one
step in the Run mode
Max loading 500 mA
Table 52. SPDIF timing parameters (continued)
Characteristics Symbol
Timing Parameter Range
Unit
Min Max
SPDIF_SR_CLK
(Output)
VMVM
srckp
srckph
srckpl
SPDIF_ST_CLK
(Input)
VMVM
stclkp
stclkph
stclkpl
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
58 NXP Semiconductors
Electrical characteristics
4.8.2 A/D converter
This section introduces information about A/D converter.
4.8.2.1 12-bit ADC electrical characteristics
The section provide information about 12-bit ADC electrical characteristics.
4.8.2.1.1 12-bit ADC operating conditions
Loading in low power modes 200 A ~ 30 mA
Efficiency 90% max @150 mA
Low power mode Open loop mode Ripple is about 15 mV in Run mode
Run mode Always continuous mode
Support discontinuous mode
Configurable by register
Inductor 4.7 H—
Capacitor 33 F—
Over voltage protection 1.55 V Detect VDDSOC, when the voltage is higher
than 1.6 V, shutdown DCDC.
Over Current protection 1 A Detect the peak current
Run mode: when the current is larger than
1 A, shutdown DCDC.
Low DCDC_IN detection 2.6 V Detect the DCDC_IN, when battery is lower
than 2.6 V, shutdown DCDC.
Table 54. 12-bit ADC operating conditions
Characteristic Conditions Symb Min Typ1Max Unit Comment
Supply voltage Absolute VDDA 3.0 - 3.6 V
Delta to VDD
(VDD-VDDA)2
VDDA -100 0 100 mV
Ground voltage Delta to VSS
(VSS-VSSAD)
VSSAD -100 0 100 mV
Ref Voltage High VDDA 1.13 VDDA VDDA V
Ref Voltage Low VSS VSSAD VSSAD VSSAD V
Input Voltage VADIN VREFL —V
REFH V
Input Capacitance 8/10/12 bit modes CADIN —1.52 pF
Table 53. DCDC electrical specifications (continued)
Mode Buck mode, one output Notes
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 59
Figure 35. 12-bit ADC input impedance equivalency diagram
Input Resistance ADLPC=0, ADHSC=1 RADIN —5 7 kohms
ADLPC=0, ADHSC=0 12.5 15 kohms
ADLPC=1, ADHSC=0 25 30 kohms
Analog Source
Resistance
12 bit mode fADCK =
40MHz ADLSMP=0,
ADSTS=10, ADHSC=1
RAS 1 kohms Tsamp=150
ns
RAS depends on Sample Time Setting (ADLSMP, ADSTS) and ADC Power Mode (ADHSC, ADLPC). See charts for Minimum
Sample Time vs RAS
ADC Conversion Clock
Frequency
ADLPC=0, ADHSC=1
12 bit mode
fADCK 4 40 MHz
ADLPC=0, ADHSC=0
12 bit mode
4 30 MHz
ADLPC=1, ADHSC=0
12 bit mode
4 20 MHz
1Typical values assume VDDAD = 3.0 V, Temp = 25°C, fADCK=20 MHz unless otherwise stated. Typical values are for reference
only and are not tested in production.
2DC potential differences
Table 54. 12-bit ADC operating conditions (continued)
Characteristic Conditions Symb Min Typ1Max Unit Comment
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
60 NXP Semiconductors
Electrical characteristics
12-bit ADC characteristics
Table 55. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSAD)
Characteristic Conditions1Symb Min Typ2Max Unit Comment
Supply Current ADLPC=1,
ADHSC=0
IDDA 350 µA ADLSMP=0
ADSTS=10 ADCO=1
ADLPC=0,
ADHSC=0
460
ADLPC=0,
ADHSC=1
750
Supply Current Stop, Reset, Module
Off
IDDA —1.42 µA
ADC Asynchronous
Clock Source
ADHSC=0 fADACK 10 MHz tADACK = 1/fADACK
ADHSC=1 20
Sample Cycles ADLSMP=0,
ADSTS=00
Csamp 2 cycles
ADLSMP=0,
ADSTS=01
4
ADLSMP=0,
ADSTS=10
6
ADLSMP=0,
ADSTS=11
8
ADLSMP=1,
ADSTS=00
12
ADLSMP=1,
ADSTS=01
16
ADLSMP=1,
ADSTS=10
20
ADLSMP=1,
ADSTS=11
24
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 61
Conversion Cycles ADLSMP=0
ADSTS=00
Cconv 28 cycles
ADLSMP=0
ADSTS=01
30
ADLSMP=0
ADSTS=10
32
ADLSMP=0
ADSTS=11
34
ADLSMP=1
ADSTS=00
38
ADLSMP=1
ADSTS=01
42
ADLSMP=1
ADSTS=10
46
ADLSMP=1,
ADSTS=11
50
Conversion Time ADLSMP=0
ADSTS=00
Tconv 0.7 µs Fadc=40 MHz
ADLSMP=0
ADSTS=01
0.75
ADLSMP=0
ADSTS=10
0.8
ADLSMP=0
ADSTS=11
0.85
ADLSMP=1
ADSTS=00
0.95
ADLSMP=1
ADSTS=01
1.05
ADLSMP=1
ADSTS=10
1.15
ADLSMP=1,
ADSTS=11
1.25
Total Unadjusted
Error
12 bit mode TUE 3.4 LSB
1 LSB =
(VREFH -
VREFL)/2
N
AVGE = 1, AVGS = 11
10 bit mode 1.5
8 bit mode 1.2
Differential
Non-Linearity
12 bit mode DNL 0.76 LSB AVGE = 1, AVGS = 11
10bit mode 0.36
8 bit mode 0.14
Table 55. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSAD) (continued)
Characteristic Conditions1Symb Min Typ2Max Unit Comment
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
62 NXP Semiconductors
Electrical characteristics
NOTE
The ADC electrical spec is met with the calibration enabled configuration.
Figure 36. Minimum Sample Time Vs Ras (Cas = 2pF)
Integral Non-Linearity 12 bit mode INL 2.78 LSB AVGE = 1, AVGS = 11
10bit mode 0.61
8 bit mode 0.14
Zero-Scale Error 12 bit mode EZS -1.14 LSB AVGE = 1, AVGS = 11
10bit mode -0.25
8 bit mode -0.19
Full-Scale Error 12 bit mode EFS -1.06 LSB AVGE = 1, AVGS = 11
10bit mode -0.03
8 bit mode -0.02
Effective Number of
Bits
12 bit mode ENOB 10.1 10.7 Bits AVGE = 1, AVGS = 11
Signal to Noise plus
Distortion
See ENOB SINAD SINAD = 6.02 x ENOB + 1.76 dB AVGE = 1, AVGS = 11
1All accuracy numbers assume the ADC is calibrated with VREFH=VDDAD
2Typical values assume VDDAD = 3.0 V, Temp = 25°C, Fadck=20 MHz unless otherwise stated. Typical values are for reference
only and are not tested in production.
Table 55. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSAD) (continued)
Characteristic Conditions1Symb Min Typ2Max Unit Comment
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 63
Figure 37. Minimum Sample Time Vs Ras (Cas = 5 pF)
Figure 38. Minimum Sample Time Vs Ras (Cas = 10 pF)
4.8.3 ACMP
Table 56 lists the ACMP electrical specifications.
Table 56. Comparator and 6-bit DAC electrical specifications
Symbol Description Min. Typ. Max. Unit
VDD Supply voltage 3.0 3.6 V
IDDHS Supply current, High-speed mode
(EN = 1, PMODE = 1)
347 A
IDDLS Supply current, Low-speed mode
(EN = 1, PMODE = 0)
—42A
VAIN Analog input voltage VSS —V
DD V
VAIO Analog input offset voltage 21 mV
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
64 NXP Semiconductors
Electrical characteristics
4.9 Communication interfaces
The following sections provide the information about communication interfaces.
4.9.1 LPSPI timing parameters
The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and
slave operations. Many of the transfer attributes are programmable. The following tables provide timing
characteristics for classic LPSPI timing modes.
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as well as input
signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins.
VHAnalog comparator hysteresis1mV
CR0[HYSTCTR] = 00 1 2
CR0[HYSTCTR] = 01 21 54
CR0[HYSTCTR] = 10 42 108
CR0[HYSTCTR] = 11 64 184
VCMPOH Output high VDD - 0.5 V
VCMPOI Output low 0.5 V
tDHS Propagation delay, high-speed
mode (EN = 1, PMODE = 1)2
—2540ns
tDLS Propagation delay, low-speed
mode (EN = 1, PMODE = 0)2
—5090ns
tDInit Analog comparator initialization
delay3
—1.5s
IDAC6b 6-bit DAC current adder (enabled) 5 A
RDAC6b 6-bit DAC reference inputs VDD —V
INLDAC6b 6-bit DAC integral non-linearity -0.3 0.3 LSB4
DNLDAC6b 6-bit DAC differential non-linearity -0.15 0.15 LSB4
1Typical hysteresis is measured with input voltage range limited to 0.7 to VDD - 0.7 V in high speed mode.
2Signal swing is 100 mV.
3Comparator initialization delay is defined as the time between software writes to the enable comparator module and the
comparator output setting to a stable level.
41 LSB = Vreference / 64
Table 56. Comparator and 6-bit DAC electrical specifications (continued)
Symbol Description Min. Typ. Max. Unit
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 65
Figure 39. LPSPI Master mode timing (CPHA = 0)
Table 57. LPSPI Master mode timing
Number Symbol Description Min. Max. Units Note
1f
SCK Frequency of operation fperiph / 2 Hz 1
1Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must be
guaranteed this limit is not exceeded.
