This is information on a product in full production.
October 2015 DocID026142 Rev 3 1/121
STPM32, STPM33, STPM34
ASSP for metering applications with up to four independent 24-bit
2nd order sigma-delta ADCs, 4 MHz OSF and 2 embedded PGLNA
Datasheet
-
production data
Features
Active power accuracy:
<0.1% error over 5000: 1 dynamic range
<0.5% error over 10000: 1 dynami c ran ge
Exceeds 50-60 Hz EN 50470-x, IEC 62053-2x,
ANSI12.2x standard requirements for AC watt
meters
Reactive power accuracy:
<0.1% error over 2000:1 dynam ic rang e
Dual mode apparent energy calculation
Instantaneous and averaged power
RMS and instantaneous voltage and current
Under and overvoltage detection (sag and
swell) and monitoring
Overcurrent detection and monitoring
UART and SPI serial interface with
programmable CRC polynomial verification
Programmable LED and interrupt outputs
Four independent 24-bit 2
nd
order sigma-delta
ADCs
Two programmable gain chopper stabilized
low-noise and low-offset amplifiers
Bandwidth 3.6 kHz @ -3 dB
V
cc
supply range 3.3 V±10%
Supply current I
cc
4.3 mA (STPM32)
Input clock frequency 16 MHz, Xtal or external
source
Twin precision voltage reference: 1.18 V with
independent programmable TC, 30 ppm/°C
typ.
Internal low drop regulator @ 3 V (typ.)
QFN packages
Operating temperature: from -40 °C to +85 °C
Description
The STPM3x is an ASSP family designed for high
accuracy measurement of power and energies in
power line systems using the Rogowski coil,
current transformer or shunt current sensors. The
STPM3x provides instantaneous voltage and
current waveforms and calculates RMS values of
voltage and currents, active, reactive and
apparent power and energies. The STPM3x is a
mixed signal IC family consisting of an analog and
a digital section. The analog section consists of
up to two programmable gain low-noise low-offset
amplifiers and up to four 2
nd
order 24-bit sigma-
delta ADCs, two bandgap voltage references with
independent temperature compensation, a low
drop voltage regulator and DC buffers. The digital
section consists of digital filtering stage, a
hardwired DSP, DFE to the input and a serial
communication interface (UART or SPI). The
STPM3x is fully configurable and allows a fast
digital system calibration in a single point over the
entire current dynamic range.
QFN24L 4x4x1 QFN32L 5x5x1
Table 1. Device summary
Order code Package Packing
STPM34TR QFN32L 5x5x1 Tape and reel
STPM33TR QFN32L 5x5x1 Tape and reel
STPM32TR QFN24L 4x4x1 Tape and reel
www.st.com
Contents STPM32, STPM33, STPM34
2/121 DocID026142 Rev 3
Contents
1 Schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 Pin programmability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5 Typical application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Measurement error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 ADC offset error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4 Gain error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8 Theory of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1 Gener a l o pe r a tion de sc r ip tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.2 Functional descrip tion of the analog pa rt . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.2.1 Power management section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.2.2 Analog front end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.2.3 Clock generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2.4 Power-on-reset (POR) and enable (EN) . . . . . . . . . . . . . . . . . . . . . . . . 36
8.3 Functional descrip tion of the digital p art . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.3.1 Digital front end (SDSx bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.3.2 Decimation block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.3.3 Filter block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.3.4 DC cancellation filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.3.5 Fundamental component filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.3.6 Reactive filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.4 Functional descrip tion of hardwir ed DSP . . . . . . . . . . . . . . . . . . . . . . . . . 40
DocID026142 Rev 3 3/121
STPM32, STPM33, STPM34 Contents
121
8.4.1 Active power and energy calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.4.2 Fundamental active power and energy calculation . . . . . . . . . . . . . . . . 43
8.4.3 Reactive power and energy calculation . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.4.4 Apparent power and energy calculation . . . . . . . . . . . . . . . . . . . . . . . . 46
8.4.5 Sign of power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.4.6 Calculation of power and energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.4.7 RMS calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.4.8 Zero-crossing signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.4.9 Phase meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.4.10 Sag and swell detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.4.11 Tamper detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.4.12 AH accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.4.13 Status bits, event bits and interrupt masks . . . . . . . . . . . . . . . . . . . . . . 61
8.5 Functional description of communication peripheral . . . . . . . . . . . . . . . . 65
8.6 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.6.1 Synchronization and remote reset functionality . . . . . . . . . . . . . . . . . . . 67
8.6.2 SPI peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.6.3 UART peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.6.4 UART/SPI status register and interrupt control register . . . . . . . . . . . . . 74
9 Application design and calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.1 Application design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.1.1 Example: current transformer case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.2 Application calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.2.1 Voltage and current calibration (CHVx, CHCx bits) . . . . . . . . . . . . . . . . 80
9.2.2 Phase calibration (PHVx, PHCx bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2.3 Power offset calibration (OFAx, OFAFx, OFRx, OFSx bits) . . . . . . . . . . 85
10 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
10.1 Regist e r map graphical representation . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.2 Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
10.3 UART/SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
10.4 Data registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
11 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
11.1 QFN24L 4x4x1 mm 0.5 pitch package informat ion . . . . . . . . . . . . . . . . .116
Contents STPM32, STPM33, STPM34
4/121 DocID026142 Rev 3
11.2 QFN32L 5x5x1 mm 0.5 pitch package informat ion . . . . . . . . . . . . . . . . .118
12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
DocID026142 Rev 3 5/121
STPM32, STPM33, STPM34 List of tables
121
List of tables
Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STPM34, STPM33, STPM32 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 4. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 5. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 6. Programmable pin functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 7. Suggested external components in metering applications . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 8. Convention table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 9. Temperature compensation parameter typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 10. Current channel input preamplifier gain selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 11. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 12. LPWx bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 13. STPM3x internal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 14. STPM3x basic calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 15. STPM3x current voltage LSB values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 16. Voltage sag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 17. Voltage swell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 18. Current swell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 19. Tamper tolerance setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 20. AH accumulator LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 21. Live events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 22. Status register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 23. Communication pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 24. Communication session structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 25. SPI control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 26. LSBfirst example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 27. LSBfirst and MISO line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 28. LSBfirst programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 29. CRCenable programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 30. UART control register US_REG1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 31. UART control register US_REG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 32. Baud rate register examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 33. UART/SPI status and interrupt control register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 34. Example 1 design data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 35. Example 1 calculated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 36. LPWx bits, Cp, LED frequency relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 37. Calibration target values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 38. Calibrator calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 39. Phase-delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 40. Phase compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 41. Power offset LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 42. Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 43. Register map legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 44. Row 0, DSP control register 1 (DSP_CR1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 45. Row 1, DSP control register 2 (DSP_CR2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 46. Row 2, DSP control register 3 (DSP_CR3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 47. Row 3, DSP control register 4 (DSP_CR4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 48. Row 4, DSP control register 5 (DSP_CR5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
List of tables STPM32, STPM33, STPM34
6/121 DocID026142 Rev 3
Table 49. Row 5, DSP control register 6 (DSP_CR6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 50. Row 6, DSP control register 7 (DSP_CR7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 51. Row 7, DSP control register 8 (DSP_CR8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 52. Row 8, DSP control register 9 (DSP_CR9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 53. Row 9, DSP control register 10 (DSP_CR10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 54. Row 10, DSP control register 11 (DSP_CR11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 55. Row 11, DSP control register 12 (DSP_CR12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 56. Row 12, digital front end control register 1 (DFE_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 57. Row 13, digital front end control register 2 (DFE_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 58. Row 14, DSP interrupt control mask register 1 (DSP_IRQ1) . . . . . . . . . . . . . . . . . . . . . . 106
Table 59. Row 15, DSP interrupt control mask register 2 (DSP_IRQ2) . . . . . . . . . . . . . . . . . . . . . . 107
Table 60. Row 16, DSP status register 1 (DSP_SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 61. Row 17, DSP status register 2 (DSP_SR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 62. Row 18, UART/SPI control register 1 (US_REG1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 63. Row 19, UART/SPI control register 2 (US_REG2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 64. Row 20, UART/SPI control register 3 (US_REG3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 65. Row 21, DSP live event 1 (DSP_EV1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 66. Row 22, DSP live event 2 (DSP_EV2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 67. QFN24L 4x4x1 mm 0.5 pitch package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 68. QFN32L 5x5x1 mm 0.5 pitch package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 69. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
DocID026142 Rev 3 7/121
STPM32, STPM33, STPM34 List of figures
121
List of figures
Figure 1. STPM34 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2. STPM33 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3. STPM32 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 4. STPM34 pinout (top view), QFN32L 5x5x1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 5. STPM33 pinout (top view), QFN32L 5x5x1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 6. STPM32 pinout (top view), QFN24L 4x4x1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. SPI timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 8. SPI enable and disable timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 9. UART enable and disable timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 10. Output load circuit for enable and disable times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 11. STPM34 application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 12. Active energy error vs. current gain=2x integrator off. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 13. Active energy error vs. current gain=16x integrator off. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 14. Active energy error vs. frequency gain=2x integrator off . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 15. Active energy error vs. frequency gain=16x integrator off . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 16. Reactive energy error vs. current gain=2x integrator off. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 17. Reactive energy error vs. current gain=16x integrator off. . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 18. Reactive energy error vs. frequency gain=2x integrator off . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 19. Reactive energy error vs. frequency gain=16x integrator off . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 20. Active energy error vs. current gain=16x integrator on. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 21. Reactive energy error vs. current gain=16x integrator on. . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 22. Power management internal connection scheme and polarization. . . . . . . . . . . . . . . . . . . 32
Figure 23. Temperature compensation typical curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 24. Analog front end internal scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 25. Block diagram of the modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 26. Different oscillator circuits (a): with quartz; (b): with external source . . . . . . . . . . . . . . . . . 35
Figure 27. Clock feed for multiple devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 28. Power-on-reset sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 29. Global startup reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 30. DSP block functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 31. Filter block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 32. DSP block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 33. Active power and energy calculation block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 34. Fundamental active power and energy calculation block diagram . . . . . . . . . . . . . . . . . . . 44
Figure 35. Reactive power and energy calculation block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 36. Apparent power and energy calculation block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 37. Power sign status bit delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 38. RMS block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 39. Zero-crossing generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 40. Zero-crossing signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 41. Phase meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 42. Sag and swell detection blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 43. Sag detection process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 44. Swell detection process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 45. AH accumulation block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 46. AH accumulation thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 47. Single communication time frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 48. Memory data organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
List of figures STPM32, STPM33, STPM34
8/121 DocID026142 Rev 3
Figure 49. Latching and reset through SYN pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 50. Latching through SYN pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 51. UART frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 52. Phase shift error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 53. QFN24L 4x4x1 mm 0.5 pitch outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 54. QFN24L 4x4x1 mm 0.5 pitch recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 55. QFN32L 5x5x1 mm 0.5 pitch outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
DocID026142 Rev 3 9/121
STPM32, STPM33, STPM34 Schematic diagram
121
1 Schematic diagram
Figure 1. STPM34 block diagram
IIP1
IIN1
VIP1
VIN1
2
order
ΣΔ
modulator
PLNA
IIP2
IIN2
PLNA
Decimation
Decimation
Decimation
Phase
compensation
SPI/UART
SCS MISO/
TXD
MOSI/
RXD
SCL SYN
OSC 16 MHz
XTAL1 XTAL2
INT2
INT1
LED2
CLKOUT/
ZCR EN
LED1
VIP2
VIN2
2
order
ΣΔ
modulator
Decimation
Filters
DSP
VCC
VDDA VREF1
LDR 3.0 V
VOLTAGE
REFERENCE
VRefC1
VRefV1
VREF2
VOLTAGE
REFERENCE
LDR 1.2 V
VDDD
VRefC2
VRefV2
2
order
ΣΔ
modulator
2
order
ΣΔ
modulator
Phase
compensation
Phase
compensation
Phase
compensation
nd
nd
nd
nd
GIPG1303141224LM
Schemat ic diag ra m STPM3 2, STPM 33, ST P M34
10/121 DocID026142 Rev 3
Figure 2. STPM33 block diagram
IIP1
IIN1
VIP1
VIN1
2
order
ΣΔ
modulator
2
order
ΣΔ
modulator
PLNA
IIP2
IIN2
PLNA
Decimation
Decimation
Decimation
Phase
compensation
Phase
compensation
Phase
compensation
SPI/UART
SCS MISO/
TXD
MOSI/
RXD
SCL SYN
OSC 16 MHz
XTAL1 XTAL2
INT2
INT1
LED2
CLKOUT/
ZCR EN
LED1
Filters DSP
VCC
VDDA VREF1
LDR 3.0 V
VOLTAGE
REFERENCE
VRefC1
VRefV1
VREF2
VOLTAGE
REFERENCE
LDR 1.2 V
VDDD
VRefC2
VRefV2
2
order
ΣΔ
modulator
nd
nd
nd
GIPG1303141235LM
DocID026142 Rev 3 11/121
STPM32, STPM33, STPM34 Schematic diagram
121
Figure 3. STPM32 block diagram
IIP1
IIN1
VIP1
VIN1
2
order
ΣΔ
modulator
PLNA
Decimation
Decimation
Phase
compensation
Phase
compensation
SPI/UART
SCS MISO/
TXD
MOSI/
RXD
SCL SYN
OSC 16 MHz
XTAL1 XTAL2
INT1
LED2
CLKOUT/
ZCR EN
LED1
Filters DSP
VCC
VDDA VREF1
LDR 3.0 V
VOLTAGE
REFERENCE
VRefC1
VRefV1
LDR 1.2 V
VDDD
2
order
ΣΔ
modulator
nd
nd
GIPG1303141239LM
Pin confi gurat io n STPM3 2, STPM 33, ST PM 34
12/121 DocID026142 Rev 3
2 Pin configuration
Figure 4. STPM34 pinout (top view), QFN32L 5x5x1
STPM34
XTAL1
LED1
LED2
CLKIN/XTAL2
INT1
INT2
CLKOUT/ZCR
20
19
18
17
VDDA
GNDA
MISO/TXD
GND_REG
24
22
VREF2
VREF1
21
VCC
27
26
25
SCS
SYN
VDDD
SCL
NC
28
MOSI/RXD
GNDD
VIP2
IIP1
IIN1
VIN2
IIP2
IIN2
2
3
4
5
6
7
1
8
EN
13
12
11
10
9
14
15
16
23
GND_REF
VIN1
VIP1
31
30
29
32
GNDD
GIPG1303141253LM
DocID026142 Rev 3 13/121
STPM32, STPM33, STPM34 Pin configuration
121
Figure 5. STPM33 pinout (top view), QFN32L 5x5x1
Figure 6. STPM32 pinout (top view), QFN24L 4x4x1
STPM33
XTAL1
LED1
LED2
CLKIN/XTAL2
INT1
INT2
CLKOUT/ZCR
20
19
18
17
VDDA
GNDA
MISO/TXD
GND_REG
24
22
VREF2
VREF1
21
VCC
27
26
25
SCS
SYN
VDDD
SCL
NC
28
MOSI/RXD
GNDD
IIP1
IIN1
IIP2
IIN2
2
3
4
5
6
7
1
8
EN
13
12
11
10
9
14
15
16
23
GND_REF
VIN1
VIP1
31
30
29
32
NC
NC
NC
GIPG1303141257LM
STPM32
2
3
4
5
XTAL1
LED1
LED2
CLKIN/XTAL2
6
7
INT1
EN
1
CLKOUT/ZCR
17
16
15
14
VDDA
GNDA
GND_REG
13
GND_REF
18
VCC
24
23
22
21
MOSI/RXD
SCL
SCS
MISO/TXD
20
19
GNDD
SYN
12
11
10
9
8
IIP1
IIN1
VREF1
VIN1
VIP1
VDDD
GIPG1303141303LM
Pin confi gurat io n STPM3 2, STPM 33, ST PM 34
14/121 DocID026142 Rev 3
Table 2. STPM34, STPM33, STPM32 pin description
STPM34 STPM33 STPM32 Name Description and
multiplexed functi on Voltage range Functional
section
111CLKOUT/ZCR
-Zero-crossing output
-System clock output From 0 to V
CC
Multifunctional
2 2 2 CLKIN/XTAL2 -Input of external clock
-External crystal input 2 From 0 to V
CC
Oscillator
3 3 3 XTAL1 -External crystal input 1 From 0 to V
CC
Oscillator
4 4 4 LED1 -Pulse ou tput 1
-Primary current SD
bitstream From 0 to V
CC
Multifunctional
5 5 5 LED2 -Pulse ou tput 2
-Secondary cu rrent SD
bitstream From 0 to V
CC
Multifunctional
666 INT1
-Interrupt 1
-Primary volt a ge SD
bitstream From 0 to V
CC
Multifunctional
77 INT2
-Interrupt 2
-Seconda ry vo ltage SD
bitstream From 0 to V
CC
Multifunctional
8 8 7 EN Enable pin From 0 to V
CC
Signal
998 VIP1
Positive voltage primary
input From -0.3 V to
0.3 V Signal
10 10 9 VIN1 Negative voltage primary
input From -0.3 V to
0.3 V Signal
11 11 10 IIP1 Positive current primary
input From -0.3 V to
0.3 V Signal
12 12 11 IIN1 Negative current primary
input From -0.3 V to
0.3 V Signal
13 13 IIN2 Negat ive cur rent s econd ary
input From -0.3 V to
0.3 V Signal
14 14 IIP2 Positi ve current se condary
input From -0.3 V to
0.3 V Signal
15 - VIN2 Negative voltage secondary
input From -0.3 V to
0.3 V Signal
16 - VIP2 Positive voltage secondary
input From -0.3 V to
0.3 V Signal
17 17 12 VREF1 Output of voltage reference
1 From 1.16 V to
1.18 V Power
18 18 13 GND_REF Analog ground of VREF Power
19 19 VREF2 Output of voltage reference
2From 1.16 V to
1.18 V Power
20 20 14 GNDA Analog ground (shield) Power
DocID026142 Rev 3 15/121
STPM32, STPM33, STPM34 Pin configuration
121
21 21 15 VDDA Output of voltage regulator 3.0 V Power
22 22 16 GND_REG Ground Power
23 23 17 VCC Voltage supply From 3.0 V to
3.6 V Power
24 15, 16,
24, 25 - NC Not connected
25, 26 26 18 GNDD Digital ground Power
27 27 19 VDDD Output of voltage regulator 1.2 V Power
28 28 20 SYN Synchronization pin From 0 to V
CC
SPI
29 29 21 SCS Chip-select SPI/UART
select From 0 to V
CC
SPI/UART
30 30 22 SCL SPI clock From 0 to V
CC
SPI
31 31 23 MOSI/RXD SPI master OUT slave IN
UART RX From 0 to V
CC
SPI/UART
32 32 24 MISO/TXD SPI master IN slave OUT
UART TX From 0 to V
CC
SPI/UART
Table 2. STPM34, STP M33, STPM32 pin description (continued)
STPM34 STPM33 STPM32 Name Description and
multiplexed functi on Voltage range Functional
section
Absolute maximum ratings STPM32, STPM33, STPM34
16/121 DocID026142 Rev 3
3 Absolute maximum ratings
Note: Absolute maximum ratings are those values beyond which damage to the device may occur.
Functional operation under these conditions is not implied. All values are referred to GND.
Note: This value is referred to single-layer PCB, JEDEC standard test board.
