AWL9925 Die 2.4/5 GHz 802.11a/b/g/n WLAN Power Amplifier Die Data Sheet - Rev 2.1 FEATURES * 3.6% EVM @ POUT = +19 dBm with IEEE 802.11a 64 QAM OFDM at 54 Mbps * 2.7% EVM @ POUT = +20 dBm with IEEE 802.11g 64 QAM OFDM at 54 Mbps * -46 dBr ACPR 1st Sidelobe, +22 dBm with 802.11b CCK/DSSS Root Cosine Filtering ( = 0.35),1 Mbps * -58 dBr ACPR 2nd sidelobe, +22 dBm with 802.11b CCK/DSSS Root Cosine Filtering ( = 0.35), 1 Mbps * 32 dB of Linear Power Gain at 2.4 GHz * 32 dB of Linear Power Gain at 5 GHz * Single +3.3 V Supply * Dual Temperature-Compensated Linear Power Detectors * Lead-Free and RoHS-Compliant Package * 50 - Matched RF Ports * 1 kV ESD Rating (HBM) AWL9925 Die D1 Package 19 Pad 1.9 mm x 1.675 mm Die APPLICATIONS * 802.11a/b/g/n WLAN PRODUCT DESCRIPTION The ANADIGICS AWL9925 dual band power amplifier is a high performance InGaP HBT power amplifier die designed for transmit applications in the 2.4-2.5 and 4.9-5.9 GHz bands. Matched to 50 at all RF inputs and outputs, the die requires no additional RF matching components off-chip, making the AWL9925 the world's simplest dual band PA die implementation available. The AWL9925 die requires six external passives used for RF choking and DC bias decoupling. The PAs exhibit unparalleled linearity and efficiency for IEEE 802.11g, 802.11b and 802.11a WLAN systems under the toughest signal configurations within these standards. The power detectors are temperature compensated on die, enabling separate single-ended output voltages for each band with excellent accuracy over a wide range of operating temperatures. The PA die is biased by a single +3.3 V supply and consumes ultra-low current in the OFF mode. HBT technology that offers state-of-the-art reliability, temperature stability and ruggedness. This document specifies the electrical performance, application circuit, and ordering information. Electrical performance noted in this datasheet is most achievable when the application circuit and reference platform recommendations are followed. GND VPC VCC 2.4 GHz Power Detector Bias Control 2.4 GHz RFIN Matching Network Matching Network 2.4 GHz RFOUT 5 GHz RFIN Matching Network Matching Network 5 GHz RFOUT The AWL9925 is manufactured using advanced InGaP 12/2007 Bias Control GND VPC VCC 5 GHz Power Detector Figure 1: Block Diagram AWL9925 Die Table 1: Bond Pad Description Bond Pad NAME 1 PAON 2G 2 GHz On/Off Control. The recommended use is for On/Off control of the PA. Nominally, 0 V applied will turn amplifier completely off; +3.3 V should be used to set amplifier to maximum output capability. 2 2G Speed-Up 2 GHz speed-up cap. An off-die cap is required to accelerate turn-on ramp time to Cap improve EVM in dynamic burst conditions. 3 2G Speed-Up 2 GHz speed-up cap. An off-die cap is required to accelerate turn-on ramp time to Cap improve EVM in dynamic burst conditions. 4 5 2 DESCRIPTION RFIN 2G 2 GHz RF Input. ESD protection circuits on this pin provide a DC path to ground. Avoid applying DC voltage to this pin. RF is internally matched to 50 and AC coupled to the input stage. Route RF trace as coplanar waveguide as much as possible. RFIN 5G 5 GHz RF Output. A shunt inductive matching element included inside the PA provides a DC path to ground at this pin. Avoid applying DC voltage to this pin. RF is internally matched to 50 and AC coupled to the input stage. Route RF trace as coplanar waveguide as much as possible. 