2t
SCK SCK period 2 x tperiph —ns
2
2tperiph = 1 / fperiph
3t
Lead Enable lead time 1 tperiph
4t
Lag Enable lag time 1 tperiph
5t
WSCK Clock (SCK) high or low time tSCK / 2 - 3 ns
6t
SU Data setup time (inputs) 10 ns
7t
HI Data hold time (inputs) 2 ns
8t
VData valid (after SCK edge) 8 ns
9t
HO Data hold time (outputs) 0 ns
(OUTPUT)
2
8
6 7
MSB IN2
LSB IN
MSB OUT2LSB OUT
9
5
5
3
(CPOL=0)
4
SCK
SCK
(CPOL=1)
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
1. If configured as an output.
PCS1
(OUTPUT)
(OUTPUT)
SOUT
(OUTPUT)
SIN
(INPUT)
BIT 6 . . . 1
BIT 6 . . . 1
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
66 NXP Semiconductors
Electrical characteristics
Figure 40. LPSPI Master mode timing (CPHA = 1)
sTable 58. LPSPI Slave mode timing
Number Symbol Description Min. Max. Units Note
1f
SCK Frequency of operation 0 fperiph / 2 Hz 1
1Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must be
guaranteed this limit is not exceeded.
2t
SCK SCK period 2 x tperiph —ns
2
2tperiph = 1 / fperiph
3t
Lead Enable lead time 1 tperiph
4t
Lag Enable lag time 1 tperiph
5t
WSCK Clock (SCK) high or low time tSCK / 2 - 5 ns
6t
SU Data setup time (inputs) 2.7 ns
7t
HI Data hold time (inputs) 3.8 ns
8t
aSlave access time tperiph ns 3
3Time to data active from high-impedance state
9t
dis Slave MISO disable time tperiph ns 4
4Hold time to high-impedance state
10 tVData valid (after SCK edge) 14.5 ns
11 tHO Data hold time (outputs) 0 ns
2
6 7
MSB IN2
BIT 6 . . . 1
MASTER MSB OUT2MASTER LSB OUT
5
5
8
PORT DATA
PORT DATA
34
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
9
(OUTPUT)
(CPOL=0)
SCK
SCK
(CPOL=1)
PCS1
(OUTPUT)
(OUTPUT)
SOUT
(OUTPUT)
SIN
(INPUT)
LSB IN
BIT 6 . . . 1
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 67
Figure 41. LPSPI Slave mode timing (CPHA = 0)
Figure 42. LPSPI Slave mode timing (CPHA = 1)
2
10
6 7
MSB IN
BIT 6 . . . 1
SLAVE MSB SLAVE LSB OUT
11
5
5
3
8
4
11
SEE
NOTE
9
see
note
(INPUT)
(CPOL=0)
SCK
SCK
(CPOL=1)
PCS
(INPUT)
(INPUT)
SOUT
(INPUT)
SIN
(OUTPUT)
LSB IN
BIT 6 . . . 1 NOTE: Not defined
2
6 7
MSB IN
BIT 6 . . . 1
MSB OUT SLAVE LSB OUT
5
5
10
3
4
SLAVE
8
9
see
note
(INPUT)
(CPOL=0)
SCK
SCK
(CPOL=1)
PCS
(INPUT)
(INPUT)
SOUT
(INPUT)
SIN
(OUTPUT)
11
LSB IN
BIT 6 . . . 1
NOTE: Not defined
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
68 NXP Semiconductors
Electrical characteristics
4.9.2 LPI2C module timing parameters
This section describes the timing parameters of the LPI2C module.
4.9.3 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC
timing
This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single
Data Rate) timing, eMMC4.4/4.41/4.5 (Dual Date Rate) timing and SDR104/50(SD3.0) timing.
4.9.3.1 SD/eMMC4.3 (single data rate) AC timing
Figure 43 depicts the timing of SD/eMMC4.3, and Table 60 lists the SD/eMMC4.3 timing characteristics.
Figure 43. SD/eMMC4.3 timing
Table 59. LPI2C module timing parameters
Symbol Description Min Max Unit Notes
fSCL SCL clock frequency Standard mode (Sm) 0 100 kHz 1, 2
1Hs-mode is only supported in slave mode.
2See General switching specifications.
Fast mode (Fm) 0 400
Fast mode Plus (Fm+) 0 1000
Ultra Fast mode (UFm) 0 5000
High speed mode (Hs-mode) 0 3400
SD1
SD3
SD5
SD4
SD7
SDx_CLK
SD2
SD8
SD6
Output from uSDHC to card
Input from card to uSDHC
SDx_DATA[7:0]
SDx_DATA[7:0]
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 69
4.9.3.2 eMMC4.4/4.41 (dual data rate) AC timing
Figure 44 depicts the timing of eMMC4.4/4.41. Table 61 lists the eMMC4.4/4.41 timing characteristics.
Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).
Table 60. SD/eMMC4.3 interface timing specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency (Low Speed) fPP1
1In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
0 400 kHz
Clock Frequency (SD/SDIO Full Speed/High Speed) fPP2
2In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 025 MHz. In high-speed mode,
clock frequency can be any value between 050 MHz.
0 25/50 MHz
Clock Frequency (MMC Full Speed/High Speed) fPP3
3In normal (full) speed mode for MMC card, clock frequency can be any value between 020 MHz. In high-speed mode, clock
frequency can be any value between 052 MHz.
0 20/52 MHz
Clock Frequency (Identification Mode) fOD 100 400 kHz
SD2 Clock Low Time tWL 7—ns
SD3 Clock High Time tWH 7—ns
SD4 Clock Rise Time tTLH —3ns
SD5 Clock Fall Time tTHL —3ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)
SD6 uSDHC Output Delay tOD -6.6 3.6 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)
SD7 uSDHC Input Setup Time tISU 2.5 ns
SD8 uSDHC Input Hold Time4
4To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.
tIH 1.5 ns
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
70 NXP Semiconductors
Electrical characteristics
Figure 44. eMMC4.4/4.41 timing
Table 61. eMMC4.4/4.41 interface timing specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency (eMMC4.4/4.41 DDR) fPP 052MHz
SD1 Clock Frequency (SD3.0 DDR) fPP 050MHz
uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)
SD2 uSDHC Output Delay tOD 2.5 7.1 ns
uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)
SD3 uSDHC Input Setup Time tISU 1.7 ns
SD4 uSDHC Input Hold Time tIH 1.5 ns
SD1
SD2
SD3
Output from eSDHCv3 to card
Input from card to eSDHCv3
SDx_DATA[7:0]
SDx_CLK
SD4
SD2
......
......
SDx_DATA[7:0]
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 71
4.9.3.3 SDR50/SDR104 AC timing
Figure 45 depicts the timing of SDR50/SDR104, and Table 62 lists the SDR50/SDR104 timing
characteristics.
Figure 45. SDR50/SDR104 timing
Table 62. SDR50/SDR104 interface timing specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency Period tCLK 5.0 ns
SD2 Clock Low Time tCL 0.46 x tCLK 0.54 x tCLK ns
SD3 Clock High Time tCH 0.46 x tCLK 0.54 x tCLK ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)
SD4 uSDHC Output Delay tOD –3 1 ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)
SD5 uSDHC Output Delay tOD –1.6 1 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)
SD6 uSDHC Input Setup Time tISU 2.5 ns
SD7 uSDHC Input Hold Time tIH 1.5 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1
1Data window in SDR104 mode is variable.
SD8 Card Output Data Window tODW 0.5 x tCLK —ns
SCK
4-bit output from uSDHC to card
4-bit input from card to uSDHC
SD8
SD7
SD6
SD4/SD5
SD2 SD3
SD1
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
72 NXP Semiconductors
Electrical characteristics
4.9.3.4 HS200 mode timing
Figure 46 depicts the timing of HS200 mode, and Table 63 lists the HS200 timing characteristics.
Figure 46. HS200 mode timing
4.9.3.5 Bus operation condition for 3.3 V and 1.8 V signaling
Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50
mode is 1.8 V. The DC parameters for the NVCC_SD1 supply are identical to those shown in Table 22,
"Single voltage GPIO DC parameters," on page 32.
4.9.4 Ethernet controller (ENET) AC electrical specifications
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive
at timing specs/constraints for the physical interface.
Table 63. HS200 interface timing specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency Period tCLK 5.0 ns
SD2 Clock Low Time tCL 0.46 x tCLK 0.54 x tCLK ns
SD3 Clock High Time tCH 0.46 x tCLK 0.54 x tCLK ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)
SD5 uSDHC Output Delay tOD –1.6 0.74 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1
1HS200 is for 8 bits while SDR104 is for 4 bits.
SD8 Card Output Data Window tODW 0.5 x tCLK —ns
SCK
8-bit output from uSDHC to eMMC
8-bit input from eMMC to uSDHC
SD8
SD4/SD5
SD2 SD3
SD1
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 73
4.9.4.1 ENET MII mode timing
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal
timings.
4.9.4.1.1 MII receive signal timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER, and ENET_RX_CLK)
The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There
is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the
ENET_RX_CLK frequency.
Figure 47 shows MII receive signal timings. Table 64 describes the timing parameters (M1–M4) shown in
the figure.
Figure 47. MII receive signal timing diagram
1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.
4.9.4.1.2 MII transmit signal timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER, and ENET_TX_CLK)
The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%.
There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed
twice the ENET_TX_CLK frequency.
