1/28
OPERATING FROM VCC = 2.5V to 5.5V
1W RAIL TO RAIL OUTPUT POWER @
Vcc=5V, THD=1%, f=1kHz, with 8Load
ULTRA LOW CONSUMPTION IN STAN DBY
MODE (10nA)
75dB PSRR @ 217Hz from 5V to 2.6V
ULTRA LOW POP & CLICK
ULTRA LOW DISTORTION (0.1%)
UNITY G AIN STABLE
AVAILABL E IN SO8, MiniSO8 & DFN8 3x3mm
DESCRIPTION
The TS4871 i s an A udi o Pow er A m plifier c apabl e
of delivering 1W of continuous RMS Ouput Power
into 8 load @ 5V.
This Audio Amplifier is exhibiting 0.1% distortion
level (THD) from a 5V supply for a Pout = 250mW
RMS. An external standby mode control reduces
the supply current to less than 10nA. An internal
thermal shut down protection is also provided.
The TS4871 has been designed for high quality
audio ap plications such as mobi le phones and to
minimize the number of external components.
The unity-gain stable amplifier can be configured
by external gain setting resistors.
APPLICATIONS
Mobile Phones (Cellular / C ordless)
Laptop / Notebook Compute rs
PDAs
Portable Audio Devices
ORDER CODE
MiniSO & DFN only available in Tape & Reel with T suffix(IST & IQT)
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
PIN CONNECTIONS (Top View)
Part
Number Temperature
Range: I Package Marking
DSQ
TS4871 -40, +85°C 4871I
•• 4871
Standby
Bypass
V+
IN
VIN-
V2OUT
GND
VCC
VOUT1
1
2
3
4
8
7
6
5
Rin
Cin
Rstb
Cb
Rfeed
4
3
2
1
5
8
Vin-
Vin+
-
+
-
+
Bypass
Standby Bias
6
Vout1
Vout2
Av=-1
TS4871
RL
8 Ohms
Vcc
GND
Audio
Input
Vcc
Vcc
Cfeed
Cs
7
TYPICAL APPLICATION SCHEMATIC
TS4871IST - MiniSO8
TS4871ID-TS4871IDT - SO8
Standby
Bypass
V+
IN
VIN-
V2OUT
GND
VCC
VOUT1
1
2
3
4
8
7
6
5
1
2
3
45
8
7
6
STANDBY
BYPASS
VOUT 2
VIN-
VIN+ Vcc
VOUT 1
GND
1
2
3
45
8
7
6
STANDBY
BYPASS
VOUT 2
VIN-
VIN+ Vcc
VOUT 1
GND
TS4871IQT - DFN8
TS4871
OUTPUT RAIL TO RAIL 1W AUDIO POWER AMPLIFIER
WITH STANDBY MODE
June 2003
TS4871
2/28
ABSOLUTE MAXIMUM RATINGS
OPERATING CONDITIONS
Symbol Parameter Value Unit
VCC Supply voltage 1) 6V
V
iInput Voltage 2) GND to VCC V
Toper Operating Free Air Temperature Range -40 to + 85 °C
Tstg Storage Temperature -65 to +150 °C
TjMaximum Junction Temperature 150 °C
Rthja Thermal Resistance Junction to Ambient 3)
SO8
MiniSO8
QNF8
175
215
70
°C/W
Pd Power Dissipation Internally Limited4)
ESD Human Body Model 2 kV
ESD Machine Model 200 V
Latch-up Latch-up Immunity Class A
Lead Te mpera ture (solde ring, 10sec ) 260 °C
1. All voltages values are measured with respect to the ground pin.
2. The magnitude of input signal must never exceed VCC + 0.3V / GND - 0.3V
3. Device is protected in case of over temperature by a thermal shutdown active @ 150°C.
4. Exceeding the power derating curves during a long period, involves abnormal operating condition.
Symbol Parameter Value Unit
VCC Supply Voltage 2.5 to 5.5 V
VICM Common Mode Input Voltage Range GND to VCC - 1.2V V
VSTB Standby Voltage Input :
Device ON
Device OFF GND VSTB 0.5V
VCC - 0.5V VSTB VCC V
RLLoad Resistor 4 - 32
Rthja Thermal Resistance Junction to Ambient 1)
SO8
MiniSO8
DFN8 2)
150
190
41
°C/W
1. This thermal resistance can be reduced with a suitable PCB layout (see Power Derating Curves Fig. 20)
2. When mou nted on a 4 layers PCB
TS4871
3/28
ELECTRICAL CHARACTERISTICS
VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified)
VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified)3)
Symbol Parameter Min. Typ. Max. Unit
ICC Supply Current
No input signal, no load 68mA
I
STANDBY Standby Current 1)
No input signal, Vstdby = Vcc, RL = 8
1 . Standby m ode i s ac tived when V st dby is tied to Vcc
10 1000 nA
Voo Output Offset Voltage
No input signal, RL = 8520mV
Po Output Power
THD = 1% Max, f = 1kHz, RL = 81W
THD + N Total Harmonic Distortion + Noise
Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 80.15 %
PSRR Power Supply Rejection Ratio2)
f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms
2. Dynam i c measurement s - 20*l og(rms(Vout)/rm s(V rippl e)). Vripple i s t he surim posed s i nus signal to Vcc @ f = 217H z
75 dB
ΦMPhase Margin at Unity Gain
RL = 8, CL = 500pF 70 Degrees
GM Gain Margin
RL = 8, CL = 500pF 20 dB
GBP Gain Bandwidth Product
RL = 82MHz
Symbol Parameter Min. Typ. Max. Unit
ICC Supply Current
No input signal, no load 5.5 8 mA
ISTANDBY Standby Curre nt 1)
No input signal, Vstdby = Vcc, RL = 8
1 . Standby m ode i s ac tived when V st dby is tied to Vcc
10 1000 nA
Voo Output Offset Voltage
No input signal, RL = 8520mV
Po Output Power
THD = 1% Max, f = 1kHz, RL = 8450 mW
THD + N Total Harmonic Distortion + Noise
Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 80.15 %
PSRR Power Supply Rejection Ratio2)
f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms
2. Dynam i c measurement s - 20*l og(rms(Vout)/rm s(V rippl e)). Vripple i s t he surim posed s i nus signal to Vcc @ f = 217H z
3. A l l el ect ri cal values ar e m ade by cor relation betw een 2. 6V and 5V me asurements
75 dB
ΦMPhase Margin at Unity Gain
RL = 8, CL = 500pF 70 Degrees
GM Gain Margin
RL = 8, CL = 500pF 20 dB
GBP Gain Bandwidth Product
RL = 82MHz
TS4871
4/28
ELECTRICAL CHARACTERISTICS
VCC = 2.6 V, GND = 0V, Tamb = 25°C (unless otherwise specified)