6 5G Speed-Up 5 GHz speed-up cap. An off-die cap is required to accelerate turn-on ramp time to Cap improve EVM in dynamic burst conditions. 7 5G Speed-Up 5 GHz speed-up cap. An off-die cap is required to accelerate turn-on ramp time to Cap improve EVM in dynamic burst conditions. 8 PAON 5G 5 GHz On/Off Control. Power amplifier power control pin. The recommended use is for on/off control of the PA. Nominally, 0 V applied will turn amplifier completely off; +3.3 V should be used to set amplifier to maximum output capability. 9 VCC1 5G 5 GHz supply voltage. Bias for 5 GHz On/Off control circuit. 10 VCC2 5G 5 GHz supply voltage. Bias for 5 GHz bias control circuit. 11 VCC3 5G 5 GHz supply voltage. Bias for 1st and 2nd stage power transistors of the 5 GHz PA. 12 VCC4 5G 5 GHz supply voltage. Bias for 3rd stage power transistors of the 5 GHz PA. 13 DETOUT 5G 5 GHz Power Detector Output. DC coupled power detector output. An emitter follower BJT supplies the output for this pin. 14 RFOUT 5G 5 GHz RF Output. AC coupled output stage internally matched to 50 . Route RF trace as coplanar waveguide. Although the output stage is AC coupled, a shunt inductive matching element included inside the PA provided a DC path to ground at the pin. 15 RFOUT 2G 2 GHz RF Output. ESD protection circuits on this pin provide a DC path to ground. Avoid applying DC voltage to this pin. RF is internally matched to 50 and AC coupled to the output stage. Route RF traces as coplanar waveguide. 16 DETOUT 2G 2 GHz Power Detector Output. DC coupled power detector output. An emitter follower BJT supplies the output for this pin. Data Sheet - Rev 2.1 12/2007 AWL9925 Die Table 1: Bond Pad Description (Continued) Bond Pad NAME 17 VCC3 2G 2 GHz supply voltage. Bias for 3rd stage power transistors of the 2GHz PA. 18 VCC2 2G 2 GHz supply voltage. Bias for 1st and 2nd stage power transistors of the 2GHz PA. 19 VCC1 2G 2 GHz supply voltage. Bias for 2 GHz On/Off control circuit. DESCRIPTION ELECTRICAL CHARACTERISTICS Table 2: Absolute Minimum and Maximum Ratings MIN MAX UNIT DC Power Supply Voltage (VCC 2G, VCC 5G) - +4.5 V DC Power Control Voltage (PAON 2G, PAON 5G) - +4.5 V DC Current Consumption - 700 mA RF Input Level (RFIN 2G, RFIN 5G) - -5 dBm Operating Case Temperature -40 +85 C When mounted in reference platform Storage Temperature +15 +30 C Extended Storage - 60 % -55 +150 C - 60 % 1000 - V PARAMETER Storage Relative Humidity Shipping Temperature Shipping Relative Humidity ESD Tolerance COMMENTS No RF signal applied. Either PA powered separately All pins, forward and reverse voltage. Human body model. Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability. Table 3: Operating Ranges PARAMETER MIN TYP MAX UNIT COMMENTS Operating Frequency (f) 2400 4900 - 2500 5900 MHz DC Power Supply Voltage (VCC 2G, VCC 5G) +3.0 +3.3 +3.6 V With RF Applied On/Off Power Control Voltage (PAON 2G, PAON 5G) +2.0 0 +3.3 - +3.6 +0.8 V PA "ON" PA "SHUTDOWN" Operating Case Temperature (TC) -40 - +85 C When mounted in reference platform 802.11b/g 802.11a The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications. Data Sheet - Rev 2.1 12/2007 3 AWL9925 Die Table 4: Electrical Specifications - 2.4 GHz Continuous Wave (TC = +25 C, VCC 2G = +3.3 V, PAON 2G = +3.3 V) COMMENTS PARAMETER MIN TYP MAX UNIT P1dB 24.5 26.0 - dBm Shutdown Current - 30 270 A PAON 2G = 0 V Quiescent Current 50 75 95 mA PAON 2G > +2.0 V, VCC 2G = +3.3 