Table 64. MII receive signal timing
ID Characteristic1Min. Max. Unit
M1 ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to
ENET_RX_CLK setup
5— ns
M2 ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER hold
5— ns
M3 ENET_RX_CLK pulse width high 35% 65% ENET_RX_CLK period
M4 ENET_RX_CLK pulse width low 35% 65% ENET_RX_CLK period
ENET_RX_CLK (input)
ENET_RX_DATA3,2,1,0
M3
M4
M1 M2
ENET_RX_ER
ENET_RX_EN
(inputs)
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
74 NXP Semiconductors
Electrical characteristics
Figure 48 shows MII transmit signal timings. Table 65 describes the timing parameters (M5–M8) shown
in the figure.
Figure 48. MII transmit signal timing diagram
1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.
4.9.4.1.3 MII asynchronous inputs signal timing (ENET_CRS and ENET_COL)
Figure 49 shows MII asynchronous input timings. Table 66 describes the timing parameter (M9) shown in
the figure.
Figure 49. MII asynchronous inputs timing diagram
1 ENET_COL has the same timing in 10-Mbit 7-wire interface mode.
Table 65. MII transmit signal timing
ID Characteristic1Min. Max. Unit
M5 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER invalid
5— ns
M6 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER valid
—20 ns
M7 ENET_TX_CLK pulse width high 35% 65% ENET_TX_CLK period
M8 ENET_TX_CLK pulse width low 35% 65% ENET_TX_CLK period
Table 66. MII asynchronous inputs signal timing
ID Characteristic Min. Max. Unit
M91ENET_CRS to ENET_COL minimum pulse width 1.5 ENET_TX_CLK period
ENET_TX_CLK (input)
ENET_TX_DATA3,2,1,0
M7
M8
M5
M6
ENET_TX_ER
ENET_TX_EN
(outputs)
ENET_CRS, ENET_COL
M9
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 75
4.9.4.1.4 MII serial management channel timing (ENET_MDIO and ENET_MDC)
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3
MII specification. However the ENET can function correctly with a maximum MDC frequency of
15 MHz.
Figure 50 shows MII asynchronous input timings. Table 67 describes the timing parameters (M10–M15)
shown in the figure.
Figure 50. MII serial management channel timing diagram
4.9.4.2 RMII mode timing
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference
clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include
ENET_TX_EN, ENET_TX_DATA[1:0], ENET_RX_DATA[1:0] and ENET_RX_ER.
Table 67. MII serial management channel timing
ID Characteristic Min. Max. Unit
M10 ENET_MDC falling edge to ENET_MDIO output invalid (min.
propagation delay)
0— ns
M11 ENET_MDC falling edge to ENET_MDIO output valid (max.
propagation delay)
—5 ns
M12 ENET_MDIO (input) to ENET_MDC rising edge setup 18 ns
M13 ENET_MDIO (input) to ENET_MDC rising edge hold 0 ns
M14 ENET_MDC pulse width high 40% 60% ENET_MDC period
M15 ENET_MDC pulse width low 40% 60% ENET_MDC period
ENET_MDC (output)
ENET_MDIO (output)
M14
M15
M10
M11
M12 M13
ENET_MDIO (input)
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
76 NXP Semiconductors
Electrical characteristics
Figure 51 shows RMII mode timings. Table 68 describes the timing parameters (M16–M21) shown in the
figure.
Figure 51. RMII mode signal timing diagram
4.9.5 Flexible Controller Area Network (FLEXCAN) AC electrical
specifications
Please refer to Section 4.3.2.1, General purpose I/O AC parameters.
4.9.6 LPUART electrical specifications
Please refer to Section 4.3.2.1, General purpose I/O AC parameters.
Table 68. RMII signal timing
ID Characteristic Min. Max. Unit
M16 ENET_CLK pulse width high 35% 65% ENET_CLK period
M17 ENET_CLK pulse width low 35% 65% ENET_CLK period
M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid 4 ns
M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid 13 ns
M20 ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER
to ENET_CLK setup
2— ns
M21 ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER
hold
2— ns
ENET_CLK (input)
ENET_TX_EN
M16
M17
M18
M19
M20 M21
ENET_RX_DATA[1:0]
ENET_TX_DATA (output)
ENET_RX_ER
ENET_RX_EN (input)
Electrical characteristics
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 77
4.9.7 USB PHY parameters
This section describes the USB-OTG PHY parameters.
The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision
2.0 OTG with the following amendments.
USB ENGINEERING CHANGE NOTICE
Title: 5V Short Circuit Withstand Requirement Change
Applies to: Universal Serial Bus Specification, Revision 2.0
Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
USB ENGINEERING CHANGE NOTICE
Title: Pull-up/Pull-down resistors
Applies to: Universal Serial Bus Specification, Revision 2.0
USB ENGINEERING CHANGE NOTICE
Title: Suspend Current Limit Changes
Applies to: Universal Serial Bus Specification, Revision 2.0
USB ENGINEERING CHANGE NOTICE
Title: USB 2.0 Phase Locked SOFs
Applies to: Universal Serial Bus Specification, Revision 2.0
On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
Revision 2.0 plus errata and ecn June 4, 2010
Battery Charging Specification (available from USB-IF)
Revision 1.2, December 7, 2010
Portable device only
4.10 Timers
This section provide information on timers.
4.10.1 Pulse Width Modulator (PWM) characteristics
This section describes the electrical information of the PWM.
4.10.2 Quad timer timing
Table 70 listed the timing parameters.
Table 69. PWM timing parameters
Parameter Symbol Min Typ Max Unit
PWM Clock Frequency 150 MHz
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
78 NXP Semiconductors
Electrical characteristics
Figure 52. Quad timer timing
Table 70. Quad timer timing
Characteristic Symbo Min1
1T = clock cycle. For 60 MHz operation, T = 16.7 ns.
Max Unit See Figure
Timer input period TIN 2T + 6 ns
Timer input high/low period TINHL 1T + 3 ns
Timer output period TOUT 33 ns
Timer output high/low period TOUTHL 16.7 ns
4/54
4/54(, 4/54(,
4). 4).(, 4).(,
4
IMER)NPUTS
4
IMER/UTPUTS
Boot mode configuration
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 79
5 Boot mode configuration
This section provides information on boot mode configuration pins allocation and boot devices interfaces
allocation.
5.1 Boot mode configuration pins
Table 71 provides boot options, functionality, fuse values, and associated pins. Several input pins are also
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an
unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX RT1050
Fuse Map document and the System Boot chapter in i.MX RT1050 Reference Manual (IMXRT1050RM).
5.2 Boot device interface allocation
The following tables list the interfaces that can be used by the boot process in accordance with the specific
boot mode configuration. The tables also describe the interface’s specific modes and IOMUXC allocation,
which are configured during boot when appropriate.
Table 71. Fuses and associated pins used for boot
Pad Default setting on reset eFuse name Details
GPIO_AD_B0_04 100 K pull-down BOOT_MODE0
GPIO_AD_B0_05 100 K pull-down BOOT_MODE1
GPIO_B0_04 100 K pull-down BT_CFG[0] Boot Options, Pin value overrides
fuse settings for BT_FUSE_SEL =
‘0’. Signal Configuration as Fuse
Override Input at Power Up.
These are special I/O lines that
control the boot up configuration
during product development. In
production, the boot configuration
can be controlled by fuses.
