Semiconductor Components Industries, LLC, 2001
June, 2001 – Rev. 0 1Publication Order Number:
TND301/D
TND301
Clock Management Design
Using Low Skew and Low
Jitter Devices
Prepared by: Paul Hunt
ON Semiconductor
Why Do We Need Clock Management?
Can you imagine the chaos in our world if our clocks or
watches were not synchronized to Greenwich Mean Time?
How would trains, buses, and airplanes run on schedule?
The miniseries Longitude was the story of a man who made
a major technological breakthrough by inventing an
accurate clock that could be carried on sailing ships so
navigators could accurately calculate longitude and know
where the ship was located at any moment in time. Before
this, ships ran aground and many people lost their lives due
to navigational errors. Even though there are fixed time zone
differences throughout the world, all clocks must agree
within fractions of seconds for civilization to work orderly
and without confusion. Clock accuracy is one of the most
important scientific technologies in our world today.
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÌÌÌÌÌ
ÌÌÌÌÌ
ÌÌÌÌÌ
ÌÌÌÌÌÌ
ÌÌÌÌÌÌ
ÌÌÌÌÌÌ
ÌÌÌÌÌÌ
ÌÌÌÌ
ÌÌÌÌ
ÌÌÌ
ÌÌÌ
ÌÌÌ
ÌÌÌ
ÌÌÌ
Ì
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌÌ
ÌÌÌ
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌÌÌ
ÌÌÌÌ
ÌÌÌÌ
ÌÌÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
ÌÌ
Ì
ÌÌÌ
ÌÌÌ
ÌÌÌ
ÌÌÌ
ÌÌÌ
ÌÌÌ
ÌÌ
ÌÌ
Ì
ÌÌÌÌÌÌÌÌÌÌ
ÌÌÌÌÌÌÌÌÌÌ
ÌÌÌÌÌÌÌÌÌÌ
ÌÌÌÌÌÌÌÌÌÌ
Ì
Ì
Ì
Ì
Ì
ÌÌ
Ì
Ì
Ì
Ì
Ì
ÌÌ
Ì
ÌÌÌÌÌÌÌÌÌ
ÌÌÌÌÌÌÌÌÌ
ÌÌÌÌÌÌÌÌÌ
Ì
ÌÌ
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌÌ
ÌÌÌ
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
ÌÌ
Ì
ÌÌ
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
ÌÌ
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
Ì
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
ÌÌ
ÌÌ
ÌÌ
Ì
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
ÌÌ
ÌÌ
ÌÌ
Ì
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
ÌÌÌ
ÌÌÌ
ÌÌ
ÌÌÌ
ÌÌÌ
ÌÌÌ
ÌÌÌÌÌ
ÌÌÌÌÌ
ÌÌÌÌÌ
ÌÌÌÌÌ
Ì
ÌÌ
Ì
Ì
ÌÌ
Ì
Ì
Ì
Ì
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
ÌÌ
ÌÌÌ
ÌÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
Ì
ÌÌÌ
ÌÌÌ
ÌÌ
ÌÌ
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
Ì
ÌÌ
Ì
Ì
ÌÌ
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
ÌÌÌÌ
ÌÌÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
Ì
ÌÌÌ
ÌÌÌ
ÌÌÌ
Ì
ÌÌ
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌÌ
ÌÌÌ
ÌÌÌ
ÌÌÌ
ÌÌ
ÌÌ
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ
ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
ÌÌ
Ì
ÌÌ
Ì
Ì
Ì
Ì
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
ÌÌ
Ì
ÌÌ
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
ÌÌÌÌ
ÌÌÌÌ
ÌÌÌÌ
Ì
Ì
Ì
Ì
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
ÌÌ
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
Ì
ÌÌ
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
ÌÌ
Ì
ÌÌ
Ì
Ì
ÌÌ
Ì
Ì
ÌÌ
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
ÌÌ
ÌÌ
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
Ì
http://onsemi.com
TECHNICAL NOTE
TND301
http://onsemi.com
2
Typical Clock Management System
Clock Management of an electronic system (see Figure 1 )
depends on very accurate time keeping. A well–designed
Clock Management scheme begins with a precise Clock
Generator which is the standard Master Clock or Mean Time.
The M aster C lock i s p assed o n t o t he C lock D istribution c ircuit
which “fans out” multiple clocks throughout the system and
activates individual events in the CPUs, ASICs, FPGAs, and
Memory. All events a re s ynchronized t o t he M aster C lock and
requires accurate d evices t o generate a nd d istribute the c locks.