Table 3. Absolute maximum ratings
Symbol Parameter Value Unit
V
CC
DC input voltage -0.3 to 4.2 V
V
ID
Any pin input voltage -0.3 to V
CC
+ 0.3 V
V
IA
Analog pin input voltage (VIP, VIN, IIP, IIN) -0.7 to 0.7 V
ESD Human body mod el (all pins ) ±2 kV
I
LATCH
Current injection latch-up immunity 100 mA
T
OP
Operating junction temperature range -40 to 85 °C
T
j
Junction temperature -40 to 150 °C
T
STG
Storage temperature range -55 to 150 °C
Table 4. Thermal data
Symbol Parameter Package Value Unit
R
thJA
Thermal resistance junction-ambient QFN32L 5x5x1 30 °C/W
QFN24L 4x4x1 20
DocID026142 Rev 3 17/121
STPM32, STPM33, STPM34 Electrical characteristics
121
4 Electrical characteristics
V
CC
= 3.3 V, C
L
=1 µF between V
DDA
and GNDA, C
L
= 4.7 µF between V
DDD
and GNDD,
C
L
= 1 µF between V
CC
and GND, C
L
= 100 nF between VREF1, 2 and GNDREF, F
CLK
= 16
MHz, T
AMB
= 25 °C, EN = V
CC
, SPI/UART not used, unless otherwise specified
.
Table 5. Electrical characteristics
Symbol Parameter Test conditions Min. Typ. Max. Unit
General section
V
CC
Oper ati ng su ppl y
voltage 2.95 3.3 3.65 V
I
CC
Operati ng cu rrent
STPM32 4.3
mA
STPM33 5.0
STPM34 5.9
STPM34
Primary channel ON: ENVREF1 = 1,
enV1 = enC1 = 1
Secondary chann el OFF: E NVREF2 =
0, enV2 = enC2 = 0
4.5
STPM34
Primary current channel ON only:
ENVREF1 = 1, enV1 = 0, enC1 = 1
Secondary chann el OFF: E NVREF2 =
0, enV2 = enC2 = 0
4.0
F
CLK
Nominal frequency 16 MHz
Power management (VDDA, VDDD, GNDA, GNDD, GND_REG, EN)
V
POR
Power-on-res et on V
CC
2.5 V
I
STBY
Standby current
consumption EN=GND 1 uA
V
DDA
Analog regulated
voltage 2.85 V
V
DDD
Digital regulated
voltage 1.2 V
PSRR
REGS
Power supply rejection
ratio
(1)
50 Hz 50 dB
On-chip reference voltage (VREF1, VREF2)
V
REF
Reference voltage No load on V
REF
, T
C
= 010 (default) 1.18 V
T
C
Temperature
coefficient
(2)
Default 30 ppm/°
C
T
Cstep
TC programmable
step
(2)
±25 ppm/°
C
Electrical characteristics STPM32, STPM33, STPM34
18/121 DocID026142 Rev 3
Analog inputs (VIP1, VIN1, VIP2, VIN2, IIP1, IIN1, IIP2, IIN2)
V
MAX
Maximum inpu t signal
levels
Voltage channels (VIP1-VIN1, VIP2-
VIN2) -300 +300 V
Current channels (IIP1-IIN1, IIP2-IIN2)
Gain 2X
Gain 4X
Gain 8X
Gain 16X
-300
-150
-75
-37.5
+300
+150
+75
+37.5
mV
V
off
Amplifier offset
(2)
Shorted and grounded input 1 mV
Z
Vin
Voltage chan nel input
impedance
(1)
8M
Z
Iin
Current channel input
differential
impedance
(1)
Gain 2X
Gain 4X
Gain 8X
Gain 16X
90
170
300
510
k
G
ERR
Channel gain error Input V
MAX
/2 ±5 %
Crosstalk
(1)
Voltage to current channels -120 dB
Current to voltage channels -120
Digital I/O (CLKOUT/ZCR, XTAL1, CLKIN/XTAL2, LED1, LED2, INT1, INT2)
V
IH
Input high-voltage 0.75
V
CC
3.3 V
V
IL
Input low-voltage V
CC
= 3.2 V -0.3 0.6 V
V
OH
Output hig h-v oltage I
O
= -1 mA, C
L
= 50 pF, V
CC
= 3.2 V V
CC
-0.4 V
V
OL
Output low -v ol t age I
O
= +1 mA, C
L
= 50 pF, V
CC
= 3.2 V 0.4 V
Energy measurement accuracy
AP Active power
Over dynamic range 5000:1
PGA = 2 to 16 0.1
%
Over dynamic range 10000:1
PGA = 2 to 16 0.5
RP Reactive power Over dynamic range 2000:1
PGA = 2 to 16 0.1
RMS Voltage RMS Ove r dynamic range 1:200 0.5 %
Current RMS Over dynamic range 1:500 0.5
f
BW
Effective bandwidth -3 dB, HPF = 1 4 3600 Hz
Sigma-delta ADC performance
OSF Oversampling
frequency 4MHz
DR Decimation ratio 1/512
Table 5. Electrical characteristics (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
DocID026142 Rev 3 19/121
STPM32, STPM33, STPM34 Electrical characteristics
121
F
s
Sampling frequency 7.8125 kHz
FBW Flat band <0.05 dB allowed ripple 2 kHz
BW Effective bandwidth -3 dB, HPF=0 0 3600 Hz
DC measurement accuracy
PSRR
AC
Power supply AC
rejection
(2)
Voltage input shorted
Current input shorted
V
CC
= 3.3 V±150 mVp @ 1 kHz 65 dB
SPI timings
(3)
t_en T i me betwee n se lection
and cl ock 50 ns
t_clk Clock peri od 50 ns
t_cpw Clock pulse widt h 25 ns
t_setup Set-up time before
slav e sampling 10 ns
t_hold Hold tim e af ter sl ave
sampling 40 ns
tpZL Enable to low level time V
CC
= 3.3 V
±
10%,
V
IN
= 0 to 3 V, 1 MHz,
Rise time = fall time = 6 ns
RL = 1 KOhm, CL = 50 pF
see Figure 10
25 ns
tpLZ Disable from low level
time 15 ns
UART timings
(3)
t
1
CS enable to RX start 5 ns
t
2
Stop bit to CS disabl e 1 µs
t
3
CS disable to TX idle hold time 250 ns
tpZH Enable to high level
time V
CC
= 3.3 V
±
10%,
V
IN
= 0 to 3 V, 1 MHz,
Rise time = fall time = 6 ns
RL = 1 KOhm, CL = 50 pF
see Figure 10
21 ns
tpHZ Disable from high level
time 11 ns
SYN timings
(3)
t_ltch Time between
de-selection and latch 20 ns
t_lpw Latch pulse width 4 µs
t_w Time between two
consecutive latch
pulses s
t_rpw Reset pulse width 4 µs
Table 5. Electrical characteristics (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Electrical characteristics STPM32, STPM33, STPM34
20/121 DocID026142 Rev 3
t_rel Time between pulse
and selec t io n 40 ns
t_startup Time between power-
on an d reset 35 ms
1. Guaranteed by design.
2. Guaranteed by characterization.
3. Guaranteed by application.
Table 5. Electrical characteristics (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
DocID026142 Rev 3 21/121
STPM32, STPM33, STPM34 Electrical characteristics
121
Figure 7. SPI timings
Figure 8. SPI enable and disable timing diagrams
SCS
SCL
MOSI
SYN
t_en
t_clk
t_cpw
t_hold
t_setup
t_lpw t_rpw
t_wt_ltch t_rel
GIPG2503141109LM
9 9
9
9
2/
9
2/
9
 
 
QV
WS=/
9
*1'
9FF
6&6
0,62
WS/=
QV
*,3*/0
Electrical characteristics STPM32, STPM33, STPM34
22/121 DocID026142 Rev 3
Figure 9. UART enable and disable timing diagrams
Figure 10. Output load circuit for enable and disable times
3UREHDQGERDUGFDSDFLWDQFHLQFOXGHG
S)
.RKP
*1'
0,62
3UREH
9FF
*,3*/0
DocID026142 Rev 3 23/121
STPM32, STPM33, STPM34 Electrical characteristics
121
4.1 Pin programmability
Table 6. Programmable pin functions
Name Multiplexed function Functional description I/O
CLKOUT/ZCR System cloc k si gna l Clock si gna ls (DCLK, SCLK, MCLK, CLKIN)Output
Zero-crossing Line voltage/current zero-crossing
LED1 Programmab le pul se 1
Primary channel energies (A, AF, R, S)
(1)
1. A: active wideband; AF: active fundamental; R: reactive; S: apparent.
Output
Secondary channel energies (A, AF, R, S)
Primary ± secondary channel energ ies (A, AF,
R, S)
SD out current (DATI1) Sigma-delta bitstream of primary current
channel
LED2 Programmab le pul se 2
Primary channel energies (A, AF, R, S)
Output
Secondary channel energies (A, AF, R, S)
Primary ± secondary channel energ ies (A, AF,
R, S)
SD current (DATI2) Sigma-delta bitstream of secondary current
channel
INT1 Interrupt Programmable interrupt 1 Output
SD voltage (DATV1) Sigma-delta bitstream of primary voltage
INT2 Interrupt Programmable interrupt 2 Output
SD out voltage (DATV2) Sigma-delta bitstream of secondary voltage
SCS SPI/UART select Serial port selection at power-up Output
Chip-select SPI/UART chip-select
MOSI/RXD SPI master OUT slave IN SPI Input
UART RX UART
MISO/TXD SPI master IN slave OUT SPI Output
UART TX UART
Typical application example STPM32, STPM33, STPM34
24/121 DocID026142 Rev 3
5 Typical application exa mple
Figure 11 below shows the reference schematic of an application with the following
properties:
Constant pulses C
P
= 41600 imp/ kW h
I
NOM
= 5 A
I
MAX
= 90 A
Typical values for current sensor sensitivity are i ndicated in Table 7.
For more information about the application dimensioning and calibration please refer to
Section 9.
Figure 11. STPM34 application schematic
R9
10K
R26
470R
R20
1K
C26150p
C12 150p
C28150p
C25
10n
C11 150p
C8
100n
RS1
BKW-M-R0003-5.0
R4
1M
C29100n
C22
100n
C21150p
C31150p
C18150p
J11
Vref 1-2
1 2
R22
1K
C15 150p
J8
N
1
R5
4.7K
R21
6R
U3
STPM33/34
IN2
13 IN1
12 IP1
11
VP1
9
EN
8INT2
7INT1
6LED2
5LED1
4CKin/XTAL1
3XTAL2
2CKout/ZCR
1
VCC 23
GNDreg 22
VDDA 21
GNDA 20
VN1
10
IP2
14
VN2/NC
15
VP2/NC
16
VREF1 17
GNDref 18
VREF2 19
NC 24
Ex
Ex
GNDD-NC 25
GNDD 26
VDDD 27
SYN 28
SCS 29
SCL 30
MOSI 31
MISO 32
R18
1K
C16
15p
R15
470R
C9
150p
J7
DC Supply
1
2
C23
100u 10V
J6
SPI
12
34
56
78
910
J10
L2
1
R6
4.7K
0R
C32100n
R3100R
DL1 LED1
C34
22n
R13
270K
C301u
R2
22K
R11100R
DL2 LED2
R23
270K
C14 150p
C17
15p
C19
100n
C10 10n
R17
1K
R10
10K
R14
270K
C20
4.7u
C13 150p
C33
10n
Y1
16MHz
R8
10K
J4
Enable/RST
11
22
33
C24
22n
J9
L1
1
R12
270K
R7
10K
C27100n
T2
VAC 4626-X002
R25
270K
J5
DIGITAL I/O
2
4
6
8
1
3
5
7
R24
270K
Vp1
Vcc
Vn1
Vn2
Vcc
Vp2
Ip1 Ip2
In2In1
Vcc
Vcc
Vref2
Vref1
RXD
TXD
Vref1
SCS
Vref2
line2
1 NC
2 MOSI
3 Gnd
4 MISO
5 SCS
6 SCL
7 NC
8 SYN
9 NC
10 Vcc
1 Int1
2 Int2
3 Led2
4 En/Rst
5 Led1
6 Gnd
7 Ckin
8 Ckout/ZCR
GIPG040320140930LM
DocID026142 Rev 3 25/121
STPM32, STPM33, STPM34 Typical application example
121
Note: Above listed components refer to typical metering applications. The STPM3x operation is
not limited to the choice of these external components.
Table 7. Suggested external components in metering app lications
Function Component Description Value Tolerance Unit
Line voltage
interface Resistor
divider R to R ratio V
RMS
=230 V 1:1650 ±1% 50 ppm/°C V/V
R to R ratio V
RMS
=110 V 1:830
Line current
interface
Rogowski coil
Current to voltage ratio k
S
0.15 ±5%
50 ppm/°C mV/ACT 2.4 ±5%
Shunt 0.3 ±5%
Terminology STPM32, STPM33, STPM34
26/121 DocID026142 Rev 3
6 Terminology
6.1 Conventions
The lowest analog and digital power supply voltage is named GND and represents the
system ground. All voltage specifications for digital input/output pins are referred to GND.
The highest power supply voltage is named V
CC
. The highest core power supply is internally
generated and is named V
DDA
. Positive currents flow to a pin. Sinking current means that
the current is flowing to the pin and it is positive. Sourcing current means that the current is
flowing out of the pin and it is negative. A positive logic convention is used in all equations.
6.2 Measurement error
The power measurement error is defined by the following equation:
Equation 1
All measurements come from the comparison with a higher class power (0.02% error) meter
reference. Output bitstream of modulator is indicated as bsV and bsC for voltage and
curr ent ch anne l res pe ct iv ely.
6.3 ADC offset error
This is the error due to DC component associated with the analog inputs of the A/D
converters. Due to the internal automatic DC offset cancellation, the STPM3x measurement
is not affected by DC components in voltage and current channel. DC offset cancellation is
implemented in DSP thanks to a dedicated HPF.
6.4 Gain error
The gain error is due to the signal channel gain amplifiers. This is the difference between
the measured ADC code and the ideal output code. The difference is expressed as
percentage of the ideal code.
Table 8. Convention table
Type Convention Example
Pins All capita ls VDDA
Internal signal All capitals are italic VDDA
Configuration bit All capitals are underlined ROC1
Register name All capitals are bold DSP_CR1
e% measuredpower truepower
truepower
----------------------------------------------------------------------------------=
DocID026142 Rev 3 27/121
STPM32, STPM33, STPM34 Typical performance characteristics
121
7 Typical performance characteristics
Active energy error is measured at T = 25 °C, over phi (0°, 60°, -60°)
Reactive energy error is measured at T = 25 °C, over phi (90°, -90°, 60°, -60°)
Figure 12. Active energy error vs. current
gain=2x integrator off Figure 13. Active energy error vs. current
gain=16x integrator off
Figure 14. Active energy error vs. frequency
gain=2x integrator off Figure 15. Active energy error vs. frequency
gain=16x integrator off
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
0.01 0.1 1 10 100
error[%]
Current Amplitude to full -scale ratio [%]
phi=0°
phi=+60°
phi=-60°
GIPG1403141112LM
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
0.01 0.1 1 10 100
error[%]
Current Amplitude to full - scale ratio [%]
phi=0°
phi=-60°
phi=+60°
GIPG1403141120LM
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
45 50 55 60 65
error [%]
Frequency [Hz]
phi=0°
phi=+60°
phi=-60°
GIPG1403141123LM
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
45 50 55 60 65
error [%]
Frequency [Hz]
phi=0°
phi=+60°
phi=-60°
GIPG1403141129LM
Typical performance characteristics STPM32, STPM33, STPM34
28/121 DocID026142 Rev 3
Figure 16. Reactive energy error vs. current
gain=2x integrator off Figure 17. Reactive energy error vs. current
gain=16x integrator off
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
0.01 0.1 1 10 100
error[%]
Current Amplitude to full - scale ratio [%]
phi=+60°
phi=-60°
phi=+90°
phi=-90°
GIPG1403141132LM
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
0.01 0.1 1 10 100
error[%]
Current amplitude to full -scale ratio [%]
phi=+60°
phi=-60°
phi=+90°
phi=-90°
GIPG1403141135LM
Figure 18. Reac tive ene rgy err or vs. frequ e ncy
gain=2x integrator off Figure 19. Reactive energy error vs. frequency
gain=16x integrator off
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
45 50 55 60 65
error [%]
Frequency [Hz]
phi=+90°
phi=-90°
phi=+60°
phi=-60°
GIPG1403141137LM
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
45 50 55 60 65
error [%]
Frequency [Hz]
phi=+90°
phi=-90°
phi=+60°
phi=-60°
GIPG1403141141LM
DocID026142 Rev 3 29/121
STPM32, STPM33, STPM34 Typical performance characteristics
121
Figure 20. Active energy error vs. current
gain=16x inte grato r on Figure 21. Reactive energy error vs. current
gain=16x integrator on
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
0.010 0.100 1.000 10.000 100.000
error [%]
Current amplitude to full -scale ratio [%]
phi=0°
phi=-60°
phi=+60°
GIPG1403141143LM
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
0.010 0.100 1.000 10.000 100.000
error [%]
Current amplitude to full- scale ratio [%]
phi=+60°
phi=-60°
phi=+90°
phi=-90°
GIPG1403141145LM
Theory of operation STPM32, STPM33, STPM34
30/121 DocID026142 Rev 3
8 Theory of operation
8.1 General operation description
The STPM3x product family measures up to two line voltages and two line currents to
perform active, reactive and apparent power and energy, RMS and instantaneous values,
and line frequency information measurement of a single, split or poly-phase metering
system.
The STPM3x generates up to two independent train pulse output signals proportional to the
active, reactive, apparent or cumulative power. It also generates up to two programmable
interrupt output signals.
The internal register map and the configuration registers can be accessed by SPI or UART
interface.
The STPM3x converts analog signals, through four independent channels in parallel via
sigma-delta analog-to-digital converters, into a binary stream of sigma-delta signals with the
appropriate not overlapped control signal generator.
This technique fits to measure electrical line parameters (voltage and current) via analog
signals from voltage sensors and current sensors (inductive Rogowski coil, current
transformer or shunt resistors). Current channel inputs are connected, through external anti-
aliasing RC filter, to a Rogowski coil or current transformer (CT) or shunt current sensor
which converts line current into the appropriate voltage signal. Each current channel
includes a low-noise voltage preamplifier with a programmable gain. Voltage channels are
connected to a line voltage modulator (ADC). All channels have quiescent zero signal point
on GND, so the STPM3x samples differential signals on both channels with their zero point
around GND.
The converted sigma-delta signals feed an internal decimation filter stage that decimates 4
MHz bitstreams of a factor 512 allowing a 3.6 kHz bandwidth at -3 dB. The 24-bit voltage
and current data feed an internal configurable filtering block and the hardwired DSP that
performs the final computation of metrology quantities.
The STPM3x also includes two programmable temperature compensated bandgap
reference voltage generators and low drop supply voltage regulator. All reference voltages
are designed to eliminate the channel crosstalk.
The mode of operation and configuration of the device can be selected by dedicated
configura tion registers.
DocID026142 Rev 3 31/121
STPM32, STPM33, STPM34 Theory of operation
121
8.2 Functional description of the analog part
The analog part of the STPM3x consists of the following sections:
Power management section:
Reference voltage generators with programmable independent temperature
compensation
+3 V low drop supply voltage regulator
+1.2 V low drop supply voltage regulator
Analog front end section:
Preamplifiers in the two current channels
–2
nd
order sigma-delta modulators
Clock generator
Power-on-reset (POR)
8.2.1 Power management section
Supply pins for the analog part are: VCC, VDDA, VDDD and GND.
GND pins represent the reference point.
VCC pin is the power supply input namely +3.3 V to GND_REG, it has to be connected to
GND_REG via a 1 µF capacitor.
VDDA and VDDD are analog output pins of internal +3.0 V and +1.2 V low drop voltage
regulators.
At least 1 µF capacitor should be connected between VDDA and GNDA. At least 1 µF
(better 4.7 µF) capacitor should be connected between VDDD and GNDD. The input of the
mentioned regulators is VCC.
There are two voltage references embedded in the STPM33 and STPM34, while the
STPM32 embeds a single reference.
It is possible to switch off each reference voltage and each voltage or current channel
independently for power saving purpose.
EN_REF1 and EN_REF2 bits in DSP_CR1 and DSP_CR2 switch on/off the voltage
reference.
To disable a single voltage or current channel, enV1, enC1 bits for primary channel and
enV2, enC2 for secondary channel should be cleared in DFE_CR1 and DFE_CR2
respectively. Switching off some channels allows an operating current reduction as reported
in Table 5.
