Rev. 0.1 / Dec 2008 1
240pin DDR3 SDRAM Unbuffered DIMMs
** Contents are subject to change without prior notice.
DDR3 SDRAM Unbuffered DIMMs
Based on 1Gb A version
HMT164U6AFP(R)6C
HMT112U6AFP(R)8C
HMT112U7AFP(R)8C
HMT125U6AFP(R)8C
HMT125U7AFP(R)8C
Rev. 0.1 / Dec 2008 2
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Revision History
Revision No. History Draft Date Remark
0.01 Initial draft for internal review Nov. 2007 Preliminary
0.02 Added IDD & Halogen-free products Mar. 2008 Preliminary
0.1 Initial Specification Release.
Corrected typo on package ball feature. Dec 2008
Rev. 0.1 / Dec 2008 3
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table of Contents
1. Description
1.1 Device Features and Ordering Information
1.1.1 Features
1.1.2 Ordering Information
1.2 Speed Grade & Key Parameters
1.3 Address Table
2. Pin Architecture
2.1 Pin Definition
2.2 Input/Output Functional Description
2.3 Pin Assignment
3. Functional Block Diagram
3.1 512MB, 64Mx64 Module(1Rank of x16)
3.2 1GB, 128Mx64 Module(1Rank of x8)
3.3 1GB, 128Mx72 ECC Module(1Rank of x8)
3.4 2GB, 256Mx64 Module(2Rank of x8)
3.5 2GB, 256Mx72 ECC Module(2Rank of x8)
4. Address Mirroring Feature
4.1 DRAM Pin Wiring for Mirroring
5. Absolute Maximum Ratings
5.1 Absolute Maximum DC Ratings
5.2 Operating Temperature Range
6. AC & DC Operating Conditions
6.1 Recommended DC Operating Conditions
6.2 DC & AC Logic Input Levels
6.2.1 For Single-ended Signals
6.2.2 For Differential Signals
6.2.3 Differential Input Cross Point
6.3 Slew Rate Definition
6.3.1 For Ended Input Signals
6.3.2 For Differential Input Signals
6.4 DC & AC Output Buffer Levels
6.4.1 Single Ended DC & AC Output Levels
6.4.2 Differential DC & AC Output Levels
6.4.3 Single Ended Output Slew Rate
6.4.4 Differential Ended Output Slew Rate
6.5 Overshoot/Undershoot Specification
6.6 Input/Output Capacitance & AC Parametrics
6.7 IDD Specifications & Measurement Conditions
7. Electrical Characteristics and AC Timing
7.1 Refresh Parameters by Device Density
7.2 DDR3 Standard speed bins and AC para
8. DIMM Outline Diagram
8.1 512MB, 64Mx64 Module(1Rankx16)
8.2 1GB, 128Mx64 Module(1Rank of x8)
8.3 1GB, 128Mx72 ECC Module(1Rank of x8)
8.4 2GB, 256Mx64 Module(2Rank of x8)
8.5 2GB, 256Mx72 ECC Module(2Rank of x8)
Rev. 0.1 / Dec 2008 4
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
1. Description
This Hynix unbuffered Dual In-Line Memory Module(DIMM) series consists of 1Gb A version. DDR3 SDRAMs in Fine
Ball Grid Arr ay(FBGA) packages on a 240 pin glass-epoxy substrate. This DDR3 Unbuffe red DIMM series based on 1Gb
A ver. provide a high performance 8 byte interface in 133.35mm width form factor of industry standard. It is suitable
for easy interchange and addition.
1.1 Device Features & Ordering Information
1.1.1 Features
VDD=VDDQ=1.5V
VDDSPD=3.3V to 3.6V
Fully differential clock inputs (CK, /CK) operation
Differential Data Strobe (DQS, /DQS)
On chip DLL align DQ, DQS and /DQS transition with
CK tr ansitio n
DM masks write data-in at the both rising and falling
edges of the data strobe
All addresses and control inputs except data, data
strobes and data masks latched on the rising edges of
the clock
Programmable CAS latency 5, 6, 7 , 8, 9, 10, and (11)
supported
Programmabl e a d dit i ve l a tency 0 , C L-1, and C L- 2 sup
ported
Programmable CAS Write latency (CWL) = 5, 6, 7, 8
Programmable burst length 4/8 with both nibble
sequential and interleave mode
BL switch on the fly
8banks
8K refresh cycles /64ms
DDR3 SDRAM Package: JEDEC standard 78ball
FBGA(x4/x8), 96ball FBGA(x16) with support balls
Driver strength selected by EMRS
Dynamic On Die Termination supported
Asynchronous RESET pin supported
ZQ calibration supported
TDQS (Termination Data Strobe) supported (x8 only)
Write Levelization supported
Auto Self Refresh supported
On Die Thermal Sensor supported (JEDEC optional)
Rev. 0.1 / Dec 2008 5
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
1.1.2 Ordering Information
Part Name Density Org. # of
DRAMs # of
ranks Materials ECC TS
HMT164U6AFP6C-S6/S5/G8/G7/H9/H8 512MB 64Mx64 4 1 Lead-free None No
HMT164U6AFR6C-S6/S5/G8/G7/H9/H8 512MB 64Mx64 4 1 Halogen-free None No
HMT112U6AFP8C-S6/S5/G8/G7/H9/H8 1GB 128Mx64 8 1 Lead free None No
HMT112U6AFR8C-S6/S5/G8/G7/H9/H8 1GB 128Mx64 8 1 Halogen-free None No
HMT112U7AFP8C-S6/S5/G8/G7/H9/H8 1GB 128Mx72 9 1 Lead free ECC Yes
HMT112U7AFR8C-S6/S5/G8/G7/H9/H8 1GB 128Mx72 9 1 Halogen-free ECC Yes
HMT125U6AFP8C-S6/S5/G8/G7/H9/H8 2GB 256Mx64 16 2 Lead free None No
HMT125U6AFR8C-S6/S5/G8/G7/H9/H8 2GB 256Mx64 16 2 Halogen-free None No
HMT125U7AFP8C-S6/S5/G8/G7/H9/H8 2GB 256Mx72 18 2 Lead free ECC Yes
HMT125U7AFR8C-S6/S5/G8/G7/H9/H8 2GB 256Mx72 18 2 Halogen-free ECC Yes
Rev. 0.1 / Dec 2008 6
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
1.2 Speed Grade & Key Parameters
1.3 Address Table
MT/S DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Unit
Grade -S6 -S5 -G8 -G7 -H9 -H8 -P1 -P9
tCK(min) 2.5 1.875 1.5 1.25 ns
CAS Latency 658798109tCK
tRCD(min) 15 12.5 15 13.125 13.5 12 12.5 11.25 ns
tRP(min) 15 12.5 15 13.125 13.5 12 12.5 11.25 ns
tRAS(min) 37.5 37.5 37.5 37.5 36 36 35 35 ns
tRC(min) 52.5 50 52.5 50.625 49.5 48 47.25 46.25 ns
CL-tRCD-tRP 6-6-6 5-5-5 8-8-8 7-7-7 9-9-9 8-8-8 10-10-10 9-9-9 tCK
512MB 1GB 1GB 2GB 2GB
Organization 64M x 64 128M x 64 128M x 72 256M x 64 256M x 72
Refresh Method 8K/64ms 8K/64ms 8K/64ms 8K/64ms 8K/64ms
Row Address A0-A12 A0-A13 A0-A13 A0-A13 A0-A13
Column Address A0-A9 A0-A9 A0-A9 A0-A9 A0-A9
Bank Address BA0-BA2 BA0-BA2 BA0-BA2 BA0-BA2 BA0-BA2
Page Size 2KB 1KB 1KB 1KB 1KB
# of Rank 11122
# of Device 4 8 9 16 18
Rev. 0.1 / Dec 2008 7
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
2. Pin Architecture
2.1 Pin Definition
Pin Name Description Pin Name Description
A0–A13 SDRAM address bus SCL I2C serial bus clock for EEPROM
BA0–BA2 SDRAM bank select SDA I2C serial bus data line for EEPROM
RAS SDRAM row address strobe SA0–SA2 I2C slave address select for EEPROM
CAS SDRAM column address strobe VDD*SDRAM core power supply
WE SDRAM write enable VDDQ*SDRAM I/O Driver power supply
S0–S1 DIMM Rank Select Lines VREFDQ SDRAM I/O reference supply
CKE0–CKE1 SDRAM clock enable lines VREFCA SDRAM command/address reference
supply
ODT0–ODT1 On-die termination control lines VSS Power supply return (ground)
DQ0–DQ63 DIMM memory data bus VDDSPD Serial EEPROM positive power supply
CB0–CB7 DIMM ECC check bits NC Spare pins (no connect)
DQS0–DQS8 SDRAM data strobes
(positive line of differential pair) TEST Memory bus analysis tools
(unused on memory DIMMS)
DQS0–DQS8SDRAM data strobes
(negative line of differential pair) RESET Set DRAMs to Known State
DM0–DM8 SDRAM data masks/high data strobes
(x8-based x72 DIMMs)
V
TT
SDRAM I/O termination supply
CK0–CK1 SDRAM clocks
(positive line of differential pair) RFU Reserved for future use
CK0–CK1SDRAM clocks
(negative line of differential pair) - -
*The VDD and VDDQ pins are tied common to a single power-plane on these designs
Rev. 0.1 / Dec 2008 8
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
2.2 Input/Output Functional Description
Symbol Type Polarity Function
CK0–CK1
CK0–CK1SSTL Differential
crossing
CK and CK are differential clock inputs. All the DDR3 SDRAM addr/cntl
inputs are sampled on the crossing of positive edge of CK and negative
edge of CK. Output (read) data is reference to the crossing of CK and CK
(Both directions of crossing).
CKE0–CKE1 SSTL Active High Activates the SDRAM CK signal when high and deactivates the CK signal
when low. By deactivating the clocks, CKE low initiates the Power Down
mode, or the Self Refresh mode.
S0–S1SSTLActive Low
Enables the associated SDRAM command decoder when low and disables
the command decoder when high. When the command decoder is dis-
abled, new commands are ignored but previous operations continue. This
signal provides for external rank selection on systems with multiple ranks.
RAS, CAS, WE SSTL Active Low RAS, CAS, and WE (ALONG WITH S) define the command being entered.
ODT0–ODT1 SSTL Active High When high, termination resistance is enabled for all DQ, DQS, DQS and DM
pins, assuming this function is enabled in the Mode Register 1 (MR1).
VREFDQ Supply Reference voltage for SSTL15 I/O inputs.
VREFCA Supply Reference voltage for SSTL 15 command/address inputs.
VDDQ Supply Power supply for the DDR3 SDRAM output buffers to provide improved
noise immunity. For all current DDR3 unbuffered DIMM designs, VDDQ
shares the same power plane as VDD pins.
BA0–BA2 SSTL Selects which SDRAM ba nk of eight is activated.
A0–A13 SSTL
During a Bank Activate command cycle, Address input defines the row
address (RA0–RA15).
During a Read or Write command cycle, Address input defines the column
address. In addition to the column address, AP is used to invoke autopre-
charge operation at the end of the burst read or write cycle. If AP is high,
autoprecharge is selected and BA0, BA1, BA2 defines the bank to be pre-
charged. If AP is low, autoprecharge is disabled. During a Precharge com-
mand cycle, AP is used in conjunction with BA0, BA1, BA2 to control which
bank(s) to precharge. If AP is high, a ll banks will be precharged regardles s
of the state of BA0, BA1 or BA2. If AP is low, BA0, BA1 and BA2 are used to
define which bank to precharge. A12(BC) is sampled during READ and
WRITE commands to determine if burst chop (on-the-fly) will be per-
formed (HIGH, no burst chop; LOW, burst chopped).
DQ0–DQ63,
CB0–CB7 SSTL Data and Check Bit Input/Output pins.
DM0–DM8 SSTL Active High
DM is an input mask signal for write data. Input data is masked when DM
is sampled High coincident with that input data during a write access. DM
is sampled on both edges of DQS. Although DM pins are inpu t only, the DM
loading matches the DQ and DQS loading.
VDD, VSS Supply Power and ground for the DDR3 SDRAM input buffers, and core logic. VDD
and VDDQ pins are tied to VDD/VDDQ planes on these modules.
Rev. 0.1 / Dec 2008 9
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
2.3 Pin Assignment
DQS0–DQS8
DQS0–DQS8SSTL Differential
crossing Data strobe for input and output data.