V RF = OFF Input Return Loss - -13 -8 dB Output Return Loss - -9 -4 dB Out of Band Rejection 1 GHz 1.75 GHz 3.2 GHz 4.7 GHz 20 0 5 38 - - dB Reverse Isolation 40 - - dB Stability (Spurious) - - -60 dBc 6:1 VSWR, at POUT = +23 dBm, -5 OC TON Setting Time - - 1 S Settles within 0.5 dB TOFF Setting Time - - 1 S PAON 2G Pin Input Impedance - 6.2 - k 4 Data Sheet - Rev 2.1 12/2007 Measured with +3.3 V applied to PAON 2G pin AWL9925 Die Table 5: Electrical Specifications - 5 GHz Continuous Wave (TC = +25 C, VCC 5G = +3.3 V, PAON 5G = +3.3 V) PARAMETER MIN TYP MAX UNIT P1dB 23.0 24.5 - dBm Shutdown Current - 32 270 A PAON 5G = 0 V Quiescent Current 82 120 160 mA PAON 5G > +2.0 V, VCC 5G = +3.3 V RF = OFF Input Return Loss - -20 -10 dB Output Return Loss - -18 -10 dB 35 12.5 5 5 30 - - dB Reverse Isolation 40 - - dB Stability (Spurious) - - -60 dBc 6:1 VSWR, at POUT = +22 dBm; -5 OC TON Setting Time - - 1 S Settles within 0.5 dB TOFF Setting Time - - 1 S PAON 5G Pin Input Impedance - 6.2 - k Out of Band Rejection 1.5 GHz 3.5 GHz 4 GHz 6.5 GHz 9 GHz Data Sheet - Rev 2.1 12/2007 COMMENTS Measured with +3.3 V applied to PAON 5G pin 5 AWL9925 Die Table 6: Electrical Specifications - IEEE 802.11g (TC = +25 C, VCC 2G = +3.3 V, PAON 2G = +3.3 V, 64 QAM OFDM 54 Mbps) PARAMETER MIN TYP MAX UNIT Operating Frequency 2400 - 2500 MHz Power Gain 29 32 35 dB Gain Ripple - 0.2 0.5 dB Across 100 MHz band Error Vector Magnitude (EVM) - 2.7 -31.4 4.5 -27 % dB 802.11g 54 Mbps data rate POUT 2G = +20 dBm (1) Current Consumption - 185 215 mA POUT 2G = +20 dBm Harmonics 2fo 3fo - -53 -54 -39 -48 dBc POUT 2G = +23 dBm (2) Power Detector Voltage 875 1025 1155 mV POUT 2G = +20 dBm Power Detector Voltage Range 100 - 1155 mV -5 < POUT 2G < +20 dBm Power Detector dB Range 25 - - dB -5 < POUT 2G < +20 dBm Minimum Detector Power - - -5 dBm Maximum Detector Power 20 - - dBm Power Detector Resolution 10 - - mV/dB Power Detector Variance over Frequency - 0.5 2.9 dB Power Detector Output Load Impedance 2 - - k Notes: (1) EVM includes system noise floor of 1% (-40 dB). (2) Spectrum analyzer settings: RBW = 1 MHz; Span = 100 MHz. 6 Data Sheet - Rev 2.1 12/2007 COMMENTS 2.4 - 2.5 GHz AWL9925 Die Table 7: Electrical Specifications - IEEE 802.11b (TC = +25 C, VCC 2G = +3.3 V, PAON 2G = +3.3 V, CCK/DSSS, 1 Mbps, Gaussian Baseband Filtering, BT = 0.5) MIN TYP MAX UNIT 2400 - 2500 MHz Power Gain 29 32 35 dB Gain Ripple - 0.2 0.5 dB Across 100 MHz band Adjacent Channel Power (ACPR) 1st Sidelobe (11 MHz Offset) - -35 -33 dBr 1 Mbps, Gaussian Baseband filtering (BT = 0.5), POUT 2G = +20 dBm Adjacent Channel Power (ACPR) 2nd Sidelobe (22 MHz Offset) - -55 -53 dBr 1 Mbps, Gaussian Baseband filtering (BT = 0.5), POUT 2G = +20 dBm Current Consumption - 190 225 mA POUT 2G = +20 dBm Harmonics 2fo 3fo - -60 -53 -50 -43 dBc POUT 2G = +23 dBm (1) Power Detector Voltage 925 1075 1250 mV POUT 2G = +20 dBm Power Detector Voltage Range 100 - 1250 mV -5 < POUT 2G < +20 dBm Power Detector dB Range 25 - - dB -5 < POUT 2G < +20 dBm Minimum Detector Power - - -5 dBm Maximum Detector Power 20 - - dBm Power Detector Resolution 10 - - mV/dB Power Detector Variance over Frequency - 0.5 2.6 dB Power Detector Output Load Impedance 2 - - k PARAMETER Operating Frequency COMMENTS 2.4 - 2.5 GHz Note: (1) Spectrum analyzer settings: RBW = 1 MHz; Span = 100 MHz. Data Sheet - Rev 2.1 12/2007 7 AWL9925 Die Table 8: Electrical Specifications - IEEE 802.11a (TC = +25 C, VCC 5G = +3.3 V, PAON 5G = +3.3 V, 64 QAM OFDM 54 Mbps) PARAMETER MIN TYP MAX UNIT Operating Frequency 4900 - 5900 MHz Power Gain 27 30 30 28 30 33.5 33.5 31 34 38 36.5 35.5 dB 4.9 GHz 5.25 GHz 5.55 GHz 5.85 GHz Gain Ripple - 0.5 2.0 dB Across any 100 MHz band Error Vector Magnitude (EVM) - 3.6 -29 4.5 -27 % dB 802.11a 54 Mbps data rate POUT 5G = +19 dBm 4.9 - 5.85 GHz (1) Current Consumption - 215 250 mA POUT 5G = +19 dBm Harmonics 2fo 3fo - -40 -50 -34 -43 dBc POUT 5G = +20 dBm (2) Power Detector Voltage 910 1070 1225 mV POUT 5G = +19 dBm Power Detector Voltage Range 100 - 1225 mV -5 < POUT 5G < +20 dBm Power Detector dB Range 25 - - dB -5 < POUT 5G < +20 dBm Minimum Detector Power - - -5 dBm Maximum Detector Power 20 - - dBm Power Detector Resolution 10 - - mV/dB 4.9 - 5.85 GHz Power Detector Variance over Frequency - 1.1 4.7 dB 4.9 - 5.85 GHz Power Detector Output Load Impedance 2 - - k Notes: (1) EVM includes system noise floor of 1% (-40 dB). (2) Spectrum analyzer settings: RBW = 1 MHz; Span = 100 MHz. 8 Data Sheet - Rev 2.1 12/2007 COMMENTS AWL9925 Die 802.11g PERFORMANCE DATA 36 360 340 34 340 32 320 32 320 30 300 30 280 28 260 26 240 24 Gain Gain 2.40 GHz 26 Gain 2.45 GHz 24 Gain 2.50 GHz 22 220 Current 2.40 GHz 20 200 Current 2.45 GHz 18 180 Current 2.50 GHz 16 160 Current 14 140 12 120 10 100 8 80 6 60 4 40 2 20 0 0 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Gain (dB) 360 34 Current (mA) 36 28 Gain (dB) Figure 3: Gain and ICC vs. Output Power Across Temp (Frequency = 2.45 GHz, VCC = +3.3 V) 802.11g 54 Mbps OFDM 300 22 20 18 16 14 12 240 220 200 180 120 100 8 80 6 60 4 40 20 0 0 8 9 10 11 12 13 14 360 340 32 320 30 240 22 Gain 3.3V 220 20 Gain 3.6V 200 18 Icc 3.0V 16 Icc 3.3V 14 Icc 3.6V 180 160 Current 140 10 EVM 2.40 GHz 9 EVM 2.45 GHz 22 23 5 10 100 8 80 3 6 60 4 40 2 2 20 1 0 0 0 18 19 20 21 22 4 23 8 9 10 11 12 13 Output Power (dBm) 14 15 16 17 18 19 20 21 22 23 Output Power (dBm) Figure 6: EVM vs. Output Power Across Temp (Frequency = 2.45 GHz, VCC = +3.3 V) 802.11g 54 Mbps OFDM Figure 7: EVM vs. Output Power Across Power Supply Voltage (Freq = 2.45 GHz, TC = 25oC) 802.11g 54 Mbps OFDM 12 12 11 EVM 0C 11 10 EVM +25C 10 EVM +50C 9 EVM 3.0V EVM 3.3V 9 EVM +85C 8 8 7 7 EVM (%) EVM (%) 21 6 120 17 20 7 12 16 19 EVM 2.50 GHz 8 EVM (%) Gain 3.0V Current (mA) Gain (dB) 24 15 18 11 260 14 17 12 280 26 13 16 Figure 5: EVM vs. Output Power Across Frequency (VCC = +3.3 V, TC = 25oC) 802.11g 54 Mbps OFDM 300 Gain 28 12 15 Output Power (dBm) 34 11 140 2 23 36 10 160 Current 10 Figure 4: Gain and ICC vs. Output Power Across Power Supply Voltage (Freq = 2.45 GHz, TC = 25oC) 802.11g 54 Mbps OFDM 9 260 Gain 0C Gain +25C Gain +50C Gain +85C Current 0C Current +25C Current +50C Current +85C Output Power (dBm) 8 280 Gain Current (mA) Figure 2: Gain and ICC vs. Output Power Across Frequency (VCC = +3.3 V, TC = +25oC) 802.11g 54 Mbps OFDM 6 5 6 5 4 4 3 3 2 2 1 EVM 3.6V 1 0 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 8 9 Output Power (dBm) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Output Power (dBm) Data Sheet - Rev 2.1 12/2007 9 AWL9925 Die 802.11g PERFORMANCE DATA Figure 8: Detector Voltage vs. Output Power Across Frequency (TC = 25oC, VCC = +3.3 V) 802.11g 54 Mbps OFDM Figure 9: Detector Voltage vs. Output Power Across Temperature (Freq = 2.45 GHz, VCC = +3.3 V) 802.11g 54 Mbps OFDM 1.4 1.4 1.3 1.2 Det. Volt. 