REMARKS
1. All measurements, except PSRR measurements, are made with a supply bypass capacitor Cs = 100µF.
2. External resistors are not needed for having better stability when supply @ Vcc down to 3V. By the way,
the quiescen t current remains the same.
3. The standby response time is about 1µs.
Symbol Parameter Min. Typ. Max. Unit
ICC Supply Current
No input signal, no load 5.5 8 mA
ISTANDBY Standby Curre nt 1)
No input signal, Vstdby = Vcc, RL = 8
1 . Standby m ode i s ac tived when V st dby is tied to Vcc
10 1000 nA
Voo Output Offset Voltage
No input signal, RL = 8520mV
Po Output Power
THD = 1% Max, f = 1kHz, RL = 8260 mW
THD + N Total Harmonic Distortion + Noise
Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 80.15 %
PSRR Power Supply Rejection Ratio2)
f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms
2. Dynam i c measurement s - 20*l og(rms(Vout)/rm s(V rippl e)). Vripple i s t he surim posed s i nus signal to Vcc @ f = 217H z
75 dB
ΦMPhase Margin at Unity Gain
RL = 8, CL = 500pF 70 Degrees
GM Gain Margin
RL = 8, CL = 500pF 20 dB
GBP Gain Bandwidth Product
RL = 82MHz
Components Functional Description
Rin Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also
forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin))
Cin Input coupling capacitor which blocks the DC voltage at the amplifier input terminal
Rfeed Feed back resistor which sets the closed loop gain in conjunction with Rin
Cs Supply Bypass capacitor which provides power supply filtering
Cb Bypass pin capacitor which provides half supply filtering
Cfeed Low pass filter capacitor allowing to cut the high frequency
(low pass filter cut-off frequency 1 / (2 x Pi x Rfeed x Cfeed))
Rstb Pull-up resistor which fixes the right supply level on the standby pin
Gv Closed loop gain in BTL configuration = 2 x (Rfeed / Rin)
TS4871
5/28
Fig. 1 : Open Loop Frequency Resp ons e
Fig. 3 : Open Loop Frequency Resp ons e
Fig. 5 : Open Loop Frequency Resp ons e
Fig. 2 : Open Loop Frequency Resp on se
Fig. 4 : Open Loop Frequency Resp on se
Fig. 6 : Open Loop Frequency Resp on se
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
Vcc = 5V
RL = 8
Tamb = 25
°
C
Gain (dB)
Frequency (kHz)
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
Gain (dB)
Frequency (kHz)
Vcc = 3.3V
RL = 8
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
Gain (dB)
Frequency (kHz)
Vcc = 2.6V
RL = 8
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
Gain (dB)
Frequency (kHz)
Vcc = 5V
ZL = 8
+ 560pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
Gain (dB)
Frequency (kHz)
Vcc = 3.3V
ZL = 8
+ 560pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
Gain (dB)
Frequency (kHz)
Vcc = 2.6V
ZL = 8
+ 560pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
TS4871
6/28
Fig. 7 : Open Loop Frequency Resp ons e
Fig. 9 : Open Loop Frequency Resp ons e
Fig. 8 : Open Loop Frequency Resp on se
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
100
-220
-200
-180
-160
-140
-120
-100
-80
Gain (dB)
Frequency (kHz)
Vcc = 5V
CL = 560pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
100
-240
-220
-200
-180
-160
-140
-120
-100
-80
Gain (dB)
Frequency (kHz)
Vcc = 2.6V
CL = 560pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
100
-240
-220
-200
-180
-160
-140
-120
-100
-80
Gain (dB)
Frequency (kHz)
Vcc = 3.3V
CL = 560pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
TS4871
7/28
Fig. 10 : Power Supply Rejection Ratio (PSRR)
vs Power supply
Fig. 12 : Power Supply Rejection Ratio (PSRR)
vs Bypass Capacitor
Fig. 14 : Power Supply Rejection Ratio (PSRR)
vs Feedback Resistor
Fig. 11 : Power Supply Rejectio n Ratio (PSRR)
vs Feed back Cap aci tor
Fig. 13 : Power Supply Rejectio n Ratio (PSRR)
vs Input Capacitor
10 100 1000 10000 100000
-80
-70
-60
-50
-40
-30
Vcc = 5V, 3.3V & 2.6V
Cb = 1
µ
F & 0.1
µ
F
Vripple = 200mVrms
Rfeed = 22
Input = floating
RL = 8
Tamb = 25
°
C
PSRR (dB)
Frequency (Hz)
10 100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
Cb=100µF
Cb=10µF
Cb=47µF
Cb=1µFVcc = 5, 3.3 & 2.6V
Rfeed = 22k
Rin = 22k, Cin = 1µF
Rg = 100, RL = 8
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
10 100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
Rfeed=10k
Rfeed=22k
Rfeed=47k
Rfeed=110k
Vcc = 5, 3.3 & 2.6V
Cb = 1µF & 0.1µF
Vripple = 200mVrms
Input = floating
RL = 8
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
10 100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