SA0–SA2 These signals are tied at the system planar to either VSS or VDDSPD to con-
figure the serial SPD EEPROM address range.
SDA This bidirectional pin is used to transfer data into or out of the SPD
EEPROM. An external resistor may be connected from the SDA bus line to
VDDSPD to act as a pullup on the system board.
SCL This signal is used to clock data into and out of the SPD EEPROM. An
external resistor may be connected from the SCL bus time to V DDSPD to act
as a pullup on the system board.
VDDSPD Supply Power supply for SPD EEP ROM. This supply is sep arate from the VDD/VDDQ
power plane. EEPROM supply is operable from 3.0V to 3.6V.
Front Side(left 1–60) Back Side(right 121–180) Front Side(left 61–120) Back Side(right 181–240)
Pin
#x64
Non-ECC x72
ECC Pin
#x64
Non-ECC x72
ECC Pin
#x64
Non-ECC x72
ECC Pin
#x64
Non-ECC x72
ECC
1V
REFDQ VREFDQ 121
V
SS
V
SS
61 A2 A2 181 A1 A1
2V
SS
V
SS
122 DQ4 DQ4 62 VDD VDD 182 VDD VDD
3 DQ0 DQ0 123 DQ5 DQ5 63 CK1 CK1 183 VDD VDD
4DQ1 DQ1124
V
SS
V
SS
64 CK1CK1184 CK0 CK0
5
V
SS
V
SS
125 DM0 DM0 65 VDD VDD 185 CK0CK0
6DQS0DQS0 126 NC NC 66 VDD VDD 186 VDD VDD
7 DQS0 DQS0 127
V
SS
V
SS
67 VREFCA VREFCA 187 NC NC
8
V
SS
V
SS
128 DQ6 DQ6 68 NC NC 188 A0 A0
9 DQ2 DQ2 129 DQ7 DQ7 69 VDD VDD 189 VDD VDD
10 DQ3 DQ3 130
V
SS
V
SS
70 A10 A10 190 BA12BA12
11
V
SS
V
SS
131 DQ12 DQ12 71 BA02BA02191 VDD VDD
12 DQ8 DQ8 132 DQ13 DQ13 72 VDD VDD 192 RAS RAS
13 DQ9 DQ9 133
V
SS
V
SS
73 WE WE 193 S0S0
14
V
SS
V
SS
134 DM1 DM1 74 CAS CAS 194 VDD VDD
15 DQS1DQS1 135 NC NC 75 VDD VDD 195 ODT0 ODT0
16 DQS1 DQS1 136
V
SS
V
SS
76 S1 S1 196 A13 A13
NC = No Connect; RFU = Reserved Future Use
1. NC pins should not be connected to anything on the DIMM, including bussing within the NC group.
2. Address pins A3–A8 and BA0 and BA1 can be mirrored or not mirrored. Please refer to Section 4.1 for more
information on mirrored addresses.
Symbol Type Polarity Function
Rev. 0.1 / Dec 2008 10
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
17
V
SS
V
SS
137 DQ14 DQ14 77 ODT1 ODT1 197 VDD VDD
18 DQ10 DQ10 138 DQ15 DQ15 78 VDD VDD 198 NC NC
19 DQ11 DQ11 139
V
SS
V
SS
79 NC NC 199
V
SS
V
SS
20
V
SS
V
SS
140 DQ20 DQ20 80
V
SS
V
SS
200 DQ36 DQ36
21 DQ16 DQ16 141 DQ21 DQ21 81 DQ32 DQ32 201 DQ37 DQ37
22 DQ17 DQ17 142
V
SS
V
SS
82 DQ33 DQ33 202
V
SS
V
SS
23
V
SS
V
SS
143 DM2 DM2 83
V
SS
V
SS
203 DM4 DM4
24 DQS2DQS2144 NC NC 84 DQS4DQS4 204 NC NC
25 DQS2 DQS2 145
V
SS
V
SS
85 DQS4 DQS4 205
V
SS
V
SS
26
V
SS
V
SS
146 DQ22 DQ22 86
V
SS
V
SS
206 DQ38 DQ38
27 DQ18 DQ18 147 DQ23 DQ23 87 DQ34 DQ34 207 DQ39 DQ39
28 DQ19 DQ19 148
V
SS
V
SS
88 DQ35 DQ35 208
V
SS
V
SS
29
V
SS
V
SS
149 DQ28 DQ28 89
V
SS
V
SS
209 DQ44 DQ44
30 DQ24 DQ24 150 DQ29 DQ29 90 DQ40 DQ40 210 DQ45 DQ45
31 DQ25 DQ25 151
V
SS
V
SS
91 DQ41 DQ41 211
V
SS
V
SS
32
V
SS
V
SS
152 DM3 DM3 92
V
SS
V
SS
212 DM5 DM5
33 DQS3DQS3 153 NC NC 93 DQS5DQS5 213 NC NC
34 DQS3 DQS3 154
V
SS
V
SS
94 DQS5 DQS5 214
V
SS
V
SS
35
V
SS
V
SS
155 DQ30 DQ30 95
V
SS
V
SS
215 DQ46 DQ46
36 DQ26 DQ26 156 DQ31 DQ31 96 DQ42 DQ42 216 DQ47 DQ47
37 DQ27 DQ27 157
V
SS
V
SS
97 DQ43 DQ43 217
V
SS
V
SS
38
V
SS
V
SS
158 NC CB4 98
V
SS
V
SS
218 DQ52 DQ52
39 NC CB0 159 NC CB5 99 DQ48 DQ48 219 DQ53 DQ53
40 NC CB1 160
V
SS
V
SS
100 DQ49 DQ49 220
V
SS
V
SS
41
V
SS
V
SS
161 DM8 DM8 101
V
SS
V
SS
221 DM6 DM6
42 NC DQS8 162 NC NC 102 DQS6DQS6 222 NC NC
43 NC DQS8 163
V
SS
V
SS
103 DQS6 DQS6 223
V
SS
V
SS
44
V
SS
V
SS
164 NC CB6 104
V
SS
V
SS
224 DQ54 DQ54
45 NC CB2 165 NC CB7 105 DQ50 DQ50 225 DQ55 DQ55
46 NC CB3 166
V
SS
V
SS
106 DQ51 DQ51 226
V
SS
V
SS
47
V
SS
V
SS
167 NC NC 107
V
SS
V
SS
227 DQ60 DQ60
Front Side(left 1–60) Back Side(right 121–180) Front Side(left 61–120) Back Side(right 181–240)
Pin
#x64
Non-ECC x72
ECC Pin
#x64
Non-ECC x72
ECC Pin
#x64
Non-ECC x72
ECC Pin
#x64
Non-ECC x72
ECC
NC = No Connect; RFU = Reserved Future Use
1. NC pins should not be connected to anything on the DIMM, including bussing within the NC group.
2. Address pins A3–A8 and BA0 and BA1 can be mirrored or not mirrored. Please refer to Section 4.1 for more
information on mirrored addresses.
Rev. 0.1 / Dec 2008 11
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
48 NC NC 168 Reset Reset 108 DQ56 DQ56 228 DQ61 DQ61
KEY KEY 109 DQ57 DQ57 229
V
SS
V
SS
49 NC NC 169 CKE1/NC CKE1/NC 110
V
SS
V
SS
230 DM7 DM7
50 CKE0 CKE0 170 VDD VDD 111 DQS7DQS7 231 NC NC
51 VDD VDD 171 NC NC 112 DQS7 DQS7 232
V
SS
V
SS
52 BA2 BA2 172 NC NC 113
V
SS
V
SS
233 DQ62 DQ62
53 NC NC 173 VDD VDD 114 DQ58 DQ58 234 DQ63 DQ63
54 VDD VDD 174 A12 A12 115 DQ59 DQ59 235
V
SS
V
SS
55 All All 175 A9 A9 116
V
SS
V
SS
236 VDDSPD VDDSPD
56 A72A72176 VDD VDD 117 SA0 SA0 237 SA1 SA1
57 VDD VDD 177 A82A82118 SCL SCL 238 SDA SDA
58 A52A52178 A62A62119
SA2 SA2
239
V
SS
V
SS
59 A42A42179 VDD VDD 120 VTT VTT 240 VTT VTT
60 VDD VDD 180 A32A32
Front Side(left 1–60) Back Side(right 121–180) Front Side(left 61–120) Back Side(right 181–240)
Pin
#x64
Non-ECC x72
ECC Pin
#x64
Non-ECC x72
ECC Pin
#x64
Non-ECC x72
ECC Pin
#x64
Non-ECC x72
ECC
NC = No Connect; RFU = Reserved Future Use
1. NC pins should not be connected to anything on the DIMM, including bussing within the NC group.
2. Address pins A3–A8 and BA0 and BA1 can be mirrored or not mirrored. Please refer to Section 4.1 for more
information on mirrored addresses.
Rev. 0.1 / Dec 2008 12
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
3. Functional Block Diagram
3.1 512MB, 64Mx64 Module(1Rank of x16)
DQ4
DQ5
DQ6
DQ7
DQ0
DQ1
DQ2
DQ3
I/O 0
I/O 1
I/O 2
I/O 3
D0
DM0
I/O 4
I/O 5
I/O 6
I/O 7
DQ12
DQ13
DQ14
DQ8
DQ9
DQ10
DQ11
I/O 8
I/O 9
I/O 10
I/O 11
I/O 12
I/O 13
I/O 14
DM1
A0–A14 A0–A14: SDRAMs D0–D3 A0
Serial PD
A1
SA0 SA1
SDA
RAS RAS: SDRAMs D0–D3
CAS CAS: SDRAMs D0–D3
CKE0 CKE: SDRAMs D0–D3
WE WE: SDRAMs D0–D3
CS
CS
CS
BA0–BA2 BA0–BA2: SDRAMs D0–D3
DQS0
DQS1
DQ15 I/O 15
V
SS
D0–D3
V
DD
/V
DD
Q
D0–D3
D0–D3
V
REF
DQ
Notes:
1. DQ-to-I/O wiring is show n as recom-
mended but may be changed.
2. DQ/DQS/DQS/ODT/DM/CKE/S relation-
ships must be maintained as shown.
3. DQ,DM,DQS,DQS resistors;Refer to asso-
ciated topology diagram.
4. Refer to the appropriate clock wiring
topology under the DIMM wiring detai ls
section of this document.
5. The pair CK1 and CK1# is terminated in
75ohm but is not used on the modul e.