2.40GHz 1.1 Det. Volt. 2.45GHz 1.1 1.0 Det. Volt. 2.50GHz 1.0 Det. Volt. 0C 1.2 Detector Voltage (V) Detector Voltage (V) 1.3 0.9 0.8 0.7 0.6 0.5 0.4 Det. Volt. 50C Det. Volt. 85C 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.3 0.2 0.2 0.1 Det. Volt. 25C 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0.0 0 1 Output Power (dBm) 1.4 Detector Voltage (V) 1.3 Det. Volt. 3.0V 1.1 Det. Volt. 3.3V 1.0 Det. Volt. 3.6V 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Output Power (dBm) 10 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Output Power (dBm) Figure 10: Detector Voltage vs. Output Power Across Power Supply Voltage (Freq = 2.45 GHz, TC = 25oC) 802.11g 54 Mbps OFDM 1.2 2 Data Sheet - Rev 2.1 12/2007 AWL9925 Die 802.11b PERFORMANCE DATA 36 360 34 340 32 320 30 300 Gain 2.45 GHz 24 Gain 2.50 GHz 240 22 Current 2.40 GHz 220 20 Current 2.45 GHz 200 260 Current 2.50 GHz 16 180 Current 160 340 320 300 28 Gain 0C 26 260 240 Gain +50C 22 220 Gain +85C 20 200 Current 0C 18 Current +25C 16 14 180 Current Current +50C 160 140 14 140 12 120 12 120 10 100 10 100 8 80 8 80 6 60 6 60 4 40 4 40 2 20 0 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Current +85C 2 20 0 0 8 0 8 23 9 10 11 12 13 14 Figure 13: Gain and ICC vs. Output Power Across Power Supply Voltage (Freq = 2.45 GHz, TC = 25oC) 802.11b Gaussian Filtering (BT = 0.5), 1 Mbps 360 -30 34 340 32 320 -32 28 -38 24 Gain 3.3V 240 -40 220 Gain 3.6V 200 Icc 3.0V 18 180 Icc 3.3V 16 160 Current Icc 3.6V 14 140 ACPR Sidelobe (dBr) 260 Current (mA) Gain 3.0V 20 -42 1st Sidelobe 2.40GHz -44 1st Sidelobe 2.45GHz -46 1st Sidelobe 2.50GHz -48 2nd Sidelobe 2.40GHz -50 2nd Sidelobe 2.45GHz -52 2nd Sidelobe 2.50GHz 12 120 10 100 8 80 6 60 4 40 -56 2 20 -58 0 -60 0 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 18 19 20 21 22 23 -36 280 26 22 17 -34 300 Gain 16 Figure 14: ACPR vs. Output Power Across Frequency (VCC = +3.3 V, TC = 25oC) 802.11b Gaussian Filtering (BT = 0.5), 1 Mbps 36 30 15 Output Power (dBm) Output Power (dBm) Gain (dB) 280 Gain Gain +25C 24 Gain (dB) 18 360 34 30 280 26 36 32 Current (mA) Gain (dB) Gain Gain 2.40 GHz 28 Figure 12: Gain and ICC vs. Output Power Across Temp (Freq = 2.45 GHz, VCC = +3.3 V) 802.11b Gaussian Filtering (BT = 0.5), 1 Mbps Current (mA) Figure 11: Gain and ICC vs. Output Power Across Frequency (VCC = +3.3 V, TC = +25oC) 802.11b Gaussian Filtering (BT = 0.5), 1 Mbps -54 23 -62 Output Power (dBm) 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Output Power (dBm) Figure 15: ACPR vs. Output Power Across Temp (Freq = 2.45 GHz, VCC = +3.3 V) 802.11b Gaussian Filtering (BT = 0.5), 1 Mbps Figure 16: ACPR vs. Output Power Across Power Supply Voltage (Freq = 2.45 GHz, TC = 25oC) 802.11b Gaussian Filtering (BT = 0.5), 1 Mbps -30 -30 -32 -32 -34 -34 -36 -36 -38 -40 ACPR Sidelobe (dBr) ACPR Sidelobe (dBr) -38 1st Sidelobe 0C -42 1st Sidelobe 25C -44 1st Sidelobe 50C -46 1st Sidelobe 85C 2nd Sidelobe 0C -48 2nd Sidelobe 25C -50 2nd Sidelobe 50C -52 2nd Sidelobe 85C -40 -42 1st Sidelobe 3.00V -44 1st Sidelobe 3.30V -46 1st Sidelobe 3.60V -48 2nd Sidelobe 3.00V -50 2nd Sidelobe 3.30V -52 2nd Sidelobe 3.60V -54 -54 -56 -56 -58 -58 -60 -60 -62 -62 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Output Power (dBm) Output Power (dBm) Data Sheet - Rev 2.1 12/2007 11 AWL9925 Die Figure 18: Detector Voltage vs. Output Power Across Temp (Freq = 2.45 GHz, VCC = +3.3 V) 802.11b