Cfeed=680pF
Cfeed=330pF
Cfeed=150pF
Cfeed=0
Vcc = 5, 3.3 & 2.6V
Cb = 1
µ
F & 0.1
µ
F
Rfeed = 22k
Vripple = 200mVrms
Input = floating
RL = 8
Tamb = 25
°
C
PSRR (dB)
Frequency (Hz)
10 100 1000 10000 100000
-60
-50
-40
-30
-20
-10
Vcc = 5, 3.3 & 2.6V
Rfeed = 22k, Rin = 22k
Cb = 1µF
Rg = 100, RL = 8
Tamb = 25°C
Cin=22nF
Cin=100nF
Cin=220nF
Cin=330nF
Cin=1µF
PSRR (dB)
Frequency (Hz)
TS4871
8/28
Fig. 15 : Pout @ THD + N = 1% vs Supply
Voltage vs RL
Fig. 17 : Power Dissipation vs Pou t
Fig. 19 : Power Dissipation vs Pou t
Fig. 16 : Pout @ THD + N = 10% vs Supply
Voltage vs RL
Fig. 18 : Power Dissipation vs Pou t
Fig. 20 : Power Dera ting Curves
2.5 3.0 3.5 4.0 4.5 5.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
32
16
4
6
Gv = 2 & 10
Cb = 1
µ
F
F = 1kHz
BW < 125kHz
Tamb = 25
°
C
8
Output power @ 1% THD + N (W)
Vcc (V)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
RL=16
RL=8
Vcc=5V
F=1kHz
THD+N<1% RL=4
Power Dissipation (W)
Output Power (W)
0.0 0.1 0.2 0.3 0.4
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
RL=4
RL=8
Vcc=2.6V
F=1kHz
THD+N<1%
RL=16
Power Dissipation (W)
Output Power (W)
2.5 3.0 3.5 4.0 4.5 5.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
468
16
32
Gv = 2 & 10
Cb = 1µF
F = 1kHz
BW < 125kHz
Tamb = 25°C
Output power @ 10% THD + N (W)
Vcc (V)
0.0 0.2 0.4 0.6 0.8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
RL=4
RL=8
Vcc=3.3V
F=1kHz
THD+N<1%
RL=16
Power Dissipation (W)
Output Power (W)
0 25 50 75 100 125 150
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
SO8
MiniSO8
QFN8
Power Dissipation (W)
Ambiant Temperature (°C)
TS4871
9/28
Fig. 21 : THD + N vs Output Power
Fig. 23 : THD + N vs Output Power
Fig. 25 : THD + N vs Output Power
Fig. 22 : THD + N vs Output Power
Fig. 24 : THD + N vs Output Power
Fig. 26 : THD + N vs Output Power
1E-3 0.01 0.1 1
0.1
1
10 Rl = 4
Vcc = 5V
Gv = 2
Cb = Cin = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
20kHz
20Hz, 1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1 1
0.1
1
10 RL = 4
, Vcc = 3.3V
Gv = 2
Cb = Cin = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
20kHz
20Hz, 1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1
0.1
1
10
RL = 4, Vcc = 2.6V
Gv = 2
Cb = Cin = 1µF
BW < 125kHz
Tamb = 25°C
20kHz
20Hz, 1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1 1
0.1
1
10 RL = 4
, Vcc = 5V
Gv = 10
Cb = Cin = 1
µ
F
BW < 125kHz, Tamb = 25
°
C
20kHz
20Hz
1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1 1
0.1
1
10
RL = 4
, Vcc = 3.3V
Gv = 10
Cb = Cin = 1
µ
F
BW < 125kHz
Tamb = 25
°
C20kHz
20Hz 1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1
0.1
1
10
RL = 4, Vcc = 2.6V
Gv = 10
Cb = Cin = 1µF
BW < 125kHz
Tamb = 25°C20kHz
20Hz
1kHz
THD + N (%)
Output Power (W)
TS4871
10/28
Fig. 27 : THD + N vs Output Power
Fig. 29 : THD + N vs Output Power
Fig. 31 : THD + N vs Output Power
Fig. 28 : THD + N vs Output Power
Fig. 30 : THD + N vs Output Power
Fig. 32 : THD + N vs Output Power
1E-3 0.01 0.1 1
0.1
1
10 RL = 8
Vcc = 5V
Gv = 2
Cb = Cin = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
20kHz
20Hz, 1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1 1
0.1
1
10
RL = 8
, Vcc = 3.3V
Gv = 2
Cb = Cin = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
20kHz
20Hz, 1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1
0.1
1
10
RL = 8, Vcc = 2.6V
Gv = 2
Cb = Cin = 1µF
BW < 125kHz
Tamb = 25°C
20kHz
20Hz, 1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1 1
0.1
1
10 RL = 8
Vcc = 5V
Gv = 10
Cb = Cin = 1µF
BW < 125kHz
Tamb = 25°C
20kHz20Hz
1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1
0.1
1
10
RL = 8, Vcc = 2.6V
Gv = 10
Cb = Cin = 1µF
BW < 125kHz
Tamb = 25°C
20kHz
20Hz
1kHz
THD + N (%)
Output Power (W)
TS4871
11/28
Fig. 33 : THD + N vs Output Power
Fig. 35 : THD + N vs Output Power
Fig. 37 : THD + N vs Output Power
Fig. 34 : THD + N vs Output Power
Fig. 36 : THD + N vs Output Power
Fig. 38 : THD + N vs Output Power
1E-3 0.01 0.1 1
0.1
1
10 RL = 8
Vcc = 5V
Gv = 2
Cb = 0.1
µ
F, Cin = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
20kHz 20Hz
1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1 1
0.1
1
10
RL = 8, Vcc = 3.3V
Gv = 2
Cb = 0.1µF, Cin = 1µF
BW < 125kHz
Tamb = 25°C
20kHz
20Hz
1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1
0.1
1
10
RL = 8, Vcc = 2.6V
Gv = 2
Cb = 0.1µF, Cin = 1µF
BW < 125kHz
Tamb = 25°C
20kHz
20Hz
1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1 1
0.1
1
10