GPIO_B0_05 100 K pull-down BT_CFG[1]
GPIO_B0_06 100 K pull-down BT_CFG[2]
GPIO_B0_07 100 K pull-down BT_CFG[3]
GPIO_B0_08 100 K pull-down BT_CFG[4]
GPIO_B0_09 100 K pull-down BT_CFG[5]
GPIO_B0_10 100 K pull-down BT_CFG[6]
GPIO_B0_11 100 K pull-down BT_CFG[7]
GPIO_B0_12 100 K pull-down BT_CFG[8]
GPIO_B0_13 100 K pull-down BT_CFG[9]
GPIO_B0_14 100 K pull-down BT_CFG[10]
GPIO_B0_15 100 K pull-down BT_CFG[11]
Table 72. Boot trough NAND
PAD Name IO Function ALT Comments
GPIO_EMC_00 semc.DATA[0] ALT 0
GPIO_EMC_01 semc.DATA[1] ALT 0
GPIO_EMC_02 semc.DATA[2] ALT 0
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
80 NXP Semiconductors
Boot mode configuration
GPIO_EMC_03 semc.DATA[3] ALT 0
GPIO_EMC_04 semc.DATA[4] ALT 0
GPIO_EMC_05 semc.DATA[5] ALT 0
GPIO_EMC_06 semc.DATA[6] ALT 0
GPIO_EMC_07 semc.DATA[7] ALT 0
GPIO_EMC_30 semc.DATA[8] ALT 0
GPIO_EMC_31 semc.DATA[9] ALT 0
GPIO_EMC_32 semc.DATA[10] ALT 0
GPIO_EMC_33 semc.DATA[11] ALT 0
GPIO_EMC_34 semc.DATA[12] ALT 0
GPIO_EMC_35 semc.DATA[13] ALT 0
GPIO_EMC_36 semc.DATA[14] ALT 0
GPIO_EMC_37 semc.DATA[15] ALT 0
GPIO_EMC_18 semc.ADDR[9] ALT 0
GPIO_EMC_19 semc.ADDR[11] ALT 0
GPIO_EMC_20 semc.ADDR[12] ALT 0
GPIO_EMC_22 semc.BA1 ALT 0
GPIO_EMC_41 semc.CSX[0] ALT 0
Table 73. Boot trough NOR
PAD Name IO Function ALT Comments
GPIO_EMC_00 semc.DATA[0] ALT 0
GPIO_EMC_01 semc.DATA[1] ALT 0
GPIO_EMC_02 semc.DATA[2] ALT 0
GPIO_EMC_03 semc.DATA[3] ALT 0
GPIO_EMC_04 semc.DATA[4] ALT 0
GPIO_EMC_05 semc.DATA[5] ALT 0
GPIO_EMC_06 semc.DATA[6] ALT 0
GPIO_EMC_07 semc.DATA[7] ALT 0
GPIO_EMC_30 semc.DATA[8] ALT 0
GPIO_EMC_31 semc.DATA[9] ALT 0
GPIO_EMC_32 semc.DATA[10] ALT 0
GPIO_EMC_33 semc.DATA[11] ALT 0
Table 72. Boot trough NAND
Boot mode configuration
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 81
GPIO_EMC_34 semc.DATA[12] ALT 0
GPIO_EMC_35 semc.DATA[13] ALT 0
GPIO_EMC_36 semc.DATA[14] ALT 0
GPIO_EMC_37 semc.DATA[15] ALT 0
GPIO_EMC_09 semc.ADDR[0] ALT 0
GPIO_EMC_10 semc.ADDR[1] ALT 0
GPIO_EMC_11 semc.ADDR[2] ALT 0
GPIO_EMC_12 semc.ADDR[3] ALT 0
GPIO_EMC_13 semc.ADDR[4] ALT 0
GPIO_EMC_14 semc.ADDR[5] ALT 0
GPIO_EMC_15 semc.ADDR[6] ALT 0
GPIO_EMC_16 semc.ADDR[7] ALT 0
GPIO_EMC_19 semc.ADDR[11] ALT 0
GPIO_EMC_20 semc.ADDR[12] ALT 0
GPIO_EMC_21 semc.BA0 ALT 0
GPIO_EMC_22 semc.BA1 ALT 0
GPIO_EMC_41 semc.CSX[0] ALT 0
Table 74. Boot through FlexSPI
PAD Name IO Function Mux Mode Comments
GPIO_SD_B1_00 flexspi.B_DATA[3] ALT 1
GPIO_SD_B1_01 flexspi.B_DATA[2] ALT 1
GPIO_SD_B1_02 flexspi.B_DATA[1] ALT 1
GPIO_SD_B1_03 flexspi.B_DATA[0] ALT 1
GPIO_SD_B1_04 flexspi.B_SCLK ALT 1
GPIO_SD_B0_05 flexspi.B_DQS ALT 4
GPIO_SD_B0_04 flexspi.B_SS0_B ALT 4
GPIO_SD_B0_01 flexspi.B_SS1_B ALT 6
GPIO_SD_B1_05 flexspi.A_DQS ALT 1
GPIO_SD_B1_06 flexspi.A_SS0_B ALT 1
GPIO_SD_B0_00 flexspi.A_SS1_B ALT 6
GPIO_SD_B1_07 flexspi.A_SCLK ALT 1
GPIO_SD_B1_08 flexspi.A_DATA[0] ALT 1
GPIO_SD_B1_09 flexspi.A_DATA[1] ALT 1
Table 73. Boot trough NOR
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
82 NXP Semiconductors
Boot mode configuration
GPIO_SD_B1_10 flexspi.A_DATA[2] ALT 1
GPIO_SD_B1_11 flexspi.A_DATA[3] ALT 1
Table 75. Boot through SD1
PAD Name IO Function Mux Mode Comments
GPIO_SD_B0_00 usdhc1.CMD ALT 0
GPIO_SD_B0_01 usdhc1.CLK ALT 0
GPIO_SD_B0_02 usdhc1.DATA0 ALT 0
GPIO_SD_B0_03 usdhc1.DATA1 ALT 0
GPIO_SD_B0_04 usdhc1.DATA2 ALT 0
GPIO_SD_B0_05 usdhc1.DATA3 ALT 0
Table 76. Boot through SD2
PAD Name IO Function Mux Mode Comments
GPIO_SD_B1_00 usdhc2.DATA3 ALT 0
GPIO_SD_B1_01 usdhc2.DATA2 ALT 0
GPIO_SD_B1_02 usdhc2.DATA1 ALT 0
GPIO_SD_B1_03 usdhc2.DATA0 ALT 0
GPIO_SD_B1_04 usdhc2.CLK ALT 0
GPIO_SD_B1_05 usdhc2.CMD ALT 0
GPIO_SD_B1_06 usdhc2.RESET_B ALT 0
GPIO_SD_B1_08 usdhc2.DATA4 ALT 0
GPIO_SD_B1_09 usdhc2.DATA5 ALT 0
GPIO_SD_B1_10 usdhc2.DATA6 ALT 0
GPIO_SD_B1_11 usdhc2.DATA7 ALT 0
Table 77. Boot through SPI-1
PAD Name IO Function Mux Mode Comments
GPIO_SD_B0_00 lpspi1.SCK ALT 4
GPIO_SD_B0_02 lpspi1.SDO ALT 4
GPIO_SD_B0_03 lpspi1.SDI ALT 4
GPIO_SD_B0_01 lpspi1.PCS0 ALT 4
Table 74. Boot through FlexSPI (continued)
PAD Name IO Function Mux Mode Comments
Boot mode configuration
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 83
Table 78. Boot through SPI-2
PAD Name IO Function Mux Mode Comments
GPIO_SD_B1_07 lpspi2.SCK ALT 4
GPIO_SD_B1_08 lpspi2.SDO ALT 4
GPIO_SD_B1_09 lpspi2.SDI ALT 4
GPIO_SD_B1_06 lpspi2.PCS0 ALT 4
Table 79. Boot through SPI-3
PAD Name IO Function Mux Mode Comments
GPIO_AD_B0_00 lpspi3.SCK ALT 7
GPIO_AD_B0_01 lpspi3.SDO ALT 7
GPIO_AD_B0_02 lpspi3.SDI ALT 7
GPIO_SD_B0_03 lpspi3.PCS0 ALT 7
Table 80. Boot through SPI-4
PAD Name IO Function Mux Mode Comments
GPIO_B0_03 lpspi4.SCK ALT 3
GPIO_B0_02 lpspi4.SDO ALT 3
GPIO_B0_01 lpspi4.SDI ALT 3
GPIO_B0_00 lpspi4.PCS0 ALT 3
Table 81. Boot through UART1
PAD Name IO Function Mux Mode Comments
GPIO_AD_B0_12 lpuart1.TX ALT 2
GPIO_AD_B0_13 lpuart1.RX ALT 2
GPIO_AD_B0_14 lpuart1.CTS_B ALT 2
GPIO_AD_B0_15 lpuart1.RTS_B ALT 2
Table 82. Boot through UART2
PAD Name IO Function Mux Mode Comments
GPIO_AD_B1_00 lpuart2.CTS_B ALT 2
GPIO_AD_B1_01 lpuart2.RTS_B ALT 2
GPIO_AD_B1_02 lpuart2.TX ALT 2
GPIO_AD_B1_03 lpuart2.RX ALT 2
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
84 NXP Semiconductors
Package information and contact assignments
6 Package information and contact assignments
This section includes the contact assignment information and mechanical package drawing.
6.1 10 x 10 mm package information
6.1.1 10 x 10 mm, 0.65 mm pitch, ball matrix
Figure 53 shows the top, bottom, and side views of the 10 x 10 mm MAPBGA package.
Package information and contact assignments
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 85
Figure 53. 10 x 10 mm BGA, case x package top, bottom, and side Views
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
86 NXP Semiconductors
Package information and contact assignments
6.1.2 10 x 10 mm supplies contact assignments and functional contact
assignments
Table 83 shows the device connection list for ground, sense, and reference contact signals.
Table 84 shows an alpha-sorted list of functional contact assignments for the 10 x 10 mm package.