Gaussian Filtering (BT = 0.5), 1 Mbps Figure 17: Detector Voltage vs. Output Power Across Frequency (TC = 25oC, VCC = +3.3 V) 802.11b Gaussian Filtering (BT = 0.5), 1 Mbps 1.4 1.4 1.3 1.2 Det. Volt. 2.40GHz 1.2 1.1 Det. Volt. 2.45GHz 1.1 1.0 Det. Volt. 2.50GHz 1.0 Detector Voltage (V) Detector Voltage (V) 1.3 0.9 0.8 0.7 0.6 0.5 0.4 Det. Volt. 25C Det. Volt. 50C Det. Volt. 85C 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.3 0.2 0.2 0.1 Det. Volt. 0C 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0.0 0 1 Output Power (dBm) 1.4 Det. Volt. 3.0V 1.2 Det. Volt. 3.3V Detector Voltage (V) 1.1 Det. Volt. 3.6V 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Output Power (dBm) 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Output Power (dBm) Figure 19: Detector Voltage vs. Output Power Across Power Supply Voltage (Freq = 2.45 GHz, TC = 25oC) 802.11b Gaussian Filtering (BT = 0.5), 1 Mbps 1.3 2 Data Sheet - Rev 2.1 12/2007 AWL9925 Die 802.11a PERFORMANCE DATA 36 420 34 400 36 420 32 380 34 400 360 32 380 30 320 300 Gain 4.90 GHz Gain 5.25 GHz Gain 5.55 GHz Gain 5.85 GHz Icc 4.90 GHz Icc 5.25 GHz Icc 5.55 GHz Icc 5.85 GHz 22 20 18 16 14 280 260 240 Current 160 8 140 6 120 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 20 18 380 360 340 160 140 120 12 13 14 15 16 17 18 19 20 21 22 23 11 EVM 5.55 GHz Gain 3.3V 260 Gain 3.6V 240 20 Icc 3.0V 18 Icc 3.3V 16 Icc 3.6V 220 200 7 6 5 4 14 160 12 140 10 120 2 8 100 1 3 80 18 19 20 21 22 EVM 5.85 GHz 8 180 6 EVM 4.90 GHz EVM 5.25 GHz 22 Current 12 9 24 0 23 8 Output Power (dBm) 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Output Power (dBm) Figure 24: EVM vs. Output Power Across Temp (Freq = 5.25 GHz, VCC = +3.3 V) 802.11a 54 Mbps OFDM Figure 25: EVM vs. Output Power Across Power Supply Voltage (Freq = 5.25 GHz, TC = 25oC) 802.11a 54 Mbps OFDM 12 12 11 11 EVM 0C 10 EVM 3.3V 9 EVM +50C 8 EVM 3.0V 10 EVM +25C 9 EVM 3.6V 8 EVM +85C 7 EVM (%) EVM (%) 11 300 280 17 10 10 Gain 3.0V 16 9 320 26 15 180 Figure 23: EVM vs. Output Power Across Frequency (VCC = +3.3 V, TC = 25oC) 802.11a 54 Mbps OFDM EVM (%) Gain (dB) 28 14 200 6 Current (mA) Gain 30 13 220 Output Power (dBm) 32 12 240 8 8 34 11 260 10 23 36 10 280 Current Figure 22: Gain and ICC vs. Output Power Across Power Supply Voltage (Freq = 5.25 GHz, TC = 25oC) 802.11a 54 Mbps OFDM 9 300 12 Output Power (dBm) 8 320 14 180 10 24 16 200 340 Gain Gain 0C Gain +25C Gain +50C Gain +85C Current 0C Current +25C Current +50C Current +85C 26 220 12 360 28 Gain (dB) 26 24 30 340 Gain Current (mA) 28 Gain (dB) Figure 21: Gain and ICC vs. Output Power Across Temp (Freq = 5.25 GHz, VCC = +3.3 V) 802.11a 54 Mbps OFDM Current (mA) Figure 20: Gain and ICC vs. Output Power Across Frequency (VCC = +3.3 V, TC = +25oC) 802.11a 54 Mbps OFDM 6 5 7 6 5 4 4 3 3 2 2 1 1 0 0 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 8 9 Output Power (dBm) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Output Power (dBm) Data Sheet - Rev 2.1 12/2007 13 AWL9925 Die Figure 26: Detector Voltage vs. Output Power Across Frequency (TC = 25oC, VCC = +3.3 V) 802.11a 54 Mbps OFDM Figure 27: Detector Voltage vs. Output Power Across Temperature (Freq = 5.25 GHz, VCC = +3.3 V) 802.11a 54 Mbps OFDM 1.4 1.3 Det. Volt. 4.90GHz 1.3 1.2 Det. Volt. 5.25GHz 1.2 1.1 Det. Volt. 5.55GHz 1.1 Det. Volt. 50C 1.0 Det. Volt. 5.85GHz 1.0 Det. Volt. 85C Detector Voltage (V) Detector Voltage (V) 1.4 0.9 0.8 