RL = 8, Vcc = 5V, Gv = 10
Cb = 0.1µF, Cin = 1µF
BW < 125kHz, Tamb = 25°C
20kHz
20Hz
1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1 1
0.1
1
10
RL = 8, Vcc = 3.3V, Gv = 10
Cb = 0.1µF, Cin = 1µF
BW < 125kHz, Tamb = 25°C
20kHz 20Hz
1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1
0.1
1
10
RL = 8, Vcc = 2.6V, Gv = 10
Cb = 0.1µF, Cin = 1µF
BW < 125kHz, Tamb = 25°C
20kHz 20Hz
1kHz
THD + N (%)
Output Power (W)
TS4871
12/28
Fig. 39 : THD + N vs Output Power
Fig. 41 : THD + N vs Output Power
Fig. 43 : THD + N vs Output Power
Fig. 40 : THD + N vs Output Power
Fig. 42 : THD + N vs Output Power
Fig. 44 : THD + N vs Output Power
1E-3 0.01 0.1 1
0.01
0.1
1
10
RL = 16
, Vcc = 5V
Gv = 2
Cb = Cin = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
20kHz
20Hz, 1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1
0.01
0.1
1
10
RL = 16
, Vcc = 3.3V
Gv = 2
Cb = Cin = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
20kHz
20Hz, 1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1
0.01
0.1
1
10
RL = 16
Vcc = 2.6V
Gv = 2
Cb = Cin = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
20kHz
20Hz, 1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1 1
0.01
0.1
1
10
RL = 16
, Vcc = 5V
Gv = 10
Cb = Cin = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
20kHz
20Hz
1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1
0.01
0.1
1
10
RL = 16
Vcc = 3.3V
Gv = 10
Cb = Cin = 1
µ
F
BW < 125kHz
Tamb = 25
°
C20kHz
20Hz
1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1
0.01
0.1
1
10
RL = 16
Vcc = 2.6V
Gv = 10
Cb = Cin = 1
µ
F
BW < 125kHz
Tamb = 25
°
C20kHz
20Hz
1kHz
THD + N (%)
Output Power (W)
TS4871
13/28
Fig. 45 : THD + N vs Frequ ency
Fig. 47 : THD + N vs Frequ ency
Fig. 49 : THD + N vs Frequ ency
Fig. 46 : THD + N vs Frequ ency
Fig. 48 : THD + N vs Frequ ency
Fig. 50 : THD + N vs Frequ ency
20 100 1000 10000
0.1
1
Pout = 600mW
Pout = 1.2W
RL = 4
, Vcc = 5V
Gv = 2
Cb = 1µF
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.1
1
Pout = 270mW
Pout = 540mW
RL = 4, Vcc = 3.3V
Gv = 2
Cb = 1µF
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.1
1
Pout = 120mW
Pout = 240mW
RL = 4, Vcc = 2.6V
Gv = 2
Cb = 1µF
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.01
0.1
1
Pout = 600mW
Pout = 1.2W
RL = 4, Vcc = 5V
Gv = 10
Cb = 1µF
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.1
1
Pout = 270mW
Pout = 540mW
RL = 4, Vcc = 3.3V
Gv = 10
Cb = 1µF
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.1
1
Pout = 240 & 120mW
RL = 4, Vcc = 2.6V
Gv = 10
Cb = 1µF
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
TS4871
14/28
Fig. 51 : THD + N vs Frequ ency
Fig. 53 : THD + N vs Frequ ency
Fig. 55 : THD + N vs Frequ ency
Fig. 52 : THD + N vs Frequ ency
Fig. 54 : THD + N vs Frequ ency
Fig. 56 : THD + N vs Frequ ency
20 100 1000 10000
0.1
1
Cb = 0.1µF
Cb = 1µF
RL = 8
Vcc = 5V
Gv = 2
Pout = 900mW
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.1
1
Cb = 0.1µF
Cb = 1µF
RL = 8, Vcc = 5V
Gv = 10
Pout = 900mW
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.1
1
Cb = 0.1µF
Cb = 1µF
RL = 8, Vcc = 3.3V
Gv = 2
Pout = 400mW
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.1
1
Cb = 0.1µF
Cb = 1µF
RL = 8
Vcc = 5V
Gv = 2
Pout = 450mW
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.1
1
Cb = 0.1µF
Cb = 1µF
RL = 8
, Vcc = 5V
Gv = 10
Pout = 450mW
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.1
1
Cb = 0.1µF
Cb = 1µF
RL = 8, Vcc = 3.3V
Gv = 2
Pout = 200mW
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
TS4871
15/28
Fig. 57 : THD + N vs Frequ ency
Fig. 59 : THD + N vs Frequ ency
Fig. 61 : THD + N vs Frequ ency
Fig. 58 : THD + N vs Frequ ency
Fig. 60 : THD + N vs Frequ ency
Fig. 62 : THD + N vs Frequ ency
20 100 1000 10000
0.1
1
Cb = 0.1µF
Cb = 1µF
RL = 8, Vcc = 3.3V
Gv = 10
Pout = 400mW
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.1
1
Cb = 0.1µF
Cb = 1µF
RL = 8, Vcc = 2.6V
Gv = 2
Pout = 220mW
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.1
1
Cb = 0.1µF
Cb = 1µF
RL = 8, Vcc = 2.6V
Gv = 10
Pout = 220mW
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.1
1
Cb = 0.1µF
Cb = 1µF
RL = 8, Vcc = 3.3V
Gv = 10
Pout = 200mW
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.1
1Cb = 0.1µF
Cb = 1µF
RL = 8
, Vcc = 2.6V
Gv = 10
Pout = 110mW
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
TS4871
16/28
Fig. 63 : THD + N vs Frequ ency
Fig. 65 : THD + N vs Frequ ency
Fig. 67 : THD + N vs Frequ ency
Fig. 64 : THD + N vs Frequ ency