Accurate devices are described as those with low jitter and
low skew. Jitter is uncertainty in the location of the rising or
falling edge of the signal (see Figure 2). Jitter can be random
or deterministic. Jitter is called phase noise in the Master
Clock and increases as it passes through each device. Noise
from power supplies and crosstalk between signals also add
to the total jitter. Jitter can be measured as peak–to–peak or
RMS in picoseconds.
Skew is a time offset of the clocks as they travel
throughout the system (see Figure 3). Skew is defined as
duty–cycle skew, within–device skew, or device–to–device
skew. Skew is reduced by adjusting the delay of signals
within the system. It is similar to propagation delay and is
measured in picoseconds.
Large values of jitter and skew on clocks reduce the
maximum operating frequency of a system.
Clock Generator CPU’s
Master Clock
PLL
(Phase Locked Loop)
with Crystal
Clock
Distribution Back
Plane Additional
Clock
Distribution
Clock Delay,
Division and
Translation
ASIC’s
FPGA’s
Memory
Figure 1. Typical Clock Management System
Figure 2. Jitter
Figure 3. Skew
Skew
OUT1
OUT2
Skew is a fixed difference between outputs caused by many factors including physi-
cal layout, device process variations, and unbalanced loading conditions.
Jitter is the uncertainty caused by many factors including power supply noise, signal
crosstalk, and device physics.
Jitter
TND301
http://onsemi.com
3
Clock Management Highways
Clock Management is included in electronic systems that
contain backplanes (see Figure 4). Backplanes are the
physical highways for clocks. They are multilayer printed
circuit boards that are on the back of a card cage and have
connectors that each circuit card plugs into. The design of
the backplane is very critical to the performance of the Clock
Management system. Many factors must be considered for
a good backplane design.
The Clock Generator is typically on a circuit card with
Clock Distribution circuits. The clocks are distributed
throughout the cards on the backplane and each card may
then redistribute, delay, divide, and translate these clock
signals.
Backplanes are noisy due to the high amount of electronic
signal traffic. Standard connectors are also a problem on a
backplane since they do not offer a good transition due to
impedance mismatch. Most connectors do not offer
differential signal capability and do not provide adequate
ground pins for elimination of crosstalk. Backplanes tend to
slow down signals because they have multiple layers which
add capacitance and delay.
Figure 4. Example of Backplanes
Clock Management systems distribute clocks over backplanes in super–and mini–computers,
communication equipment like PABX, SONET/SDH systems, ATM, and advance test equipment.
TND301
http://onsemi.com
4
The Building Blocks
Clock Generator
The Clock Generator uses a Phase Locked Loop (PLL)
circuit to generate the Master Clock (see Figure 5). A Crystal
Oscillator Circuit generates a low phase noise signal that is
received by a phase d etector. The phase d etector compares t he
phase of the crystal oscillator with the output of the Divide by
N counter. If both phases are the same, the circuit is in LOCK
and a small output pulse from the phase detector is averaged
by the Loop Filter. The Loop Filter outputs a voltage to the
VCO which defines the Master Clock frequency. The Divide
by N counter can be programmed to increase or decrease the
Master Clock frequency. The Master Clock is equal to the
Crystal Oscillator frequency times the value N. This is why a
PLL is sometimes called a frequency multiplier. The PLL is a
feedback circuit; if the Master Clock begins to drift away, the
shift in phase will be discovered by the Phase Detector The
Phase Detector will then generate a wider output pulse which
will be averaged by the Loop Filter and this new value will
push the VCO back in the right direction.
Crystal
Oscillator
Circuit Loop Filter
Phase
Detector
VCO
Voltage Controlled
Oscillator
Divide by N
Master
Clock
Control Input
MC100EP40
MC100EP140
MC100EL1648
NBC12429
NBC12430
MC100EP32
MC100EP33
MC100LVEP34
MC100EP139
MC100EP016
Figure 5. Clock Generation Using Phase Locked Loop Circuit
Clock Distribution
Clock Distribution circuits receive a single differential
input and “fan out” multiple outputs with minimum skew
(see Figure 6).