0.7 0.6 0.5 0.4 Det. Volt. 0C Det. Volt. 25C 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 Figure 28: Detector Voltage vs. Output Power Across Power Supply Voltage (Freq = 5.25 GHz, TC = 25oC) 802.11a 54 Mbps OFDM 1.4 1.3 Det. Volt. 3.0V 1.2 Det. Volt. 3.3V Detector Voltage (V) 1.1 1.0 Det. Volt. 3.6V 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Output Power (dBm) 14 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Output Power (dBm) Output Power (dBm) Data Sheet - Rev 2.1 12/2007 AWL9925 Die S-PARAMETER PERFORMANCE DATA Figure 30: 2.4 GHz S21 Response Across Frequency (VCC = +3.3 V, TC = 25oC) Figure 29: 2.4 GHz Return Losses Across Frequency (VCC = +3.3 V, TC = 25oC) 0 -2 -4 -6 Input Return Loss -12 Output Return Loss S21 Response (dB) Return Loss (dB) -8 -10 -14 -16 -18 -20 -22 -24 -26 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 40 36 32 28 24 20 16 12 8 4 0 -4 -8 -12 -16 -20 -24 -28 -32 -36 -40 S21 Response 0.5 1 1.5 2 2.5 Frequency (GHz) Figure 31: 5 GHz Return Losses Across Frequency (VCC = +3.3 V, TC = 25oC) 0 -4 Input Return Loss Output Return Loss S21 Response (dB) Return Loss (dB) -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 0 1 2 3 4 5 6 Frequency (GHz) 3.5 4 4.5 5 Figure 32: 5 GHz S21 Response Across Frequency (VCC = +3.3 V, TC = 25oC) -2 -6 3 Frequency (GHz) 7 8 9 10 40 36 32 28 24 20 16 12 8 4 0 -4 -8 -12 -16 -20 -24 -28 -32 -36 -40 S21 Response 0 1 2 3 4 5 6 7 8 9 10 Frequency (GHz) Data Sheet - Rev 2.1 12/2007 15 AWL9925 Die APPLICATION INFORMATION The application circuit connections to the die are made using bond wires, which are connected to bond pads on the die. The die bond pads are labeled as "BPX" in Figure 33. Although not shown in the application schematic, a 1 F capacitor should be connected to the 2.4 GHz and 5 GHz voltage supply lines for low frequency decoupling. 2.4 GHz VCC C1 0.1 F BP17 V3 BP18 V2 V1 BP19 BP5 2G ANT AWL9925 Die RFIN 2G RFIN 5G 5G ANT BP6 Speed-up Cap V4 PAON 5G DETOUT 5G BP12 BP8 L2 4.7 nH C4 0.1 F 5 GHz VCC Figure 33: Application Circuit 16 BP15 BP14 BP7 Speed-up Cap BP9 5 GHz PA On BP4 V3 C3 0.1 F BP3 Speed-up Cap BP11 5 GHz PA Input DETOUT 2G BP16 2 GHz Power Detector Output BP2 Speed-up Cap V2 2.4 GHz PA Input PAON 2G BP10 C2 0.1 F BP1 V1 2.4 GHz PA On L1 6.8 nH Data Sheet - Rev 2.1 12/2007 BP13 2.4 GHz PA Output 5 GHz PA Output 5 GHz Power Detector Output AWL9925 Die Table 9: SMD Components Summary for Application Circuit REF DESCRIPTION COMMENTS C1 0.1 F 2.4 GHz bias de-coupling cap C2 0.1 F 2.4 GHz speed-up cap; required to accelerate turn-on ramp to improve EVM in dynamic burst conditions C3 0.1 F 5 GHz speed-up cap; required to accelerate turn-on ramp to improve EVM in dynamic burst conditions C4 0.1 F 5 GHz bias de-coupling cap L1 6.8 nH 2.4 GHz 3rd stage choke inductor L2 4.7 nH 5 GHz 3rd stage choke inductor AWL9925 REFERENCE PLATFORM ANADIGICS has defined the AWL6950 evaluation board test platform for testing the performance of the die. ANADIGICS' documentation for the AWL6950 evaluation board includes all necessary information regarding schematics, bill of materials and assembly instructions. When the die is mounted in the specified test platform, performance as specified in the datasheet is expected. Data Sheet - Rev 2.1 12/2007 17 AWL9925 Die DIE DIMENSIONS Overall dimensions of the die are 1675 m x 1900 m. Locations of die bond pads relative to the outline of the die are shown in Figure 34. Unless otherwise noted, bond pads are 75 m x 75 m. Figure 34: Die Bond Pad Locations Relative to the Die Outline (Dimensions shown in mm) 18 Data Sheet - Rev 2.1 12/2007 AWL9925 Die WAFER DIMENSIONS Wafer dimensions, layout and wafer mark location are shown in Figure 35. (100) FACE 3 0. 