Fig. 66 : THD + N vs Frequ ency
Fig. 68 : THD + N vs Frequ ency
20 100 1000 10000
0.01
0.1
1
Pout = 310mW
Pout = 620mW
RL = 16
, Vcc = 5V
Gv = 2, Cb = 1µF
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.01
0.1
1
Pout = 135mW
Pout = 270mW
RL = 16
, Vcc = 3.3V
Gv = 2, Cb = 1µF
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.01
0.1
1
Pout = 80mW
Pout = 160mW
RL = 16
, Vcc = 2.6V
Gv = 2, Cb = 1µF
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.01
0.1
1
Pout = 310mW
Pout = 620mW
RL = 16, Vcc = 5V
Gv = 10, Cb = 1µF
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.1
1
Pout = 135mW
Pout = 270mW
RL = 16
, Vcc = 3.3V
Gv = 10
Cb = 1µF
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
20 100 1000 10000
0.01
0.1
1
Pout = 80mW
Pout = 160mW
RL = 16, Vcc = 2.6V
Gv = 10, Cb = 1µF
BW < 125kHz
Tamb = 25°C
THD + N (%)
Frequency (Hz)
TS4871
17/28
Fig. 69 : Signal to Noise Ratio vs Power Supply
with Unweigh ted Filter (20Hz to 20kHz)
Fig. 71 : Signal to Noise Ratio vs Power Supply
w it h We igh t e d F ilt e r t y pe A
Fig. 73 : Signal to Noise Ratio Vs Power Supply
with Unweigh ted Filter (20Hz to 20kHz)
Fig. 70 : Signal to Noise Ratio vs Power Supply
with Weighted Filter Type A
Fi g. 72 : C urr ent C ons um pt i on v s Powe r
Supply Voltage
Fi g. 74 : Curr ent C ons um pti on v s St an dby
Voltage @ Vcc = 5V
2.5 3.0 3.5 4.0 4.5 5.0
50
60
70
80
90
100
RL=8
RL=4
RL=16
Gv = 2
Cb = Cin = 1µF
THD+N < 0.4%
Tamb = 25°C
SNR (dB)
Vcc (V)
2.5 3.0 3.5 4.0 4.5 5.0
60
70
80
90
100
110
RL=8RL=4
RL=16
Gv = 2
Cb = Cin = 1µF
THD+N < 0.4%
Tamb = 25°C
SNR (dB)
Vcc (V)
2.5 3.0 3.5 4.0 4.5 5.0
50
60
70
80
90
RL=16RL=4RL=8
Gv = 10
Cb = Cin = 1µF
THD+N < 0.7%
Tamb = 25°C
SNR (dB)
Vcc (V)
2.5 3.0 3.5 4.0 4.5 5.0
60
70
80
90
100
RL=16RL=4RL=8
Gv = 10
Cb = Cin = 1µF
THD+N < 0.7%
Tamb = 25°C
SNR (dB)
Vcc (V)
012345
0
1
2
3
4
5
6
7
Vstandby = 0V
Tamb = 25°C
Icc (mA)
Vcc (V)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
1
2
3
4
5
6
7Vcc = 5V
Tamb = 25°C
Icc (mA)
Vstandby (V)
TS4871
18/28
Fi g. 75 : Curr ent C ons um pti on v s St an dby
Voltage @ Vcc = 2.6V
Fig. 77 : Clipping Voltage vs Power Supply
Voltage and Load Resistor
Fig. 79 : Vout1+Vout2 Unweighted Noise Floor
Fi g. 76 : Curr ent C ons um pti on v s St an dby
Voltage @ Vcc = 3.3V
Fig. 78 : Clipping Voltage vs Power Supply
Voltage and Load Resistor
Fig. 80 : V out1+Vout2 A-weighted Noise Floor
0.0 0.5 1.0 1.5 2.0 2.5
0
1
2
3
4
5
6Vcc = 2.6V
Tamb = 25°C
Icc (mA)
Vstandby (V)
2.5 3.0 3.5 4.0 4.5 5.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Tamb = 25
°
C
RL = 16
RL = 8
RL = 4
Vout1 & Vout2
Clipping Voltage High side (V)
Power supply Voltage (V)
100 1000 10000
0
20
40
60
80
100
120
Av = 10
Av = 2
Standby mode
Vcc = 2.5V to 5V, Tamb = 25 C
Cb = Cin = 1 F
Input Grounded
BW = 20Hz to 20kHz (Unweighted)
20
Output Noise Voltage ( V)
Frequency (Hz)
0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
1
2
3
4
5
6Vcc = 3.3V
Tamb = 25°C
Icc (mA)
Vstandby (V)
2.5 3.0 3.5 4.0 4.5 5.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Tamb = 25
°
C
RL = 16
RL = 8
RL = 4
Vout1 & Vout2
Clipping Voltage Low side (V)
Power supply Voltage (V)
100 1000 10000
0
20
40
60
80
100
120
Av = 10
Av = 2
Standby mode
Vcc = 2.5V to 5V, Tamb = 25 C
Cb = Cin = 1 F
Input Grounded
BW = 20Hz to 20kHz (A-Weighted)
20
Output Noise Voltage ( V)
Frequency (Hz)
TS4871
19/28
APPLICATION INFORMATION
Fig. 81 : Demoboard Schematic
Fi g. 82 : SO8 & Mi niSO8 De m oboa rd Com pon ents Side
4
3
2
1
5
8
Vin-
Vin+
-
+
-
+
Bypass
Standby Bias
6
Vout1
Vout2
Av=-1
TS4871
Vcc
GND
Vcc
7
+
470µ
S6
OUT1
S3
GND
S4
GND
S7
C10
+
470µ
C9
C7
100n
C6
100µ +
R1
R2 C2
C1
C8
C12
1u
C11
Vcc
R7
330k
S8
Standby
D1
PW ON
R8
Vcc
S5
Positive Input mode
R6
Pos input
P2
Neg. input
P1
C4 R5
R4 C5
R3 C3
GND
S2
Vcc S1 Vcc
+
TS4871
20/28
Fig. 83 : SO8 & MiniSO8 Demoboard Top
So lder Layer
Fig. 84 : SO8 & MiniSO8 Demoboard Bottom Solder
Layer
BTL Configuration Principle
The TS4871 is a monolithic power amplifier with a
BTL output type. BTL (Bridge Tied Load) means
that each end of the load is connected to two
single ended output amplifiers. Thus, we have :
Sin gle ended output 1 = Vout1 = Vout (V)
Sin gle ended output 2 = Vout2 = -Vo ut (V)
And Vout1 - Vout2 = 2Vout (V)
The out put power is:
For the same power supply voltage, the output
power in BTL configuration is four times higher
than the output power in single ended
configuration.