Table 83. 10 x 10 mm supplies contact assignment
Supply Rail Name Ball(s) Position(s) Remark
DCDC_IN L1, L2
DCDC_IN_Q K4
DCDC_GND N1, N2
DCDC_LP M1, M2
DCDC_PSWITCH K3
DCDC_SENSE J5
GPANAIO N10
NGND_KEL0 K9
NVCC_EMC E6, F5
NVCC_GPIO E9, F10, J10
NVCC_PLL P10
NVCC_SD0 J6
NVCC_SD1 K5
VDDA_ADC_3P3 N14
VDD_HIGH_CAP P8
VDD_HIGH_IN P12
VDD_SNVS_CAP M10
VDD_SNVS_IN M9
VDD_SOC_IN F6, F7, F8, F9, G6, G9, H6, H9, J9
VDD_USB_CAP K8
VSS A1, A14, B5, B10, E2, E13, G7, G8, H7, H8, J7, J8, K2, K13, L9, N5, N8, P1, P14
Table 84. 10 x 10 mm functional contact assignments
Ball Name 10 x 10
Ball
Power
Group
Ball
Type
Default Setting
Default
Mode
Default
Function
Input/
Output Value
CCM_CLK1_N P13 CCM_CLK1_N
CCM_CLK1_P N13 CCM_CLK1_P
Package information and contact assignments
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 87
GPIO_AD_B0_00 M14 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[0] Input Keeper
GPIO_AD_B0_01 H10 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[1] Input Keeper
GPIO_AD_B0_02 M11 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[2] Input Keeper
GPIO_AD_B0_03 G11 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[3] Input Keeper
GPIO_AD_B0_04 F11 NVCC_GPIO Digital
GPIO
ALT0 SRC.BOOT.MODE[0] Input 100 K PD
GPIO_AD_B0_05 G14 NVCC_GPIO Digital
GPIO
ALT0 SRC.BOOT.MODE[1] Input 100 K PD
GPIO_AD_B0_06 E14 NVCC_GPIO Digital
GPIO
ALT0 JTAG.MUX.TMS Input 47 K PU
GPIO_AD_B0_07 F12 NVCC_GPIO Digital
GPIO
ALT0 JTAG.MUX.TCK Input 47 K PU
GPIO_AD_B0_08 F13 NVCC_GPIO Digital
GPIO
ALT0 JTAG.MUX.MOD Input 100 K PU
GPIO_AD_B0_09 F14 NVCC_GPIO Digital
GPIO
ALT0 JTAG.MUX.TDI Input 47 K PU
GPIO_AD_B0_10 G13 NVCC_GPIO Digital
GPIO
ALT0 JTAG.MUX.TDO Input Keeper
GPIO_AD_B0_11 G10 NVCC_GPIO Digital
GPIO
ALT0 JTAG.MUX.TRSTB Input 47 K PU
GPIO_AD_B0_12 K14 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[12] Input Keeper
GPIO_AD_B0_13 L14 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[13] Input Keeper
GPIO_AD_B0_14 H14 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[14] Input Keeper
GPIO_AD_B0_15 L10 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[15] Input Keeper
GPIO_AD_B1_00 J11 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[16] Input Keeper
GPIO_AD_B1_01 K11 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[17] Input Keeper
GPIO_AD_B1_02 L11 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[18] Input Keeper
GPIO_AD_B1_03 M12 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[19] Input Keeper
GPIO_AD_B1_04 L12 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[20] Input Keeper
Table 84. 10 x 10 mm functional contact assignments (continued)
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
88 NXP Semiconductors
Package information and contact assignments
GPIO_AD_B1_05 K12 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[21] Input Keeper
GPIO_AD_B1_06 J12 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[22] Input Keeper
GPIO_AD_B1_07 K10 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[23] Input Keeper
GPIO_AD_B1_08 H13 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[24] Input Keeper
GPIO_AD_B1_09 M13 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[25] Input Keeper
GPIO_AD_B1_10 L13 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[26] Input Keeper
GPIO_AD_B1_11 J13 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[27] Input Keeper
GPIO_AD_B1_12 H12 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[28] Input Keeper
GPIO_AD_B1_13 H11 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[29] Input Keeper
GPIO_AD_B1_14 G12 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[30] Input Keeper
GPIO_AD_B1_15 J14 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[31] Input Keeper
GPIO_B0_00 D7 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[0] Input Keeper
GPIO_B0_01 E7 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[1] Input Keeper
GPIO_B0_02 E8 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[2] Input Keeper
GPIO_B0_03 D8 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[3] Input Keeper
GPIO_B0_04 C8 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[4] Input Keeper
GPIO_B0_05 B8 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[5] Input Keeper
GPIO_B0_06 A8 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[6] Input Keeper
GPIO_B0_07 A9 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[7] Input Keeper
GPIO_B0_08 B9 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[8] Input Keeper
GPIO_B0_09 C9 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[9] Input Keeper
Table 84. 10 x 10 mm functional contact assignments (continued)
Package information and contact assignments
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 89
GPIO_B0_10 D9 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[10] Input Keeper
GPIO_B0_11 A10 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[11] Input Keeper
GPIO_B0_12 C10 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[12] Input Keeper
GPIO_B0_13 D10 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[13] Input Keeper
GPIO_B0_14 E10 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[14] Input Keeper
GPIO_B0_15 E11 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[15] Input Keeper
GPIO_B1_00 A11 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[16] Input Keeper
GPIO_B1_01 B11 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[17] Input Keeper
GPIO_B1_02 C11 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[18] Input Keeper
GPIO_B1_03 D11 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[19] Input Keeper
GPIO_B1_04 E12 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[20] Input Keeper
GPIO_B1_05 D12 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[21] Input Keeper
GPIO_B1_06 C12 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[22] Input Keeper
GPIO_B1_07 B12 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[23] Input Keeper
GPIO_B1_08 A12 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[24] Input Keeper
GPIO_B1_09 A13 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[25] Input Keeper
GPIO_B1_10 B13 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[26] Input Keeper
GPIO_B1_11 C13 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[27] Input Keeper
GPIO_B1_12 D13 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[28] Input Keeper
GPIO_B1_13 D14 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[29] Input Keeper
GPIO_B1_14 C14 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[30] Input Keeper
Table 84. 10 x 10 mm functional contact assignments (continued)
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
90 NXP Semiconductors
Package information and contact assignments
GPIO_B1_15 B14 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[31] Input Keeper
GPIO_EMC_00 E3 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[0] Input Keeper
GPIO_EMC_01 F3 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[1] Input Keeper
GPIO_EMC_02 F4 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[2] Input Keeper
GPIO_EMC_03 G4 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[3] Input Keeper
GPIO_EMC_04 F2 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[4] Input Keeper
GPIO_EMC_05 G5 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[5] Input Keeper
GPIO_EMC_06 H5 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[6] Input Keeper
GPIO_EMC_07 H4 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[7] Input Keeper
GPIO_EMC_08 H3 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[8] Input Keeper
GPIO_EMC_09 C2 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[9] Input Keeper
GPIO_EMC_10 G1 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[10] Input Keeper
GPIO_EMC_11 G3 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[11] Input Keeper
GPIO_EMC_12 H1 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[12] Input Keeper
GPIO_EMC_13 A6 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[13] Input Keeper
GPIO_EMC_14 B6 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[14] Input Keeper
GPIO_EMC_15 B1 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[15] Input Keeper
GPIO_EMC_16 A5 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[16] Input Keeper
GPIO_EMC_17 A4 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[17] Input Keeper
GPIO_EMC_18 B2 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[18] Input Keeper
GPIO_EMC_19 B4 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[19] Input Keeper
Table 84. 10 x 10 mm functional contact assignments (continued)
Package information and contact assignments
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 91
GPIO_EMC_20 A3 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[20] Input Keeper
GPIO_EMC_21 C1 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[21] Input Keeper
GPIO_EMC_22 F1 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[22] Input Keeper
GPIO_EMC_23 G2 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[23] Input Keeper
GPIO_EMC_24 D3 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[24] Input Keeper
GPIO_EMC_25 D2 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[25] Input Keeper
GPIO_EMC_26 B3 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[26] Input Keeper
GPIO_EMC_27 A2 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[27] Input 100 K PD
GPIO_EMC_28 D1 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[28] Input Keeper
GPIO_EMC_29 E1 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[29] Input Keeper
GPIO_EMC_30 C6 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[30] Input Keeper
GPIO_EMC_31 C5 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[31] Input Keeper
GPIO_EMC_32 D5 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[18] Input Keeper
GPIO_EMC_33 C4 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[19] Input Keeper
GPIO_EMC_34 D4 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[20] Input Keeper
GPIO_EMC_35 E5 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[21] Input Keeper
GPIO_EMC_36 C3 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[22] Input Keeper
GPIO_EMC_37 E4 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[23] Input Keeper
GPIO_EMC_38 D6 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[24] Input Keeper
GPIO_EMC_39 B7 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[25] Input Keeper
GPIO_EMC_40 A7 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[26] Input Keeper
Table 84. 10 x 10 mm functional contact assignments (continued)
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
92 NXP Semiconductors
Package information and contact assignments
GPIO_EMC_41 C7 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[27] Input Keeper
GPIO_SD_B0_00 J4 NVCC_SD0 Digital
GPIO
ALT5 GPIO3.IO[12] Input Keeper
GPIO_SD_B0_01 J3 NVCC_SD0 Digital
GPIO
ALT5 GPIO3.IO[13] Input Keeper
GPIO_SD_B0_02 J1 NVCC_SD0 Digital
GPIO
ALT5 GPIO3.IO[14] Input Keeper
GPIO_SD_B0_03 K1 NVCC_SD0 Digital
GPIO
ALT5 GPIO3.IO[15] Input Keeper
GPIO_SD_B0_04 H2 NVCC_SD0 Digital
GPIO
ALT5 GPIO3.IO[16] Input Keeper
GPIO_SD_B0_05 J2 NVCC_SD0 Digital
GPIO
ALT5 GPIO3.IO[17] Input Keeper
GPIO_SD_B1_00 L5 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[0] Input Keeper
GPIO_SD_B1_01 M5 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[1] Input Keeper
GPIO_SD_B1_02 M3 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[2] Input Keeper
GPIO_SD_B1_03 M4 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[3] Input Keeper
GPIO_SD_B1_04 P2 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[4] Input Keeper
GPIO_SD_B1_05 N3 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[5] Input Keeper
GPIO_SD_B1_06 L3 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[6] Input Keeper
GPIO_SD_B1_07 L4 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[7] Input Keeper
GPIO_SD_B1_08 P3 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[8] Input Keeper
GPIO_SD_B1_09 N4 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[9] Input Keeper
GPIO_SD_B1_10 P4 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[01] Input Keeper
GPIO_SD_B1_11 P5 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[11] Input Keeper
ONOFF M6 VDD_SNVS_IN Digital
GPIO
ALT0 ONOFF Input 100 K PU
PMIC_ON_REQ K7 VDD_SNVS_IN Digital
GPIO
ALT0 SNVS_LP.PMIC_ON_RE
Q
Output 100 K PU
Table 84. 10 x 10 mm functional contact assignments (continued)
Package information and contact assignments
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 93
PMIC_STBY_REQ L7 VDD_SNVS_IN Digital
GPIO
ALT0 CCM.PMIC_VSTBY_RE
Q
Output 100 K PU
(PKE
disabled)
POR_B M7 VDD_SNVS_IN Digital
GPIO
ALT0 SRC.POR_B Input 100 K PU
RTC_XTALI N9
RTC_XTALO P9
TEST_MODE K6 VDD_SNVS_IN Digital
GPIO
ALT0 TCU.TEST_MODE Input 100 K PU
USB_OTG1_CHD_B N12
USB_OTG1_DN M8
USB_OTG1_DP L8
USB_OTG1_VBUS N6
USB_OTG2_DN N7
USB_OTG2_DP P7
USB_OTG2_VBUS P6
XTALI P11
XTALO N11
WAKEUP L6 VDD_SNVS_IN Digital
GPIO
ALT5 GPIO5.IO[0] Input 100 K PU
Table 84. 10 x 10 mm functional contact assignments (continued)
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
94 NXP Semiconductors
Package information and contact assignments
6.1.3 10 x 10 mm, 0.65 mm pitch, ball map
Table 85 shows the 10 x 10 mm, 0.65 mm pitch ball map for the i.MX RT1050.