As desc ri bed in Figure 22, two EN_REF1 and EN_REF2 bits enable the voltage references;
if a unique voltage reference is used, one of these two bits must be disabled and VREF1
and VREF2 pins must be shorted; if an external reference is used both bits must be disabled
and the external reference must be connected to VREF1, VREF2 pins. VREF1 and VREF2
outputs should be connected to GNDREF via a 100 nF capacitor independently.
Theory of operation STPM32, STPM33, STPM34
32/121 DocID026142 Rev 3
Figure 22. Power management internal connection scheme and polarization
Temperature compensated reference voltage generators produce VREF1 = VREF2 = 1.18
V at default settings. The primary voltage reference is always on and supplies the voltage
and the primary current channel, the secondary voltage reference is by default in on-state
and supplies the secondary channel.
These reference temperature compensation curves can be selected through three
configuration bits: TCx[2:0] (DSP_CR1 and DSP_CR2).
Table 9. Temperature compensation parameter typical valu es
TCx0 TCx1 TCx2 V
REF
(V) TC_V
REF
(ppm/°C)
000 1.16 -50
001 1.17 -25
0 1 0 1.18 0 (default)
011 1.19 25
1 0 0 1.2 50
101 1.21 75
1 1 0 1.22 100
1 1 1 1.225 125
VCC
VDDAGNDA
LDR 3.0 V
VOLTAGE
REFERENCE
VRefC1
VRefV1
TC2
VDDD
VOLTAGE
REFERENCE
TC1
LDR 1.2 V
GNDD
GNDREF
VRefC2
VRefV2
4.7 uF
1 μF
1 uF 100 nF
100 nF
3.3 V
GND_REG
VREF1
VREF2
ENVREF1
ENVREF2
GIPG1303141315LM
DocID026142 Rev 3 33/121
STPM32, STPM33, STPM34 Theory of operation
121
Figure 23. Temperature compensation typical curves
8.2.2 Analog front end
Analog channel inputs of voltages VIP1, VIN1, VIP2, VIN2 and currents IIP1, IIN1; IIP2, IIN2
are fully differential.
Voltage channels have a preamplification gain of 2, which defines the maximum differential
voltage on voltage channel inputs to ± 300 mV.
Current channels have a programmable gain selectable among 2, 4, 8 and 16, which
defines the maximum differential voltage on current channel to ±300 mV, 150 mV, 75 mV or
±37.5 mV respectively. The selection is given by GAINx[1:0] (DFE_CR1, DFE_CR2) bits as
described in the following table:
The oversampling frequency of the modulators is 4 MHz, the output bitstreams of the 2
nd
order sigma-delta modulators relative to the voltage and to the two current channels are
available on INT and LED output pins through the proper configuration (see configuration bit
map).
Table 10. Current channel input preamplifier gain selection
GAINx0 GAINx1 Gain Differential input
0 0 X2 ±300 mV
0 1 X4 ±150 mV
1 0 X8 ±75 mV
1 1 X16 ±37.5 mV
Theory of operation STPM32, STPM33, STPM34
34/121 DocID026142 Rev 3
Figure 24. Analog front end internal scheme
PLNA uses the chopping technique to cancel the intrinsic offset of the amplifier.
A dedicated block generates chopper frequencies for voltage and current channels.
The amplified signals are fed to the 2
nd
order sigma-delta modulator.
The analog-to-digital conversion in the STPM3x is carried out using four 2
nd
order sigma-
delta converters. A pseudo-random block generates pseudo-random signals for voltage and
current channels. These random signals implement the dithering technique in order to de-
correlate the output of the modulators and avoid accumulation points on the frequency
spectrum. The device performs A/D conversions of analog signals on four independent
channels in parallel.
Figure 25. Block diagra m of the modulator
IIPx
IINx
VIPx
VINx
2
order
ΣΔ
modulator
PLNA
GAINx [1:0]
DFE
bsV
bsC
2
order
ΣΔ
modulator
nd
nd
GIPG1303141321LM
D/A
a1a2
1st integrator 2nd integrator comparator
input
Dithering
--
stream out
GIPG1303141326LM
DocID026142 Rev 3 35/121
STPM32, STPM33, STPM34 Theory of operation
121
The sigma-delta modulators convert the input signals into a continuous serial stream of “1”
and “0” at a rate determined by the sampling clock. In the STPM3x, the oversampling clock
is equal to 4 MHz.
1-bit DAC in the feedback loop is driven by the serial data stream. DAC output is subtracted
from the input signal and from the integrated error. If the loop gain is high enough, the
average value of DAC output (and therefore the bitstream) can approach to the input signal
level. When a large number of samples are averaged, a very precise value of the analog
signal is obtained. This average is described in DSP section.
The converted sigma-delta bitstreams of voltage and current channels are fed to the internal
hardwired DSP unit, which decimates, filters and processes those signals in order to boost
the resolution and to yield all necessary signals for computations.
8.2.3 Clock generator
All the internal timing of the STPM3x is based on the input clock signal, namely 16 MHz.
This signal can be provided in two different ways:
1. External quartz: the oscillator works with an external crystal
2. External clock: the XTAL2 pin can be fed by an external 16 MHz clock signal
The clock generator is powered by the analog supply and is responsible for two tasks. The
former delays the turn-on of some function blocks after POR in order to help a smooth start
of external power supply circuitry by keeping off all major loads. The latter provides all
necessary clocks for analog and digital parts.
Figure 26. Different oscillator circuits (a): with quartz; (b): with external source
From the external 16 MHz clock, the entire clock tree is generated. All internal clocks have
50% duty cycle.
CLKIN/XTAL2
XTAL1
CLKOUT/ZCR
15 pF 15 pF
1 MΩ
CLKIN/XTAL2
XTAL1
CLKOUT/ZCR
16 MHz
GIPG1303141329LM
Theory of operation STPM32, STPM33, STPM34
36/121 DocID026142 Rev 3
CLKOU T pin c an be us ed to fe ed ano ther STP M3x de vice cl ock with 16 MHz , when mu ltip le
STPM3x are used in cascade as shown in Figure 27.
Figure 27. Clock feed for multiple devices
8.2.4 Power-o n -rese t (POR) and enable (EN)
The STPM3x contains a power-on-reset (POR) circuit which delays the startup of the digital
domain about 750 µs. If VCC supply is less than 2.5 V the STPM3x goes to the inactive
state, all functions are blocked asserting a reset condition. This is useful to assure the
correct device operation during the power-up and power-down.
POR sequence is illustrated in Figure 28: after the start of two LDOs and internal PowerOK
signals are asserted, the analog block first and the digital block after start the processing.
Table 11. Clock tree
CLK name Name Typical value Description
Input clock CLKIN 16 MHz External clock
Master clock MCLK 4 MHz Master root clock
Analog sampling
clock SCLK 4 MH z OSF of sigma- del t a mod ul ators
Decimated clock DCLK 7.8125 kHz Sampling frequency of instantaneous voltage and
current values
CLKIN/XTAL2
XTAL1
CLKOUT/ZCR
CLKIN/XTAL2
XTAL1
CLKOUT/ZCR
15 pF 15 pF
1MΩ
CLKIN/XTAL2
XTAL1
CLKOUT/ZCR
GIPG2503141257LM
DocID026142 Rev 3 37/121
STPM32, STPM33, STPM34 Theory of operation
121
Figure 28. Power-on-reset sequence
The STPM3x also has an enable pin (EN) which works as follows:
EN is high: when the power is on and EN pin raises, the device is enabled and starts
after POR procedure as above described.
EN is low: when the power is on and EN pin has a transition high to low, the device is
disabled. It stops and the internal digital memory is deleted so a new initialization is
needed when EN goes back to high.
After POR, to ensure a correct initialization, it is recommended to perform a reset of DSP
and communication peripherals through three SYN pulses (see Section 8.6.1) and a single
SCS pulse, as shown in the figure below. SCS pulse can be performed before or after SYN
pulses, but minimum startup time before reset (as indicated in Table 5) has to be respected.
Figure 29. Global startup reset
VDDA
LDR 3.0 V
LDR 1.2 V
VDDD
PowerOK_3.0 V
PowerOK_1.2 V
EN
POR
16 MHz Osc
XTAL2
XTAL1
VCC
OSC
CLKIN
GIPG1303141331LM
6&6
6<1
9&&
WBVWDUWXS
WBUSZ
*,3*/0
Theory of operation STPM32, STPM33, STPM34
38/121 DocID026142 Rev 3
8.3 Functional description of the digital part
Each voltage and current channel has an independent digital signal processing chain, which
is compo sed of:
Digital front end (DFE)
Phase compensation
Decimation
–Filters
Calibration
The outcoming signals are fed to a common hardwired DSP, which processes the metrology
data.
Figure 30. DSP block functional description
8.3.1 Digital front end (SDSx bits )
This block synchronizes and checks the sigma-delta bitstreams of voltage and current
signals.
Each channel sigma-delta stream has an SDSx status bit associated, which is cleared if the
stream is correct, while it is set if the bitstream is stuck to 0 or 1 (this is the case of an input
waveform saturating the dynamic input of the sigma-delta modulator).
To set SDSx bit, sigma-delta (Ʃ∆) stream should be stuck to 0 or 1 for a time between:
t
Ʃ∆stuck
= 2/(MCLK/256)=128 μs … t
Ʃ∆stuck
= 3/(MCLK/256)=192 μs.
Outputs are stored on bit number: 20, 24 of DSP_SR1,2 and 13, 20 of DSP_EV1,2.
If SDSx=1, the instantaneous values of voltage current are set on positive or negative
maximum value, according to sigma-delta stream. In this case active powers and energies
are calculated with those values of signals.
If sigma-delta stream of voltage channel is stuck, the reactive energy is zero.
8.3.2 Decimation block
The decimation block operates a serial decimation of three sigma-delta serial bitstreams
coming from three modulators of voltage, primary and secondary current channels.
1
SCLK
1
SCLK
1
SCLK
24
DCLK
24
DCLK
Phase
compensation Calibration
Filters DSP
DFE Decimation
1
SCLK
1
SCLK
1
SCLK
24
DCLK
24
DCLK
Phase
compensation Calibration
GIPG1403141159LM
DocID026142 Rev 3 39/121
STPM32, STPM33, STPM34 Theory of operation
121
The decimation ratio, out of the filter cascade, is 512 so that outputs of this block are parallel
24-bit data at a rated frequency of 7.8125 kHz.
The decimation block has a magnitude response -3 dB band of 3.6 kHz and a 2.0 kHz flat
band.
8.3.3 Filter block
The block includes:
DC cancellation filter (BHPFVx, BHPFCx bits)
Rogowski coil Integrator (ROCx bit)
Fundamental harmonic component filter
Figure 31. Filter block diagram
8.3.4 DC cancellation filter
This block removes the DC component of signal from voltage and current signals.
It is a selectable block which can be bypassed in case of particular needs with BHPFVx and
BHPFCx bits in DSP_CR1 and DSP_CR2.
The filter has a passband at -3 dB of 8 Hz
BHPFVx = 0: voltage HPF is included for x channel
BHPFVx = 1: voltage HPF is bypassed for x channel
BHPFCx = 0: current HPF is included for x channel
BHPFCx = 1: current HPF is bypassed for x channel
Rogowski coil Integrat or
ROCx bit in DSP_CR1 and DSP_CR2 selects the type of current sensors (CT, shunt or
Rogowski coil):
Reactive
filter
HPF
HPF ROCOIL
INT
LPF
LPF
BHPFVx
BHPFCx ROCx
Vx Data [23:0]
CxData [23:0]
VxFund[23:0]
Cx Fund[23:0]
CHVx [11:0]
CHCx [11:0]
Vx[23:0]
Cx[23:0]
GIPG1403141207LM
Theory of operation STPM32, STPM33, STPM34
40/121 DocID026142 Rev 3
ROCx = 0: channel x current sensor is CT or shunt
ROCx = 1: channel x current sensor is Rogowski coil
In case of ROCx = 1, integrator filter is included to integrate current signal coming from
Rogowski coil current sensor. Rogowski coil integrator is selectable independently for each
curr ent ch anne l.
8.3.5 Fundamental component filter
This low-pass filter on the voltage and current signals is used to calculate: zero-crossing,
period, phase-angles and fundamental active and reactive energy. Filtered voltage and
current components are available on DSP_REG6, DSP_REG7, DSP_REG8, DSP_REG9
named VxFund and CxFund.
8.3.6 Reactive filter
Reactive filter introduces a delay in current and voltage streams respectively; these signals
are used to calculate reactive power and energy.
Input streams for reactive filter are VxFund and CxFund signals.
8.4 Functional description of hardwired DSP
From the decimation and filtering block, signals are fed to hardwired DSP to compute the
following quantities for primary and secondary channels:
Active power and energy wideband 0 Hz(4 Hz)-3.6 kHz
Active power and energy fundamental 45-65 Hz
Reactiv e powe r and ene rgy
Apparent power and energy from RMS data
Apparent power vectorial calculation
Signal measurement: RMS, period, zero-crossing, phase-delay, sag and swell, tamper
Each power signal is accumulated in the correspondent energy register every 7.8125 kHz.
Energy registers are up-down counters. The accumulation is signed so that the negative
energy is subtracted from the positive energy. When the measured power is positive, the
energy register increases its content from 0x00000000 up to the maximum value,
0xFFFFFFFF, then it rolls from 0xFFFFFFFF back to 0x00000000.
V ice ver sa, when the power is negative, the register decreases its content; from
0x00000000 rolls to 0xFFFFFFFF and continues decreasing till 0x00000000.
To monitor each energy register overflow and power sign, status bits are available on
DSP_SR1 and DSP_SR2.
When a selectable threshold is reached, a pulse is generated on LED pin.
This threshold is selectable through a set of configuration bit (LPWx[3:0] in DSP_CR1 and
DSP_CR2) as shown in Table 12. For each bit configuration, LED signal goes high when the
two selected bits commute to 10 and goes low when the two selected bits change to 11.
Maximum LED pulse width is anyway fixed to 81.92 ms (640 periods of 7812.5 Hz clock).
DocID026142 Rev 3 41/121
STPM32, STPM33, STPM34 Theory of operation
121
The signal chain for each power, energy calculations and related frequency conversion are
explained in the following section.
Table 12. LPWx bits
LPWx LED_PWM
0000 0,0625
0001 0,125
0010 0,25
0011 0,5
0100 1
0101 2
0110 4
0111 8
1000 16
1001 32
1010 64
1011 128
1100 256
1101 512
1110 1024
1111 2048
Theory of operation STPM32, STPM33, STPM34
42/121 DocID026142 Rev 3
Figure 32. DSP block diagram
IIPx
IINx PLNA
VIPx
VINx
2nd
order ΣΔ
modulator
HPF
HPF
ROCOIL
INT
LPF
LPF
BHPFVx
BHPFCx ROCx
Vx Data [23:0]
Vx[23:0]
Cx[23:0]
bsV
bsC
CHVx[11:0]
CHCx[11:0]
Decimation
Decimation
Phase
Phase
RMS CxRMS Data [16:0]
RMS VxRMS Data [14:0]
Vx Fund[23:0]
Cx Fund[23:0]
CxData [23:0]
LPF
Offset ΣA LED
LPF
Offset ΣF LED
Offset
√¯
X
2
X
2
LPFOffset ΣR LED
Reac.
Filter
APMx
ΣS LED
AEMx
2nd
order ΣΔ
modulator
Compens.
Compens.
GIPG1703140842_1LM
DocID026142 Rev 3 43/121
STPM32, STPM33, STPM34 Theory of operation
121
8.4.1 Active power and energy calculation
The signal chain for the active power , energy calculations and related frequency conversion
are sh own in Figure 33. The instantaneous power signal p(t) is generated by multiplying the
current and voltage signals. This value can be compensated by the active power offset
calibration block (OFAx[8:0] in DSP_CR9 and DSP_CR11 registers). DC component of the
instantaneous power signal (average power) is then extracted by LPF (low-pass filter) to
obtain the active power information.
Figure 33. Active power and energy calculation block diagram
The active power is calculated simultaneously and independently for primary and secondary
curr ent ch anne ls .
Results of the calculated quantities are stored in the registers as follows:
EP
1
= primary current channel active energy PH1 ACTIVE Energy[31:0]
P
1
= primary current channel active power PH1 Active Power[28:0]
p
1
(t) = primary current channel instantaneous active power PH1 Momentary Active
Power[28:0]
EP
2
= secondary current channel active energy PH2 Active Energy[31:0]
P
2
= secondary current channel active power PH2 Active Power[28:0]
p
2
(t) = secondary current channel instantaneous active power PH2 Momentary Active
Power[28:0]
Active power measurements have a bandwidth of 3.6 kHz and include the effects of any
harmonic within that range.
8.4.2 Fundamental active power and energy calculation
The signal chain for the fundamental active power, energy calculations and related
frequency conversion are shown in Figure 34. The signal flow is the same as the active
energy wideband, but voltage and current waveforms are filtered to remove all harmonic
components but the first (45-65 Hz). Power value can be compensated by the active power
offset calibration block (OFAFx[8:0] in DSP_CR9 and DSP_CR11).
IIPx
II N x
PLNA
VIPx
VINx HPF
HPF
ROCOIL
INT
BHPFVx
BHPFCx ROCx
VxData [23:0]
Vx[23:0]
Cx[23:0]
bsV
bsC
CHVx[11:0]
CHCx[11:0]
Phase
Compensation
Phase
Compensation
CxData [23:0]
LPFOffset ΣLED
ADC
ADC
OFAx[9:0]
PHxMomentary Active Power[28:0]
PHx Active Power[28:0]
PHxActive Energy[31:0
GIPG1703140852LM
Theory of operation STPM32, STPM33, STPM34
44/121 DocID026142 Rev 3
Figure 34. Fundamental active power and energy calculation block diagram
Results of the calculated quantities are stored in the registers as follows:
EF
1
= primary current channel active fundamental energy PH1 Fundamental Energy[31:0]
F
1
= primary current channel active fundamental Power PH1 Fundamental Power[28:0]
f
1
(t) = primary current channel instantaneous active fundamental power PH1 Momentary
Fundamental Power[28:0]
EF
2
= secondary current channel active fundamental energy PH2 Fundamental
Energy[31:0]
F
2
= secondary current channel active fundamental power PH2 Fundamental Power[28:0]
f
2
(t) = secondary current channel instantaneous active fundamental power PH2 Momentary
Fundamental Power[28:0]
The fundamental active power measurements have a bandwidth of 80 Hz.
8.4.3 Reactive power and energy calculation
The signal chain for the reactive power, energy calculations and related frequency
conversion are shown in Figure 35. The instantaneous reactive power signal is generated
by multiplying the filtered signals of current and voltage. This value can be compensated by
the reactive power offset calibration block (OFRx[8:0] in DSP_CR10 and DSP_CR12). The
DC component of the instantaneous power signal is extracted from LPF to obtain the
reactive power information.
IIPx
IINx PLNA
VIPx
VINx HPF
HPF ROCOIL
INT
BHPFVx
BHPFCx ROCx
VxData [23:0]
Vx[23:0]
Cx[23:0]
bsV
bsC
CHVx[11:0]
CHCx[11:0]
Phase
Compensation
Phase
Compensation
CxData [23:0]
ADC
ADC
LPFOffset ΣLED
OFAFx[9:0]
PHx Momentary
Fundamental Power[28:0]
PHx Fundamental Power[28:0]
PHxFundamental Energy[31:0 ]
LPF
LPF
VxFund[23:0]
Cx Fund[23:0]
GIPG1703140903LM
DocID026142 Rev 3 45/121
STPM32, STPM33, STPM34 Theory of operation
121
Figure 35. Reactive power and energy calculation block diagram
IIPx
IINx
PLNA
VIPx
VINx
HPF
HPF
ROCOIL
INT
BHPFVx
BHPFCx ROCx
Vx Data [23:0]
Vx[23:0]
Cx[23:0]
bsV
bsC
CHVx [11:0]
CHCx [11:0]
Phase
Compensat.
Phase
Compensat.