Gain In Typical Application Schematic
(see page 1)
In flat region (n o effect of Cin), the out put voltage
of the first stage is:
For the second stage : Vo ut2 = -Vout1 (V)
The differential output voltage is:
The differential gain named gain (Gv) for more
convenient usage is:
Remark : Vo ut2 is in phase with Vin and Vout1 is
180 phased with Vin. It means that the positive
terminal of the loudspeaker should be connected
to Vout2 and the negative to Vout 1.
Low and high frequ enc y response
In low frequency region, the effect of Cin starts.
Cin with Rin forms a high pass filter with a -3dB cut
off frequency.
In high frequency region, you can limit the
bandwidth by adding a capacitor (Cfeed) in
parallel on Rfeed. Its form a l ow pass filter with a
-3dB cut off frequency.
)W(
R)Vout2(
Pout L
2
RMS
=
Vout1 = Vin Rfeed
Rin
-------------------- (V)
Vout2 Vo ut 1 = 2Vin Rfee d
Rin
-------------------- (V)
Gv = Vout2 Vout1
Vin
--------------------------------------- = 2 Rfeed
Rin
--------------------
FCL = 1
2π Rin Cin
-------------------------------- Hz()
F
CH = 1
2π Rfeed Cfeed
----------------------------------------------- Hz()
TS4871
21/28
Power dissipation and efficiency
Hypo thesis :
• Voltage and current in the load are sinusoidal
(Vout and Iout)
• Supply voltage is a pure DC source (Vcc)
Regarding the load we have:
and
and
Then, the average current delivered by the supply
voltag e is:
The power deli vered by the supply voltage is
Psuppl y = Vcc IccAVG (W)
Then, the power dissip ated by the amplifier is
Pdiss = Psupply - Pout (W)
and the max im um value is obtained when :
and its value is:
Remark : This maximum value is only de pending
on power supply voltage and load values.
The efficiency is the ratio between the output
power and the power supply
The maximum theoretical value is reached when
V p e ak = V cc, so
Decoupl i ng of the ci rc u it
T wo c apacitors are needed to bypass properly the
TS4871, a power supply bypass capacitor Cs and
a bias voltage bypass capacitor Cb.
Cs has especially an influence on the THD+N in
high freque ncy (above 7kHz) and indirectly on the
power supply disturbances.
With 100µF, you can expect similar THD+N
performanc es like shown in the datasheet.
If Cs is lower than 100µF, in high frequency
increases, THD+N and disturbances on the power
supp ly ra i l are less f i ltered.
To the contrary, if Cs is higher than 100µF, those
disturbances on the power supply rail are more
filtered.
Cb has an influence on THD+N in lower frequency,
but its function is critical on the final result of PSRR
with input grounded in lower frequency.
If Cb is lower than 1µ F, T HD+N increase in lower
frequency (see THD+N vs frequency curves) and
the PSR R worsens up
If Cb is h igher than 1µF, the benefit on T HD+N in
lower freq uency is small but the ben efit on P SRR
is substantial (see PSRR vs. Cb curve : fig.12).
Note that Cin has a non-negligible effect on PSRR
in lower frequency . Lower is its value, higher is the
PS R R (see f ig. 13) .
Pop and C lic k perf orm ance
Pop and Click performance is intimately linked
with the size of the input capacitor Cin and the bias
voltage bypass capacitor Cb.
Size of Cin is due to the lower cut-off frequency
and PSRR value requested. Size of Cb is due to
THD+N and PSRR requested always in lower
frequency.
Moreover, Cb determines the speed that the
amplifier turns ON. The slower the speed is, the
softer the turn ON noise is.
The charge time of Cb is directly proportional to
VOUT = VPEAK sinωt (V)
IOUT = VOUT
RL
----------------- (A)
POUT = VPEAK2
2RL
---------------------- (W)
ICC AVG = 2VPEAK
πRL
-------------------- (A)
Pdiss = 22Vcc
πR
L
---------------------- P OUT POUT (W)
Pdiss
POUT
---------------------- = 0
)W(
R
Vcc2
maxPdiss L
2
2
π
=
η = POUT
Psupply
------------------------ = πVPEAK
4VCC
-----------------------
π
4
----- = 78.5%
TS4871
22/28
the internal generator resistance 50k.
Then, the charge time constant for Cb is
τb = 50kxCb (s)
As Cb is directly connected to the non-inverting
input (pin 2 & 3) and if we want to minimize, in
amplitude and duration, the output spike on Vout1
(pin 5), Cin must be charged faster than Cb. The
cha rge time constant of Cin is
τin = (Rin+Rf eed)xCin (s)
Thus we have the relation
τin << τb (s)
The respect of this relation permits to minimize the
pop and click noise.