6. A15 is not routed on the module.
7. For each DRAM, a unique ZQ resistor is
connected to ground.The ZQ resistor is
240ohm+-1%
8. One SPD exists per module.
SCL WP
SPD
V
DDSPD
ODT0
DQS0
DQS1
ODT: SDRAMs D0–D3
S0
CK0 CK: SDRAMs D0–D3
SA2
D0–D3
V
REF
CA
A2
CK0CK: SDRAMs D0–D3
LDQS
LDQS
LDM
UDQS
UDQS
UDM
DQ20
DQ21
DQ22
DQ23
DQ16
DQ17
DQ18
DQ19
I/O 0
I/O 1
I/O 2
I/O 3
D1
DM2
I/O 4
I/O 5
I/O 6
I/O 7
DQ28
DQ29
DQ30
DQ24
DQ25
DQ26
DQ27
I/O 8
I/O 9
I/O 10
I/O 11
I/O 12
I/O 13
I/O 14
DM3
CS
DQS2
DQS3
DQ31 I/O 15
DQS2
DQS3
LDQS
LDQS
LDM
UDQS
UDQS
UDM
DQ36
DQ37
DQ38
DQ39
DQ32
DQ33
DQ34
DQ35
I/O 0
I/O 1
I/O 2
I/O 3
D2
DM4
I/O 4
I/O 5
I/O 6
I/O 7
DQ44
DQ45
DQ46
DQ40
DQ41
DQ42
DQ43
I/O 8
I/O 9
I/O 10
I/O 11
I/O 12
I/O 13
I/O 14
DM5
CS
CS
CS
DQS4
DQS5
DQ47 I/O 15
DQS4
DQS5
LDQS
LDQS
LDM
UDQS
UDQS
UDM
DQ52
DQ53
DQ54
DQ55
DQ48
DQ49
DQ50
DQ51
I/O 0
I/O 1
I/O 2
I/O 3
D3
DM6
I/O 4
I/O 5
I/O 6
I/O 7
DQ60
DQ61
DQ62
DQ56
DQ57
DQ58
DQ59
I/O 8
I/O 9
I/O 10
I/O 11
I/O 12
I/O 13
I/O 14
DM7
CS
DQS6
DQS7
DQ63 I/O 15
DQS6
DQS7
LDQS
LDQS
LDM
UDQS
UDQS
UDM
RESET RESET:SDRAMs D0-D3
ZQ ZQ
ZQ
ZQ
Rev. 0.1 / Dec 2008 13
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
3.2 1GB, 128Mx64 Module(1Rank of x8)
DQ4
DQ5
DQ6
DQ7
DQ0
DQ1
DQ2
DQ3
DM
I/O 0
I/O 1
I/O 2
I/O 3
D0
DM0
I/O 4
I/O 5
I/O 6
I/O 7
DQ12
DQ13
DQ14
DQ8
DQ9
DQ10
DQ11
DM
I/O 0
I/O 1
I/O 2
I/O 3
D1
I/O 4
I/O 5
I/O 6
DM1
DQ20
DQ21
DQ22
DQ23
DQ16
DQ17
DQ18
DQ19
DM
I/O 0
I/O 1
I/O 2
I/O 3
D2
I/O 4
I/O 5
I/O 6
I/O 7
DM2
DQ28
DQ29
DQ30
DQ31
DQ24
DQ25
DQ26
DQ27
DM
I/O 0
I/O 1
I/O 2
I/O 3
D3
I/O 4
I/O 5
I/O 6
I/O 7
DM3
DQ36
DQ37
DQ38
DQ39
DQ32
DQ33
DQ34
DQ35
DM
I/O 0
I/O 1
I/O 2
I/O 3
D4
DM4
I/O 4
I/O 5
I/O 6
I/O 7
DQ44
DQ45
DQ46
DQ47
DQ40
DQ41
DQ42
DQ43
DM
I/O 0
I/O 1
I/O 2
I/O 3
D5
I/O 4
I/O 5
I/O 6
I/O 7
DM5
DQ52
DQ53
DQ54
DQ55
DQ48
DQ49
DQ50
DQ51
DM
I/O 0
I/O 1
I/O 2
I/O 3
D6
I/O 4
I/O 5
I/O 6
I/O 7
DQ60
DQ61
DQ62
DQ63
DQ56
DQ57
DQ58
DQ59
DM
I/O 0
I/O 1
I/O 2
I/O 3
D7
I/O 4
I/O 5
I/O 6
I/O 7
DM7
A0–A15 A0–A15: SDRAMs D0–D7
A0
Serial PD
A1
SA0 SA1
SDA
RAS RAS: SDRAMs D0–D7
CAS CAS: SDRAMs D0–D7
CKE0 CKE: SDRAMs D0–D7
WE WE: SDRAMs D0–D7
CS CS
CS CS
CS
CS
CS
CS
BA0–BA2 BA0–BA2: SDRAMs D0–D7
DQS0
DQS
DQS4
DQS1 DQS5
DQS
DQS2
DQS
DQS3
DQS
DM6
DQS6
DQS7
DQ15 I/O 7
DQS
DQS
DQS
DQS
V
SS
D0–D7
V
DD
/V
DD
Q
D0–D7
D0–D7
V
REF
DQ
SCL WP
SPD
V
DDSPD
ODT0
DQS0
DQS DQS
DQS4
DQS1
DQS
DQS
DQS2
DQS
DQS3
DQS
DQS5
DQS6
DQS
DQS7
DQS
ODT: SDRAMs D0–D7
S0
CK0 CK: SDRAMs D0–D7
SA2
D0–D7
V
REF
CA
A2
CK0CK: SDRAMs D0–D7
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
RESET RESET:SDRAMs D0-D7
Notes:
1. DQ-to-I/O wiring is shown as recom-
mended but may be changed.
2. DQ/DQS/DQS/ODT/DM/CKE/S relation-
ships must be maintained as shown.
3. DQ,DM,DQS/DQS resistors ;Refer to
associated topolo gy diagram.
4. Refer to t he appropriate clock wiring
topology under the DIMM wiring details
section of this document.
5. Re fer to Section 3.1 of this docu ment for
details on address mirroring.
6. For each DRAM, a unique ZQ resistor is
connected to ground.The ZQ resistor is
240ohm+-1%
7. One SPD exists per module.
Rev. 0.1 / Dec 2008 14
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
3.3 1GB, 128Mx72 Module(1Rank of x8)
DQ4
DQ5
DQ6
DQ7
DQ0
DQ1
DQ2
DQ3
DM
I/O 0
I/O 1
I/O 2
I/O 3
D0
DM0
I/O 4
I/O 5
I/O 6
I/O 7
DQ12
DQ13
DQ14
DQ8
DQ9
DQ10
DQ11
DM
I/O 0
I/O 1
I/O 2
I/O 3
D1
I/O 4
I/O 5
I/O 6
DM1
DQ20
DQ21
DQ22
DQ23
DQ16
DQ17
DQ18
DQ19
DM
I/O 0
I/O 1
I/O 2
I/O 3
D2
I/O 4
I/O 5
I/O 6
I/O 7
DM2
DQ28
DQ29
DQ30
DQ31
DQ24
DQ25
DQ26
DQ27
DM
I/O 0
I/O 1
I/O 2
I/O 3
D3
I/O 4
I/O 5
I/O 6
I/O 7
DM3
DQ36
DQ37
DQ38
DQ39
DQ32
DQ33
DQ34
DQ35
DM
I/O 0
I/O 1
I/O 2
I/O 3
D4
DM4
I/O 4
I/O 5
I/O 6
I/O 7
DQ44
DQ45
DQ46
DQ47
DQ40
DQ41
DQ42
DQ43
DM
I/O 0
I/O 1
I/O 2
I/O 3
D5
I/O 4
I/O 5
I/O 6
I/O 7
DM5
DQ52
DQ53
DQ54
DQ55
DQ48
DQ49
DQ50
DQ51
DM
I/O 0
I/O 1
I/O 2
I/O 3
D6
I/O 4
I/O 5
I/O 6
I/O 7
DQ60
DQ61
DQ62
DQ63
DQ56
DQ57
DQ58
DQ59
DM
I/O 0
I/O 1
I/O 2
I/O 3
D7
I/O 4
I/O 5
I/O 6
I/O 7
DM7
A0–A15 A0–A15: SDRAMs D0–D8
A0
SPD(TS integrated)
A1
SA0 SA1
SDA
RAS RAS: SDRAMs D0–D8
CAS CAS: SDRAMs D0–D8
CKE0 CKE: SDRAMs D0–D8
WE WE: SDRAMs D0–D8
S0
CS CS
CS CS
CS
CS
CS
CS
BA0–BA2 BA0–BA2: SDRAMs D0–D8
DQS0
DQS
DQS4
DQS1 DQS5
DQS
DQS2
DQS
DQS3
DQS
DM6
DQS6
DQS7
DQ15 I/O 7
CB4
CB5
CB6
CB7
CB0
CB1
CB2
CB3
DM
I/O 0
I/O 1
I/O 2
I/O 3
D8
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS8
DM8
DQS
DQS
DQS
DQS
DQS
VSS
D0–D8
VDD/VDDQ
D0–D8
D0–D8
V
REF
DQ
SCL
EVENT
SPD
VDDSPD
ODT0 ODT: SDRAMs D0–D8
DQS0
DQS DQS
DQS4
DQS1
DQS
DQS
DQS2
DQS
DQS3
DQS
DQS8
DQS
DQS5
DQS6
DQS
DQS7
DQS
CK0 CK: SDRAMs D0–D8
SA2
VREFCA
D0–D8
A2
CK0CK: SDRAMs D0–D8
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
ZQ
RESET RESET:SDRAMs D0-D8
Notes:
1. DQ-to-I/O wiring is shown as recom-
mended but may be changed.
2. DQ/DQS/DQS/ODT/DM/CKE/S rela-
tionships must be maint a ined as
shown.
3. DQ,CB,DM,DQS/DQS resistors;Refer
to associated topology diagram.
4. Refer to the appropriate clock wiring
topology under the DIMM wiring
details sec ti on of this documen t.
5. For each DRAM, a unique ZQ resistor
is connecte d t o ground.The ZQ resis-
tor is 240ohm+-1%
6. One SPD exists per module.
EVENT
Rev. 0.1 / Dec 2008 15
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
3.4 2GB, 256Mx64 Module(2Rank of x8)
DQ4
DQ5
DQ6
DQ7
DQ0
DQ1
DQ2
DQ3
DM
I/O 0
I/O 1
I/O 2
I/O 3
D0
DM0
D8
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQ12
DQ13
DQ14
DQ8
DQ9
DQ10
DQ11
I/O 0
I/O 1
I/O 2
I/O 3
D1 D9
I/O 4
I/O 5
I/O 6
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
DM1
DQ20
DQ21
DQ22
DQ23
DQ16
DQ17
DQ18
DQ19
I/O 0
I/O 1
I/O 2
I/O 3
D2 D10
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DM2
DQ28
DQ29
DQ30
DQ31
DQ24
DQ25
DQ26
DQ27
I/O 0
I/O 1
I/O 2
I/O 3
D3 D11
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DM3
DQ36
DQ37
DQ38
DQ39
DQ32
DQ33
DQ34
DQ35
I/O 0
I/O 1
I/O 2
I/O 3
D4
DM4
D12
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQ44
DQ45
DQ46
DQ47
DQ40
DQ41
DQ42
DQ43
I/O 0
I/O 1
I/O 2
I/O 3
D5 D13
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DM5
DQ52
DQ53
DQ54
DQ55
DQ48
DQ49
DQ50
DQ51
I/O 0
I/O 1
I/O 2
I/O 3
D6 D14
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQ60
DQ61
DQ62
DQ63
DQ56
DQ57
DQ58
DQ59
I/O 0
I/O 1
I/O 2
I/O 3
D7 D15
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DM7
A0–A15 A0-A15: SDRAMs D0–D15
A0
Serial PD
A1
SA0 SA1
SDA
RAS RAS: SDRAMs D0–D 15
CAS CAS: SDRAMs D0–D 15
WE WE: SDRAMs D0–D15
S0 S1
CS
CKE1 CKE: SDRAMs D8–D15
BA0–BA2 BA0–BA2: SDRAMs D0–D1 5
DQS0
DQS
DQS4
DQS1 DQS5
DQS2
DQS3
DM6
DQS6
DQS7
DQ15 I/O 7 I/O 7
V
SS
D0–D15
V
DD
/V
DD
QD0–D15
D0–D15
V
REF
DQ
SCL
WP
SPD
V
DDSPD
DQS
DM CS DQS DQS
DM CS DQS DQS
DM CS DQS DQS
DM CS DQS DQS
DM CS DQS DQSDM CS DQS DQS
DM CS DQS DQS DM CS DQS DQS
DM CS DQS DQS DM CS DQS DQS
DM CS DQS DQS DM CS DQS DQS
DM CS DQS DQS DM CS DQS DQS
DM CS DQS DQS
DQS0DQS4
DQS1 DQS5
DQS2DQS6
DQS3DQS7
ODT0 ODT: SDRAMs D0–D7
ODT1 ODT: SDRAMs D8–D15
CKE0 CKE: SDRAMs D0–D7
CK0 CK: SDRAMs D0–D7
CK0CK: SDRAMs D0–D7
SA2
D0–D15
V
REF
CA
A2
CK1 CK: SDRAMs D8–D15
CK1CK: SDR AMs D8–D15
ZQ ZQ
ZQ
ZQ
ZQ ZQ
ZQ ZQ
ZQ
ZQ
ZQ ZQ
ZQ
ZQ
ZQ ZQ
RESET RESET:SDRAMs D0-D3
Notes:
1. DQ-to-I/O wiring is shown as recom-
mended but may be changed.
2. DQ/DQS/DQS/ODT/DM/CKE/S relation-
ships must be maintained as shown.
3. DQ,DM,DQS,DQS resistors;Refer to
associated topology diagram.
4. R efer to Section 3.1 of this document for
details on address mirroring.