CxData [23:0]
ADC
ADC
LPFOffset ΣLED
OFRx[9:0]
PHx Momentary Reactive Power[28:0]
PHx Reactive Power[28:0]
PHx Reactive Energy[31:0]
LPF
LPF
Vx Fund[23:0]
CxFund[23:0]
Reactive
Filter
GIPG2603141329LM
Theory of operation STPM32, STPM33, STPM34
46/121 DocID026142 Rev 3
Results of the calculated quantities are stored in the registers as follows:
EQ
1
= primary current channel reactive energy PH1 Reactive Energy[31:0]
Q
1
= primary current channel reactive power PH1 Reactive Power[28:0]
q
1
(t) = primary current channel instantaneous reactive power PH1 Momentary Reactive
Power[28:0]
EQ
2
= secondary current channel reactive energy PH2 Reactive Energy[31:0]
Q
2
= secondary current channel reactive power PH2 Reactive Power[28:0]
q
2
(t) = secondary current channel instantaneous active power PH2 Momentary Reactive
Power[28:0].
8.4.4 Apparent power and energy calculation
The signal chain for the apparent power, energy calculations and related frequency
conversion are shown in Figure 36. The apparent power signal S is generated in two ways:
Vectorial methodology uses the scalar product of active and reactive power . The active
power is selectable through the active power mode bit (APMx in DSP_CR1 and
DSP_CR2) between wideband or fundamental.
Equation 2
RMS methodology uses the product of RMS data of voltage and current. This value can
be compensated by the apparent power offset calibration block (OFSx[8:0] in
DSP_CR10 and DSP_CR12).
Equation 3
The apparent energy is calculated from vectorial or from RMS apparent power according to
AEMx configur ation bit in DSP_CR1 and DSP_CR2.
Figure 36. Apparent power and energy calculation block diagram
Results of the calculated quantities are stored in the registers as:
S
vec
P
2
Q
2
+=
S
RMS
V
RMS
I
RMS
=
Cx RMS Data [16:0]
VxRMS Data [14:0]
Offset
√¯
X2
X2
APMx
0
1
Σ
S LED
AEMx
1
0
OFSx [9:0]
PHx Apparent Vectorial Power[28:0]
PHxApparent Energy[31:0]
PHx Apparent RMS Power[28:0]
PHxReactive Power[28:0]
PHxFundamental Power[28:0]
PHx Active Power[28:0]
GIPG2803141114LM
DocID026142 Rev 3 47/121
STPM32, STPM33, STPM34 Theory of operation
121
ES
1
= primary current channel apparent energy PH1 Apparent Energy[31:0]
S
1RMS
= primary current channel apparent RMS power PH1 Apparent RMS Power[28:0]
S
1vec
= primary current channel apparent vectorial power PH1 Apparent V ectorial
Power[28:0]
ES
2
= secondary current channel apparent energy PH2 Apparent Energy[31:0]
S
2RMS
= primary current channel apparent RMS power PH2 Apparent RMS Power[28:0]
S
1vec
= primary current channel apparent vectorial power PH2 Apparent V ectorial
Power[28:0]
8.4.5 Sign of power
Power measurements are signed calculations. Negative power indicates that energy has
been injected into the grid. DSP_SR1, DSP_SR2 status registers and DSP_EV1, DSP_EV2
registers include sign indication bits for each calculated power.
If the sign of power is negative, the sign bit is set.
SIGN = 0: positive power
SIGN = 1: negative power
In the calculation of the sign, a delay equal to half line period is included.
If the period of signal is T = 20 ms (f = 50 Hz), the applied delay is 10 ms.
Figure 37. Power sign status bit delay
8.4.6 Calculation of power and energy
In the following section, constant parameters, coming from the device architecture, are
used:
Power
Sign
t < T/2 t = T/2 t = T/2
GIPG2803141118LM
Table 13. STPM3x internal parameters
Parameter Value
Voltage reference V
REF
=1.18 [V]
Decimation clock DCLK=7812.5 [Hz]
Integrator gain
(for Rogowski coil only) k
int
= 1 if ROC bit = 0 in DSP_CR1,2
k
int
= 0.8155773 if ROC bit = 1 in DSP_CR1,2
Theory of operation STPM32, STPM33, STPM34
48/121 DocID026142 Rev 3
Basic calculations are listed in Table 14:
Table 14. STPM3x basic calculations
Parameter Voltage Current shunt Current CT Current Rogowski coil
Gain A
V
= 2 A
I
= 16 A
I
= 2 A
I
= 16
Calibrators
(1)
cal
V
= 0.875 cal
I
= 0.875
Sensitivity
k
S
= R
Shunt
[Ω]
k
S
= k
RoCoil
[V/A]
Vo ltage at cha nne l
inputs
Integrator gain (for
Rogowski coil sensor
only) k
int
= 1 k
int
= 0.8155773
Σ∆ bitstream
(2)
Input active power
Active power
LED freque ncy a t rated
power
(3)
Constant puls e
Pulse value
Power register
normalized
Energy register
normalized
R
2
R
1
R
2
+
-------------------- [V/A]
k
S
R
b
N
-------[V/A]=
V
inV
R
2
R
1
R
2
+
-------------------- V[V]=
V
inC
k
S
I[V]=
V
ΔΣ
V
inV
A
V
V
ref
----------=
V
ΔΣ
V
inC
A
I
V
ref
----------=
V
ΔΣ
V
inC
A
I
V
ref
K
int
------------------------=
P
in
VI ϕVI[W]=cos⋅⋅=
C
P
1
2
---R
2
R
1
R
2
+
-------------------- k
int
k
S
A
V
A
I
cal
V
cal
I
⋅⋅
V
ref2
------------------------------------------------DClk
LED_PWM
------------------------------ pulses
Ws
-------------------⋅⋅ =
DocID026142 Rev 3 49/121
STPM32, STPM33, STPM34 Theory of operation
121
For each power register, a configurable offset value (default = 0) can be added to the
instantaneous powe r p(n) throu gh OFA[9:0], OFAF[9:0], OFR[9:0], OFAS[9:0] bits in this
way:
Equation 4
8.4.7 RMS calculation
RMS block calculates RMS currents and voltages on each phase every second, according
to the following formulas:
Equation 5
Equation 6
with T = 200 ms.
RMS block architecture is shown in Figure 38:
Power LSB value
Energy LSB value
1. CHVx and CHCx calibrator bits introduce in the signal processing a correction factor of ±12,5% (with an attenuation from
0,75 to 1). In order to have the maximum available up/down correction range, by default calibrator values are in the middle
of their range (0x800) corresponding to an attenuation factor cal
V
= cal
I
= 0,875.
2. Ʃ∆ bitstream should be kept lower than 0.5 (50%) to minimize modulator distortions.
3. LED_PWM is the LED frequency divider that can be set through LPWx bits in DSP_CR1 and DSP_CR2 control registers
for primary and secondary current channels respectively. Default value is 1. Please refer to Table 36.
Table 14. STPM3x basic calculations (continued)
Parameter Voltage Current shunt Current CT Current Rogowski coil
LSB
P
P
pulse
2
29
---------------- DClk V
ref2
1R
1
R
2
+()
k
int
A
V
A
I
k
S
cal
V
cal
I
2
28
⋅⋅
------------------------------------------------------------------------------------- W
LSB
------------==
LSB
E
P
pulse
2
18
---------------- V
ref2
1R
1
R
2
+()
3600 DClk k
int
A
V
A
I
k
S
cal
V
cal
I
2
17
⋅⋅
-------------------------------------------------------------------------------------------------------------------------=Wh
LSB
------------=
p
n() pn() 1()
OFx 9[]
OFx 8:0[]2
2
×+=
V
RMS
1
T
--- vt() td
t
0
t
0
T+
=
I
RMS
1
T
--- it() td
t
0
t
0
T+
=
Theory of operation STPM32, STPM33, STPM34
50/121 DocID026142 Rev 3
Figure 38. RMS block
If the cut-off frequency of an LP filter is set much below the input signal spectrum, it can be
considered as an average operator . In this case and according to the figure, the first LP filter
averages its input signal which is produced by division and multiplication:
Equation 7
By assumption, the feedback signal R is DC type and therefore, it can be extracted from the
average operation and the above equation can be rearranged into:
Equation 8
By a square-root operation on both sides of previous equation we get:
Equation 9
which is RMS value exact definition.
With an AC input signal:
Equation 10
/LPF
1/2
LPF
-
GIPG2803141121LM
RX
2
R
------


=
RX
2
()=
RX
2
()=
DocID026142 Rev 3 51/121
STPM32, STPM33, STPM34 Theory of operation
121
The LP filter cuts the 2
nd
harmonic component of input signal multiplying it by a dumping
factor:
Equation 11
Equation 12
R result is a DC signal plus the 2
nd
harmonic ripple with the amplitude of α/2.
For dumping factor | α |<<1:
Equation 13
RMS data are available in DSP_REG14 and DSP_REG15 registers.
Raw data are also available for post-processing by MCU in registers from DSP_REG2 to
DSP_REG9.
By taking into account the internal parameters in Table 13 and the analog front end
components in Table 14, LSB values of voltage and current registers are the following:
Table 15. STPM3x current voltage L SB values
Parameter Value
Voltage RMS LSB value
Current RMS LSB value
Instantaneous voltage normalized
Instantaneous current normalized
RA
2
-------
LSB
VRMS
V
ref
1R
1
R
2
+()
cal
V
A
V
2
15
⋅⋅
-----------------------------------------------=V[]
LSB
IRMS
V
ref
cal
I
A
I
2
17
k
S
k
int
⋅⋅
---------------------------------------------------------= A[]
vn()V
norm
1()2
23
vn()23[]vn()22:0[]+⋅⋅
2
23
---------------------------------------------------------------------------------------=
in()I
norm
1()2
23
in()23[]in()22:0[]+⋅⋅
2
23
------------------------------------------------------------------------------------=
Theory of operation STPM32, STPM33, STPM34
52/121 DocID026142 Rev 3
8.4.8 Zero-crossing signal
Zero-crossing signals of voltage and current come from fundamental values of voltage and
current and output from LPF filter. Resolution of the zero-crossing signal is 8 μs given by
F
CLK
clock = 125 kHz.
Figure 39. Zero-crossing generation
ZRC signal is delayed by an instantaneous voltage current signal: 5.1 ms (typical), as
shown in Figure 40:
Figure 40. Zero-crossing signal
Instantaneous voltage LSB value
Instan taneou s cur r ent LSB value
Table 15. STPM3x current voltage LSB values (continued)
Parameter Value
LSB
VMOM
V
ref
1R
1
R
2
+()
cal
V
A
V
2
23
⋅⋅
-----------------------------------------------=V[]
LSB
IMOM
V
ref
cal
I
A
I
2
23
k
S
k
int
⋅⋅
---------------------------------------------------------A[]=
ZRC_V
ZCR detector
FClk 125 kHz
ZRC_I
VxFund[23:0]
CxFund[23:0]
GIPG2803141125LM
ZRC
Signal
GIPG2803141129LM
DocID026142 Rev 3 53/121
STPM32, STPM33, STPM34 Theory of operation
121
8.4.9 Phase meter
Phase mete r detects:
The period of the voltage line
The phase-angle delay between voltage and current
Figure 41. Phase meter
Period measurement
Starting from ZRC signals, line period and voltage/current phase shift are calculated.
Period information for the two phases is located in DSP_REG1 register.
The measurement of the period is from ZRC signal of voltage channel. The period is
calculated like an average of last eight measured periods.
The initial values of period are set on 0x9C4 (2500). LSB of period is 8 μs given by F
CLK
clock = 125 kHz. Limits to consider the correct period are between 0x600 (1536) and 0x800
(3840) corresponding to a frequency range between 32.55 and 81.38 Hz.
If the voltage signal frequency is out of this range, PER_ERR status bit is set in
DSP_SR1/2.
PER_ERR = 0: period in the range
PER_ERR = 1: period out of range
PER_ERR bit can be also set when a sag event is detected.
When PER_ERR bit is set, PHx_PERIOD[11:0] is not updated and keeps the previous
correct value.
Setting the default line frequency through REF_FREQ bit in register DSP_CR3 speeds up
the period calculation algorithm convergence.
Phase-angle measurement
From the period information, the device calculates phase-delay between voltage and
current for the fundamental harmonic.
Cx_PHA[11:0] data for primary and secondary channel are located in DSP_REG17 and
DSP_REG19 respectively.
Phase-angle φ in degrees can be calculated from the register value as follows:
ZRC_V
Period
and
Phase-angle
detector
FClk 125kHz
ZRC_I Cx_PHA [11:0]
PHxPERIOD[11:0]
PER_ERR
GIPG2803141133LM
Theory of operation STPM32, STPM33, STPM34
54/121 DocID026142 Rev 3
Equation 14
Resolution at 50 Hz is:
Equation 15
When PER_ERR bit is set, Cx_PHA[11:0] is not updated and keeps the previous correct
value.
8.4.10 Sag and swell detection
The device can detect and monitor the undervoltage (also called voltage dip or sag) and the
overvoltage or overcurrent events (swell).
A 4-bit event register stores every time that the sag or swell condition is verified. The event
history is stored in DSP_EV1 and DSP_EV2 registers as SAGx_EV[3:0], SWVx_EV[3:0]
and SWCx_EV[3:0]. From the event register, interrupts can be generated, and the event
duration is stored in time regi sters: from DSP_REG16 to DSP_REG19.
To correctly detect the event, thresholds have to be set from DSP_CR5 to DSP_CR8 as
explained below.
To clear event history and time registers, once the event has been detected, ClearSS bit in
DSP_CR1, DSP_CR2 has to be set. This bit is reset automatically.
To avoid a race condition on digital counters, a time threshold CLRSS_TO[3:0] (ClearSS
time-out) can be set to delay the reset of ClearSS bit. LSB of this timeout is 8 μs.
Status bits are also available in case of sag and swell events in DSP_SR1 and DSP_SR2,
they can give the information about the sag/swell event start or end and generate an
interrupt if masked in DSP_IRQ1 and DSP_IRQ2 registers.
DocID026142 Rev 3 55/121
STPM32, STPM33, STPM34 Theory of operation
121
Figure 42. Sag and swell detection blocks
Voltage sag detection
To detect a voltage sag, the fundamental component of voltage is compared to the 10-bit
threshold SAG_THRx[9:0] in DSP_CR5 and DSP_CR7 for primary and secondary channel
respectively.
An internal time counter is incremented until momentary voltage value is below the
threshold. Sag event is recorded when the timer counter reaches a programmable value set
by SAG_TIME_THR[13:0] bits in DSP_CR3. This time threshold is unique for both
channels.
When a sag event is detected, LSB of SAGx_EV[3:0] event register and SAG_Start bit are
set in the interrupt status register and an interrupt is generated.
If sag event ceases, SAGx_EV register is left shifted and zero is added as LSB, besides,
SAG_end bit in the interrupt status register is set as well.
The duration of the event is stored in SAGx_TIME[14:0] in DSP_REG16 and DSP_REG18
for primary and secondary voltage channel respectively.
If the overflow of SAG_TIME register occurs, SAGx_EV register is left shifted and its LSB is
set, as shown in figure below.
LSB of time registers is 8 μs.
To disable sag detection, the SAG_THRx register must be set to zero.
9[B6$*BVWDUW
6$*
6$*[B7,0( > @
6$*B7+5[ > @
6$*B7,0(B7+5> @
6:9B7+5[ > @
6:9B(9>@
6:9B7,0(>@
6:(//
6:&B7+5[ > @
6:&B(9>@
6:&B7,0(>@
&OHDU66
9[ )XQG>@
6$*[B(9> @
9[B6$*BHQG
9[ )XQG>@
&[ )XQG>@
9[B6:(//BVWDUW
9[B6:(//BHQG
&[B6:(//BVWDUW
&[B6:(//BHQG
*,3*)65
Theory of operation STPM32, STPM33, STPM34
56/121 DocID026142 Rev 3
Figure 43. Sag detection process
Voltage/current swell detection
To detect a voltage or a current swell, the fundamental component of signal is compared to
the 10-bit threshold SWV_THRx[9:0] and SWC_THRx[9:0] in DSP_CR5, DSP_CR6,
DSP_CR7, and DSP_CR8.
When the signal overcomes the threshold, a swell event is detected and LSB of
SWVx_EV[3:0] or SWCx_EV[3:0] event register is set. At the same time, SWELL_S tart bit is
set in the interrupt status register and an interrupt can be generated.
If the swell event ceases, SWV_EV or SWC_EV register is shifted and its LSB is set to zero,
also SWELL_End bit in the interrupt status register is set.
The duration of the event is stored in SWV_TIME[14:0] or SWC_TIME[14:0] in registers
from DSP_REG16 to DSP_REG19 for primary and secondary voltage and current channel
respectively.
If the overflow of SWV_TIME or SWC_TIME register occurs, the related SWVx_EV and
SWCx_EV register is left shifted and its LSB is set, as shown in figure below.
LSB of time registers is 8 μs.
To disable swell detection, the registers SWV_THRx and SWC_THRx must have maximum
value 0x3FF.
9)81'
6$*B7+5[
6$*B7,0(
6$*B(9     
6$*B7,0(B7+5
6$*B7+5[
6$*B7,0(B7+5
6$*(YHQW
6WDUW 6$*(YHQW
(QG
6$*(YHQW
6WDUW 2YHUIORZ
5HVHWVWDWH
*,3*/0
DocID026142 Rev 3 57/121
STPM32, STPM33, STPM34 Theory of operation
121
Figure 44. Swell detection proc ess
Sag and swell threshold calculation
Thresholds for sag voltage detection are calculated below, according to the following input
parameters:
V
L
: line voltage nominal RMS value
V
SAG
: target RMS value of sag voltage
R
1
, R
2
: voltage divider resistors
A
V
= 2, voltage channel gain
D
SAG
= 2
10
, length of sag threshold register
cal
V
= 0.875, calibrator mid value
Table 16. Vo ltage sag
Parameter Value
SAG peak voltage
Input signal
Percentage of FS input
9)81'
&)81'
6:9B7+5
6:&B7+5
6:9B(96:&B(9     
6:9B7,0(6:&B7,0(

6:(//(YHQW
6WDUW
6:(//(YHQW
(QG
6:(//(YHQW
6WDUW 2YHUIORZ
5HVHWVWDWH
6:(//(YHQW
(QG
*,3*)65
V
in_SAG_peak
FS()
V
SAG
V
ref
-------------- A
V
2cal
V
R
2
R
1
R
2
+
--------------------⋅⋅=
Theory of operation STPM32, STPM33, STPM34
58/121 DocID026142 Rev 3
To calculate the filtering time for the sag event, we consider the time in which the nominal
instantaneous voltage is below the sag threshold, that is:
Equation 16
To correctly distinguish between normal sinusoidal voltage and sag event, the filtering time
should be added to this component, for example half line period (10 ms at 50 Hz). Since
LSB of SAG_TIME_THRx register is 8 μs (F
CLK
= 125 kHz), the value to set is:
Equation 17
In the same way:
V
SWELL
: target RMS value of swell voltage
A
V
: voltage sensor gain
D
SWELL
= 2
10
, length of swell threshold register
cal
V
= 0.875, calibrator mid value
Following the above calculation we obtain the hexadecimal value of voltage swell threshold:
Regis ter val ue
Register LSB RMS value
Table 17. Voltage swell
Parameter Value
Register value
Register LSB RMS value
Table 16. Voltage sag (continued)
Parameter Value
SAG V
SAG
V
ref
-------------- A
V
2cal
V
R
2
R
1
R
2
+
--------------------⋅⋅D
SAG
HEX[]⋅⋅=
LSB
SAG
R
1
R
2
+()V
ref
A
V
2R
2
cal
V
D
SAG
⋅⋅
------------------------------------------------------------------ V[]=
time 2 arc V
SAG
V
L
--------------


sin 1000
2πf
L
-------------ms[]⋅⋅=
SWELL
V
V
SWELL
V
ref
---------------------A
V
2R
2
R
1
R
2
+
-------------------- cal
V
D
SWELL
HEX[]⋅⋅ =
LSB
SWELL
V
ref
R
1
R
2
+()
A
V
2R
2
cal
V
D
SWELL
⋅⋅
------------------------------------------------------------------------- V[]=
DocID026142 Rev 3 59/121
STPM32, STPM33, STPM34 Theory of operation
121
For the current swell, an analogue procedure can be followed:
I
SWELL
: target RMS value of swell curre nt
k
S
: current sensor sensitivity [V/A]
A
I
: current sensor gain
cal
I
= 0.875, calibrator mid value
The swell threshold is:
8.4.11 Tamper detection
The device includes a tamper detection module (the STPM34 and STPM33 only).