Remark : Minimize Cin and Cb has a benefit on
pop and click phenomena but also on cost and
size of the application.
Example : your target for the -3dB cut off
frequency is 100 Hz. With Rin=Rfeed=22 k,
Cin=72nF (in fact 82nF or 100nF).
With Cb=1µF, if you choose the one of the latest
two values of Cin, the pop and click phenomena at
power supply ON or standby function ON/OFF will
be ve ry smal l
50 kx1µF >> 44kx1 00nF (50m s >> 4.4ms).
Increasing Cin value increases the pop and click
phenomena to an unpleasant sound at power
supply ON and standby function ON/OFF.
W hy Cs is n ot important in pop and click
consideration ?
Hypo thesis :
• Cs = 100µF
Supply voltage = 5V
Supply voltage internal resistor = 0.1
• Supply current of the amplifier Icc = 6mA
At power ON o f the su pply, the supply capacitor is
charged through the internal power supply
resistor. So, to reach 5V you need about five to ten
times the charging time constant of Cs (τs =
0.1xCs (s)).
Then, this time equal 50µ s to 100µs << τb in the
majo rity of application.
At power OFF of the supply, Cs is discharged by a
constant current Icc. The di scharge time from 5V
to 0V of Cs is:
Now, we must consider the disc harge time of Cb.
At power OFF or standby ON, Cb is discharged by
a 100k resistor. So the discharge time is about
τbDisch 3xCbx100k (s).
In the majority of application, Cb=1µF, then
τbDisch300ms >> tdischCs.
Power amplifier design examples
Given :
• Load impedanc e : 8
• Output pow er @ 1% THD+N : 0.5W
• Input impedance : 10k min.
• Input voltage peak to peak : 1Vpp
• Bandwidth frequ ency : 20Hz to 20 kHz (0, -3dB)
Ambient temperature max = 50°C
• SO8 package
First of all, we m ust cal culate t he m inimum p ower
supply voltage to obtain 0.5W into 8. With curves
in fig. 15, we can read 3.5V. Thus, the power
supply voltage value min. will be 3.5V.
Following the maximum power dissipation
equat ion
with 3.5V we have Pdissmax=0.31W .
Refer to power derating curves (fig. 20), with
0.31W the maxim um ambien t temperature wi ll be
100°C. This last value could be higher if you follow
the example layout shown on the demoboard
(better dissipation).
The gain of the amplifier in flat region will be:
We have Rin > 10k. Let's take Rin = 10k, th en
Rfeed = 28.25k. We could use for Rfeed = 30k
in nor mal ized va lue and th e gain will be Gv = 6.
In lower frequency we want 20 Hz (-3dB cut off
frequency). Then:
So, we could use for Cin a 1µF capacitor value
tDischCs = 5Cs
Icc
-------------- = 83 ms
)W(
R
Vcc2
maxPdiss L
2
2
π
=
GV = VOUTPP
VINPP
--------------------- = 22R
L P OUT
VINPP
------------------------------------ = 5.65
TS4871
23/28
which gives 16Hz.
In Higher frequency we want 20kHz (-3dB cut off
frequency). The Gain Bandwidth Product of the
TS4871 is 2MHz typical and doesn’t change when
the amplifier delivers power into the load.
The first amplifier has a gain of:
and the theoretical value of the -3dB cut-off hi gher
frequen cy is 2MHz/3 = 660kHz.
We can keep this value or limit the bandwidth by
adding a capacitor Cfeed, in parallel on Rfeed.
Then:
So, we could use for Cfeed a 220pF capacitor
value that gives 24kHz.
Now, we can calculate the value of Cb with the
formula τb = 50kxCb >> τin = (Rin+Rfeed)xCin
which permits to reduce t he pop and c lick effects.
Then Cb >> 0. 8µF.
We can choose for Cb a normalized value of 2.2µF
that gives good results in THD+N and PSRR.
In the following tables, you could find three
another examples with values required for the
demoboard.
Remark : components with (*) marking are
optional.
Application n°1 : 20Hz to 20kHz bandwidth and
6dB gain BTL power amplifier.
Components :
Application n°2 : 20Hz to 20kHz bandwidth and
2 0dB gai n B TL power a m pl i fier.
Components :
CIN = 1
2π RinFCL
------------------------------ = 795nF
Rfeed
Rin
----------------- = 3
CFEED = 1
2π RFEEDFCH
--------------------------------------- = 265pF
Designator Part Type
R1 22k / 0.125W
R4 22k / 0.125W
R6 Short Cicuit
R7 330k / 0.125W
R8* (Vcc-Vf_led)/If_led
C5 470nF
C6 100µF
C7 100nF
C9 Short Circuit
C10 Short Circuit
C12 1µF
S1, S2, S6, S7 2mm insulated Plug
10.16mm pitch
S8 3 pts connector 2.54mm
pitch
P1 PCB Phono Jack
D1* Led 3mm
U1 TS4871ID or TS4871IS
Designator Part Type
R1 110k / 0.125W
R4 22k / 0.125W
R6 Short Cicuit
R7 330k / 0.125W
R8* (Vcc-Vf_led)/If_led
C5 470nF
C6 100µF
C7 100nF
TS4871
24/28
Application n°3 : 50Hz to 10kHz bandwidth and
1 0dB gai n B TL power a m pl i fier.
Components :
Application n°4 : Differential inputs BTL power
amplifier.
In this configuration, we need to place these
compon ents : R1, R4, R5, R6, R7, C4, C5, C12.
We have also : R4 = R5, R1 = R6, C4 = C5.
The gain of the amplifier is:
For Vcc=5V, a 20Hz to 20kHz bandwidth and 20dB
gain BTL power amplifier you could follow the bill
of material be low.