5. For each DRAM, a unique ZQ resistor is
connected to ground.The ZQ resistor is
240ohm+-1%
6. One SPD exists per module.
Rev. 0.1 / Dec 2008 16
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
3.5 2GB, 256Mx72 Module(2Rank of x8)
DQ4
DQ5
DQ6
DQ7
DQ0
DQ1
DQ2
DQ3
I/O 1
I/O 2
I/O 3
D0 D9
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQ12
DQ13
DQ14
DQ8
DQ9
DQ10
DQ11
I/O 0
I/O 1
I/O 2
I/O 3
D1 D10
I/O 4
I/O 5
I/O 6
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
DQ20
DQ21
DQ22
DQ23
DQ16
DQ17
DQ18
DQ19
I/O 0
I/O 1
I/O 2
I/O 3
D2 D11
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQ28
DQ29
DQ30
DQ31
DQ24
DQ25
DQ26
DQ27
I/O 0
I/O 1
I/O 2
I/O 3
D3 D12
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQ36
DQ37
DQ38
DQ39
DQ32
DQ33
DQ34
DQ35
I/O 0
I/O 1
I/O 2
I/O 3
D4 D13
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQ44
DQ45
DQ46
DQ47
DQ40
DQ41
DQ42
DQ43
I/O 0
I/O 1
I/O 2
I/O 3
D5 D14
I/O 4
I/O 5
I/O 6
I/O 7
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQ52
DQ53
DQ54
DQ55
DQ48
DQ49
DQ50
DQ51
I/O 0
I/O 1
I/O 2
I/O 3
D6 D15
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQ60
DQ61
DQ62
DQ63
DQ56
DQ57
DQ58
DQ59
I/O 0
I/O 1
I/O 2
I/O 3
D7 D16
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
A0–A15 A0-A15: SDRAMs D0–D17
RAS RAS: SDRAMs D0–D17
CAS CAS: SDRAMs D0–D17
WE WE: SDRAMs D0–D17
CKE1 CKE: SDRAMs D9–D17
BA0–BA2 BA0-BA2: SDRAMs D0–D17
DQ15 I/O 7 I/O 7
CB4
CB5
CB6
CB7
CB0
CB1
CB2
CB3
I/O 0
I/O 1
I/O 2
I/O 3
D8 D17
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQS8
DM8
Vss D0–D17
V
DD
/V
DD
QD0–D17
D0–D17
V
REF
DQ
SPD
V
DDSPD
DM CS DQS DQS DM
CS
DQS DQS DM CS DQS DQS DM
CS
DQS DQS
DM CS DQS DQS DM
CS
DQS DQS DM CS DQS DQS DM
CS
DQS DQS
DM CS DQS DQS DM
CS
DQS DQS DM CS DQS DQS DM
CS
DQS DQS
DM CS DQS DQS DM
CS
DQS DQS DM CS DQS DQS DM
CS
DQS DQS
DM CS DQS DQS DM
CS
DQS DQS
I/O 0
I/O 0
DM0 DM4
S0 S1
DQS0 DQS4
DQS0DQS4
DM1 DM5
DQS1 DQS5
DQS1DQS5
DM2
DQS2 DM6
DQS6
DQS2
DM3 DM7
DQS3 DQS7
DQS3DQS7
DQS6
DQS8
ODT0 ODT: SDRAMs D0–D8
ODT1 ODT: SDRAMs D9–D17
CKE0 CKE: SDRAMs D0–D8 CK0 CK: SDRAMs D0–D8
CK0CK: SDRAMs D0–D8
D0–D17
V
REF
CA
CK1 CK: SDRAMs D9–D17
CK1CK: SDRAMs D9–D17
ZQ ZQ
ZQ ZQ
ZQ
ZQ
ZQ ZQ
ZQ ZQ ZQ ZQ
ZQ ZQ ZQ ZQ
ZQ ZQ
RESET RESET:SDRAMs D0-D17
Notes:
1. DQ-to-I/O wiring is shown as recom-
mended but may be changed.
2. DQ/DQS/DQS/ODT/DM/CKE/S relation-
ships must be maintained as shown.
3. DQ,CB,DM/DQS/DQS resistors;Refer to
associated topology diagram.
4. Refer to Section 3.1 of this document for
details on address mirroring.
5. For each DRAM, a unique ZQ resistor is
connected to ground.The ZQ resistor is
240ohm+-1%
6. One SPD exists per module.
A0
SPD(TS integrated)
A1
SA0 SA1
SDA
SCL
EVENT
SA2
A2
EVENT
Rev. 0.1 / Dec 2008 17
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
4. Address Mirroring Feature
There is a via grid located under the SDRAMs for wiring the CA signals (address, bank ad dress, command, and control
lines) to the SDRAM pins. The length of the traces from the via to the SDRAMs places limitations on the bandwidth of
the module. The shorter these traces, the higher the bandwidth. To extend the bandwidth of the CA bus for DDR3
modules, a scheme was defined to reduce the length of these traces.T he pins o n the SD RAM are defined in a m ann er
that allows for these short trace lengths. The CA bus pins in Columns 2 and 8, ignoring the mechanical support pins,
do not have any special functions (secondary functions). This allows the most flexibility with these pins. These are
address pins A3, A4, A5, A6, A7, A8 and bank address pins BA0 and BA1. Refer to Table . Rank 0 SDRAM pins are
wired straight, with no mismatch between the connector pin as signment and th e SDRAM pin assignment. Some of the
Rank 1 SDRAM pins are cross wired as defined in the table. Pins not listed in the table are wired straight.
4.1 DRAM Pin Wiring for Mirroring
<Table 4.1: SDRAM Pin Wiring for Mirroring >
The table 4.1 illustrates the wiring in both the mirrored and non-mirrored case.
The lengths of the traces to the SDRAM pins, is obviously shorter. The via grid is smaller as well.
Connector Pin SDRAM Pin
Rank 0 Rank 1
A3 A3 A4
A4 A4 A3
A5 A5 A6
A6 A6 A5
A7 A7 A8
A8 A8 A7
BA0 BA0 BA1
BA1 BA1 BA0
Rev. 0.1 / Dec 2008 18
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
< Figure 4.1: Wiring Differences for Mirrored and Non-Mirrored Addresses >
Since the cross-wired pins have no secondary functions, there is no problem in normal operation. Any data written is
read the same way. There are limitations however. When writing to the internal registers with a "load mode" opera-
tion, the specific address is required. This requires the controll er to know if the rank is mirrored or not. This requires a
few rules. Mirroring is done on 2 rank modules and can only be done on the second rank. There is not a requirement
that the second rank be mirrored. There is a bit assignment in the SPD that indicates whether the module has been
designed with the mirrored feature or not. See the DDR3 UDIMM SPD specification for these details. The controller
must read the SPD and have the capability of de-mirroring the address when accessing the second rank.
No Mirroring Mirroring
Rev. 0.1 / Dec 2008 19
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
5. ABSOLUTE MAXIMUM RATINGS
5.1 Absolute Maximum DC Ratings
5.2 DRAM Component Operating Temperature Range
Symbol Parameter Rating Units Notes
VDD Voltage on VDD pin relative to Vss - 0.4 V ~ 1.975 V V ,3
VDDQ Voltage on VDDQ pin relative to Vss - 0.4 V ~ 1.975 V V ,3
VIN, VOUT Voltage on any pin relative to Vss - 0.4 V ~ 1.975 V V
TSTG Storage Temperature -55 to +100 , 2
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement
conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than
0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.
Symbol Parameter Rating Units Notes
TOPER Normal Temperature Range 0 to 85 ,2
Extended Temperature Range 85 to 95 1,3
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM.
For measurement conditions, please refer to the JEDEC document JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported.
During operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating
conditions
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85°… and
95°… case temperature.
Full specifications are guaranteed in this range, but the following additiona l conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs.
(This double refresh requirement may not apply for some devices.) It is also possible to specify a component
with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range. Please refer to supplier data sheet and/
or the DIMM SPD for option avail ability.
b) If Self-Refresh operation is required in the Extended Temperature Range, than it is mandatory to either use the
Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0band MR2 A7 = 1b) or
enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b).
Rev. 0.1 / Dec 2008 20
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
6. AC & DC Operating Conditions
6.1 Recommended DC Operating Conditions
6.2 DC & AC Logic Input Levels
6.2.1 DC & AC Logic Input Levels for Single-Ended Signals
The dc-tolerance limits and ac-noise limits for the reference voltages VRefCA and VRefDQ are illustrated in figure
6.2.1. It shows a valid reference voltage VRef(t) as a function of time. (VRef stands for VRefCA and VRefDQ like-
wise).VRef(DC) is the linear average of VRef(t) over a very long period of time (e.g. 1 sec). This average has to meet
the min/max requirements in Table 1. Furthermor e VRef(t) may temporarily deviate from VRef(DC) by no more than
+/- 1% VDD.
Symbol Parameter Rating Units Notes
Min. Typ. Max.
VDD Supply Voltage 1.425 1.500 1.575 V 1,2
VDDQ Supply Voltage for Output 1.425 1.500 1.575 V 1,2
1. Under all conditions, VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD abd VDDQ tied together.
Symbol Parameter DDR3-800, DDR3-1066, DDR3-1333, DDR3-1600 Unit Notes
Min Max
VIH(DC) DC input logic high Vref + 0.100 - V 1, 2
VIL(DC) DC input logic low Vref - 0.100 V 1, 2
VIH(AC) AC input logic high Vref + 0.175 - V 1, 2
VIL(AC) AC input logic low Vref - 0.175 V 1, 2
VRefDQ(DC) R eference V o ltag e f or
DQ, DM inputs 0.49 * VDD 0.51 * VDD V 3, 4
VRefCA(DC) Reference Voltage for
ADD, CMD inputs 0.49 * VDD 0.51 * VDD V 3, 4
VTT Terminat ion volt age for
DQ, DQS outputs VDDQ/2 - TBD VDDQ/2 + TBD V
1. For DQ and DM, Vref = VrefDQ. For input ony pins except RESET#, Vref = VrefCA.
2. The “t.b.d.” entries might change based on overshoot and undershoot specification.
3. The ac peak noise on VRef may not allow VRef to deviate from VRef(DC) by more than +/-1% VDD
(for reference: approx. +/- 15 mV).
For reference: approx. VDD/2 +/- 15 mV.
Rev. 0.1 / Dec 2008 21
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
< Figure 6.2.1: Illustration of Vref(DC) tolerance and Vref AC-noise limits >
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on
VRef. "VRef " shall be understood as VRef(DC), as defined in Figure 6.2.1
This clarifies, that dc-variations of VRef affect the absolute v oltage a signal has to reach to ach ieve a v alid high or low
level and therefor e the time to which setup and hold is measured. S ystem timing and voltage budgets need to account
for VRef(DC) deviations from the optimum position within the data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associ-
ated with VRef ac-noise. Timing and voltage effects due to ac-noise on VRef up to the specified limit (+/-1% of VDD)
are included in DRAM timings and their associated deratings.
6.2.2 DC & AC Logic Input Levels for Differential Signals
Note1:
Refer to “Overshoot and Undershoot Specification section 6.5 on 26 page
Symbol Parameter DDR3-800, DDR3-1066, DDR3-1333, DDR3-1600 Unit Notes
Min Max
VIHdiff Differential input logic high + 0.200 - V 1
VILdiff Differential input lo gic lo w - 0.200 V 1
VDD
VSS
VDD/2
VRef(DC)
VRef ac-noise
voltage
time
VRef(DC)max
VRef(DC)min
VRef(t)
Rev. 0.1 / Dec 2008 22
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
6.2.3 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each
cross point voltage of differential input signals (CK, CK# and DQS, DQS#) must meet the requirements in Table 6.2.3
The differential input cr oss point voltage VI X is measured fr om the actual cross point of true and complement signal to
the midlevel between of VDD and VSS.
< Figure 6.2.3 Vix Definition >
< Table 6.2.3: Cross point voltage for differential input signals (CK, DQS) >
Symbol Parameter DDR3- 800, DDR3-1066, DDR3-1333, DDR3-1600 Unit Notes
Min Max
VIX Differential Input Cross Point
Voltage relative to VDD/2 - 150 + 150 mV
VDD
VSS
VDD/2
VIX
VIX
VIX
CK#, DQS#
CK, DQS
Rev. 0.1 / Dec 2008 23
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
6.3 Slew Rate Definitions
6.3.1 For Single Ended Input Signals
- Input Slew Rate for Input Setup Time (tIS) and Data Setup Time (tDS)
Setup (tIS and tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VRef
and the first crossing of VIH(AC)min. Setup (tIS and tDS) nominal slew rate fo r a falling signal is defined as the slew
rate between the last crossing of VRef and the first crossing of VIL(AC)max.