To enable this feature, TMP_EN bit and TMP_TOL[1:0] tamper tolerance have to be set in
DSP_CR3. Tamper detection feature is disabled by default. It is possible to choose among
four different tolerances according to Table 19:
Tamper module monitors active energy registers of the two channels. Tamper condition is
detected when the absolute value of the difference between the two active energy values is
greater than the chosen percentage of the averaged value. This occurs when the following
equation is satisfied:
Equation 18
|EnergyCH1 - EnergyCH2| > TOL * |EnergyCH1 + EnergyCH2|
where TOL is selected according to Table 19.
Table 18. Current swell
Parameter Value
Register value
Register LSB RMS value
SWELL
C
I
SWELL
V
ref
-------------------A
I
2k
S
cal
I
D
SWELL
HEX[]⋅⋅ =
LSB
SWELL
V
ref
A
I
2k
S
cal
I
D
SWELL
⋅⋅
---------------------------------------------------------------------A[]=
Table 19. Tamper tolerance setting
TMP_TOL[1:0] Tamper tolerance
0x00 TOL = 12.5%
0x01 TOL = 8.33%
0x10 TOL = 6.25%
0x11 TOL = 3.125%
Theory of operation STPM32, STPM33, STPM34
60/121 DocID026142 Rev 3
Detection threshold is much higher than the accuracy difference of the current channels,
which should be less than 0.2%, but, some headroom should be left for possible transition
effect, due to accidental synchronism of load current change at the rate of energy sampling
.
Tamper circuit works if energies associated with the two current channels are both positive
or negative, if two energies have different sign, a warning flag “TAMPER OR WRONG” in
DSP_SR1 or DSP_SR2 is set.
The channel with higher energy is signaled by PHx TAMPER status bit in DSP_SR1 or
DSP_SR2.
When internal signals are not good enough to perform the calculations, for example line
period is out or range or sigma-delta signals from analog section are stuck at high or low
logic level, the tamper module is disabled and its state is set to normal.
8.4.12 AH accumulation
In this particular tamper, the neutral wire is disconnected from the meter and the STPM3x
does not sense the voltage anymore, while it keeps sensing the current information. In these
conditions, AH accumulator can be used by the microcontroller to regularly calculate the
billing based on a nominal voltage value due to the following equation:
Equation 19
Energy = AH_ACC[31:0]·LSB
AH_ACC
·V
NOM
[Wh]
If voltage is too low (sag event detected) or period is wrong (PER_ERR = 1) and RMS value
of current is high enough, RMS current is accumulated in the register AH_ACC[31:0]. Value
in PHx AH_ACC[31:0] register is increased with a DCLK frequency.
Figure 45. AH accumulation block
The accumulation of current values is controlled by AH status bit. AH bit is set when
PER_ERR = 1 and real values of current overcome an upper threshold set in AH_UPx[11:0]
in DSP_CR9 and DSP_CR11. This bit is cleared when RMS current drops below
AH_D OWNx[11:0] threshold in DSP_CR10 and DSP_CR12.
To stabilize the current accumulation, SAG event should be monitored by setting some
thresh ol ds in the re lat ed reg ister.
$+B$&&>@
Ȉ
,506>@
'&/.
*,3*)65
DocID026142 Rev 3 61/121
STPM32, STPM33, STPM34 Theory of operation
121
Figure 46. AH accumulation thresholds
8.4.13 Status bits, event bits and interrupt masks
The device detects and monitors events like sag and swell, tamper, energy register
overflow , power sign and errors, generating an interrupt signal on INTx pins when the
masked event is triggered.
When the event is triggered, the correspondent bit is set in two registers:
Live event register DSP_EV1,2
Status (also called interrupt) register DSP_SR1,2
To output the interrupt on INTx pins, the correspondent bit should be set in the interrupt
control mask register DSP_IRQ1,2
Table 20. AH accumulator LSB
Parameter Value
AH accumulator register LSB
AH threshold register LSB
6$*
,B506
3(5B(55
$+B$&&
$+B83
$+B'2:1
$+
*,3*/0
LSB
AH_ACC
LSB
IRMS
2
3600 DClk
--------------------------------Ah[]=
LSB
AH_UP
LSB
AH_DOWN
LSB
IRMS
=2
5
A[]=
Theory of operation STPM32, STPM33, STPM34
62/121 DocID026142 Rev 3
Live event register
In l iv e ev en t r e g is t ers (DSP_EV1 and DSP_EV2), events are set and cleared by DSP at the
sampling rate DCLK = 7,8125 kHz.
DocID026142 Rev 3 63/121
STPM32, STPM33, STPM34 Theory of operation
121
Table 21. Live events
Bit Internal signal Description
0
PH1+PH2 events
(1)
1. Valid for the STPM33 and STPM34 only.
Sign total active power
1 Sign tot al reac ti ve powe r
2 Overflow total act ive energy
3 Overflow total reactive energy
4
PHx events
Sign active power
5 Sign active fund am ental power
6 Sign reactive power
7 Sign apparent power
8 Overflow active energy
9 Overflow active fundamental energy
10 Overflow reactive energy
11 Overflow apparent power
12
Cx events
Current zero-c ros sing
13 Current sigma-delta bitstream stuck
14 Current AH accumulation
15
Current swell event history
16
17
18
19
Vx events
Voltage zero-crossing
20 Voltage sigma-delta bitstream stuck
21 Voltage period error (out of range)
22
Voltage swell event history
23
24
25
26
Voltage sag event history
27
28
29
30 Reserved
31 Reserved
Theory of operation STPM32, STPM33, STPM34
64/121 DocID026142 Rev 3
Stat us interrupt register
When an event is detected, DSP sets the status register (DSP_SR1 and DSP_SR2) bits
that remain latched, even if the event ceases, until they are cleared to zero by a write
operation.
Table 22. Status register
Bit Internal signal Description
0
PH1+PH2 status
(1)
Sign total active power
1 Sign total reactive power
2 Overflow total active energy
3 Overflow total reactive energy
4
PH2 IRQ st a tus
(1)
Sign secondary channel active power
5 Sign secondary active fundamental power
6 Sign secondary reactive power
7 Sign secondary apparent power
8 Overflow secondary channel active energy
9 Overflow secondary channel active fundamental energy
10 Overflow secondary channel reactive energy
11 Overflow secondary chann el apparent energy
12
PH1 IRQ st a tus
Sign primary channel active power
13 Sign primary channel active fundamental power
14 Sign primary channel reactive power
15 Sign primary channel apparent power
16 Overflow primary channel active energy
17 O ve rflow primary chan nel activ e fund am ental ene rgy
18 Overflow primary channel reactive energy
19 Overflow primary channel apparent energy
20
Cx IRQ status
Cur rent sigma-de lta bitstream stuck
21 AH1 - accum ul ati on of current
22 Current swell detected
23 Current swell end
24
Vx IRQ status
Voltage sigma-delta bitstream stuck
25 Voltage period error
26 Voltage sag detected
27 Voltage sag end
28 Voltage swell detected
29 Voltage swell end
DocID026142 Rev 3 65/121
STPM32, STPM33, STPM34 Theory of operation
121
Interrupt control mask register
Each bit in the status register has a correspondent bit in DSP_IRQ1, DSP_IRQ2 interrupt
mask registers. For each bit set, the relative event detection is output on INT1, INT2 pins
respectively. In the STPM32, DSP_IRQ1 is mapped on INT1 pin only.
Status bits can be monitored by an external microcontroller application, in fact when INTx
pin triggers, the application reads the relative status register content and clears it.
Note: Power sign status bits generate level interrupts.
8.5 Functional description of communication peripheral
The STPM3x can be interfaced to a control unit through a programmable communication
peripheral which can be:
4-pin SPI
2-pin UART
The serial communication peripherals share same pins so that they cannot be used at the
same time.
Interface selection is implemented through an internal detection system that, at the device
startup, detects which of the two communication interfaces has to be used. This feature
allows communication to be quic kly established with minimal initialization.
Auto-detection works at startup, (power-up or EN pin transition from low to high) by
monitoring SCS pin status and automatically selecting the communication interface that
matches the configuration:
If SCS pin is held low the communication method is SPI
If SCS pin is held high the communication int erface is UART
After the selected communication interface is established, the interface is locked to prevent
the communication method from changes, and SCS pin is used as chip-select for the
device.
Pins used by the serial communication peripheral are listed in Table 23:
30 Tamper sta t us
(1)
Tamper
31 Tamper or wrong connection
1. Valid for the STPM33 and STPM34 only.
Table 22. Status register (continued)
Bit Internal signal Description
Theory of operation STPM32, STPM33, STPM34
66/121 DocID026142 Rev 3
8.6 Communication protocol
A single communication session consists of 4+1 (optional CRC) bytes full-duplex data
sequenc e organ iz ed as fol lows:
The above information is exchanged between master and slave in the same communication
session, or transaction. SPI master can issue a read-request and a write-request (optional).
The master initiates the communication sending the STPM3x a frame see Table 24 (read
address - write address - LS data byte - MS data byte - optional CRC).
Two command codes are provided:
Dummy read address 0xFF increments by one the internal read pointer
Dummy write address 0xFF specifies that no writing is requested (the two following
incoming data frames are ignored)
Upon the reception of a frame, the STPM3x replies to master data sending the 32-bit
register addressed during the previous communication session; during the first session the
slave sends, by default, the 32-bit data stored into the first (row 0) memory register . Data are
organized in 8-bit packets so that the least significant byte is sent first and the most
significant byte is sent last.
A final 8-bit CRC packet is sent to master to verify no data corruption has occurred during
the transmission from slave to master. The CRC feature, enabled by default, can be
controlled by a configuration bit into US_REG1 memory row (read address 0x24, write
address 0x24).
Table 23. Communication pin description
Name Function SPI connection UART connection
SYN Synchronization GPIO (optional), VCC at
startup GPIO (optional), VCC at startup
SCS Chip-select -Start-up interface selection
at GND
-Chip-select at GND
-St art-up interface sel ec tio n at
VCC
-Chip-select at VCC
SCL Clock SPI CLK Not used
MOSI/RXD Data in SPI MOSI UART RX
MISO/TXD Data out SPI MISO UART TX
Table 24. Communication session structures
Byte Master-side transmitted data Slave-side transmitted data
1 ADDRESS for 32-bit register to be read Previously requested data byte LSB
2 ADDRESS for 16-bit register to be written Previously requested data byte 2 out of 4
3 DATA for 16-bit register to be written, LSB Previously requested data byte 3 out of 4
4 DATA for 16-bit re giste r to be written, M SB Previous ly requested data byte MSB
5 (optional) Master CRC verification packet Slave CRC verification packet
DocID026142 Rev 3 67/121
STPM32, STPM33, STPM34 Theory of operation
121
If CRC bit in US_REG1 is cleared, the communication consists of 4 bytes only.
Write-requests are executed immediately after the transaction has completed, while read-
requests are fulfilled at the end of the next transaction only, because the sent read-address
has just set the internal register pointer to deliver data during the following transaction.
So, while one transaction is enough to write data into memory, at least two transactions are
needed to read selected data from memory.
Data bytes are swapped with respect to the order of the byte, since during transmission, the
3
rd
byte sent to MOSI line is the least-significant (LS) byte (bits [7:0]) and the 4
th
byte is the
most-significant (MS) byte of the data to be written (bits [15:8]).
On MISO line, the first data byte received is the least-significant (LS, bits [7:0]) and the last
is the most-significant (MS, bits [31:24]) of the record, as shown below.
Figure 47. Single communication time frame
Data and configuration registers are organized into 32-bit rows in the internal memory, but
can only be accessed 16-bit at a time for writing operations.
The address space is 70 rows wide, so there are 70 32-bit addressable elements for reading
operations; since the first 21 configuration registers are writable, there are 42 (=21x2) 16-bit
addressable elements for writing operations.
Figure 48. Memory data organization
Two different codes are used for the read address space and write address space, which
can be found in the register map.
8.6.1 Synchronization and remote reset functionality
Data into read-only registers are updated internally by DSP with frequency: 7,8125 kHz
(clock frequency measure). Latching is used to sample the updated results into transmission
5HDG$GGUHVV :ULWH$GGUHVV /6'DWD>@ 06'DWD>@ &5&%\WH
'DWD>@ 'DWD>@ 'DWD>@ 'DWD>@ &5&%\WH
026,
0,62
6&6
WLPHOLQH
*,3*)65
5HDG$GGUHVV
:ULWH$GGUHVV
/6'DWD>@06'DWD>@
'DWD>@'DWD>@'DWD>@'DWD>@
'DWD>@'DWD>@'DWD>@'DWD>@
'DWD>@'DWD>@'DWD>@'DWD>@
/6'DWD>@06'DWD>@
ELWV
ELWV
*,3*)65
Theory of operation STPM32, STPM33, STPM34
68/121 DocID026142 Rev 3
latches. The transmission latches are flip-flops holding the data in the communication
interface.
Data latching can be implemented in three ways:
Using SYN and SCS pin
Writing the channel latch bits before each reading (S/W Latchx in DSP_CR3)
Writing auto-latch bit (S/W Auto Latch in DSP_CR3) to automati ca ll y lat ch data
registers every clock measure period (128 μs)
The remote reset can be performed in two ways:
Using SYN and SCS pin
Writing the reset bit (S/W reset in DSP_CR3)
SYN pin: latching, rese t and global reset
Latching of internal memory registers can be carried out by producing pulses of a given
width on SYN pin while SCS line is high as depicted in Figure 49.
If a single pulse on SYN is detected, latch occurs.
If two consecutive pulses are detected, a reset of measurement registers occurs and the
counters are reset, as well.
If three consecutive pulses are detected, a global reset occurs, the configuration is also
reset and the ch ip mus t be initi al ized agai n.
Note: To ensure a correct initialization of DSP, it is recommended to perform a global reset
through three SYN pulses at startup and before setting configuration bits.
Figure 49. Latching and reset through SYN pulses
Latch pulse width and other SPI timings are reported in Table 5.
6&6
6<1
WLPHOLQH
/DWFKHGJHV 5HVHW HGJH
*,3*)65
DocID026142 Rev 3 69/121
STPM32, STPM33, STPM34 Theory of operation
121
Figure 50. Latching through SYN pulses
Software latch
Writing S/W Latchx configuration bits of DSP_CR3 register can latch data into transmission
latches. These two bits latch channel 1 and channel 2 data registers respectively; once set,
they latch data and are automatically reset. By setting S/W Auto Latch bit, latching is
performed automatically at the rate of sampling clock, so data latching, before each reading
request, is no longer necessary.
Software reset
Writing SW Reset configuration bit in DSP_CR3 brings the configuration registers to their
default values. Data registers are not reset. This bit is automatically cleared after this action.
8.6.2 SPI peripheral
The device implements a full-duplex communication protocol using MISO, MOSI ports for
data exchange, SCL for clock port, SCS port for data exchange activation and SYN for
internal register data latching and resetting, when no data activation is set (SCS in off-state).
Latching and resetting can also be performed by setting the related bits in DSP_CR3
register.
With refernce to the general SPI protocol, the peripheral is configured to work according to
the following settings: cpol=1, cpha=1.
SPI control register
US_REG1 register contains 16-bits with all the configuration parameters of t SPI and UART
interfaces of the STPM3x .Table 25 describes SPI related bits:
LSBfirst: endianness of data-byte transmission and reception
026,
0,62
6&6
WLPHOLQH
6<1
DFWLYH HGJH DFWLYH HGJHLQDFWLYH HGJHV
*,3*)65
Table 25. SPI control register
Bit position in row Name Description Default value
15 LSBfirst Little(1) or big(0) - endian for bit
transmission in data-byte 0
14 CRCenable Enable/disable CRC feature 1
[7:0] CRCPolynomial Polynomial used to validate transmitted
and received data 0x07
Theory of operation STPM32, STPM33, STPM34
70/121 DocID026142 Rev 3
CRCenable: enables the optional CRC feature
CRCPolynomial: default polynomial used is 0x07 (x8+x2+x+1)
SPI timings
Any single transaction timing follows the scheme in Figure 5.
For consecutive writing transactions, a minimum time interval of 4 μs has to be taken into
account in order to avoid overrun issues.
For latch and consecutive read transactions a minimum time interval of 4 μs has t o be t a ken
into account in order to avoid overrun issues.
Examples
All frames in the following examples do not contain CRC byte, which has to be added just in
case the feature has not been disabled previously. After that CRC has been disabled, the
frame consists of four bytes only.
To write bits from 31 to 16 (most significant bits) in row 1 with data byte 0xABCD and read
row 2 in the following transaction, the first four bytes of the transmission (without CRC) are:
04_03_CD_AB
To receive data from register 04 the master should send the frame:
FF_FF_FF_FF
To write lower (least significant) 16-bits in row 3 with data #AABB and read back from the
same row:
06_06_BB_AA
And then
FF_FF_FF_FF
To receive
The sent frame changes according to LSBfirst setting:
MISO line is valid as well. In this case, there is a full-reverse data transmission when
LSBfirst=1, since data bit reception order changes as shown in the following table:
Table 26. LSBfirst example
LSBfirst = 0 04_03_CD_AB
LSBfirst = 1 20_C0_B3_D5
Table 27. LSBfirst and MISO line
Byte[0] Byte[1] Byte[2] Byte[3]
LSBfirst = 0 [7:0] [15:8] [23:16] [31:24]
LSBfirst = 1 [0:7] [8:15] [16:23] [24:31]
DocID026142 Rev 3 71/121
STPM32, STPM33, STPM34 Theory of operation
121
LSBfirst can be programmed using the transactions (other configuration bits involved in the
transaction are set to their default states):
The transaction to write LSBfirst=0 is byte-reversed, since the system has moved from the
LSBfirst=1 condition. The read address is set so to read in the following transaction the
content of US_REG1.
Following the frames to enable/disable CRC feature:
To reset status bits, the following frame should be sent:
28_29_00_00
which resets all 16-bits (SPI and UART status registers). To clear SPI status bits only, SPI-
master can send 1 s sequence to UART status bit register. Referring to the previous
example, this leads to the following transaction:
28_29_FF_00
Events are associated to interrupts so that, when the correspondent event mask bit in SPI
IRQ register is activated, INT line is sensitive to that event.
For example, to activate CRC error interrupt (bit 12, related to status bit 28), the mask
0x1000 has to be written to write address 0x28 by the following transaction:
28_28_00_10
8.6.3 UART peripheral
The STPM3x provides the UART interface, which allows a communication using two single-
direction pins only; this reduces the cost of isolated communication, where required, since
two low cost opto-isolators are needed for this purpose.
Main features of this interface are:
Full-duplex, asynchronous communication
Low-level sequential data exchange protocol (1 start, 8 data, 1 stop)
NRZ standard format (mark/space)
Fractional baud rate generator system (to offer a wide range of baud rates)
Several error detection flags
Configurable frame length
Optional configurable CRC checksum
Optional noise immunity algorithm
Table 28. LSBfirst programming
LSBfirst = 1 24_24_07_CO
LSBfirst = 0 24_24_EO_02
Table 29. CRCenable programming
CRCenable = 1 24_24_07_40
CRCenable = 0 24_24_07_00
Theory of operation STPM32, STPM33, STPM34
72/121 DocID026142 Rev 3
TX pin accesses this interface, which transmits data to the microcontroller, and RX pin,
which receives data from the microcontroller. A simple master/slave topology is
implemented on the UART interface where the STPM3x acts as the slave.
T ransmission and reception are driven by a common baud rate generator; the clock for each
one is generated only when UART is enabled.
UART transmitting and receiving sections must have the same bit speed, frame length and
stop bits.
Chip selection in UART mode requires SCS bit is kept high.