Table 85. 10 x 10 mm, 0.65 mm pitch, ball map
1
2
3
4
5
6
7
8
9
10
11
12
13
14
A
VSS
GPIO_EMC_27
GPIO_EMC_20
GPIO_EMC_17
GPIO_EMC_16
GPIO_EMC_13
GPIO_EMC_40
GPIO_B0_06
GPIO_B0_07
GPIO_B0_11
GPIO_B1_00
GPIO_B1_08
GPIO_B1_09
VSS
A
B
GPIO_EMC_15
GPIO_EMC_18
GPIO_EMC_26
GPIO_EMC_19
VSS
GPIO_EMC_14
GPIO_EMC_39
GPIO_B0_05
GPIO_B0_08
VSS
GPIO_B1_01
GPIO_B1_07
GPIO_B1_10
GPIO_B1_15
B
C
GPIO_EMC_21
GPIO_EMC_09
GPIO_EMC_36
GPIO_EMC_33
GPIO_EMC_31
GPIO_EMC_30
GPIO_EMC_41
GPIO_B0_04
GPIO_B0_09
GPIO_B0_12
GPIO_B1_02
GPIO_B1_06
GPIO_B1_11
GPIO_B1_14
C
D
GPIO_EMC_28
GPIO_EMC_25
GPIO_EMC_24
GPIO_EMC_34
GPIO_EMC_32
GPIO_EMC_38
GPIO_B0_00
GPIO_B0_03
GPIO_B0_10
GPIO_B0_13
GPIO_B1_03
GPIO_B1_05
GPIO_B1_12
GPIO_B1_13
D
E
GPIO_EMC_29
VSS
GPIO_EMC_00
GPIO_EMC_37
GPIO_EMC_35
NVCC_EMC
GPIO_B0_01
GPIO_B0_02
NVCC_GPIO
GPIO_B0_14
GPIO_B0_15
GPIO_B1_04
VSS
GPIO_AD_B0_06
E
F
GPIO_EMC_22
GPIO_EMC_04
GPIO_EMC_01
GPIO_EMC_02
NVCC_EMC
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
NVCC_GPIO
GPIO_AD_B0_04
GPIO_AD_B0_07
GPIO_AD_B0_08
GPIO_AD_B0_09
F
G
GPIO_EMC_10
GPIO_EMC_23
GPIO_EMC_11
GPIO_EMC_03
GPIO_EMC_05
VDD_SOC_IN
VSS
VSS
VDD_SOC_IN
GPIO_AD_B0_11
GPIO_AD_B0_03
GPIO_AD_B1_14
GPIO_AD_B0_10
GPIO_AD_B0_05
G
Package information and contact assignments
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 95
H
GPIO_EMC_12
GPIO_SD_B0_04
GPIO_EMC_08
GPIO_EMC_07
GPIO_EMC_06
VDD_SOC_IN
VSS
VSS
VDD_SOC_IN
GPIO_AD_B0_01
GPIO_AD_B1_13
GPIO_AD_B1_12
GPIO_AD_B1_08
GPIO_AD_B0_14
H
J
GPIO_SD_B0_02
GPIO_SD_B0_05
GPIO_SD_B0_01
GPIO_SD_B0_00
DCDC_SENSE
NVCC_SD0
VSS
VSS
VDD_SOC_IN
NVCC_GPIO
GPIO_AD_B1_00
GPIO_AD_B1_06
GPIO_AD_B1_11
GPIO_AD_B1_15
J
K
GPIO_SD_B0_03
VSS
DCDC_PSWITCH
DCDC__IN_Q
NVCC_SD1
TEST_MODE
PMIC_ON_REQ
VDD_USB_CAP
NGND_KEL0
GPIO_AD_B1_07
GPIO_AD_B1_01
GPIO_AD_B1_05
VSS
GPIO_AD_B0_12
K
L
DCDC_IN
DCDC_IN
GPIO_SD_B1_06
GPIO_SD_B1_07
GPIO_SD_B1_00
WAKEUP
PMIC_STBY_REQ
USB_OTG1_DP
VSS
GPIO_AD_B0_15
GPIO_AD_B1_02
GPIO_AD_B1_04
GPIO_AD_B1_10
GPIO_AD_B0_13
L
M
DCDC_LP
DCDC_LP
GPIO_SD_B1_02
GPIO_SD_B1_03
GPIO_SD_B1_01
ONOFF
POR_B
USB_OTG1_DN
VDD_SNVS_IN
VDD_SNVS_CAP
GPIO_AD_B0_02
GPIO_AD_B1_03
GPIO_AD_B1_09
GPIO_AD_B0_00
M
N
DCDC_GND
DCDC_GND
GPIO_SD_B1_05
GPIO_SD_B1_09
VSS
USB_OTG1_VBUS
USB_OTG2_DN
VSS
RTC_XTALI
GPANAIO
XTALO
USB_OTG1_CHD_B
CCM_CLK1_P
VDDA_ADC_3P3
N
P
VSS
GPIO_SD_B1_04
GPIO_SD_B1_08
GPIO_SD_B1_10
GPIO_SD_B1_11
USB_OTG2_VBUS
USB_OTG2_DP
VDD_HIGH_CAP
RTC_XTALO
NVCC_PLL
XTALI
VDD_HIGH_IN
CCM_CLK1_N
VSS
P
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Table 85. 10 x 10 mm, 0.65 mm pitch, ball map (continued)
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
96 NXP Semiconductors
Package information and contact assignments
6.2 12 x 12 mm package information
6.2.1 12 x 12 mm, 0.8 mm pitch, ball matrix
Figure 53 shows the top, bottom, and side views of the 12 x 12 mm MAPBGA package.
Package information and contact assignments
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 97
Figure 54. 12 x 12 mm BGA, case x package top, bottom, and side Views
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
98 NXP Semiconductors
Package information and contact assignments
6.2.2 12 x 12 mm supplies contact assignments and functional contact
assignments
Table 83 shows the device connection list for ground, sense, and reference contact signals.
Table 84 shows an alpha-sorted list of functional contact assignments for the 12 x 12 mm package.