- Input Slew Rate for Input Hold Time (tIH) and Data Hold Time (tDH)
Hold nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and
the first crossing of VRef. Hold (tIH and tDH) nominal slew rate for a falling signal is defined as the slew rate
between the last crossing of VIH(DC)min and the first crossing of VRef.
< Table 6.3.1: Single-Ended Input Slew Rate Defi nition >
Description Measured Defined by Applicable for
Min Max
Input slew rate for rising edge Vref VIH(AC)min VIH(AC)min-Vref
Delta TRS Setup
(tIS, tDS)
Input slew rate for falling edge Vref VIL(AC)max Vref-VIL(AC)max
Delta TFS
Input slew rate for rising edge VIL(DC)max Vref Vref-VIL(DC)max
Delta TFH Hold
(tIH, tDH)
Input slew rate for falling edge VIH(DC)min Vref VIH(DC)min-Vref
Delta TRH
Delta TFS
Delta TRS
vIH(AC)min
vIH(DC)min
vIL(DC)max
vIL(AC)max
vRefDQ or
vRefCA
Part A: Set up
Single Ended input Voltage(DQ,ADD, CMD)
Rev. 0.1 / Dec 2008 24
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
< Figure 6.3.1: Input Nominal Slew Rate Definition for Single-Ended Signals >
6.3.2 Differential Input Signals
Input slew rate for differential signals (CK, CK# and DQS, DQS#) are defined and measured a s shown in below Table
and Figure .
Note:
The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds.
Description Measured Defined by
Min Max
Differential input slew rate for rising edge
(CK-CK and DQS-DQS) VILdiffmax VIHdiffmin VIHdiffmin-VILdiffmax
DeltaTRdiff
Differential inp ut slew r ate f or f alling edge
(CK-CK and DQS-DQS) VIHdiffmin VILdiffmax VIHdiffmin-VILdiffmax
DeltaTFdiff
Part B: Hold
Delta TFH
Delta TRH
vIH(AC)min
vIH(DC)min
vIL(DC)max
vIL(AC)max
vRefDQ or
vRefCA
Single Ended input Voltage(DQ,ADD, CMD)
Rev. 0.1 / Dec 2008 25
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
< Figure 6.3.2: Differential Input Slew Rate Definition for DQS,DQS# and CK,CK# >
6.4 DC & AC Output Buffer Levels
6.4.1 Single Ended DC & AC Output Levels
Below table shows the output levels used for measurements of single ended signals.
Symbol Parameter DDR3-800, 1066, 1333 and 1600 Unit Notes
VOH(DC) DC output high measurement level
(for IV curve linearity) 0.8 x VDDQ V
VOM(DC) DC output mid measurement level
(for IV curve linearity) 0.5 x VDDQ V
VOL(DC) DC output low measurement level
(for IV curve linearity) 0.2 x VDDQ V
VOH(AC) AC output high measurement level
(for output SR) VTT + 0.1 x VDDQ V 1
VOL(AC) AC output low measurement level
(for output SR) VTT - 0.1 x VDDQ V 1
1. The swing of ±0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing
with a driver impedance of 40 and an effective test load of 25 to VTT = VDDQ / 2.
Delta
TFdiff
Delta
TRdiff
vIHdiffmin
vILdiffmax
0
Differential Input Voltage (i.e. DQS-DQS; CK-CK)
Rev. 0.1 / Dec 2008 26
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
6.4.2 Differential DC & AC Output Levels
Below table shows the output levels used for measurements of differential signals.
6.4.3 Single Ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and
measured between VOL(AC) and VOH(AC) for single ended signals as shown in below Table and Figure 6.4.3.
Note:
Output slew rate is verified by design and characterization, and may not be subject to production test.
< Figure 6.4.3: Single Ended Output Slew Rate Definition >
Symbol Parameter DDR3-800, 1066, 1333 and 1600 Unit Notes
VOHdiff
(AC) AC differential output high
measurement level (for output SR) + 0.2 x VDDQ V 1
VOLdiff
(AC) AC differential output low
measurement level (for output SR) - 0.2 x VDDQ V 1
1. The swing of °æ 0.2 x VDDQ is based on approximately 50% of the static differential output high
or low swingwith a driver impedance of 40ߟ and an effective test load of 25ߟ to VTT = VDDQ/2 at each of
the differential output
Description Measured Defined by
From To
Single ended output slew rate for rising edge VOL(AC) VOH(AC) VOH(AC)-VOL(AC)
DeltaTRse
Single ended output slew rate for falling edge VOH(AC) VOL(AC) VOH(AC)-VOL(AC)
DeltaTFse
Delta TFse
Delta TRse
vOH(AC)
vOL(AC)
V
Single Ended Output Voltage(l.e.DQ)
Rev. 0.1 / Dec 2008 27
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
*** Description:
SR: Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
For Ron = RZQ/7 setting
< Table 6.4.3: Output Slew Rate (single-ended) >
6.4.4 Differential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and mea-
sured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in below Table and Figure 6.4.4
Note: Output slew rate is verified by design and characterization, and may not be subject to production test.
< Figure 6.4.4: Differential Output Slew Rate Definition >
Parameter Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Units
Min Max Min Max Min Max Min Max
Single-ended Output Slew Rate SRQse 2.5 5 2.5 5 2.5 5 TBD 5 V/n s
Description Measured Defined by
From To
Differential output slew rate for rising edge VOLdiff(AC) VOHdiff(AC) VOHdiff(AC)-VOLdiff(AC)
DeltaTRdiff
Differential output slew rate for falling edge VOHdiff(AC) VOLdiff(AC) VOHdiff(AC)-VOLdiff(AC)
DeltaTFdiff
Delta
TFdiff
Delta
TRdiff
vOLdiff(AC)
O
Differential Output Voltage(i.e. DQS-DQS)
vOHdiff(AC)
Rev. 0.1 / Dec 2008 28
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
***Description:
SR: Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
diff: Differential Signals
For Ron = RZQ/7 setting < Table 6.6.4: Differential Output Slew Rate >
6.5 Overshoot and Undershoot Specifications
6.5.1 Address and Control Overshoot and Undershoot Specifications
< Table 6.5.1: AC Overshoot/Undershoot Specification for Address and Control Pins >
< Figure 6.5.1: Address and Control Overshoot and Undershoot Definition >
Parameter Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Units
Min Max Min Max Min Max Min Max
Differential Output Slew Rate SRQdiff 5 10 5 10 5 10 TBD 10 V/ns
Description Specification
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Maximum peak amplitude allowed for
overshoot area (see Figure) 0.4V 0.4V 0.4V 0.4V
Maximum peak amplitude allowed for
undershoot area (see Figure) 0.4V 0.4V 0.4V 0.4V
Maximum overshoot area above VDD
(See Figure) 0.67 V-ns 0.5 V-ns 0.4 V-ns 0.33 V-ns
Maximum undershoot area below VSS
(See Figure) 0.67 V-ns 0.5 V-ns 0.4 V-ns 0.33 V-ns
Maximum Amplitude
Overshoot Area
VDD
VSS
Volts
(V)
Maximum Amplitude Undershoot Area
Time (ns)
Rev. 0.1 / Dec 2008 29
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
6.5.2 Clock,Data,Strobe and Mask Overshoot and Undershoot Specifications
< Table 6.5.2: AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask >
< Figure 6.5.2: Clock, Data, Strobe and Mask Overshoot and Undershoot Definition >
Description Specification
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Maximum peak amplitude allowed for
overshoot area (see Figure) 0.4V 0.4V 0.4V 0.4V
Maximum peak amplitude allowed for
undershoot area (see Figure) 0.4V 0.4V 0.4V 0.4V
Maximum overshoot area above VDDQ
(See Figure) 0.25 V-ns 0.19 V-ns 0.15 V-ns 0.13 V-ns
Maximum undershoot area below VSSQ
(See Figure) 0.25 V-ns 0.19 V-ns 0.15 V-ns 0.13 V-ns
Ma ximu m A mp litu de
O vershoot Area
VDDQ
VSSQ
Maximum Amplitude Undershoot Area
Tim e (ns)
Clock, Data Strobe and M ask Overshoot and Undershoot D efinition
Volts
(V)
Rev. 0.1 / Dec 2008 30
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
6.6 Pin Capacitance
Parameter Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Units Notes
Min Max Min Max Min Max Min Max
Input/output capacitance
(DQ, DM, DQS, DQS#, TDQS,
TDQS#) CIO 1.5 3.0 1.5 3.0 1.5 2.5 TBD TBD pF 1,2,3
Input capacitance, CK and
CK# CCK TBD 1.6 TBD 1.6 TBD TBD TBD TBD pF 2,3,5
Input capacitance delta
CK and CK# CDCK 0 0.15 0 0.15 TBD TBD TBD TBD pF 2,3,4
Input capacitance
(All other input-only pins) CITBD 1.5 TBD 1.5 TBD TBD TBD TBD pF 2,3,6
Input capacitance delta, DQS
and DQS# CDDQS 0 0.20 0 0.20 TBD TBD TBD TBD pF 2,3,12
Input capacitance delta
(All CTRL input-only pins) CDI_CTRL -0.5 0.3 -0.5 0.3 TBD TBD TBD TBD pF 2,3,7,8
Input capacitance delta
(All ADD/CMD input-only pins) CDI_ADD_
CMD -0.5 0.5 -0.5 0.5 TBD TBD TBD TBD pF 2,3,9,
10
Input/output capacitance delta
(DQ, DM, DQS, DQS#) CDIO -0.5 0.3 -0.5 0.3 TBD TBD TBD TBD pF 2,3,11
Notes:
1. TDQS/TDQS# are not necessarily input function but since TDQS is sharing DM pin and the parasitic
characterization of TDQS/TDQS# should be close as much as possible, Cio&Cdio requirement is applied
(recommend deleting note or changing to “Although the DM, TDQS and TDQS# pins have different functions,
the loading matches DQ and DQS.”)
2. This parameter is not subject to production test. It is ve rified by design and characterization. Input capacitance is
measured according to JEP 147(“PROCEDURE FOR MEASURING INPUT CAP ACITANCE USING A VECT OR NETWORK
ANALYZER(VNA)”) with VDD, VDDQ, VSS,VSSQ applied and all other pins floating ( except the pin under test, CKE,
RESET# and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off.
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value of CCK-CCK#.