50 1 O (011) NOTCH (010) 0.100 typical (finished) _ (011) LASER MARK LOCATION Figure 35: Die Dimensions and Tolerances (Dimensions shown in mm) MANUFACTURING INFORMATION ANADIGICS provides 150 mm AWL9925 wafers with DC die-probe failures clearly marked with ink. Wafers are marked with bulk material code which is traceable through wafer processing. Post process wafers maintain traceability from labels fastened to the wafer carrier post dicing. ANADIGICS performs on-wafer DC testing on the AWL9925, as well as visual inspection after dicing (per ANADIGICS specification number 60002.003). Maximum chipping specification is also defined by this specification. Performance is tested at wafer level using PCM sites. There are 5 PCM locations uniformly distributed on the wafer. Wafer tests include NiCr sheet resistivity, MIM capacitor capacitance and transistor forward transfer current ratio (Hfe) under different bias conditions. AWL9925 PURCHASING UNIT Parts will be purchased as die but shall be shipped in wafer format on a wafer frame. Parts that pass visual inspection and DC die-probe tests will be free of ink markings and can therefore be distinguished from test failures. AWL9925 PACKING AND DELIVERY SPECIFICATIONS The diced wafers are placed on adhesive tape (Nitto/ Denko P/N SPV224) in a film frame (Perfection Products P/N FFP-7290-15 or equivalent, ANADIGICS Part No. 6103), which is shrink-wrapped with desiccant prior to storage or shipment. The film frame is to be clearly labeled with the following information: 1. Item Name 2. Manufacturing Date 3. Expiration Date 4. Manufacturer's Name 5. Country of Origin 6. Good Die Quantity Prior to shipment, the individual wafers are placed in anti-static wafer frame shipping containers (ePAK P/N EFS6-150-R.3-EM-20 or equivalent, ANADIGICS Part No. 5430). The film frame cassettes are vacuum sealed in ESD bags along with desiccant prior to storage or shipment. Wafer frame shipment containers are packed in protective material for shipment. An invoice is included in each shipping container. EXTENDED DIE STORAGE Once the ESD bag is opened (the vacuum seal is broken), AWL9925 die in the film frame cassette should be stored in a dry nitrogen environment. The die and cassette can be stored in dry nitrogen up to 12 months from the manufacturing date noted on the film frame. Storage beyond 12 months could cause increased die adhesion to the film frame tape resulting in damage during die removal. Data Sheet - Rev 2.1 12/2007 19 AWL9925 Die ORDERING INFORMATION TEMPERATURE RANGE PACKAGE DESCRIPTION AWL9925RD1P5 -40 C to +85C 19 Pad 1.9 mm x 1.675 mm Die AWL9925RD1Q4 -40 C to +85C 19 Pad 6" Wafer on Film Frame 1.9 mm x 1.675 mm Die ORDER NUMBER COMPONENT PACKAGING Waffle Pack ANADIGICS, Inc. 141 Mount Bethel Road Warren, New Jersey 07059, U.S.A. Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132 URL: http://www.anadigics.com E-mail: Mktg@anadigics.com IMPORTANT NOTICE ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders. warning ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited. 20 Data Sheet - Rev 2.1 12/2007