Components :
C9 Short Circuit
C10 Short Circuit
C12 1µF
S1, S2, S6, S7 2mm insulated Plug
10.16mm pitch
S8 3 pts connector 2.54mm
pitch
P1 PCB Phono Jack
D1* Led 3mm
U1 TS4871ID or TS4871IS
Design ator Part Typ e
R1 33k / 0.125W
R2 Short Circuit
R4 22k / 0.125W
R6 Short Cicuit
R7 330k / 0.125W
R8* (Vcc-Vf_led)/If_led
C2 470pF
C5 150nF
C6 100µF
C7 100nF
C9 Short Circuit
C10 Short Circuit
C12 1µF
S1, S2, S6, S7 2mm insulated Plug
10.16mm pitch
S8 3 pts connector 2.54mm
pitch
P1 PCB Phono Jack
D1* Led 3mm
U1 TS4871ID or TS4871IS
Design ator Part Typ e
Designator Part Type
R1 110k / 0.125W
R4 22k / 0.125W
R5 22k / 0.125W
R6 110k / 0.125W
R7 330k / 0.125W
R8* (Vcc-Vf_led)/If_led
C4 470nF
C5 470nF
C6 100µF
C7 100nF
C9 Short Circuit
C10 Short Circuit
C12 1µF
D1* Led 3mm
S1, S2, S6, S7 2mm insu la ted Plu g
10.16m m pitch
S8 3 pts connector 2.54mm
pitch
P1, P2 PCB Phono Jack
U1 TS4871ID or TS4871IS
GVDIFF = 2 R1
R4
--------
TS4871
25/28
Note on how to use the PSRR curves
(page 7)
We have finished a design and we have chosen
the components values :
• Rin=Rfeed= 22k
• Cin=100nF
• Cb=1µF
Now, on fig. 13, we can see the PSRR (input
grounded) vs frequency curves. At 217Hz we have
a PSRR value of -36dB.
In reality we want a value about -70dB. So, we
need a gain of 34dB !
Now, on fig. 12 we can see the effect of Cb on the
PSRR (input grounded) vs. frequency. With
Cb=100µF, we can reach the -70dB value.
The process to obtain the final curve (Cb=100µF,
Cin=100nF, Rin=Rfeed=22k) is a simple transfer
point by point on each frequency of the curve on
fig. 13 to the curve on fig. 12. The measurement
result is shown on the next figure.
Fig. 85 : PS RR changes with Cb
What is the PSRR ?
The PSRR is the Power Supply Rejection Ratio.
It's a kind of SVR in a determined frequency range.
The PSRR of a device, is the ratio between a
power supply disturbance and the result on the
output. We can say that the PSRR is the ability of
a device to minimize the impact of power supply
disturba nces to the output.
How do we measure the PSRR ?
Fig. 86 : PSRR measurem en t schematic
P rinci ple of ope ration
• We fixed the DC voltage supply (Vcc), the AC
sinusoidal ripple voltage (Vripple) and no supply
capacit or Cs is used
The PSRR value for each frequency is:
Remark : The measure of the Rms voltage is not a
Rms selective measure but a full range (2 Hz to
125 kHz) Rms measure. It means that we
measure t he effective Rms signal + the noise.
High/low cut-off frequencies
For their calculation, please check this "Frequency
Resp onse Gain vs Cin, & Cfeed" graph:
10 100 1000 10000 100000
-70
-60
-50
-40
-30
Cin=100nF
Cb=100
µ
F
Cin=100nF
Cb=1
µ
F
Vcc = 5, 3.3 & 2.6V
Rfeed = 22k, Rin = 22k
Rg = 100
, RL = 8
Tamb = 25
°
C
PSRR (dB)
Frequency (Hz)
Vripple
Vcc
Rin
Cin
Rg
100 Ohms
Cb
Rfeed
4
3
2
1
5
8
Vin-
Vin+
-
+
-
+
Bypass
Standby Bias
6
Vout1
Vout2
Av=-1
TS4871
Vs-
Vs+
RL
Vcc
GND
7
PSRR dB() = 20 x Log10 Rms Vripple()
Rms Vs + - V s-
()
---------------------------------------------
10 100 1000 10000
-25
-20
-15
-10
-5
0
5
10
Rin = Rfeed = 22k
Tamb = 25°C
Cfeed = 2.2nF
Cfeed = 680pF
Cfeed = 330pF
Cin = 470nF
Cin = 82nF
Cin = 22nF
Gain (dB)
Frequency (Hz)
TS4871
26/28
PACKAGE MECHANICAL DATA
DIM. mm. inch
MIN. TYP MAX. MIN. TYP. MAX.
A 1.35 1.75 0.053 0.069
A1 0.10 0.25 0.04 0.010
A2 1.10 1.65 0.043 0.065
B 0.33 0.51 0.013 0.020
C 0.19 0.25 0.007 0.010
D 4.80 5.00 0.189 0.197
E 3.80 4.00 0.150 0.157
e 1.27 0.050
H 5.80 6.20 0.228 0.244
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
k ˚ (max.)
ddd 0.1 0.04
SO-8 MECHANICAL DATA
0016023/C
8
TS4871
27/28
PACKAGE MECHANICAL DATA
TS4871
28/28
PACKAGE MECHANICAL DATA
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by impli cation or otherwise under any patent o r patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroel ectroni cs.
© The ST logo is a registered trad emark of STMicroelectronics
© 2003 ST Microelectronics - Printed in Italy - All Rights Reserved
STM i cro electron ic s GROU P OF COMPANIES
Austral i a - Brazil - Canada - China - F in l and - F rance - Germ any - Hong K ong - I ndi a - Is rael - It al y - Ja pan - Ma l aysia
Malta - Morocc o - Singapore - S pai n - Swe den - Sw i tz erl and - United Kingdom - Uni ted Stat es
© http:// www.st. co m