5. The minimum CCK will be equal to the minimum CI.
6. Input only pins include: ODT, CS, CKE, A0-A15, BA0-BA2, RAS#, CAS#, WE#.
7. CTRL pins defined as ODT, CS and CKE.
8. CDI_CTRL=CI(CNTL) - 0.5 * CI(CLK) + CI(CLK#))
9. ADD pins defined as A0-A15, BA0-BA2 and CMD pins are defined as RAS#, CAS# and WE#.
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK#))
11. CDIO=CIO(DQ) - 0.5*(CIO(DQS)+CIO(DQS#))
12. Absolute value of CIO(DQS) - CIO(DQS#)
Rev. 0.1 / Dec 2008 31
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
6.7 IDD Specifications(TCASE: 0 to 95oC)
512MB, 64M x 64 U-DIMM: HMT164U6AFP6C
1GB, 128M x 64 U-DIMM: HMT112U6AFP8C
Symbol DDR3 800 DDR3 1066 DDR3 1333 Unit note
IDD0 360 420 480 mA
IDD1 480 540 580 mA
IDD2P(F) 100 120 140 mA
IDD2P(S) 40 40 40 mA
IDD2Q 180 240 280 mA
IDD2N 200 240 300 mA
IDD3P 140 180 200 mA
IDD3N 220 280 340 mA
IDD4W 700 880 1060 mA
IDD4R 700 860 1020 mA
IDD5B 740 780 840 mA
IDD6(D) 40 40 40 mA 1
IDD6(S) 24 24 24 mA 1
IDD7 1300 1420 1720 mA
Symbol DDR3 800 DDR3 1066 DDR3 1333 Unit note
IDD0 640 760 840 mA
IDD1 760 880 960 mA
IDD2P(F) 200 240 280 mA
IDD2P(S) 80 80 80 mA
IDD2Q 360 480 560 mA
IDD2N 400 480 600 mA
IDD3P 280 360 400 mA
IDD3N 440 560 680 mA
IDD4W 1120 1440 1560 mA
IDD4R 1040 1320 1680 mA
IDD5B 1480 1560 1720 mA
IDD6(D) 80 80 80 mA 1
IDD6(S) 48 48 48 mA 1
IDD7 1800 2000 2440 mA
Rev. 0.1 / Dec 2008 32
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
1GB, 128M x 72 U-DIMM: HMT112U7AFP8C
2GB, 256M x 64 U-DIMM: HMT125U6AFP8C
Symbol DDR3 800 DDR3 1066 DDR3 1333 Unit note
IDD0 720 855 945 mA
IDD1 855 990 1080 mA
IDD2P(F) 225 270 315 mA
IDD2P(S) 90 90 90 mA
IDD2Q 405 540 630 mA
IDD2N 450 540 675 mA
IDD3P 315 405 450 mA
IDD3N 495 630 765 mA
IDD4W 1260 1620 1755 mA
IDD4R 1170 1485 1890 mA
IDD5B 1665 1755 1935 mA
IDD6(D) 90 90 90 mA 1
IDD6(S) 54 54 54 mA 1
IDD7 2025 2250 2745 mA
Symbol DDR3 800 DDR3 1066 DDR3 1333 Unit note
IDD0 1040 1240 1440 mA
IDD1 1160 1360 1560 mA
IDD2P(F) 400 480 560 mA
IDD2P(S) 160 160 160 mA
IDD2Q 720 960 1120 mA
IDD2N 800 960 1200 mA
IDD3P 560 720 800 mA
IDD3N 880 1120 1360 mA
IDD4W 1520 1920 2160 mA
IDD4R 1440 1800 2280 mA
IDD5B 1880 2040 2320 mA
IDD6(D) 160 160 160 mA 1
IDD6(S) 96 96 96 mA 1
IDD7 2200 2480 3040 mA
Rev. 0.1 / Dec 2008 33
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
2GB, 256M x 72 U-DIMM: HMT125U7AFP8C
6.7 IDD Measurement Conditions
Within the tables provided further down, an overview about the IDD measurement conditions is
provided as follows:
Within the tables about IDD measurement conditions, the following definitions are used:
- LOW is defined as VIN <= VILAC(max.); HIGH is defined as VIN >= VIH AC(min.).
- STABLE is defined as inputs are stable at a HIGH or LOW level.
- FLOATING is defined as inputs are VREF = VDDQ / 2.
- SWITCHING is defined as described in the following 2 tables.
Symbol DDR3 800 DDR3 1066 DDR3 1333 Unit note
IDD0 1170 1395 1620 mA
IDD1 1305 1530 1755 mA
IDD2P(F) 450 540 630 mA
IDD2P(S) 180 180 180 mA
IDD2Q 810 1080 1260 mA
IDD2N 900 1080 1350 mA
IDD3P 630 810 900 mA
IDD3N 990 1260 1530 mA
IDD4W 1710 2160 2430 mA
IDD4R 1620 2025 2565 mA
IDD5B 2115 2295 2610 mA
IDD6(D) 180 180 180 mA 1
IDD6(S) 108 108 108 mA 1
IDD7 2475 2790 3420 mA
Table 1 — Overview of Tables providing IDD Measurement Conditions and DRAM Behavior
Table number Measurement Conditions
Table 5 on page 33 IDD0 and IDD1
Table 6 on page 36 IDD2N, IDD2Q, IDD2P(0), IDD2P(1)
Table 7 on page 38 IDD3N and IDD3P
Table 8 on page 39 IDD4R, IDD4W, IDD7
Table 9 on page 42 IDD7 for different Speed Grades and different tRRD, tFAW conditions
Table 10 on page 43 IDD5B
Table 11 on page 44 IDD6, IDD6ET
Rev. 0.1 / Dec 2008 34
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 2 — Definition of SWITCHING for Address and Command Input Signals
SWITCHING for Address (row, column) and Command Signals (CS, RAS, CAS, WE) is defined as:
Address
(row, column):
If not otherwise mentioned the inputs are stable at HIGH or LOW during 4 clocks and change
then to the opposite value
(e.g. Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax.....
please see each IDDx definition for details
Bank address:If not otherwise mentioned the bank addresses should be switched like the row/column
addresses - please see each IDDx definition for details
Command
(CS, RAS, CAS, WE):
Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW}
Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH,HIGH,HIGH}
Define Command Background Pattern = D D D D D D D D D D D D...
If other commands are necessary (e.g. ACT for IDD0 or Read for IDD4R), the Background
Pattern Command is substituted by the respective CS, RAS, CAS, WE levels of the necessary
command.
See each IDDx definition for details and figures 1,2,3 as examples.
Table 3 — Definition of SWITCHING for Data (DQ)
SWITCHING for Data (DQ) is defined as
Data (DQ)
Data DQ is changing between HIGH and LOW every other data transfer (once per clock)
for DQ signals, which means that data DQ is stable during one clock; see each IDDx
definition for exceptions from this rule and for further details.
See figures 1,2,3 as examples.
Data Masking (DM) NO Switching; DM must be driven LOW all the time
Rev. 0.1 / Dec 2008 35
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Timing parameters are listed in the following table:
The following conditions apply:
- IDD specifications are tested after the device is properly initialized.
- Input slew rate is specified by AC Parametric test conditions.
- IDD parameters are specified with ODT and output buffer disabled (MR1 Bit A12).
Table 4 — For IDD testing the follow ing parameters are utilized.
Parameter
Bin DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Unit
5-5-5 6-6-6 6-6-6 7-7-7 8-8-8 7-7-7 8-8-8 9-9-9 8-8-8 9-9-9 101010
t
CKmin(IDD) 2.5 1.875 1.5 1.25 ns
CL(IDD) 566787898910clk
t
RCDmin(IDD) 12.5 15 11.25 13.13 15 10.5 12 13.5 10 11.25 12.5 ns
t
RCmin(IDD) 50 52.5 48.75 50.63 52.50 46.5 48 49.5 tbd tbd tbd ns
t
RASmin(IDD) 37.5 37.5 37.5 37.5 37.5 36 36 36 tbd tbd tbd ns
t
RPmin(IDD) 12.5 15 11.25 13.13 15 10.5 12 13.5 10 11.25 12.5 ns
t
FAW(IDD) x4/
x8 40 40 37.5 37.5 37.5 30 30 30 30 30 30 ns
x1650505050504545454040 40ns
t
RRD(IDD) x4/
x8 10 10 7.5 7.5 7.5 6.0 6.0 6.0 6.0 6.0 6.0 ns
x1610101010107.57.57.57.57.57.5ns
t
RFC(IDD) -
512Mb 90 90 90 90 90 90 90 90 90 90 90 ns
t
RFC(IDD) - 1
Gb 110 110 110 110 110 110 110 110 110 110 110 ns
t
RFC(IDD) - 2
Gb 160 160 160 160 160 160 160 160 160 160 160 ns
t
RFC(IDD) - 4
Gb tbd tbd tbd tbd tbd tbd tbd tbd tbd tbd tbd ns
Rev. 0.1 / Dec 2008 36
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 5 — IDD Measurement Conditions for IDD0 and IDD1
Current
I
DD0
I
DD1
Name
Operating Current 0
-> One Bank Activate
-> Precharge
Operating Current 1
-> One Bank Activate
-> Read
-> Precharge
Measurement Condition
Timing Diagram Example Figure 1
CKE HIGH HIGH
External Clock on on
t
CK
t
CKmin(IDD)
t
CKmin(IDD)
t
RC
t
RCmin(IDD)
t
RCmin(IDD)
t
RAS
t
RASmin(IDD)
t
RASmin(IDD)
t
RCD n.a.
t
RCDmin(IDD)
t
RRD n.a. n.a.
CL n.a. CL(IDD)
AL n.a. 0
CS HIGH between. Activate and Precharge
Commands
HIGH between Activate, Read and
Precharge
Command Inputs
(CS,RAS, CAS, WE)
SWITCHING as described in Table 2
only exceptions are Activate and
Precharge commands; example of IDD0
pattern:
A0DDDDDDDDDDDDDD P0
(DDR3-800:
t
RAS = 37.5ns between
(A)ctivate and (P)recharge to bank 0;
Definition of D and D: see Table 2
SWITCHING as described in Table 2; only
exceptions are Activate, Read and
Precharge commands; example of IDD1
pattern:
A0DDDDR0DDDDDDDDD P0
(DDR3-800 -555:
t
RCD = 12.5ns between
(A)ctivate and (R)ead to bank 0;
Definition of D and D: see Table 2)
Rev. 0.1 / Dec 2008 37
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Row, Column Addresses Row addresses SWITCHING as described
in Table 2;
Address Input A10 must be LOW all the
time!
Row addresses SWITCHING a s described
in Table 2;
Address Input A10 must be LOW all the
time!
Bank Addresses bank address is fixed (bank 0) bank address is fixed (bank 0)
Data I/O SWITCHING as described in Table 3 Read Data: output data switches every
clock, which means that Read data is
stable during one clock cycle.
To achieve Iout = 0mA, the output buffer
should be switched off by MR1 Bit A12 set
to “1”.
When there is no read data burst from
DRAM, the DQ I/O should be FLOATING.
Output Buffer DQ,DQS
/ MR1 bit A12
off / 1 off / 1
ODT
/ MR1 bits [A6, A2]
disabled
/ [0,0]
disabled
/ [0,0]
Burst length n.a. 8 fixed / MR0 Bits [A1, A0] = {0,0}
Active banks one
ACT-PRE loop
one
ACT-RD-PRE loop
Idle banks all other all other
Precharge Power Down Mode /
Mode Register Bit 12
n.a. n.a.
Table 5 — IDD Measurement Conditions for IDD0 and IDD1
Current
I
DD0
I
DD1
Name
Operating Current 0
-> One Bank Activate
-> Precharge
Operating Current 1
-> One Bank Activate
-> Read
-> Precharge
Rev. 0.1 / Dec 2008 38
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
< Figure 1. IDD1 Example > (DDR3-800-555, 512Mb x8): Data DQ is shown but the output buffer
should be switched off (per MR1 Bit A12 =”1”) to achieve Iout = 0mA. Address inputs are split into 3
parts.
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T12 T14 T16 T18
3FF 000 3FF 000 3F000
000
11 00 11 0000
ACT D#DD# RDDD# D# D D D# D# D D D# PRE D D D#
0 0 1 1 0 0 1 1
CK
BA[2:0]
ADDR_a[9:0]
ADDR_b[10]
ADDR_c[12:11]
CS
RAS
CAS
WE
CMD
DQ
DM IDD1 M easurment Loop
a. In DDR3, the MRS Bit 12 defines DLL on/off behaviour ONLY for precharge power down. There are 2 different
Precharge Power Down states possible: one with DLL on (fast exit, bit 12 = 1) and one with DLL off
(slow exit, bit 12 = 0).
b. Because it is an exit after precharge power down, the valid commands are: Activate, Refresh, Mode-Register Set,
Enter - Self Refresh
Rev. 0.1 / Dec 2008 39
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 6 — IDD Measurement Conditions for IDD2N, IDD2P(1), IDD2P(0) and IDD2Q
Current
I
DD2N
I
DD2P(1) a
a.
I
DD2P(0)
I
DD2Q
Name Precharge Standby
Current
Precharge Power
Down Current
Fast Exit -
MRS A12 Bit = 1
Precharge Power
Down Current
Slow Exit -
MRS A12 Bit = 0
Precharge Quiet
Standby Current
Measurement Condition
Timing Diagram
Example Figure 2
CKE HIGH LOW LOW HIGH
External Clockonononon
t
CK
t
CKmin(IDD)
t
CKmin(IDD)
t
CKmin(IDD)
t
CKmin(IDD)
t
RC n.a. n.a. n.a. n.a.
t
RAS n.a. n.a. n.a. n.a.
t
RCD n.a. n.a. n.a. n.a.
t
RRD n.a. n.a. n.a. n.a.
CL n.a. n.a. n.a. n.a.
AL n.a. n.a. n.a. n.a.
CS HIGH STABLE STABLE HIGH
Bank Address, Row
Addr. and Command
Inputs
SWITCHING as
described in
Table 2 STABLE STABLE STABLE
Data inputs SWITCHING FLOATING FLOATING FLOATING
Output Buffer
DQ,DQS
/ MR1 bit A12 off / 1 off / 1 off / 1 off / 1
ODT
/ MR1 bits [A6, A2] disabled
/ [0,0] disabled
/ [0,0] disabled
/ [0,0] disabled
/ [0,0]
Burst length n.a. n.a. n.a. n.a.