Table 86. 12 x 12 mm supplies contact assignment
Supply Rail Name Ball(s) Position(s) Remark
DCDC_IN L1, L2
DCDC_IN_Q K4
DCDC_GND N1, N2
DCDC_LP M1, M2
DCDC_PSWITCH K3
DCDC_SENSE J5
GPANAIO N10
NGND_KEL0 K9
NVCC_EMC E6, F5
NVCC_GPIO E9, F10, J10
NVCC_PLL P10
NVCC_SD0 J6
NVCC_SD1 K5
VDDA_ADC_3P3 N14
VDD_HIGH_CAP P8
VDD_HIGH_IN P12
VDD_SNVS_CAP M10
VDD_SNVS_IN M9
VDD_SOC_IN F6, F7, F8, F9, G6, G9, H6, H9, J9
VDD_USB_CAP K8
VSS A1, A14, B5, B10, E2, E13, G7, G8, H7, H8, J7, J8, K2, K13, L9, N5, N8, P1, P14
Table 87. 12 x 12 mm functional contact assignments
Ball Name 12 x 12
Ball
Power
Group
Ball
Type
Default Setting
Default
Mode
Default
Function
Input/
Output Value
CCM_CLK1_N P13 CCM_CLK1_N
CCM_CLK1_P N13 CCM_CLK1_P
Package information and contact assignments
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 99
GPIO_AD_B0_00 M14 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[0] Input Keeper
GPIO_AD_B0_01 H10 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[1] Input Keeper
GPIO_AD_B0_02 M11 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[2] Input Keeper
GPIO_AD_B0_03 G11 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[3] Input Keeper
GPIO_AD_B0_04 F11 NVCC_GPIO Digital
GPIO
ALT0 SRC.BOOT.MODE[0] Input 100 K PD
GPIO_AD_B0_05 G14 NVCC_GPIO Digital
GPIO
ALT0 SRC.BOOT.MODE[1] Input 100 K PD
GPIO_AD_B0_06 E14 NVCC_GPIO Digital
GPIO
ALT0 JTAG.MUX.TMS Input 47 K PU
GPIO_AD_B0_07 F12 NVCC_GPIO Digital
GPIO
ALT0 JTAG.MUX.TCK Input 47 K PU
GPIO_AD_B0_08 F13 NVCC_GPIO Digital
GPIO
ALT0 JTAG.MUX.MOD Input 100 K PU
GPIO_AD_B0_09 F14 NVCC_GPIO Digital
GPIO
ALT0 JTAG.MUX.TDI Input 47 K PU
GPIO_AD_B0_10 G13 NVCC_GPIO Digital
GPIO
ALT0 JTAG.MUX.TDO Input Keeper
GPIO_AD_B0_11 G10 NVCC_GPIO Digital
GPIO
ALT0 JTAG.MUX.TRSTB Input 47 K PU
GPIO_AD_B0_12 K14 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[12] Input Keeper
GPIO_AD_B0_13 L14 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[13] Input Keeper
GPIO_AD_B0_14 H14 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[14] Input Keeper
GPIO_AD_B0_15 L10 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[15] Input Keeper
GPIO_AD_B1_00 J11 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[16] Input Keeper
GPIO_AD_B1_01 K11 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[17] Input Keeper
GPIO_AD_B1_02 L11 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[18] Input Keeper
GPIO_AD_B1_03 M12 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[19] Input Keeper
GPIO_AD_B1_04 L12 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[20] Input Keeper
Table 87. 12 x 12 mm functional contact assignments (continued)
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
100 NXP Semiconductors
Package information and contact assignments
GPIO_AD_B1_05 K12 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[21] Input Keeper
GPIO_AD_B1_06 J12 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[22] Input Keeper
GPIO_AD_B1_07 K10 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[23] Input Keeper
GPIO_AD_B1_08 H13 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[24] Input Keeper
GPIO_AD_B1_09 M13 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[25] Input Keeper
GPIO_AD_B1_10 L13 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[26] Input Keeper
GPIO_AD_B1_11 J13 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[27] Input Keeper
GPIO_AD_B1_12 H12 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[28] Input Keeper
GPIO_AD_B1_13 H11 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[29] Input Keeper
GPIO_AD_B1_14 G12 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[30] Input Keeper
GPIO_AD_B1_15 J14 NVCC_GPIO Digital
GPIO
ALT5 GPIO1.IO[31] Input Keeper
GPIO_B0_00 D7 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[0] Input Keeper
GPIO_B0_01 E7 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[1] Input Keeper
GPIO_B0_02 E8 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[2] Input Keeper
GPIO_B0_03 D8 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[3] Input Keeper
GPIO_B0_04 C8 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[4] Input Keeper
GPIO_B0_05 B8 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[5] Input Keeper
GPIO_B0_06 A8 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[6] Input Keeper
GPIO_B0_07 A9 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[7] Input Keeper
GPIO_B0_08 B9 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[8] Input Keeper
GPIO_B0_09 C9 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[9] Input Keeper
Table 87. 12 x 12 mm functional contact assignments (continued)
Package information and contact assignments
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 101
GPIO_B0_10 D9 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[10] Input Keeper
GPIO_B0_11 A10 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[11] Input Keeper
GPIO_B0_12 C10 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[12] Input Keeper
GPIO_B0_13 D10 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[13] Input Keeper
GPIO_B0_14 E10 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[14] Input Keeper
GPIO_B0_15 E11 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[15] Input Keeper
GPIO_B1_00 A11 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[16] Input Keeper
GPIO_B1_01 B11 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[17] Input Keeper
GPIO_B1_02 C11 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[18] Input Keeper
GPIO_B1_03 D11 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[19] Input Keeper
GPIO_B1_04 E12 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[20] Input Keeper
GPIO_B1_05 D12 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[21] Input Keeper
GPIO_B1_06 C12 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[22] Input Keeper
GPIO_B1_07 B12 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[23] Input Keeper
GPIO_B1_08 A12 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[24] Input Keeper
GPIO_B1_09 A13 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[25] Input Keeper
GPIO_B1_10 B13 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[26] Input Keeper
GPIO_B1_11 C13 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[27] Input Keeper
GPIO_B1_12 D13 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[28] Input Keeper
GPIO_B1_13 D14 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[29] Input Keeper
GPIO_B1_14 C14 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[30] Input Keeper
Table 87. 12 x 12 mm functional contact assignments (continued)
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
102 NXP Semiconductors
Package information and contact assignments
GPIO_B1_15 B14 NVCC_GPIO Digital
GPIO
ALT5 GPIO2.IO[31] Input Keeper
GPIO_EMC_00 E3 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[0] Input Keeper
GPIO_EMC_01 F3 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[1] Input Keeper
GPIO_EMC_02 F4 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[2] Input Keeper
GPIO_EMC_03 G4 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[3] Input Keeper
GPIO_EMC_04 F2 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[4] Input Keeper
GPIO_EMC_05 G5 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[5] Input Keeper
GPIO_EMC_06 H5 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[6] Input Keeper
GPIO_EMC_07 H4 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[7] Input Keeper
GPIO_EMC_08 H3 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[8] Input Keeper
GPIO_EMC_09 C2 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[9] Input Keeper
GPIO_EMC_10 G1 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[10] Input Keeper
GPIO_EMC_11 G3 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[11] Input Keeper
GPIO_EMC_12 H1 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[12] Input Keeper
GPIO_EMC_13 A6 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[13] Input Keeper
GPIO_EMC_14 B6 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[14] Input Keeper
GPIO_EMC_15 B1 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[15] Input Keeper
GPIO_EMC_16 A5 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[16] Input Keeper
GPIO_EMC_17 A4 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[17] Input Keeper
GPIO_EMC_18 B2 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[18] Input Keeper
GPIO_EMC_19 B4 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[19] Input Keeper
Table 87. 12 x 12 mm functional contact assignments (continued)
Package information and contact assignments
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 103
GPIO_EMC_20 A3 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[20] Input Keeper
GPIO_EMC_21 C1 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[21] Input Keeper
GPIO_EMC_22 F1 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[22] Input Keeper
GPIO_EMC_23 G2 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[23] Input Keeper
GPIO_EMC_24 D3 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[24] Input Keeper
GPIO_EMC_25 D2 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[25] Input Keeper
GPIO_EMC_26 B3 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[26] Input Keeper
GPIO_EMC_27 A2 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[27] Input 100 K PD
GPIO_EMC_28 D1 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[28] Input Keeper
GPIO_EMC_29 E1 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[29] Input Keeper
GPIO_EMC_30 C6 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[30] Input Keeper
GPIO_EMC_31 C5 NVCC_EMC Digital
GPIO
ALT5 GPIO4.IO[31] Input Keeper
GPIO_EMC_32 D5 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[18] Input Keeper
GPIO_EMC_33 C4 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[19] Input Keeper
GPIO_EMC_34 D4 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[20] Input Keeper
GPIO_EMC_35 E5 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[21] Input Keeper
GPIO_EMC_36 C3 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[22] Input Keeper
GPIO_EMC_37 E4 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[23] Input Keeper
GPIO_EMC_38 D6 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[24] Input Keeper
GPIO_EMC_39 B7 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[25] Input Keeper
GPIO_EMC_40 A7 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[26] Input Keeper
Table 87. 12 x 12 mm functional contact assignments (continued)
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
104 NXP Semiconductors
Package information and contact assignments
GPIO_EMC_41 C7 NVCC_EMC Digital
GPIO
ALT5 GPIO3.IO[27] Input Keeper
GPIO_SD_B0_00 J4 NVCC_SD0 Digital
GPIO
ALT5 GPIO3.IO[12] Input Keeper
GPIO_SD_B0_01 J3 NVCC_SD0 Digital
GPIO
ALT5 GPIO3.IO[13] Input Keeper
GPIO_SD_B0_02 J1 NVCC_SD0 Digital
GPIO
ALT5 GPIO3.IO[14] Input Keeper
GPIO_SD_B0_03 K1 NVCC_SD0 Digital
GPIO
ALT5 GPIO3.IO[15] Input Keeper
GPIO_SD_B0_04 H2 NVCC_SD0 Digital
GPIO
ALT5 GPIO3.IO[16] Input Keeper
GPIO_SD_B0_05 J2 NVCC_SD0 Digital
GPIO
ALT5 GPIO3.IO[17] Input Keeper
GPIO_SD_B1_00 L5 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[0] Input Keeper
GPIO_SD_B1_01 M5 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[1] Input Keeper
GPIO_SD_B1_02 M3 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[2] Input Keeper
GPIO_SD_B1_03 M4 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[3] Input Keeper
GPIO_SD_B1_04 P2 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[4] Input Keeper
GPIO_SD_B1_05 N3 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[5] Input Keeper
GPIO_SD_B1_06 L3 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[6] Input Keeper
GPIO_SD_B1_07 L4 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[7] Input Keeper
GPIO_SD_B1_08 P3 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[8] Input Keeper
GPIO_SD_B1_09 N4 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[9] Input Keeper
GPIO_SD_B1_10 P4 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[01] Input Keeper
GPIO_SD_B1_11 P5 NVCC_SD1 Digital
GPIO
ALT5 GPIO3.IO[11] Input Keeper
ONOFF M6 VDD_SNVS_IN Digital
GPIO
ALT0 ONOFF Input 100 K PU
PMIC_ON_REQ K7 VDD_SNVS_IN Digital
GPIO
ALT0 SNVS_LP.PMIC_ON_RE
Q
Output 100 K PU
Table 87. 12 x 12 mm functional contact assignments (continued)
Package information and contact assignments
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 105
PMIC_STBY_REQ L7 VDD_SNVS_IN Digital
GPIO
ALT0 CCM.PMIC_VSTBY_RE
Q
Output 100 K PU
(PKE
disabled)
POR_B M7 VDD_SNVS_IN Digital
GPIO
ALT0 SRC.POR_B Input 100 K PU
RTC_XTALI N9
RTC_XTALO P9
TEST_MODE K6 VDD_SNVS_IN Digital
GPIO
ALT0 TCU.TEST_MODE Input 100 K PU
USB_OTG1_CHD_B N12
USB_OTG1_DN M8
USB_OTG1_DP L8
USB_OTG1_VBUS N6
USB_OTG2_DN N7
USB_OTG2_DP P7
USB_OTG2_VBUS P6
XTALI P11
XTALO N11
WAKEUP L6 VDD_SNVS_IN Digital
GPIO
ALT5 GPIO5.IO[0] Input 100 K PU
Table 87. 12 x 12 mm functional contact assignments (continued)
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
106 NXP Semiconductors
Package information and contact assignments
6.2.3 12 x 12 mm, 0.8 mm pitch, ball map
Table 85 shows the 12 x 12 mm, 0.8 mm pitch ball map for the i.MX RT1050.