Figure 6. Clock Distribution Using 1:N
Clock Driver Circuit
1
2
1
N
1:2 Dual 1:3 1:4 1:5 Dual 1:5 1:6 1:10 1:15
MC100EL11 MC100EL13 MC100EL15 MC100EL14 MC100LVEP210 MC100E211 MC100LVEP111 MC100LVE222
MC100LVEL11 MC100LVEL13 MC100LVEL14
MC100EP11 MC100EP14
MC100LVEP11 MC100LVEP14
TND301
http://onsemi.com
5
Delay Lines
Delay Lines are used to synchronize clocks that travel
different distances within the Clock Management system
(see Figure 7). It is dif ficult in the card cage with a backplane
to distribute all clocks to all circuits using the same length
line. The position of the cards in the card cage makes this
impossible. One way to synchronize the clocks in a large
system i s t o use delay line circuits. The signal comes into the
device and is delayed by an amount determined by a
programmable input. This programmable input can be a
parallel word and/or a single analog voltage input.
Figure 7. Example of Clock Delay
1
1
N
Delay Line
Device
Short Lines
Long Lines
Programmable Input
MC100EP195
MC100EP196
Clock Dividers
Clock Dividers are required to reduce the frequency of
certain clocks within a system.
Figure 8. Example of Clock Division
Divide by 2
MC100EP195
MC100LVEP34
MC100EP139
MC100EP016
Divide by 2
MC100EP33
MC100LVEP34
MC100EP139
MC100EP016
Divide by 2
MC100LVEP34
MC100EP016
TND301
http://onsemi.com
6
Translators
Translators are required in Clock Management systems to
convert voltage levels and amplitudes to other voltage levels
and amplitudes to interface with other logic components.
These could be microprocessors, FPGAs, ASICs, or
Memory all of which could have ECL, CMOS, TTL, LVDS,
GTL, or HSTL inputs and outputs.
Figure 9. Voltage Level Translation
Voltage Level Translation
(High to Low or Low to High) Voltage Level Translation with Amplitude Change
(Small/High to Large/Low or Large/Low to Small High)
Figure 10. Voltage Level and Amplitude Translation
V1
V2
V3
V1
V2
V3
V1
V2
V3
V1
V2
V3
OUT OUTIN IN
OUT OUTIN IN
TRANSLATOR TABLE
PECL/LVPECL TTL/CMOS LVDS NECL
PECL/LVPECL MC100EP16
MC100LVEP16
MC100LVEL92
MC100EPT21
MC100EPT23
MC100EPT26
MC100EP210S MC100LVEL91
TTL/CMOS MC100EPT20
MC100EPT22 MC100EPT24
LVDS MC100LVEP16
MC100LVEP17
NECL MC100EP90 MC100EPT25
NOTE: For more information, see application note AN1672.
TND301
http://onsemi.com
7
The Challenges: We Have a Better Solution
Clock Management systems require the clocks to have low
jitter and low skew. ECL logic provides less jitter and skew
with a higher operating frequency than other technologies.
ECL logic technology offers a number of advantages over
CMOS, LVDS, and TTL in reducing clock errors caused by
jitter and skew. ECL devices have 1 ps jitter and 25 ps skew
compared t o 1 5 p s j itter a nd 1 00 p s s kew for LVDS and C M OS
devices. (See F igure 11 a n d Figure 12). The f requency o f E CL
logic is 3 Ghz maximum frequency compared to 300 Mhz
maximum frequency for LVDS and CMOS logic (see Figure
13). The rise and fall times of clock signals is very critical for
edge placement. ECL logic provides rise and fall times of 100
ps compared to rise and fall times of 800 ps for LVDS and
CMOS logic (see Figure 14).
ECL logic technologies offer a number of advantages for
reducing the n oise d u e t o c rosstalk an d signal m ismatch o n t he
backplane over CMOS, LVDS, and TTL technologies. ECL
signals are differential signals and can be individually
terminated to match the transmission impedance of the
backplane E CL s ignals h ave a dequate c urrent ( 50 m A) t o drive
a b ackplane a nd c an d eliver s ignals w ith m aximum f requencies
of 3 Ghz. E CL p eak–to–peak o utput s ignals o f 8 00 m V p rovide
a g ood s ignal–to–noise ratio a nd excellent EMI c haracteristics.
100
10
1
1000
100
2002
5
ps
0
Figure 11. Standard I/O rms Jitter Figure 12. Standard I/O Skew
ps
45
40
35
30
25
20
15
10
0
Figure 13. Standard I/O Fmax Figure 14. Standard Rise/Fall Time
Comparisons
ps
Gbit/s
25
1000
10
1
10000
ECL
10
15
20
200320012000
LVDS
CMOS
2002 200320012000
ECL
LVDS
CMOS
2002 200320012000
5
2002 200320012000
ECL
LVDS
CMOS
ECL/PECL
LVDS CMOS
TND301
http://onsemi.com
8
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
TND301/D
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800–282–9855 Toll Free USA/Canada