Active banks none none none none
Idle banks all all all all
Precharge Power
Down Mode /
Mode Register Bit a n.a. Fast Exit / 1
(any valid command
after tXPb)
b.
Slow Exit / 0
Slow exit (RD and
ODT commands must
satisfy tXPDLL-AL)
n.a.
Rev. 0.1 / Dec 2008 40
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
<Figure 2. IDD2N / IDD3N Example > (DDR3-800-555, 512Mb x8)
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
7 00
7 00
D# D# D D D# D# D D D# D#
FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF
CK
BA[2:0]
ADDR[12:0]
CS
RAS
CAS
WE
CMD
DQ[7:0]
DM
Rev. 0.1 / Dec 2008 41
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 7 — IDD Measurement Conditions for IDD3N and IDD3P(fast exit)
Current
I
DD3N
I
DD3P
Name Active Standby Current Active Power-Down Currenta
Always Fast Exit
a. DDR3 will offer only ONE active power down mode with D LL on (-> f ast exit). MRS bit 12 will not be used for active
power down. Instead bit 12 will be used to switch between two different precharge power down modes.
Measurement Condition
Timing Diagram Example Figure 2
CKE HIGH LOW
External Clock on on
t
CK
t
CKmin(IDD)
t
CKmin(IDD)
t
RC n.a. n.a.
t
RAS n.a. n.a.
t
RCD n.a. n.a.
t
RRD n.a. n.a.
CL n.a. n.a.
AL n.a. n.a.
CS HIGH STABLE
Addr. and cmd Inputs SWITCHING as described in Table 2 STABLE
Data inputs SWITCHING as described in Table 3 FLOATING
Output Buffer DQ,DQS
/ MR1 bit A12 off / 1 off / 1
ODT
/ MR1 bits [A6, A2]
disabled
/ [0,0]
disabled
/ [0,0]
Burst length n.a. n.a.
Active banks all all
Idle banks none none
Precharge Power Down Mode /
Mode Register Bit an.a. n.a. (Active Power Down Mode is always
“Fast Exit” with DLL on
Rev. 0.1 / Dec 2008 42
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 8 — IDD Measurement Conditions for IDD4R, IDD4W and IDD7
Current
I
DD4R
I
DD4W
I
DD7
Name Operating Current
Burst Read Operating Current
Burst Write All Bank Interleave Read
Current
Measurement Condition
Timing Diagram
Example Figure 3
CKE HIGH HIGH HIGH
External Clock on on on
t
CK
t
CKmin(IDD)
t
CKmin(IDD)
t
CKmin(IDD)
t
RC n.a. n.a.
t
RCmin(IDD)
t
RAS n.a. n.a.
t
RASmin(IDD)
t
RCD n.a. n.a.
t
RCDmin(IDD)
t
RRD n.a. n.a.
t
RRDmin(IDD)
CL CL(IDD) CL(IDD) CL(IDD)
AL 0 0
t
RCDmin - 1
t
CK
CS HIGH btw. valid cmds HIGH btw. valid cmds HIGH btw. valid cmds
Command Inputs (CS,
RAS, CAS, WE)SWITCHING as described in
Table 2; exceptions are Read
commands => IDD4R
Pattern:
R0DDDR1DDDR2DDDR3.DD
D R4.....
Rx = Read from bank x;
Definition of D and D: see
Table 2
SWITCHING as described in
Table 2; exceptions are Write
commands => IDD4W
Pattern:
W0DDDW1DDDW2DDDW3
DDD W4...
Wx = Write to bank x;
Definition of D and D: see
Table 2
For patterns see Table 9
Rev. 0.1 / Dec 2008 43
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Row, Column
Addresses
column addresses
SWITCHING as described in
Table 2;
Address Input A10 must be
LOW all the time!
column addresses
SWITCHING as described in
Table 2;
Address Input A10 must be
LOW all the time!
STABLE during DESELECTs
Bank Addresses bank address cycling (0 -> 1 -
> 2 -> 3...)
bank address cycling (0 -> 1 -
> 2 -> 3...)
bank address cycling (0 -> 1 -
> 2 -> 3...), s ee pattern in
Table 9
DQ I/O
Seamless Read Data Burst
(BL8): output data switches
every clock, which means that
Read data is stable during one
clock cycle.
To achieve Iout = 0mA the
output buffer should be
switched off by MR1 Bit A12
set to “1”.
Seamless Write Data Burst
(BL8): input data switches
every clock, which means that
Write data is stable during one
clock cycle.
DM is low all the time.
Read Data (BL8 ): output data
switches every clock, which
means that Read data is
stable during one clock cycle.
To achieve Iout = 0mA the
output buffer should be
switched off by MR1 Bit A12
set to “1”.
Output Buffer
DQ,DQS
/ MR1 bit A12
off / 1 off / 1 off / 1
ODT
/ MR1 bits [A6, A2]
disabled
/ [0,0]
disabled
/ [0,0]
disabled
/ [0,0]
Burst length 8 fixed / MR0 Bits [A1, A0] =
{0,0}
8 fixed / MR0 Bits [A1, A0] =
{0,0}
8 fixed / MR0 Bits [A1, A0] =
{0,0}
Active banks all all all, rotational
Idle banks none none none
Precharge Power
Down Mode /
Mode Register Bit
n.a. n.a. n.a.
Table 8 — IDD Measurement Conditions for IDD4R, IDD4W and IDD7
Current
I
DD4R
I
DD4W
I
DD7
Name Operating Current
Burst Read Operating Current
Burst Write All Bank Interleave Read
Current
Rev. 0.1 / Dec 2008 44
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
< Figure 3. IDD4R Example > (DDR3-800-555, 512Mb x8): data DQ is shown but the output buffer
should be switched off (per MR1 Bit A12=”1”) to achieve Iout = 0mA. Address inputs are split into 3
parts.
001 010 011
00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF
CK
BA[2:0]
ADDR[12:0]
CS
RAS
CAS
WE
CMD[2:0]
DQ[7:0]
DM
3FF 000 3FF
ADDR_b[10]
11 00 11
ADDR_c[12:11]
000
000
00
RD DD# D# RD DD# D# D# RDD# RD D
-> Start of M easurem ent Loop
Rev. 0.1 / Dec 2008 45
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 9 — IDD7 Pattern for different Speed Grades and different tRRD, tFAW conditions
Speed Bin Org. tFAW tFAW tRRD tRRD IDD7 Patterna
a. A0 = Activation of Bank 0; RA0 = Read with Auto-Precharge of Bank 0; D = Deselect
Mb/s [ns] [CLK] [ns] [CLK] (Note this entire sequence is repeated.)
800
all x4/x8 40 16 10 4 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D A4
RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D
all x16 50 20 10 4 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D
D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D
D D D D
1066
all x4/x8 37.5 20 7.5 4 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D
D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D
D D D D
all x16 50 27 10 6 A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3
RA3 D D D D D D D A4 RA4 D D D D A5 RA5 D D D D
A6 RA6 D D D D A7 RA7 D D D D D D D
1333
all x4/x8 30 20 6 4 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D
D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D
D D D D
all x16 45 30 7.5 5 A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D
D D D D D D D D D D D D A4 RA4 D D D A5 RA5 D D
D A6 RA6 D D D A7 RA7 D D D D D D D D D D D D D
1600
all x4/x8 30 24 6 5 A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D
D D D D D D A4 RA4 D D D A5 RA5 D D D A6 RA6 D D
D A7 RA7 D D D D D D D
all x16 40 32 7.5 6
A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3
RA3 D D D D D D D D D D D D A4 RA4 D D D D A5 RA5
D D D D A6 RA6 D D D D A7 RA7 D D D D D D D D D
D D D
Rev. 0.1 / Dec 2008 46
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 10 — IDD Measurement Conditions for IDD5B
Current
I
DD5B
Name Burst Refresh Current
Measurement Condition
CKE HIGH
External Clock on
t
CK
t
CKmin(IDD)
t
RC n.a.
t
RAS n.a.
t
RCD n.a.
t
RRD n.a.
t
RFC
t
RFCmin(IDD)
CL n.a.
AL n.a.
CS HIGH btw. valid cmds
Addr. and cmd Inputs SWITCHING
Data inputs SWITCHING
Output Buffer DQ,DQS / MR1 bit A12 off / 1
ODT / MR1 bits [A6, A2] disabled / [0,0]
Burst length n.a.
Active banks Refresh command every tRFC=tRFCmin
Idle banks none
Precharge Power Down Mode / Mode Register Bit n.a.
Rev. 0.1 / Dec 2008 47
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 11 — IDD Measurement Conditions for IDD6 and IDD6ET
Current
I
DD6
I
DD6ET
Name Self-Refresh Current
Normal Temperature Range
T
CASE = 0. 85 °C
Self-Refresh Current
Extended Temperature Range a
T
CASE = 0. 95 °C
a. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM
devices support the following options or requirements referred to in this material.
Measurement Condition
Temperature
T
CASE = 85 °C
T
CASE = 95 °C
Auto Self Refresh (ASR) /
MR2 Bit A6 Disabled / “0” Disabled / “0”
Self Refresh Temperature
Range (SRT) /
MR2 Bit A7 Normal / “0” Extended / “1”
CKE LOW LOW
External Clock OFF; CK and CK at LOW OFF; CK and CK at LOW
t
CK n.a. n.a.
t
RC n.a. n.a.
t
RAS n.a. n.a.
t
RCD n.a. n.a.
t
RRD n.a. n.a.
CL n.a. n.a.
AL n.a. n.a.
CS FLOATING FLOATING
Command Inputs
(RAS, CAS, WE)FLOATING FLOATING
Row, Column Addresses FLOATING FLOATING
Bank Addresses FLOATING FLOATING
Data I/O FLOATING FLOATING
Output Buffer DQ,DQS
/ MR1 bit A12 off / 1 off / 1
ODT
/ MR1 bits [A6, A2] disabled
/ [0,0] disabled
/ [0,0]
Burst length n.a. n.a.
Active banks all during self-refresh actions all during self-refresh actions
Idle banks all btw. Self-Refresh actions all btw. Self-Refresh actions
Precharge Power Down Mode
/ MR0 bit A12 n.a. n.a.