Communication starts when the master sends slave a valid frame (the microcontroller). The
format of the frame is shown below.
Figure 51. UART frame
As shown in Figure 51, each frame consists of 10 bits. Each bit is sent to a variable rate. All
frame data are sent LSBfirst.
If a BREAK frame is received, a break flag is set and the whole packet reception aborts.
The frame receiver can recognize an IDLE frame, but packet processing is not involved.
UART control register
US_REG1 and US_REG2 registers respectively contain all the configuration parameters of
SPI and UART interfaces of the STPM3x. Table 30 describes UART bits:
6WDUW
%LW %LW %LW %LW %LW %LW %LW %LW %LW 6WRS
%LW
1H[W
6WDUW
%LW
&ORFN
6WDUW
%LW
6WDUW
%LW
([WUD
,GOH IUDPH
%UHDNIUDPH
*,3*)65
DocID026142 Rev 3 73/121
STPM32, STPM33, STPM34 Theory of operation
121
T ime out: a ny com munic ation s essi on shou ld be comple ted wi thin this confi gurab le ti me
threshold (ms). If the timeout value is zero this threshold is disabled. If timeout expires,
the reception and the transmission processes stop and, if enabled, a BREAK character
is transmitted to warn the master about the error. Packet processing can resume only
after that BREAK transmission has been completed and an IDLE frame has been
received.
Break on error: if an error occurs (framing/noise/timeout/RX overrun) a BREAK
command is transmitted to the master.
Noise error detection. An oversampling technique is implemented to raise the noise
level immunity: received bit value is accomplished taking in account the value of three
samples, and applying to them the majority rule. This noise immunity algorithm is
automatically enabled: if "noise detection enable" bit is set, all samples must have the
same value to get a valid bit reception. In this case, when noise is detected within a
frame, a noise detection error is issued and the whole packet is discarded.
CRCPolynomial: default polynomial used is 0x07 (x8+x2+x+1).
CRC, in case of UART, has to be calculated on the reversed byte frame, because of the
internal structure of UART blocks.
For example, if the frame to transmit is 04_03_CD_AB, CRC should be calculated on the
frame:
20_C0_B3_D5 -> CRC = 0x16
The frame to send is: 04_03_CD_AB with the reversed CRC = 68
Note: For UART peripheral, CRC byte is sent reversed only.
Frame delay: delay (expressed as bit periods) in transmitted frames. The bit period
depends on the baud rate divider selection (see below).
Baud rate: set to 9600 default value, the communication baud rate can be programmed
in this configuration register. Theoretical values for configuration register can be
Table 30. UART control register US_REG1
Row bit position Nam e Description Default value
[23:16] Timeout Timeout threshold [ms] 0
9 Break on error Enab le /dis ab le the ope rati on to sen d break
frame in case of error 0
8Noise detection
enable Enable/disab le error det ect ion base d on
noise immunity algorithm 0
[7:0] CRCPolynomial Polynomial used to validate transmitted and
received data 0x07
Table 31. UART control register US_REG2
Row bit position Name Description Default value
[23:16] Frame delay TX frame-to-frame delay [bit periods] 0
[15:0] Baud rate Fractional baud rate generation 0x0683
Theory of operation STPM32, STPM33, STPM34
74/121 DocID026142 Rev 3
calculated according to the following formulas, where a main clock frequency is 16
MHz, BR is the desired baud rate and BRDIV is the theoretical value of fractional
divider:
Equation 20
Equation 21
Equation 22
where BRR
I
are bits [15:4] and BRR
F
are bits [3:0] of the register.
According to the chosen baud rate divider the bit period is:
Equation 23
Table 32 summarizes the above calculation of the register value to select some typical baud
rates:
8.6.4 UART/SPI status register and interrupt control register
At row 20, at read address 0x28, the register is responsible for holding the status of
UART/SPI peripherals of the STPM3x device. Setting the correspondent bit in IRQ CR the
interrupt mask raises an interrupt on both INT1, INT2 pins based on the peripheral status.
Table 32. Baud rate register examples
Baud rate BRDIV BRR
I
BRR
F
Register value
2400 416.666667 416 = 0x1A0 11 = 0xB 1A0B
9600 104.166667 104 = 0x68 3 = 0x3 683
19200 52.0833333 52 = 0x34 1 = 0x1 341
57600 17.3611111 17 = 0x11 6 = 0x6 116
115200 8.68055556 8 = 0x8 11 = 0xB 8B
230400 4.34027778 4 = 0x4 5 = 0x5 45
460800 2.17013889 2 = 0x2 3 = 0x3 23
DocID026142 Rev 3 75/121
STPM32, STPM33, STPM34 Theory of operation
121
SPI RX overrun: occurs when two consecutive write transactions are too fast and close
to each other
SPI TX underrun: occurs when a read-back operation (= write then read the same
register) or latch/read is too fast
SPI CRC error: CRC error detected
UART/SPI write address error: write address out of range (not write address not
writable)
UART/SPI read address error: read address out of range (not read address not
readable)
Table 33. UART/SPI status and interrupt control register
Register Bit position Description Default value Access
mode
SR
30 SPI RX overrun 0 RW
29 SPI TX underrun 0 RW
28 SPI CRC error 0 RW
27 UART/SPI write address error 0 RW
26 UART/SPI read address error 0 RW
25 SPI TX empty 0 RO
24 SPI RX full 0 RO
22 UART TX overrun 0 RW
21 UART RX overrun 0 RW
20 UART noise error 0 RW
19 UART frame error 0 RW
18 UART timeout error 0 RW
17 UART CRC error 0 RW
16 UART break 0 RW
IRQ CR
14 mask for SPI RX overrun error status bit 0 RW
13 mask for SPI TX underrun error status bit 0 RW
12 mask for SPI CRC error status bit 0 RW
11 mask for write address error status bit 0 RW
10 mask for read address error status bit 0 RW
6 mask for UART TX overrun 0 RW
5 mask for UART RX overrun 0 RW
4 mask for UART no ise error 0 RW
3 mask for UART frame error 0 RW
2 mask for UART timeout error 0 RW
1 mask for UART CRC error 0 RW
Theory of operation STPM32, STPM33, STPM34
76/121 DocID026142 Rev 3
SPI TX empty: transmission buffer empty (for SPI diagnostic, not recommended for
normal IRQ operations)
SPI RX full: reception buf fer full (for SPI diagnostic, not recommended for normal IRQ
operations)
UART TX overrun: occurs when master and slave have different baud rates and master
transmits before reception has ended
UART RX overrun: active when received data have not been correctly processed
UART noise error: noisy bit detected
UART frame error: missing stop bit detected
UART timeout error: timeout counter expired
UART CRC error: CRC error detected
UART break: break frame (all zeros) received
Read-write status bits are set by the occurrence of the related event and are not reset when
the event ceases, on contrary master can only reset them transmitting a write sequence
addressed to memory location 0x28.
DocID026142 Rev 3 77/121
STPM32, STPM33, STPM34 Application design and calibration
121
9 Application design and calibration
The choice of external components in the transduction section of the application is a crucial
point in the application design, affecting the precision and the resolution of the whole
system. A compromise has to be found among the following needs:
1. Maximizing signal-to-noise ratio in the voltage and current channel
2. Choosing current-to-voltage conversion ratio k
S
and the voltage divider ratio in a way
that calibration can be achieved for a given constant pulse C
P
3. Choosing k
S
to take advantage of the whole current dynamic range according to
desired maximum current and resolution
In this section, the rules for a good application design are described. After the design phase,
any tolerance of the real components from these values or device internal parameter drift
can be compensated through calibration.
Please refer to Section 8.4.6 and Section 8.4.7 for device basic calculations.
9.1 Application design
To reach C
P
target output constant pulse at default LPW value, the analog front end
component choice has to depend on:
value of R
1
voltage divider resistor, given R
2
and k
S
current sensor sensitivity
–k
S
given R
1
and R
2
voltage divider resistors
Calculations for these two methods are developed below:
First meth od: co nstant k
S
Given R
2
(smalle r voltag e divide r re si st or ), k
S
(current sensor sensitivity) and the target
meter constant pulse C
P
(pulses/kWh) as input of the calculations, the value of the voltage
divider resistor R
1
comes from the following formula:
Equation 24
Second method: constant R1
Given R
1
, R
2
(voltage divider resistors) and C
P
target meter constant pulse (pulses/kWh) as
input of the calculations, the value of k
S
current sensor comes from the following formula:
Equation 25
Note: The resistor (the former) or the current channel sensor sensitivity (the latter) must be
chosen as closer as possible to the target; small tolerance is compensated by the
calibration, to reach the target constant pulse C
P
.
Application design and calibration STPM32, STPM33, STPM34
78/121 DocID026142 Rev 3
With the above external components, the maximum measurable values of RMS voltage and
current ar e:
Equation 26
Equation 27
These values are calculated leaving some available room for the input range with the peak
value and minimizing modulator distortions.
The current resolution value is equal to 4 times LSB
IRMS
:
Equation 28
9.1.1 Example: current transformer case
This example shows the correct dimensioning of a meter using a current transformer having
the following specification:
The dimension of the voltage channel considers the voltage divider resistor values as
770
kΩ and 470 Ω.
Setting C
P
= 64000 pulses/kWh (at LPWx = 1 - device default value) an d according to
calculation above the following values are:
I
MIN
V
ref
cal
I
A
I
2
15
k
S
k
int
⋅⋅
---------------------------------------------------------A[]=
Table 34. Example 1 design data
Parameter Value
V
N
nominal voltage 230 V
RMS
I
N
nominal current 5 A
RMS
I
Max
maximu m current 40 A
RMS
C
P
const ant pulse s 1000 imp/k Wh
DocID026142 Rev 3 79/121
STPM32, STPM33, STPM34 Application design and calibration
121
To set the desired LED pulse output, division factor LED_PWM can be set through
LPWx[3:0] bits in DSP_CR1 and DSP_CR2 configuration registers.
Table 35. Example 1 calculated data
Parameter Value
Current sensor
sensitivity
LED frequen cy at
P
N
V
MAX
I
MAX
I
MIN
LSB
P
LSB
E
Table 36. LPWx bits, Cp, LED frequency relationships
LPWx LED_PWM C
P
[imp/kWh] L ED at P
Nom
[Hz] Pulse value [Ws]
0000 0,0625 1024000 327,11 3,52
0001 0,125 512000 163,56 7,03
0010 0,25 256000 81,78 14,06
0011 0,5 128000 40,89 28,13
0100 1 64000 20,44 56,25
0101 2 32000 10,22 112,50
0110 4 16000 5,11 225
k
S
V
ref2
C
P
1R
1
R
2
+()
1800 DClk A
V
A
I
cal
V
cal
I
⋅⋅
------------------------------------------------------------------------------------3.51mV A==
LED
f
C
P
V
N
I
N
⋅⋅
3600000
----------------------------- 20.44Hz==
I
MIN
V
ref
cal
I
A
I
2
15
k
S
k
int
⋅⋅
---------------------------------------------------------5.9 7 mA==
LSB
P
V
ref2
1R
1
R
2
+()
k
int
A
V
A
I
k
S
cal
V
cal
I
2
28
⋅⋅
-------------------------------------------------------------------------------------0.818mW LSB==
LSB
E
V
ref2
1R
1
R
2
+()
3600 DClk k
int
A
V
A
I
k
S
cal
V
cal
I
2
17
⋅⋅
------------------------------------------------------------------------------------------------------------------------- 0.214mWs LSB==
Application design and calibration STPM32, STPM33, STPM34
80/121 DocID026142 Rev 3
The closer value to desired C
P
is given by setting LPWx divider to 1010.
Any tolerance producing small variation of C
P
from 1000 imp/kWh can be compensated by
calibration: setting CHV and CHC bits.
9.2 Application calibration
The meter has to be calibrated so to compensate external component tolerances and
internal V
REF
possible drift.
After the calibration, a meter using the STPM3x can reach IEC class 0.2 accuracy, taking
into account that the component choice follows the rules explained above, and the layout
and signal routing minimize the noise capture.
9.2. 1 Voltage and current calibration (CHVx, CHCx bits)
Thanks to the device internal architecture and linearity, all calculated values (RMS, energies
and power) can be calibrated in a single point, just calibrating voltage and current streams.
For this purpose, a known nominal voltage V
N
and current I
N
must be applied to the meter
under calibration.
Referring to Section 9.1 and Section 5, having R
1
or k
S
calculated as stated in the previous
section, the target values of voltage and current RMS registers, X
V
and X
I
respectively are
calculated as follows:
0111 8 8000 2,56 450
1000 16 4000 1,28 900
1001 32 2000 0,64 1800
1010 64 1000 0,32 3600
1011 128 500 0,16 7200
1100 256 250 0,08 14400
1101 512 125 0,04 28800
1110 1024 62,5 0,02 57600
1111 2048 31,25 0,01 115200
Table 36. LPWx bits, Cp, LED fre quency relationships (continued)
LPWx LED_PWM C
P
[imp/kWh] L ED at P
Nom
[Hz] Pulse value [Ws]
DocID026142 Rev 3 81/121
STPM32, STPM33, STPM34 Application design and calibration
121
Note: For the above calculation, the calculated value of the component k
S
or R
1
(according to the
chosen design method) must be used; the difference of the real component is compensated
by calibration as a tolerance.
To start calibration, the device has to be programmed with the proper gain and current
sensor; moreover, to obtain the greatest correction dynamic, calibrators are initially set in
the middle of their range (0x800), thus obtaining a calibration range of ±12.5% per voltage
or current channel.
After applying V
N
and current I
N
to the meter, a certain number of voltage and current RMS
samples must be read and averaged (please, refer to averaged register values as V
AV
and
I
AV
) to calculate voltage and channel calibrators as follows:
The above procedure must be repeated for all voltage/current channels.
9.2.2 Phase calibration (PHVx, PHCx bits)
The STPM3x does not introduce any phase shift between voltage and current channels.
However , the voltage and current signals come from transducers, which could have inherent
phase errors. For example, a phase error of 0.1 ° to 0.3 ° is not uncommon for a current
transformer (CT). These phase errors can vary from part to part, and they must be corrected
in order to perform accurate power calculations. The errors associated with phase mismatch
are particularly noticeable at low power factors.
The phase compensation block provides a method of digital phase correction of the phase
shifting between voltage and current channels which can be introduced by the external
component intrinsic characteristics or by external component mismatch. The amount of
Table 37. Calibration target values
Parameter Value
Voltage register value at V
N
Current register value at I
N
X
V
V
N
A
V
cal
V
2
15
⋅⋅
V
ref
1R
1
R
2
+()
------------------------------------------------=
X
I
I
N
A
I
cal
I
k
S
2
17
⋅⋅
V
ref
-----------------------------------------------------=
Table 38. Calibrator calculation
Parameter Value
Calibra tor va lue
Correction factor
CHV 14336 X
V
V
AV
---------- 12288=
CHC 14336 X
I
I
AV
--------12288=
Application design and calibration STPM32, STPM33, STPM34
82/121 DocID026142 Rev 3
phase compensation can be set per each channel, and it is executed delaying the currents
and voltage samples using bits of the phase calibration configurators: PHCx[9:0] and
PHVx[1:0].
These registers act in the same way by delaying the desired waveform by a certain quantity
given from the equations below in degree:
A capacitive behavior is determined by the current leading the voltage waveform to a certain
angle. In this case, there is the compensation by delaying the current waveform by the same
angle through PHCx register. For a 50 Hz line the current channel waveform maximum
delayed is:
φ
C
4.6035° with step Δφ
C
=0.004
An inductive behavior has the opposite effect, so that current lags the voltage waveform. In
this case, PHV register delays the voltage waveform by the minimum angle to invert the
behavior to capacitive and then acting on PHCx register for the fine tuning of the current
waveform.
PHV impacts on the calculation of power and energies related to both current channels. For
a 50 Hz line, the voltage channel waveform maximum delayed is:
φ
V
6.912 ° with step Δφ
V
= 2.304 °.
Table 39. Phase-delay
Parameter Value
Current shift
Voltage shift
Global pha se shift
ϕf
line
SCLK
---------------- PHCx 9:0[]PHVx 1:0[]2
9
()360°⋅⋅=
DocID026142 Rev 3 83/121
STPM32, STPM33, STPM34 Application design and calibration
121
Figure 52. Phase shift error
The θ angle can be measured through the error on active power (from LED) averaged over
a certain number of samples (for example 50) at power factor PF = 0,5.
For example, if the error = e, the phase shift between voltage and current is:
Equation 29
To compensate this error , PHC and PHV bits must be set as below , to introduce a correction
factor φ=-θ
.
9ROWDJH
&XUUHQWFDSDFLWLYH
&XUUHQWLQGXFWLYH
*,3*)65
θar 1e+
2
-------------


60°cos=
Application design and calibration STPM32, STPM33, STPM34
84/121 DocID026142 Rev 3
Table 40. Phase compensation
Parameter Value
φ 0
PHVx = 0x0
PHVx = 0x1
PHCx[9] = 0x0
PHVx = 0x2
PHCx[9] = 0
PHVx = 0x3
PHCx[9] = 0
f
line
SCLK
----------------2
9
360°⋅⋅ ϕ0<
PHCx 8:0[]PHVx 2
9
ϕSCLK
360°f
line
---------------------------+=
f
line
SCLK
----------------2
10
360°⋅ϕf
line
SCLK
----------------2
9
360°⋅⋅<
PHCx 8:0[]PHVx 2
10
ϕSCLK
360°f
line
---------------------------+=
f
line
SCLK
----------------2
9
3360°⋅⋅ ϕ f
line
SCLK
----------------2
10
360°⋅⋅<
PHCx 8:0[]PHVx 2
9
ϕSCLK
360°f
line
---------------------------+=
DocID026142 Rev 3 85/121
STPM32, STPM33, STPM34 Application design and calibration
121
9.2.3 Power off set calibration (OFAx, OFAFx, OFRx, OFSx bits)
The device has the power offset compensation register for all measured powers (active,
active fundamental, reactive and apparent) to compensate, for each channel, the power
measured due to noise capture in the application.
Power registers are signed values, (MSB is the sign and negative values are two's
complemented); the power offset registers are also signed registers with LSB value equal to
4 times the power LSB:
Power offset can be compensated by measuring the power value when the current I = 0, if
the average value is not null; the value is due to external influences, then an opposite value
should be applied to the power offset register.