Table 88. 12 x 12 mm, 0.8 mm pitch, ball map
1
2
3
4
5
6
7
8
9
10
11
12
13
14
A
VSS
GPIO_EMC_27
GPIO_EMC_20
GPIO_EMC_17
GPIO_EMC_16
GPIO_EMC_13
GPIO_EMC_40
GPIO_B0_06
GPIO_B0_07
GPIO_B0_11
GPIO_B1_00
GPIO_B1_08
GPIO_B1_09
VSS
A
B
GPIO_EMC_15
GPIO_EMC_18
GPIO_EMC_26
GPIO_EMC_19
VSS
GPIO_EMC_14
GPIO_EMC_39
GPIO_B0_05
GPIO_B0_08
VSS
GPIO_B1_01
GPIO_B1_07
GPIO_B1_10
GPIO_B1_15
B
C
GPIO_EMC_21
GPIO_EMC_09
GPIO_EMC_36
GPIO_EMC_33
GPIO_EMC_31
GPIO_EMC_30
GPIO_EMC_41
GPIO_B0_04
GPIO_B0_09
GPIO_B0_12
GPIO_B1_02
GPIO_B1_06
GPIO_B1_11
GPIO_B1_14
C
D
GPIO_EMC_28
GPIO_EMC_25
GPIO_EMC_24
GPIO_EMC_34
GPIO_EMC_32
GPIO_EMC_38
GPIO_B0_00
GPIO_B0_03
GPIO_B0_10
GPIO_B0_13
GPIO_B1_03
GPIO_B1_05
GPIO_B1_12
GPIO_B1_13
D
E
GPIO_EMC_29
VSS
GPIO_EMC_00
GPIO_EMC_37
GPIO_EMC_35
NVCC_EMC
GPIO_B0_01
GPIO_B0_02
NVCC_GPIO
GPIO_B0_14
GPIO_B0_15
GPIO_B1_04
VSS
GPIO_AD_B0_06
E
F
GPIO_EMC_22
GPIO_EMC_04
GPIO_EMC_01
GPIO_EMC_02
NVCC_EMC
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
NVCC_GPIO
GPIO_AD_B0_04
GPIO_AD_B0_07
GPIO_AD_B0_08
GPIO_AD_B0_09
F
G
GPIO_EMC_10
GPIO_EMC_23
GPIO_EMC_11
GPIO_EMC_03
GPIO_EMC_05
VDD_SOC_IN
VSS
VSS
VDD_SOC_IN
GPIO_AD_B0_11
GPIO_AD_B0_03
GPIO_AD_B1_14
GPIO_AD_B0_10
GPIO_AD_B0_05
G
Package information and contact assignments
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
NXP Semiconductors 107
H
GPIO_EMC_12
GPIO_SD_B0_04
GPIO_EMC_08
GPIO_EMC_07
GPIO_EMC_06
VDD_SOC_IN
VSS
VSS
VDD_SOC_IN
GPIO_AD_B0_01
GPIO_AD_B1_13
GPIO_AD_B1_12
GPIO_AD_B1_08
GPIO_AD_B0_14
H
J
GPIO_SD_B0_02
GPIO_SD_B0_05
GPIO_SD_B0_01
GPIO_SD_B0_00
DCDC_SENSE
NVCC_SD0
VSS
VSS
VDD_SOC_IN
NVCC_GPIO
GPIO_AD_B1_00
GPIO_AD_B1_06
GPIO_AD_B1_11
GPIO_AD_B1_15
J
K
GPIO_SD_B0_03
VSS
DCDC_PSWITCH
DCDC__IN_Q
NVCC_SD1
TEST_MODE
PMIC_ON_REQ
VDD_USB_CAP
NGND_KEL0
GPIO_AD_B1_07
GPIO_AD_B1_01
GPIO_AD_B1_05
VSS
GPIO_AD_B0_12
K
L
DCDC_IN
DCDC_IN
GPIO_SD_B1_06
GPIO_SD_B1_07
GPIO_SD_B1_00
WAKEUP
PMIC_STBY_REQ
USB_OTG1_DP
VSS
GPIO_AD_B0_15
GPIO_AD_B1_02
GPIO_AD_B1_04
GPIO_AD_B1_10
GPIO_AD_B0_13
L
M
DCDC_LP
DCDC_LP
GPIO_SD_B1_02
GPIO_SD_B1_03
GPIO_SD_B1_01
ONOFF
POR_B
USB_OTG1_DN
VDD_SNVS_IN
VDD_SNVS_CAP
GPIO_AD_B0_02
GPIO_AD_B1_03
GPIO_AD_B1_09
GPIO_AD_B0_00
M
N
DCDC_GND
DCDC_GND
GPIO_SD_B1_05
GPIO_SD_B1_09
VSS
USB_OTG1_VBUS
USB_OTG2_DN
VSS
RTC_XTALI
GPANAIO
XTALO
USB_OTG1_CHD_B
CCM_CLK1_P
VDDA_ADC_3P3
N
P
VSS
GPIO_SD_B1_04
GPIO_SD_B1_08
GPIO_SD_B1_10
GPIO_SD_B1_11
USB_OTG2_VBUS
USB_OTG2_DP
VDD_HIGH_CAP
RTC_XTALO
NVCC_PLL
XTALI
VDD_HIGH_IN
CCM_CLK1_N
VSS
P
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Table 88. 12 x 12 mm, 0.8 mm pitch, ball map (continued)
i.MX RT1050 Crossover Processors Data Sheet for Consumer Products, Rev. 1.3, 03/2019
108 NXP Semiconductors
Revision history
7 Revision history
Table 89 provides a revision history for this data sheet.
Table 89. i.MX RT1050 Data Sheet document revision history
Rev.
Number Date Substantive Change(s)
Rev. 1.3 03/2019 Added a new part number in the Table 1, Ordering information
Updated the ADC numbers in the Figure 2, "i.MX RT1050 system block diagram"
Removed tamper detection from the Table 2, i.MX RT1050 modules list
Updated the value of JTAG_MOD in the Table 4, JTAG Controller interface summary
Changed 528 MHz PLL to System PLL in the Table 13, Low power mode current and power
consumption and Table 16, System PLL’s electrical parameters
Changed 480 MHz PLL to USB PLL in the Table 18, USB PLL’s electrical parameters
Added the Figure 36, "Minimum Sample Time Vs Ras (Cas = 2pF)", Figure 37, "Minimum Sample
Time Vs Ras (Cas = 5 pF)", and Figure 38, "Minimum Sample Time Vs Ras (Cas = 10 pF)" in the
Section 4.8.2, A/D converter
Updated Section 4.9.1, LPSPI timing parameters
Rev. 1.2 09/2018 Updated the maximum value of VDD_SOC_IN in the Table 7, Absolute maximum ratings
Updated the DCDC_IN values in the Table 10, Operating ranges
Rev. 1.1 08/2018 Updated the Section 1, i.MX RT1050 introduction
Updated the Table 1, Ordering information
Updated the Figure 1, "Part number nomenclature—i.MX RT1050"
Updated the Table 7, Absolute maximum ratings
Added the Section 4.1.2.2, 12 x 12 MM thermal resistance
Updated the Table 10, Operating ranges
Updated the Table 13, Low power mode current and power consumption
Updated the Table 23, LVDS I/O DC characteristics
Added the Section 4.4.4, Debug trace timing specifications
Updated the Table 50, Master mode SAI timing and Table 51, Slave mode SAI timing
Updated the Table 69, PWM timing parameters
Added the Section 6.2, 12 x 12 mm package information
Rev. 1 03/2018 Updated the LCD display resolution in the Section 1.1, Features
Updated the Table 1, Ordering information
Updated the Figure 1, "Part number nomenclature—i.MX RT1050"
Added 24-bit Parallel CSI in the Figure 2, "i.MX RT1050 system block diagram"
Updated the SJC description and DCDC input voltage in the Table 2, i.MX RT1050 modules list
Removed ADC_VREF from the Table 5, Recommended connections for unused analog interfaces
Updated the DCDC power in the Table 7, Absolute maximum ratings and Table 10, Operating ranges
Updated the test conditions and DCDC supply voltage in the Table 13, Low power mode current and
power consumption
Updated the Table 36, SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x1)
Updated the parameters in the Section 4.5.2, FlexSPI parameters
Updated the Table 53, DCDC electrical specifications
Updated the Table 54, 12-bit ADC operating conditions
Updated the notes of the Table 57, LPSPI Master mode timing and the Table 58, LPSPI Slave mode
timing
Rev. 0 10/2017 Initial version
Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application or
use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be provided in
NXP data sheets and/or specifications can and do vary in different applications, and actual
performance may vary over time. All operating parameters, including “typicals” must be
validated for each customer application by customer‚ customer’s technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support
While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. These are contained within the 6 series RMs Arm, AMBA,
Arm Powered, Cortex, Jazelle, Thumb, and TrustZone are registered trademarks of Arm Limited
(or its subsidiaries) in the EU and/or elsewhere. CoreLink, CoreSight, and NEON are trademarks
of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and
Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related marks are trademarks
and service marks licensed by Power.org.
© 2017-2019 NXP B.V.
Document Number: IMXRT1050CEC
Rev. 1.3
03/2019