Rev. 0.1 / Dec 2008 48
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
7. Electrical Characteristics and AC Timing
7.1 Refresh Parameters by Device Density
7.2 DDR3 SDRAM Standard Speed Bins includ e tCK, tRCD, tRP, tRAS and tRC
for each corresponding bin
Parameter Symbol 512Mb 1Gb 2Gb 4Gb 8Gb Units
REF command to
ACT or REF
command time tRFC 90 110 160 300 350 ns
Average periodic
refresh interval tREFI 0 ×C < TCASE < 85 ×C 7.8 7.8 7.8 7.8 7.8 ms
85 ×C < TCASE < 95 ×C 3.9 3.9 3.9 3.9 3.9 ms
DDR3 800 Speed Bin DDR3-800D DDR3-800E
Unit Notes
CL - nRCD - nRP 5-5-5 6-6-6
Parameter Symbol min max min max
Internal read command to first data
t
AA 12.5201520ns
ACT to internal read or write delay time
t
RCD 12.5 15 ns
PRE command period
t
RP 12.5 15 ns
ACT to ACT or REF command period
t
RC 50 52.5 ns
ACT to PRE command period
t
RAS 37.5 9 * tREFI 37.5 9 * tREFI ns
CL = 5 CWL = 5
t
CK(AVG) 2.5 3.3 Reserved ns 1)2)3)4)
CL = 6 CWL = 5
t
CK(AVG) 2.5 3.3 2.5 3.3 ns 1)2)3)
Supported CL Settings 5, 6 6
n
CK
Supported CWL Settings 55
n
CK
Rev. 0.1 / Dec 2008 49
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
DDR3 1066 Speed Bin DDR3-1066E DDR3-1066F DDR3-1066G
Unit Note
CL - nRCD - nRP 6-6-6 7-7-7 8-8-8
Parameter Symbol min max min max min max
Internal read command to
first data
t
AA 11.25 20 13.125 20 15 20 ns
ACT to internal read or
write delay time
t
RCD 11.25 13.125 15 ns
PRE command period
t
RP 11.25 13.125 15 ns
ACT to ACT or REF
command period
t
RC 48.75 50.625 52.5 ns
ACT to PRE command
period
t
RAS 37.5 9 * tREFI 37.5 9 * tREFI 37.5 9 * tREFI ns
CL = 5 CWL = 5
t
CK(AVG) 2.5 3.3 Reserved Reserved ns 1)2)3)4)6)
CWL = 6
t
CK(AVG) Reserved Reserved Reserved ns 4)
CL = 6 CWL = 5
t
CK(AVG) 2.5 3.3 2.5 3.3 2.5 3.3 ns 1)2)3)6)
CWL = 6
t
CK(AVG) 1.875 < 2.5 Reserved Reserved ns 1)2)3)4)
CL = 7 CWL = 5
t
CK(AVG) Reserved Reserved Reserved ns 4)
CWL = 6
t
CK(AVG) 1.875 < 2.5 1.875 < 2.5 Reserved ns 1)2)3)4)
CL = 8 CWL = 5
t
CK(AVG) Reserved Reserved Reserved ns 4)
CWL = 6
t
CK(AVG) 1.875 < 2.5 1.875 < 2.5 1.875 < 2.5 ns 1)2)3)
Supported CL Settings 5, 6, 7, 8 6, 7, 8 6, 8
n
CK
Supported CWL Settings 5, 6 5, 6 5, 6
n
CK
Rev. 0.1 / Dec 2008 50
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
DDR3 1333 Speed Bin DDR3-1333F
(optional) DDR3-1333G DDR3-1333H DDR3-1333J
(optional)
Unit Note
CL - nRCD - nRP 7-7-7 8-8-8 9-9-9 10-10-10
Parameter Symbol min max min max min max min max
Internal read
command to first
t
AA 10.5 20 12 20 13.5 20 15 20 ns
ACT to internal read
or write delay time
t
RCD 10.5 12 13.5 15 ns
PRE command period
t
RP 10.5 12 13.5 15 ns
ACT to ACT or REF
command period
t
RC 46.5 48 49.5 51 ns
ACT to PRE
command period
t
RAS 36 9 *
tREFI 36 9 *
tREFI 36 9 *
tREFI 36 9 *
tREFI ns
CL = 5 CWL = 5
t
CK(AVG) 2.5 3.3 2.5 3.3 Reserved Reserved ns 1,2,3,4,7
CWL = 6, 7
t
CK(AVG) Reserved Reserved Reserved Reserved ns 4
CL = 6
CWL = 5
t
CK(AVG) 2.5 3.3 2.5 3.3 2.5 3.3 2.5 3.3 ns 1,2,3,7
CWL = 6
t
CK(AVG) 1.875 < 2.5 Reserved Reserved Reserved ns 1,2,3,4,7
CWL = 7
t
CK(AVG) Reserved Reserved Reserved Reserved ns 4
CL = 7
CWL = 5
t
CK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 6
t
CK(AVG) 1.875 < 2.5 1.875 < 2.5 Reserved Reserved ns 1,2,3,4,7
CWL = 7
t
CK(AVG) 1.5 <1.875 Reserved Reserved Reserved ns 1,2,3,4
CL = 8
CWL = 5
t
CK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 6
t
CK(AVG) 1.875 < 2.5 1.875 < 2.5 1.875 < 2.5 1.875 < 2.5 ns 1,2,3,7
CWL = 7
t
CK(AVG) 1.5 <1.875 1.5 <1.875 Reserved Reserved ns 1,2,3,4
CL = 9 CWL = 5, 6
t
CK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 7
t
CK(AVG) 1.5 <1.875 1.5 <1.875 1.5 <1.875 Reserved ns 1,2,3,4
CL = 10 CWL = 5, 6
t
CK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 7
t
CK(AVG) 1.5 <1.875 1.5 <1.875 1.5 <1.875 1.5 <1.875 ns 1,2,3
(Optional) (Optional) (Optional) ns 5
Supported CL Settings 5, 6, 7, 8, 9 5, 6, 7, 8, 9 6, 8, 9 6, 8, 10
n
CK
Supported CWL Settings 5, 6, 7 5, 6, 7 5, 6, 7 5, 6, 7
n
CK
Rev. 0.1 / Dec 2008 51
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
DDR3 1600 Speed Bin DDR3-1600G
(optional) DDR3-1600H DDR3-1600J DDR3-1600K
(optional) Unit Note
CL - nRCD - nRP 8-8-8 9-9-9 10-10-10 11-11-11
Parameter Symbol min max min max min max min max
Internal read command
to first data
t
AA 10 20 11.25 20 12.5 20 13.75 20 ns
ACT to internal read or
write delay time
t
RCD 10 11.25 12.5 13.75 ns
PRE command period
t
RP 10 11.25 12.5 13.75 ns
ACT to ACT or REF
command period
t
RC 45 46.25 47.5 48.75 ns
ACT to PRE command
period
t
RAS 35 9 *
tREFI 35 9 *
tREFI 35 9 *
tREFI 35 9 *
tREFI ns
CL = 5 CWL = 5
t
CK(AVG) 2.5 3.3 2.5 3.3 2.5 3.3 Reserved ns 1,2,3,4,8
CWL = 6, 7, 8
t
CK(AVG) Reserved Reserved Reserved Reserved ns 4
CL = 6
CWL = 5
t
CK(AVG) 2.5 3.3 2.5 3.3 2.5 3.3 2.5 3.3 ns 1,2,3,8
CWL = 6
t
CK(AVG) 1.875 < 2.5 1.875 < 2.5 Reserved Reserved ns 1,2,3,4,8
CWL = 7, 8
t
CK(AVG) Reserved Reserved Reserved Reserved ns 4
CL = 7
CWL = 5
t
CK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 6
t
CK(AVG) 1.875 < 2.5 1.875 < 2.5 1.875 < 2.5 Reserved ns 1,2,3,4,8
CWL = 7
t
CK(AVG) 1.5 <1.875 Reserved Reserved Reserved ns 1,2,3,4,8
CWL = 8
t
CK(AVG) Reserved Reserved Reserved Reserved ns 4
CL = 8
CWL = 5
t
CK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 6
t
CK(AVG) 1.875 < 2.5 1.875 < 2.5 1.875 < 2.5 1.875 < 2.5 ns 1,2,3,8
CWL = 7
t
CK(AVG) 1.5 <1.875 1.5 <1.875 Reserved Reserved ns 1,2,3,4,8
CWL = 8
t
CK(AVG) 1.25 < 1.5 Reserved Reserved Reserved ns 1,2,3,4
CL = 9
CWL = 5, 6
t
CK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 7
t
CK(AVG) 1.5 <1.875 1.5 <1.875 1.5 <1.875 Reserved ns 1,2,3,4,8
CWL = 8
t
CK(AVG) 1.25 < 1.5 1.25 < 1.5 Reserved Reserved ns 1,2,3,4
CL = 10
CWL = 5, 6
t
CK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 7
t
CK(AVG) 1.5 <1.875 1.5 <1.875 1.5 <1.875 1.5 <1.875 ns 1,2,3,8
CWL = 8
t
CK(AVG) 1.25 < 1.5 1.25 < 1.5 1.25 < 1.5 Reserved ns 1,2,3,4
Rev. 0.1 / Dec 2008 52
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
*Speed Bin Table Notes*
Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V);
Notes:
1. The CL setting and CWL se t ting re sult in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection
of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well a s requirements from CWL set ting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output ar e synchronized by the
DLL - all possible intermediate frequencies may not be guar anteed. An application should use the next smaller JEDEC
standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(A VG) [ns],
rounding up to the next ‘Supported CL.
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CLSELECTED and round the resulting tCK(AVG) down to the
next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to
CLSELECTED.
4. ‘Reserved’ settings are not allowed. User must program a different value.
5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a mandatory
feature. Refer to suppliers data sheet and SPD information if and how this setting is supported.
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are
not subject to Production Tests but verified by Design/Characterization.
7. Any DDR3-1333 speed bin also supports f unctional operation at lower frequencies as shown in the table which are
not subject to Production Tests but verified by Design/Characterization.
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are
not subject to Production Tests but verified by Design/Characterization.
CL = 11 CWL = 5, 6, 7
t
CK(AVG) Reserved Reserved Reserved Reserved ns 4
CWL = 8
t
CK(AVG) 1.25 < 1.5 1.25 < 1.5 1.25 < 1.5 1.25 < 1.5 ns 1,2,3
(Optional) (Optional) (Optional) ns 5
Supported CL Settings 5, 6, 7, 8, 9, 10 5, 6, 7, 8, 9, 10 5, 6, 7, 8, 9, 10 6, 8, 10, 11
n
CK
Supported CWL Settings 5, 6, 7, 8 5, 6, 7, 8 5, 6, 7, 8 5, 6, 7, 8 nCK
Rev. 0.1 / Dec 2008 53
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
8. Dimm Outline Diagram
8.1 164Mx64 - HMT164U6AFP(R)6C
9.50
30.00
17.30
Max R0.70
2
x
φ
2.50 0.10±
Min 1.45
DETAIL-A DETAIL-B
2.10 0.15±
4
x
3.00 0.10±
2
x
2.30 0.10±
5.175 47.00 71.00
128.95
133.35
0.35
1.00
0.3~1.0
Detail - B
5.00
3.80
0.05
2.50 0.20±
0.80 0.05±
0.3 0.15±
1.50 0.10±
2.50 FULL R
Detail - A
1.27
±
0.10
3.18
Front
Back
Side
SPD
Note) All dimensions are in millimeters unless otherwise stated.
Rev. 0.1 / Dec 2008 54
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
8.2 128Mx64 - HMT112U6AFP(R)8C
9.50
17.30
Max R0.70
2
x
φ
2.50 0.10±
Min 1.45
DETAIL-A DETAIL-B
2.10 0.15±
4
x
3.00 0.10±
2
x
2.30 0.10±
5.175 47.00 71.00
128.95
133.35
0.35
1.00
0.3~1.0
Detail - B
5.00
3.80
0.05
2.50 0.20±
0.80 0.05±
0.3 0.15±
1.50 0.10±
2.50 FULL R
Detail - A
1.27
±
0.10
3.18
Back
Side
30.00
Front
SPD
Note) All dimensions are in millimeters unless otherwise stated.
Rev. 0.1 / Dec 2008 55
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
8.3 128Mx72 - HMT112U7AFP(R)8C
9.50
17.30
Max R0.70
2
x
φ
2.50 0.10±
Min 1.45
DETAIL-A DETAIL-B
2.10 0.15±
4
x
3.00 0.10±
2
x
2.30 0.10±
5.175 47.00 71.00
128.95
133.35
0.35
1.00
0.3~1.0
Detail - B
5.00
3.80
0.05
2.50 0.20±
0.80 0.05±
0.3 0.15±
1.50 0.10±
2.50 FULL R
Detail - A
1.27
±
0.10
3.18
Back
Side
30.00
Front
SPD
Note) All dimensions are in millimeters unless otherwise stated.
Rev. 0.1 / Dec 2008 56
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
8.4 256Mx64 - HMT125U6AFP(R)8C
9.50
17.30
Max R0.70
2
x
φ
2.50 0.10±
Min 1.45
DETAIL-A DETAIL-B
2.10 0.15±
4
x
3.00 0.10±
2
x
2.30 0.10±
5.175 47.00 71.00
128.95
133.35
0.35
1.00
0.3~1.0
Detail - B
5.00
3.80
0.05
2.50 0.20±
0.80 0.05±
0.3 0.15±
1.50 0.10±
2.50 FULL R
Detail - A
1.27
±
0.10
4.00
Back
Side
30.00
Front
SPD
Note) All dimensions are in millimeters unless otherwise stated.
Rev. 0.1 / Dec 2008 57
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
8.5 256Mx72 - HMT125U7AFP(R)8C
9.50
17.30
Max R0.70
2
x
φ
2.50 0.10±
Min 1.45
DETAIL-A DETAIL-B
2.10 0.15±
4
x
3.00 0.10±
2
x
2.30 0.10±
5.175 47.00 71.00
128.95
133.35
0.35
1.00
0.3~1.0
Detail - B
5.00
3.80
0.05
2.50 0.20±
0.80 0.05±
0.3 0.15±
1.50 0.10±
2.50 FULL R
Detail - A
1.27
±
0.10
4.00
Back
Side
30.00
Front
SPD
Note) All dimensions are in millimeters unless otherwise stated.