Table 41. Power offset LSB
Parameter Value
Power LSB value
Power offset LSB value
LSB
P
V
ref2
1R
1
R
2
+()
K
int
A
V
A
I
k
S
cal
V
cal
I
2
28
⋅⋅
-------------------------------------------------------------------------------------- w
LSB
------------=
LSB
PO
LSB
P
2
2
=V
ref2
1R
1
R
2
+()
K
int
A
V
A
I
k
S
cal
V
cal
I
2
28
⋅⋅
-------------------------------------------------------------------------------------- 2
2
w
LSB
------------=
Register map STPM32, STPM33, STPM34
86/121 DocID026142 Rev 3
10 Register map
There are three types of data register:
RW: read and written by application (in orange in the picture below)
RWL: the status bits, set from DSP, must be latched to read updated content, and must
be cleared by the application (in orange in the picture below)
RL: read registers only, they contain measured data and are continuously updated by
DSP, so they need to be latched before reading (in blue in the picture below)
The following nomenclature is used in the above registers:
A: active wideband
F: active funda men tal
R: reactive
S: appa rent
STPM32, STPM33, STPM34 Register map
DocID026142 Rev 3 87/121
10.1 Register map graphical r epresentation
Table 42. Register map
Row Address (R)ead
(W)rite
(L)atch
Index
Names Default
values
MSW [31:16] LSW [15:0]
MSB [31:24] LSB [23:16] MSB [15:8] LSB [7:0]
31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0
000RW
DSP control register #1
dsp_cr1 040000A0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LCS1[1:0]
LPS1[1:0]
LPW1 [3:0]
ROC1
BHPFC1
BHPFV1
APM1
AEM1
TC1[2:0]
ENVREF1
ClearSS
CLRSS_TO1[3:0]
102RW
DSP control register #2
dsp_cr2 240000A0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LCS2[1:0]
LPS2[1:0]
LPW2 [3:0]
ROC2
BHPFC2
BHPFV2
APM2
AEM2
TC2[2:0]
ENVREF2
ClearSS
CLRSS_TO2[3:0]
Register map STPM32, STPM33, STPM34
88/121 DocID026142 Rev 3
204RW
DSP control register #3
dsp_cr3 000004E0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
REF_FREQ
EN_CUM
LED_OFF2
LED_OFF1
S/W Auto Latch
S/W latch2
S/W latch1
S/W reset
TMP_EN
TMP_TOL[1:0]
ZCR_EN
ZCR
_SEL
[1:0] SAG_TIME_THR[13:0]
306RW
PHV1[1:0]
PHC1[9:0]
PHV2[1:0]
PHC2[9:0]
dsp_cr4 00000000
408RW SAG_THR1 [9:0] SWV_THR1 [9:0] CHV1 [11:0]
dsp_cr5 003FF800
50ARW SWC_THR1 [9:0] CHC1 [11:0]
dsp_cr6 003FF800
60CRW SAG_THR2 [9:0 ] SWV_THR2 [9:0] CHV2 [11:0]
dsp_cr7 003FF800
70ERW SWC_THR2 [9:0] CHC2 [11:0]
dsp_cr8 003FF800
810RW OFAF1 [9:0 ] OFA1 [9:0] AH_UP1 [11:0]
dsp_cr9 00000FFF
912RW OFS1 [9:0] OFR1 [9:0] AH_DOWN1 [11:0]
dsp_cr10 00000FFF
Table 42. Register map (continued)
Row Address (R)ead
(W)rite
(L)atch
Index
Names Default
values
MSW [31:16] LSW [15:0]
MSB [31:24] LSB [23:16] MSB [15:8] LSB [7:0]
31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0
STPM32, STPM33, STPM34 Register map
DocID026142 Rev 3 89/121
10 14 RW OFAF2 [9:0] OFA2 [9:0] AH_UP2 [11:0]
dsp_cr11 00000FFF
11 16 RW OFS2 [9:0] OFR2 [9:0] AH_DOWN2 [11:0]
dsp_cr12 00000FFF
12 18 RW
DFE Control Register 1 [31: 0]
dfe_cr1 0F270327
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
GAIN1[1:0]
enC1
enV1
13 1A RW
DFE Control Register 2 [31: 0]
dfe_cr2 03270327
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
GAIN1[2:0]
enC2
enV2
Table 42. Register map (continued)
Row Address (R)ead
(W)rite
(L)atch
Index
Names Default
values
MSW [31:16] LSW [15:0]
MSB [31:24] LSB [23:16] MSB [15:8] LSB [7:0]
31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0
Register map STPM32, STPM33, STPM34
90/121 DocID026142 Rev 3
14 1C RW
DSP IRQ (Interrupt Control Mask) Register #1
dsp_irq1 00000000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
V1 IRQ CR [7:0] C1 IRQ
CR[3:0] PH1 IRQ CR[7:0] PH2 IRQ CR [7:0] PH1+PH2
IRQ
CR[3:0]
15 1E RW
DSP IRQ (interrupt control mask) register #2
dsp_irq2 00000000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
V2 IRQ CR [7:0] C2 IRQ
CR[3:0] PH1 IRQ CR [7:0] PH2 IRQ CR [7:0] PH1+PH2
IRQ
CR[3:0]
Table 42. Register map (continued)
Row Address (R)ead
(W)rite
(L)atch
Index
Names Default
values
MSW [31:16] LSW [15:0]
MSB [31:24] LSB [23:16] MSB [15:8] LSB [7:0]
31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0
STPM32, STPM33, STPM34 Register map
DocID026142 Rev 3 91/121
16 20 RWL
DSP Status Register #1
dsp_sr1 00000000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TAMPE R OR WR ON G
PH1 TAMPER
V1 C1 PH1 PH2 PH1+PH2
Swell End
Swell Start
Sag End
Sag Start
Per ERR
Signal Stuck
Swell End
Swell Start
Nah
Signal Stuck
Energy
Overflow Power Sign Energy
Overflow Power Sign
Energy Overflow
Power Sign
SRFASRF A S RFASRFARARA
Table 42. Register map (continued)
Row Address (R)ead
(W)rite
(L)atch
Index
Names Default
values
MSW [31:16] LSW [15:0]
MSB [31:24] LSB [23:16] MSB [15:8] LSB [7:0]
31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0
Register map STPM32, STPM33, STPM34
92/121 DocID026142 Rev 3
17 22 RWL
DSP Status Register #2
dsp_sr2 00000000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TAMPE R OR WR ON G
PH2 TAMPER
V2 C2 PH1 PH2 PH1+PH2
Swell End
Swell Start
Sag End
Sag Start
Per ERR
Signal Stuck
Swell End
Swell Start
Nah
Signal Stuck
Energy
Overflow Power Sign Energy
Overflow Power Sign
Energy Overflow
Power Sign
SRFASRF A S RFASRFARARA
18 24 RW
UART & SPI Control Register #1
us_reg1 00004007
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Time Out [7:0] (ms)
lsbfirst
crcen
Break on Err
Noise en
CRC Polyno mi al [7:0 ]
Table 42. Register map (continued)
Row Address (R)ead
(W)rite
(L)atch
Index
Names Default
values
MSW [31:16] LSW [15:0]
MSB [31:24] LSB [23:16] MSB [15:8] LSB [7:0]
31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0
STPM32, STPM33, STPM34 Register map
DocID026142 Rev 3 93/121
19 26 RW
UART & SPI Control Register #2
us_reg2 00000683
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Frame Delay [7:0] Baud rate (ufix16_en4)
20 28 RW
UART & SPI IRQ Register
us_reg3 00000000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
UART & SPI IRQ Status Register UART & SPI IRQ Control Register
overrun
underrun
crc error
write error
read error
tx empty
rx full
tx ovr
rx ovr
noise err
frame err
time-out err
crc error
Break
overrun
crc error
write error
read error
underrun
tx ovr
rx ovr
noise err
frame err
time-out err
crcerror
Table 42. Register map (continued)
Row Address (R)ead
(W)rite
(L)atch
Index
Names Default
values
MSW [31:16] LSW [15:0]
MSB [31:24] LSB [23:16] MSB [15:8] LSB [7:0]
31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0
Register map STPM32, STPM33, STPM34
94/121 DocID026142 Rev 3
21 2A RL
DSP live events #1
dsp_ev1 00000000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
V1 C1 PH1 PH1+PH2
SAG1_EV[3:0]
SWV1_EV[3:0]
Per ERR
Signal stuck
ZCR
SWC1_EV[3:0]
Nah
Signal Stuck
ZCR
Energy Overflow
Power Sign
Energy Overflow
Power Sign
SRFASRFARAqA
Table 42. Register map (continued)
Row Address (R)ead
(W)rite
(L)atch
Index
Names Default
values
MSW [31:16] LSW [15:0]
MSB [31:24] LSB [23:16] MSB [15:8] LSB [7:0]
31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0
STPM32, STPM33, STPM34 Register map
DocID026142 Rev 3 95/121
22 2C RL
DSP live events #2
dsp_ev2 00000000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
V2 C2 PH2 PH1+PH2
SAG2_EV[3:0]
SWV2_EV[3:0]
Per ERR
Signal Stuck
ZCR
SWC2_EV[3:0]
Nah
Signal Stuck
ZCR
Power Sign Power Sign
Energy Overflow
Power Sign
SRFASRFARARA
23 2E RL PH2 Perio d [11:0] PH1 Period [11:0]
dsp_reg1 00000000
24 30 RL Padding V1 Data [23:0]
dsp_reg2 00000000
25 32 RL Padding C1 Data [23:0]
dsp_reg3 00000000
26 34 RL Padding V2 Data [23:0]
dsp_reg4 00000000
27 36 RL Padding C2 Data [23:0]
dsp_reg5 00000000
28 38 RL Padding V1 Fund [23:0]
dsp_reg6 00000000
Table 42. Register map (continued)
Row Address (R)ead
(W)rite
(L)atch
Index
Names Default
values
MSW [31:16] LSW [15:0]
MSB [31:24] LSB [23:16] MSB [15:8] LSB [7:0]
31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0
Register map STPM32, STPM33, STPM34
96/121 DocID026142 Rev 3
29 3A RL Padding C1 Fund [23:0]
dsp_reg7 00000000
30 3C RL Padding V2 Fund [23:0]
dsp_reg8 00000000
31 3E RL Padding C2 Fund [23:0]
dsp_reg9 00000000
32 40 RL
dsp_reg10 00000000
33 42 RL
dsp_reg11 00000000
34 44 RL
dsp_reg12 00000000
35 46 RL
dsp_reg13 00000000
36 48 RL C1 RMS Data [16:0] V1 RMS Data [14:0]
dsp_reg14 00000000
37 4A RL C2 RMS Data [16:0] V2 RMS Data [14:0]
dsp_reg15 00000000
38 4C RL SAG1_TIME [14:0] SWV1_TIME [14:0]
dsp_reg16 00000000
39 4E RL C1_PHA[11:0] SWC1_TIME [14:0]
dsp_reg17 00000000
40 50 RL SAG2_TIME [14:0] SWV2_TIME [14:0]
dsp_reg18 00000000
Table 42. Register map (continued)
Row Address (R)ead
(W)rite
(L)atch
Index
Names Default
values
MSW [31:16] LSW [15:0]
MSB [31:24] LSB [23:16] MSB [15:8] LSB [7:0]
31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0
STPM32, STPM33, STPM34 Register map
DocID026142 Rev 3 97/121
41 52 RL C2_PHA[11:0] SWC2_TIME [14:0]
dsp_reg19 00000000
42 54 RL PH1 Active Energy
ph1_reg1 00000000
43 56 RL PH1 Fundamental Energy
ph1_reg2 00000000
44 58 RL PH1 Reactive Energy
ph1_reg3 00000000
45 5A RL PH1 Apparent Energy
ph1_reg4 00000000
46 5C RL PH1 Active Power[28:0]
ph1_reg5 00000000
47 5E RL PH1 Fu ndamental P ower[28:0]
ph1_reg6 00000000
48 60 RL PH1 Reactive Power[28:0 ]
ph1_reg7 00000000
49 62 RL PH1 Apparent RMS Power[28:0]
ph1_reg8 00000000
50 64 RL PH1 Apparent V ectorial Power[28:0]
ph1_reg9 00000000
51 66 RL PH1 Momentary Active Power[28:0]
ph1_reg10 00000000
52 68 RL PH1 Momentary Fundamental Power[28:0]
ph1_reg11 00000000
53 6A RL PH1 AH_ACC
ph1_reg12 00000000
Table 42. Register map (continued)
Row Address (R)ead
(W)rite
(L)atch
Index
Names Default
values
MSW [31:16] LSW [15:0]
MSB [31:24] LSB [23:16] MSB [15:8] LSB [7:0]
31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0
Register map STPM32, STPM33, STPM34
98/121 DocID026142 Rev 3
54 6C RL PH2 Active Energy
ph2_reg1 00000000
55 6E RL PH2 Fundamental Energy
ph2_reg2 00000000
56 70 RL PH2 Reactive Energy
ph2_reg3 00000000
57 72 RL PH2 Apparent RMS Energy
ph2_reg4 00000000
58 74 RL PH2 Active Power[28:0]
ph2_reg5 00000000
59 76 RL PH2 Fundamental Po wer[28:0]
ph2_reg6 00000000
60 78 RL PH2 Reactive Power[28:0 ]
ph2_reg7 00000000
61 7A RL PH2 Apparent RMS Power[28:0]
ph2_reg8 00000000
62 7C RL PH2 Apparent Vectorial Power[28:0]
ph2_reg9 00000000
63 7E RL PH2 Momentary Active Power[28:0]
ph2_reg10 00000000
64 80 RL PH2 Momentary Fundamental Power[28:0]
ph2_reg11 00000000
65 82 RL PH2 AH_ACC
ph2_reg12 00000000
66 84 RL Total Active Energy
tot_reg1 00000000
Table 42. Register map (continued)
Row Address (R)ead
(W)rite
(L)atch
Index
Names Default
values
MSW [31:16] LSW [15:0]
MSB [31:24] LSB [23:16] MSB [15:8] LSB [7:0]
31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0
STPM32, STPM33, STPM34 Register map
DocID026142 Rev 3 99/121
67 86 RL Total Fun dam en t al Ener gy
tot_reg2 00000000
68 88 RL Total Reactive Energy
tot_reg3 00000000
69 8A RL Total Apparent Energy
tot_reg4 00000000
Table 42. Register map (continued)
Row Address (R)ead
(W)rite
(L)atch
Index
Names Default
values
MSW [31:16] LSW [15:0]
MSB [31:24] LSB [23:16] MSB [15:8] LSB [7:0]
31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0
Table 43. Register map legend
Read/Write bit RESERVED Read Active
Energy/Power Fundamental
Energy/Power Reactive
Energy/Power Apparent
Energy/Power
AFRS
Register map STPM32, STPM33, STPM34
100/121 DocID026142 Rev 3
10.2 Configuration register
Table 44. Row 0, DSP control register 1 (DSP_CR1)
Bit Internal signal Description Default
[3:0] CLRSS_TO1 Set duration of primary channel signal to clear sag and swell
and avoid race condition on digital counters 0x0
4 ClearSS1 Clear sag and swell time register and history bits for primary
channel, auto-reset to '0' 0x0
5 ENVREF1 Enable internal voltage reference for primary channel:
0: reference disabled – external V
REF
required
1: reference enabled 0x1
[8:6] TC1 Temperature compensation coefficient selection for primary
channel voltage reference V
REF1
(see Table 9)0x2
[16:9] Reserved 0x0
17 AEM1 Apparent energy mode for primary channel:
0: use apparent RMS power
1: use apparent vectorial pow er 0x0
18 APM1 Apparent vectorial power mode for primary channel:
0: use fundamental power
1: use active power 0x0
19 BHPFV1 Bypass hi-pass filter for primary voltage channel:
0: HPF enable d
1: HPF bypassed 0x0
20 BHPFC1 Bypass hi-pass filter for primary current channel:
0: HPF enable d
1: HPF bypassed 0x0
21 ROC1
Add Rogowski integrator to primary current channel filtering
pipeline:
0: integrator bypassed
1: integrator enabled
0x0
[23:22] Reserved 0x0
[27:24] LPW1 LED 1 speed dividin g factor: 0x0 = 2^(-4), 0xF = 2^11
Default 0x4 = 1 0x4
[29:28] LPS1 LED1 pulse-out power selection:
LPS1 [1:0]: 00,01,10,11
LED1 output: active, fundamental, reactive, apparent 0x0
[31:30] LCS1
LED1 pulse-out channel selection:
LCS1 [1:0]: 00,01,10,11
LED1: primary channels, secondary channels, cumulative,
sigma-delta bitstream
0x0
DocID026142 Rev 3 101/121
STPM32, STPM33, STPM34 Register map
121
Table 45. Row 1, DSP control register 2 (DSP_CR2)
Bit Internal signal Description Default
[3:0] CLRSS_TO2 Set duration of secondary channel signal to clear sag and
swell and avoid race condition on digital counters 0x0
4 ClearSS2 Clear sag and swell time register and history bits for
secondary channel, auto-reset to 0 0x0
5 ENVREF2 Enable internal voltage reference for secondary channel:
0: reference disabled – external V
REF
required
1: reference enabled 0x1
[8:6] TC2 Temperature compensation coefficient selection for
secondary channel voltage reference V
REF2
(see Table 9)0x2
[16:9] Reserved 0x0
17 AEM2 Apparent energy mode for secondary channel:
0: use apparent RMS power
1: use apparent vectorial power 0x0
18 APM2 Apparent vectorial power mode for secondary channel:
0: use fundamental power
1: use active power 0x0
19 BHPFV2 Bypass hi-pass filter for secondary voltage channel:
0: HPF enabled
1: HPF bypassed 0x0
20 BHPFC2 Bypass hi-pass filter for secondary current channel:
0: HPF enabled
1: HPF bypassed 0x0
21 ROC2
Add Rogowski integrator to secondary current channel
filtering pipeline:
0: integrator bypassed
1: integrator enabled
0x0
[23:22] Reserved 0x0
[27:24] LPW2 LED2 speed dividing factor: 0x0 = 2^(-4), 0xF = 2^11
Default 0x4 = 1 0x4
[29:28] LPS2 LED2 pulse-out power selection:
LPS2 [1:0]: 00,01,10,11
LED2: output, active, fundamental, reactive, apparent 0x2
[31:30] LCS2 LED2 pulse-out channel selection:
LCS2 [1:0]: 00,01,10,11
LED2: secondary channels, algebraic, sigma-delta bitstream 0x0
Register map STPM32, STPM33, STPM34
102/121 DocID026142 Rev 3
Table 46. Row 2, DSP control register 3 (DSP_CR3)
Bit Internal signal Description Default
[13:0] TIME_VALUE Time counter threshold for voltage sag detection 0x4E0
[15:14] ZCR_SEL
Sele cti on bit for ZCR/CLK pin, (out put depends on ZCR /CLK
enable bit):
ZCR_SEL[1:0]: 00, 01, 10, 11
ZCR: V1, C1, V2, C2
CLK: 7.8125 kHz, 4 MHz, 4 MHz, 50% duty cycle, 16 MHz
0x0
16 ZCR_EN ZCR/CLK pin output:
0: CLK
1: ZCR 0x0
[18:17] TMP_TOL Selection bits for tamper tolerance:
TMP_TOL[1:0]: 00, 01, 10, 11
Tolerance: 12.5%, 8. 33%, 6.25%, 3.125% 0x0
19 TMP_EN Enable tampering feature:
0: tamper disable
1: tamper enable 0x0
20 S/W reset SW reset brings the configuration registers to default
This bit is set to zero after this action automatically 0
21 S/W l atch1 Primary channel measurement register latch
This bit is set to zero after this action automatically 0
22 S/W l atch2 Secondary ch annel measu rem ent regis ter latc h
his bit is set to zero after this action automatically 0
23 S/W Auto Latch Automatic measurement register latch at 7.8125 kHz 0
24 LED1OFF
LED1 pin outp ut dis ab le
0: LED1 output on
1: LED1 output disabled
When the LED output is disabled the pin is set at low-state
0
25 LED2OFF
LED2 pin outp ut dis ab le
0: LED2 output on
1: LED2 output disabled
When the LED output is disabled the pin is set at low-state
0
26 EN_CUM Cumulative energy calculation
0: cumulative is the sum of channel energies
1: total is the difference of energies 0
27 REF_FREQ Reference line frequency:
0: 50 Hz
1: 60 Hz 0
[31:28] Reserved 0
DocID026142 Rev 3 103/121
STPM32, STPM33, STPM34 Register map
121
Table 47. Row 3, DSP control register 4 (DSP_CR4)
Bit Internal signal Description Default
[9:0] PHC2 Secondary current channel phase compensation
register 0x0
[11:10] PHV2 Secondary voltage chann el pha se compensati on
register 0x0
[21:12] PHC1 Primary current channel phase compensation register 0x0
[23:22 ] PHV1 Primary volt a ge channel p ha se com pe ns ati on registe r 0x0
[31:24] Reserved 0x0
Table 48. Row 4, DSP control register 5 (DSP_CR5)
Bit Internal signal Description Default
[11:0] CHV1 Calibration register of primary voltage channel 0x800
[21:12] SWV_THR1 Swell threshold of primary voltage channel 8x3FF
[31:22] SAG_THR1 Sag threshold of primary voltage channel 0x0
Register map STPM32, STPM33, STPM34
104/121 DocID026142 Rev 3
Table 49. Row 5, DSP control register 6 (DSP_CR6)
Bit Internal signal Description Default
[11:0] CHC1 Calibration register of primary current channel 0x800
[21:12] SWC_THR1 Swell threshold of primary current channel 0x3FF
[31:22] Reserved 0x0
Table 50. Row 6, DSP co ntr ol regi ster 7 (DS P_C R7)
Bit Internal signal Description Default
[11:0] CHV2 Calibration register of secondary voltage channel 0x800
[21:12] SWV_THR2 Swell threshold of secondary voltage channel 0x3FF
[31:22] SAG_THR2 Sag threshold of secondary voltage channel 0x0
Table 51. Row 7, DSP control register 8 (DSP_CR8)
Bit Internal signal Description Default
[11:0] CHC2 Calib r ation register of seco ndary current cha nnel 0x800
[21:12] SWC_THR2 Swell threshold of secondary current channel 0x3FF
[31:22] Reserved 0x0
Table 52. Row 8, DSP control register 9 (DSP_CR9)
Bit Internal sign al Descri ption Default
[11:0] AH_UP1 Primary channel RMS upper threshold (for AH) 0xFFF
[21:12] OFA1 Offset for primary channel active power 0x0
[31:22] OFAF1 Offset for primary channel fundamental active power 0x0
Table 53. Row 9, DSP control register 10 (DSP_CR10)
Bit Internal sign al Description Default
[11:0] AH_DOWN1 Primary channel RMS lower threshold (for AH) 0xFFF
[21:12 OFR1 Offset for primary channel reactive power 0x0
[31:22] OFS1 Offset for primary channel apparent power 0x0
DocID026142 Rev 3 105/121
STPM32, STPM33, STPM34 Register map
121
Table 54. Row 10, DSP control register 11 (DSP_CR11)
Bit Internal signal Description Default
[11:0] AH_UP2 Secondary channel RMS upper threshold (for AH) 0xFFF
[21:12] OFA2 Offset for secondary channel active power 0x0
[31:22] OFAF2 Offset for secondary channel fundamental active power 0x0
Table 55. Row 11, DSP control register 12 (DSP_CR12)
Bit Internal signal Description Default
[11:0] AH_DOWN2 Secondary channel RMS lower threshold (for AH) 0xFFF
[21:12] OFR2 Offset for secondary channel reactive power 0x0
[31:22] OFS2 Offset for secondary channel apparent power 0x0
Table 56. Row 12, digital front end control register 1 (DFE_CR1)
Bit Internal signal Description Default
0 enV1 Enable for primary voltage channel 0x1
[15:1] Reserved 0x193
[16] enC1 Enable for primary current channel 0x1
[17:25] Reserved 0x193
[27:26] GAIN1 Gain selection of primary current channel:
GAIN1[1:0]: 00, 01, 10, 11
GAIN: x2, x4, x8, x16 0x3
[31:28] Reserved 0x0
Table 57. Row 13, digital front end control register 2 (DFE_CR2)
Bit Internal signal Description Defaul t
0 enV2 Enable for secondary voltage channel 0x1
[15:1] Reserved 0x193
[16] enC2 Enable for secondary current channel 0x1
[17:25] Reserved 0x193
[27:26] GAIN2 Gain selection of secondary current channel:
GAIN2 [1:0]: 00, 01, 10, 11
GAIN: x2, x4, x8, x16 0x0
[31:28] Reserved 0x0
Register map STPM32, STPM33, STPM34
106/121 DocID026142 Rev 3
Table 58. Row 14, DSP interrupt control mask register 1 (DSP_IRQ1)
Bit Internal signal Description Default
0
PH1+PH2 IRQ CR
Sign total active power 0
1 Sign total reactive power 0
2 Overflow total active energy 0
3 Overflow total reactive energy 0
4
PH2 IRQ CR
Sign secondary channel active po wer 0
5 Sign seco ndary channel active fundamental p ower 0
6 Sign s econdary channel reactive power 0
7 Sign secondary channel apparent power 0
8 Overflow secondary channel active energy 0
9 Overflow secondary channel active fundamental energy 0
10 Overflow secondary channel reactive energy 0
11 Overflow secondary channel apparent energy 0
12
PH1 IRQ CR
Sign primary channel active power 0
13 Sign primary channel active fundamental power 0
14 Sign primary channel reactive power 0
15 Sign primary channel apparent power 0
16 Overfl ow prima r y ch ann el act iv e energ y 0
17 Overflow primary channel active fundamental energy 0
18 Overfl ow prima ry channel reac tiv e ene rgy 0
19 Overfl ow prima ry ch annel app aren t energ y 0
20
C1 IRQ CR
Primary current sigm a-de lt a bitstream stuck 0
21 AH1 - accumulation of primary channel current 0
22 Prim ary current swell detec ted 0
23 Prim ary current swell end 0
24
V1 IRQ CR
Primary voltage sigma-delta bitstream stuck 0
25 Primary voltage period error 0
26 Primary voltage sag detected 0
27 Primary voltage sag end 0
28 Primary voltage swell detected 0
29 Primary voltage swell end 0
30 Tamper Tamper on primary 0
31 Tamper or wrong connection 0
DocID026142 Rev 3 107/121
STPM32, STPM33, STPM34 Register map
121
Table 59. Row 15, DSP interrupt control mask register 2 (DSP_IRQ2)
Bit Internal signal Description Default
0
PH1+PH2 IRQ CR
Sign total active power 0
1 Sign total reactive power 0
2 Overflow total active energy 0
3 Overflow total reactive energy 0
4
PH2 IRQ CR
Sign secondary channel active po wer 0
5 Sign seco ndary channel active fundamental p ower 0
6 Sign s econdary channel reactive power 0
7 Sign secondary channel apparent power 0
8 Overflow secondary channel active energy 0
9 Overflow secondary channel active fundamental energy 0
10 Overflow secondary channel reactive energy 0
11 Overflow secondary channel apparent energy 0
12
PH1 IRQ CR
Sign primary channel active power 0
13 Sign primary channel active fundamental power 0
14 Sign primary channel reactive power 0
15 Sign primary channel apparent power 0
16 Overfl ow prima r y ch ann el act iv e energ y 0
17 Overflow primary channel active fundamental energy 0
18 Overfl ow prima ry channel reac tiv e ene rgy 0
19 Overfl ow prima ry ch annel app aren t energ y 0
20
C2 IRQ CR
Secondary current sigma-de lt a bitstream stuck 0
21 AH1 - accumulation of secondary channel current 0
22 Secondary current sw el l dete cted 0
23 Seco nda ry cur r ent swel l end 0
24
V2 IRQ CR
Secondary voltage sigma-delta bitstream stuck 0
25 Secondary voltage period error 0
26 Secondary voltage sag detected 0
27 Secondary voltage sag end 0
28 Secondary voltage swell detected 0
29 Secondary voltage swell end 0
30 Tamper Tamper on secondary 0
31 Tamper or wrong connection 0
Register map STPM32, STPM33, STPM34
108/121 DocID026142 Rev 3
Table 60. Row 16, DSP status register 1 (DSP_SR1)
Bit Internal signal Description Default
0
PH1+PH2 status
Sign total active power 0
1 Sign total reactive power 0
2 Overflow total active energy 0
3 Overflow total reactive energy 0
4
PH2 IRQ status
Sign secondary channel active po wer 0
5 Sign seco ndary channel active fundamental p ower 0
6 Sign s econdary channel reactive power 0
7 Sign secondary channel apparent power 0
8 Overflow secondary channel active energy 0
9 Overflow secondary channel active fundamental energy 0
10 Overflow secondary channel reactive energy 0
11 Overflow secondary channel apparent energy 0
12
PH1 IRQ status
Sign primary channel active power 0
13 Sign primary channel active fundamental power 0
14 Sign primary channel reactive power 0
15 Sign primary channel apparent power 0
16 Overfl ow prima r y ch ann el act iv e energ y 0
17 Overflow primary channel active fundamental energy 0
18 Overfl ow prima ry channel reac tiv e ene rgy 0
19 Overfl ow prima ry ch annel app aren t energ y 0
20
C1 IRQ status
Secondary current sigma-de lt a bitstream stuck 0
21 AH1 - accumulation of secondary channel current 0
22 Secondary current sw el l dete cted 0
23 Seco nda ry cur r ent swel l end 0
24
V1 IRQ status
Secondary voltage sigma-delta bitstream stuck 0
25 Secondary voltage period error 0
26 Secondary voltage sag detected 0
27 Secondary voltage sag end 0
28 Secondary voltage swell detected 0
29 Secondary voltage swell end 0
30 Tamper Tamper on secondary 0
31 Tamper or wrong connection 0
DocID026142 Rev 3 109/121
STPM32, STPM33, STPM34 Register map
121
Table 61. Row 17, DSP status register 2 (DSP_SR2)
Bit Internal signal Description Default
0
PH1+PH2 status
Sign total active power 0
1 Sign total reactive power 0
2 Overflow total active energy 0
3 Overflow total reactive energy 0
4
PH2 status
Sign secondary channel active po wer 0
5 Sign seco ndary channel active fundamental p ower 0
6 Sign s econdary channel reactive power 0
7 Sign secondary channel apparent power 0
8 Overflow secondary channel active energy 0
9 Overflow secondary channel active fundamental energy 0
10 Overflow secondary channel reactive energy 0
11 Overflow secondary channel apparent energy 0
12
PH1 status
Sign primary channel active power 0
13 Sign primary channel active fundamental power 0
14 Sign primary channel reactive power 0
15 Sign primary channel apparent power 0
16 Overfl ow prima r y ch ann el act iv e energ y 0
17 Overflow primary channel active fundamental energy 0
18 Overfl ow prima ry channel reac tiv e ene rgy 0
19 Overfl ow prima ry ch annel app aren t energ y 0
20
C2 status
Secondary current sigma-de lt a bitstream stuck 0
21 AH1 - accumulation of secondary channel current 0
22 Secondary current sw el l dete cted 0
23 Seco nda ry cur r ent swel l end 0
24
V2 status
Secondary voltage sigma-delta bitstream stuck 0
25 Secondary voltage period error 0
26 Secondary voltage sag detected 0
27 Secondary voltage sag end 0
28 Secondary voltage swell detected 0
29 Secondary voltage swell end 0
30 Tamper Tamper on secondary 0
31 Tamper or wrong connection 0
Register map STPM32, STPM33, STPM34
110/121 DocID026142 Rev 3
10.3 UART/SPI registers
Table 62. Row 18, UART/SPI control register 1 (US_REG1)
Bit Inter nal sign al Description Default
[7:0] CRCpolynomial UART/SPI polynomial for CRC calculus (SMBus default polynomial
used: x
8
+x
2
+x+1) 0x07
8Noise detection
enable UART noise immunity feature enabled 0x0
9 Break on error UART break feature enabled 0x0
[13:10] Reserved 0x0
14 CRCenable 8-bit CRC enable (5
th
packet required in each transmission) 0x1
15 LSBfirst 0: big-endian, 1: little-endian 0x0
[23:16] Time out Time out (ms) 0x0
[31:24] Reserved 0x0
Table 63. Row 19, UART/SPI control register 2 (US_REG2)
Bit Internal signal Description Default
[15:0] Baud rate Defaulted to 9600 baud 0x683
[23:16] Frame delay Frame del ay 0x0
[31:24] Reserved 0x0
DocID026142 Rev 3 111/121
STPM32, STPM33, STPM34 Register map
121
Table 64. Row 20, UART/SPI control register 3 (US_REG3)
Bit Internal signal Description Default
0- Reserved 0
1 UART CRC error Activate IRQ on both INT1, INT2 for selected signals 0
2 UART timeout error Activate IRQ on both INT1, INT2 for selected signals 0
3 UART framing error Activate IRQ on both INT1, INT2 for selected signals 0
4 UART noise error Activate IRQ on both INT1, INT2 for selected signals 0
5 UART RX overrun Activate IRQ on both INT1, INT2 for selected signals 0
6 UART TX overrun Activate IRQ on both INT1, INT2 for selected signals 0
[9:7] Reserved 1
10 UART/SPI read
error Activate IRQ on both INT1, INT2 for selected signals 0
11 UART/SPI write
error Activate IRQ on both INT1, INT2 for selected signals 0
12 SPI CRC error Activa te IRQ on both INT1, INT2 for selected signals 0
13 SPI TX underrun Activate IRQ on both INT1, INT2 for selected signals 0
14 SPI RX overrun Activate IRQ on both INT1, INT2 for selected signals 0
15 Reserved 0
16 UART break Break frame (all zeros) received 0
17 UART CRC error CRC error detected 0
18 UART timeout error Timeout counter expired 0
19 UART framing error Missing stop bit detected 0
20 UART noise error Noisy bit detec ted 0
21 UART RX overrun Active when received data have not been correctly
processed 0
22 UART TX overrun Occurs when master and slave have different baud rates
and master transmits before reception has ended 0
23 Reserved 0
24 SPI RX full Reception buffer full (for SPI diagnostic, not recommended
for normal IRQ op eration s ) 0
25 SPI TX empty Transmission buffer empty (for SPI diagnostic, not
recommended for normal IRQ operations) 0
26 UART/SPI read
address error Read address out of range 0
27 UART/SPI write
address error Write address out of range 0
28 SPI CRC error CRC error detected 0
29 SPI TX underrun Occurs when a read-back operation (= write then read the
same register) or latch + read is too fast 0
Register map STPM32, STPM33, STPM34
112/121 DocID026142 Rev 3
30 SPI RX overrun Occurs when two consecutive write transactions are too fast
and close to each other 0
31 Reserved 0
Table 64. Row 20, UART/SPI control register 3 (US_REG3) (continued)
Bit Internal signal Description Default
DocID026142 Rev 3 113/121
STPM32, STPM33, STPM34 Register map
121
10.4 Data registers
Table 65. Row 21, DSP live event 1 (DSP_EV1)
Bit Internal signal Description Default
0
PH1+PH2 events
Sign total active power 0
1 Sign total reactive power 0
2 Overflow total active energy 0
3 Overflow total reactive energy 0
4
PH1 events
Sign primary channel active power 0
5 Sign primary channel active fundamental power 0
6 Sign primary channel reactive power 0
7 Sign primary channel appare nt power 0
8 Overflow prima ry channel act iv e energ y 0
9 Overflow primary channel active fundamental energy 0
10 Overfl ow prima ry channel reac tiv e ene rgy 0
11 Overfl ow prima ry ch annel app aren t energ y 0
12
C1 events
Primary current zero-cros sing 0
13 Primary current sigm a-de lt a bitstream stuck 0
14 Primary current AH accumulation 0
15
Primary c urrent swell event history
0
16 0
17 0
18 0
19
V1 events
Primary volt ag e zero -cross in g 0
20 Primary voltage sigma-delta bitstream stuck 0
21 Primary voltage period error (out of range) 0
22
Primary voltage swell event history
0
23 0
24 0
25 0
26
Primary voltage sag event history
0
27 0
28 0
29 0
30 Reserved 0
31 Reserved 0
Register map STPM32, STPM33, STPM34
114/121 DocID026142 Rev 3
Table 66. Row 22, DSP live event 2 (DSP_EV2)
Bit Internal signal Description Default
0
PH1+PH2 events
Sign total active power 0
1 Sign total reactive power 0
2 Overflow active energy total 0
3 Overflow reactive energy total 0
4
PH2 events
Sign secondary channel active po wer 0
5 Sign seco ndary channel active fundamental p ower 0
6 Sign s econdary channel reactive power 0
7 Sign secondary channel apparent power 0
8 Overflow secondary channel active energy 0
9 Overflow secondary channel active fundamental energy 0
10 Overflow secondary channel reactive energy 0
11 Overflow secondary channel apparent energy 0
12
C2 events
Seconda ry current ze ro-c rossin g 0
13 Secondary current sigma-de lt a bitstream stuck 0
14 Secondary current AH accu mu lati on 0
15
Secondary current sw el l eve nt his tory
0
16 0
17 0
18 0
19
V2 events
Seconda ry volt ag e zero-cro ssing 0
20 Secondary voltage si gma-delta bitstr eam stuck 0
21 Secondary voltage period error (out of range) 0
22
Secondary voltage swell event history
0
23 0
24 0
25 0
26
Secondary voltage sag event history
0
27 0
28 0
29 0
30 Reserved 0
31 Reserved 0
DocID026142 Rev 3 115/121
STPM32, STPM33, STPM34 Package information
121
11 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOP ACK®
specifications, grade definitions and product status are available at:www.st.com.
ECOPACK® is an ST trademark.
Package information STPM32, STPM33, STPM34
116/121 DocID026142 Rev 3
11.1 QFN24L 4x4x1 mm 0.5 pitch package information
Figure 53. QFN24L 4x4x1 mm 0.5 pitch outline
B(
DocID026142 Rev 3 117/121
STPM32, STPM33, STPM34 Package information
121
Figure 54. QFN24L 4x4x1 mm 0.5 pitch recommended footprint
Table 67. QFN24L 4x4x1 mm 0.5 pitch package mechanical data
Dim. mm
Min. Typ. Max.
A 0.80 0.90 1.00
A1 0 0.02 0.05
b 0.18 0.25 0.30
D 3.90 4.00 4.10
D2 2.30 2.45 2.55
E 3.90 4.00 4.10
E2 2.30 2.45 2.55
e 0.45 0.50 0.55
K0.20
L 0.30 0.40 0.50
4)1[BIRRWSULQW
Package information STPM32, STPM33, STPM34
118/121 DocID026142 Rev 3
11.2 QFN32L 5x5x1 mm 0.5 pitch package information
Figure 55. QFN32L 5x5x1 mm 0.5 pitch outline
B2
DocID026142 Rev 3 119/121
STPM32, STPM33, STPM34 Package information
121
Table 68. QFN32L 5x5x1 mm 0.5 pitch package mechanical data
Dim. mm
Min. Typ. Max.
A 0.80 0.90 1.00
A1 0.00 0.02 0.05
A3 0.20
b 0.18 0.25 0.30
D 4.85 5.00 5.15
D2 3.40 3.45 3.50
E 4.85 5.00 5.15
E2 3.40 3.45 3.50
e 0.45 0.50 0.55
L 0.30 0.40 0.50
Ddd 0.08
Revision history STPM32, STPM33, STPM34
120/121 DocID026142 Rev 3
12 Revision history
Table 69. Revis ion history
Date Revision Changes
31-Mar-2014 1 Initial release.
16-Oct-2014 2
Updated Fea ture s.
Updated Table 2, from Table 14, to Table 18, from Ta ble 21, to
Table 23; updated Table 33, Table 35, Table 36, Table 40, Table 41
and from Table 44 to Table 66.
Changed title of Figure 15.
Updated Fig ure 22, Figure 31.
Updated Section 8.2.1, Section 8.2.3, Section 8.3.1, Section 8.4.12,
Section 8.6.3.
Minor text chan ges .
01-Oct-2015 3
Updated Features.
Updated Section 8.2.1, Section 8.3.3, Section 8.3.6, Section 8.4,
Section 8.4.3, Section 8.4.4, Section 8.4.12, Section 8.4.13, Period
measurement, Sag and swell threshold calculation.
Added note to Interrupt control mask register.
Updated Table 5, Table 22, Table 42, Table 44, Table 45,
Table 56,Table 57, Table 58, Table 59, Table 60, Table 61.
Updated equ ati ons in Table 14, Table 15, Table 16, Table 17,
Table 18, Table 20, Table 35, Table 37, Table 39, Table 40.
Updated Equati on 29.
Added Figure 8, Figure 9, Figure 10 and Figure 29.
Updated Figure 26, Figure 27, Figure 28, Figure 31, Figure 32,
Figure 35, Figure 36, Figure 45.
Changed Figure 46.
DocID026142 Rev 3 121/121
STPM32, STPM33, STPM34
121
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the righ t to make changes, co rrections, enhancement s, modifications, and
improveme nts to ST product s and/o r to this do cument at any time without not ice. Purcha sers should o bta in the latest relevant in format ion on
ST products before placing orders. ST products are sold pursuant to ST’ s terms and conditions of sale in place at the ti me of order
acknowledgement.
Purchase rs are s olely r espon si ble for t he cho ic e, selec tion, a nd use of ST pro duc ts and ST assume s no l i abil ity f or applic ation as sist ance or
the design of Purchase rs’ product s.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST pr oducts with prov isions different from the infor m ation set forth herein shall void any wa rranty grant ed by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces informa tion previously sup plied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
STMicroelectronics:
STPM33TR STPM34TR STPM32TR